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ABSTRACT

Autonomous driving is a popular research area within the computer vision re-
search community. Since autonomous vehicles are highly safety-critical, en-
suring robustness is essential for real-world deployment. While several public
multimodal datasets are accessible, they mainly comprise two sensor modali-
ties (camera, LiDAR) which are not well suited for adverse weather. In ad-
dition, they lack far-range annotations, making it harder to train neural net-
works that are the base of a highway assistant function of an autonomous vehi-
cle. Therefore, we introduce a multimodal dataset for robust autonomous driving
with long-range perception. The dataset consists of 176 scenes with synchro-
nized and calibrated LiDAR, camera, and radar sensors covering a 360-degree
field of view. The collected data was captured in highway, urban, and subur-
ban areas during daytime, night, and rain and is annotated with 3D bounding
boxes with consistent identifiers across frames. Furthermore, we trained unimodal
and multimodal baseline models for 3D object detection. Data are available at
https://github.com/aimotive/aimotive_dataset.

1 INTRODUCTION

A large number of datasets for 3D object detection applied in autonomous driving (AD) have been
released in the last few years (Geiger et al., 2012b; Chang et al., 2019; Huang et al., 2018; Pham
et al., 2020; Patil et al., 2019; Caesar et al., 2020). The majority of datasets have the common
property of including sensor data from different modalities, including cameras and LiDAR. In this
way, a 360-degree field-of-view (FOV) can be covered around the ego vehicle. 3D object detection
datasets can be split into different groups along the dimensions of the coverage around the ego
vehicle and sensor redundancy. While numerous datasets are publicly available, they either do
not provide sensor redundancy (i.e. coverage by at least two sensor modalities) which is essential
for robust autonomous driving or rely only on camera and LiDAR sensors that are not perfectly
applicable in adverse weather (see Table 1 for the properties of several popular datasets grouped
based on sensor coverage and redundancy). This issue could be solved by utilizing radars which is
a cost-effective sensor and is not affected by adverse environmental conditions (e.g. rain or fog).
Furthermore, the annotation range does not exceed 80 meters (with a few exceptions) which is not
sufficient for training long-range perception systems. The limitation of the annotation range can be
explained by the fact that autonomous driving datasets mostly focus on urban environments while
ensuring the ability to detect objects in distant regions is critical for highway assistants and therefore
for autonomous driving.

In order to overcome the above-mentioned limitations, we release a multimodal dataset for robust
autonomous driving with long-range perception. The collected dataset includes 176 scenes with
synchronized and calibrated LiDAR, camera, and radar sensors covering a 360-degree field of view.
The data was captured in diverse geographical areas (highway, urban, and suburban) and different
time and weather conditions (daytime, night, rain). We provide 3D bounding boxes with consistent
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Table 1: Comparison of relevant datasets. Middle group: datasets with redundant 360◦ sensor
coverage, right group: datasets with 360◦ view without sensor redundancy. Range refers to the
perception limit of the front and back region in the case of the middle group and the front area for
the right group (ego vehicle is the origin).

identifiers across frames which enables the utilization of our dataset for 3D object detection and
multiple object tracking tasks. The proposed dataset is published under CC BY-NC-SA 4.0 license,
allowing the research community to use the gathered data for non-commercial research purposes.
Our main contributions are the followings:

• We released a multimodal autonomous driving dataset with redundant sensor coverage in-
cluding radars and 360◦ FOV.

• Our dataset has an extended annotation range compared to existing datasets allowing the
development of long-range perception systems.

• We trained and benchmarked unimodal and multimodal baseline models.

By releasing our dataset and models to the public, we seek to facilitate research in multimodal sensor
fusion and robust long-range perception systems.

2 RELATED WORK

One of the most influential datasets is KITTI by Geiger et al. (2012b), which generated interest
in 3D object detection in autonomous driving. The KITTI dataset contains 22 scenes recorded in
Karlsruhe, Germany. The sensor setup consists of front cameras and a roof-mounted LiDAR. The
perception range of the released dataset is less than 100 meters, and no 360-degree FOV is provided.
In addition, the footage was recorded only in the daytime.

Several popular 3D object detection datasets provide a 360◦ FOV with sensor redundancy. nuScenes
(Caesar et al., 2020) is the most similar dataset to our work, including full sensor redundancy for the
entire sensor setup. However, a 32-beam LiDAR with a relatively sparse point cloud and limited per-
ception range was used during the recording process, resulting in a shorter perception limit than 100
meters (i.e. there are no annotated objects with a distance larger than 100 meters from the ego vehi-
cle at the moment when the given frame was annotated). The sensor data has been recorded in urban
environments (Boston, USA, Singapore) and lacks footage on highways. Waymo Open Dataset(Sun
et al., 2020) is the first large-scale autonomous driving 3D object detection data collection with 360◦
FOV, including more than 1000 scenes and 12M annotated objects. The main shortcoming of this
dataset is the limited perception range and sensor suite. The recently released Argoverse2 Sensor
(Wilson et al., 2021) dataset utilized the experiences gained from hosting several challenges using
the Argoverse (Chang et al., 2019) dataset. Argoverse2 has a similar scale as Waymo Open Dataset
but with an extended annotation range. The disadvantage of the dataset compared with our solution
is the lack of radar sensor usage and the diversity of recording locations (see Table 1). Both Lyft
Level 5 perception dataset (Kesten et al., 2019) and ONCE (Mao et al., 2021) have recordings from
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Figure 1: Sensor setup and coordinate systems. Table 2: Description of used sensors.

only one country, without utilizing any radars, and do not contain annotated objects in distant areas.
Radiate (Sheeny et al., 2021) uses three different sensor modalities and contains a large number of
annotated keyframes in adverse weather (e.g. fog, rain, snow). The paper’s main contribution is the
release of a high-resolution radar dataset. However, the perception range is limited (i.e. less than
100 m), and other sensor modalities are constrained (32-beam LiDAR with very sparse point cloud,
only front camera with low-resolution images).

Another group of datasets also provides 360-degree coverage without sensor redundancy, which is
essential for robust autonomous driving. RADIal(Rebut et al., 2022), similar to Radiate, employs
a high-definition radar for sensing in 360◦. The recorded data covers a wide range of geographical
areas, however, the sensor setup is restricted to only three sensors. Furthermore, the dataset has a
limited amount of annotated objects (less than 10k). DENSE (Bijelic et al., 2020) also focuses on
data collected in severe weather. The paper describes a unique sensor setup including a thermal
camera, gated cameras, and a spinning LiDAR. Even though a diverse set of sensors is mounted
to the recording car, sensor redundancy is not ensured in the case of the dataset. Moreover, the
annotated area is limited due to the challenging weather conditions.

As Table 1 summarizes, our dataset has an advantage over the existing related work. The pro-
posed dataset combines full sensor redundancy with a long perception range in diverse environ-
ments, which is not provided by previously published 3D object detection datasets. Ensuring these
properties are required for training neural networks which can serve as a base of robust autonomous
driving software that can operate in different environments.

3 AIMOTIVE MULTIMODAL DATASET

Our multimodal dataset comprises 15s long scenes with synchronized and calibrated sensors. The
dataset provides a 360◦ FOV using a redundant sensor layout where the area around the ego vehicle
is recorded by at least two different sensors at the same time. Since the annotated 3D bounding
boxes have consistent identifiers across frames, the dataset can be used for 3D object detection and
multiple object tracking tasks. In addition, a considerable amount of annotations (about 25%) are
located in the far-distance region (≥ 75m) concerning the ego vehicle. Due to this property and the
redundant sensor setup, our dataset can facilitate research in multimodal sensor fusion and robust
long-range perception systems.

3.1 DATA COLLECTION

The data was collected in three countries on two continents with four cars to provide a diverse
dataset. The recordings have taken place in California, US; Austria; and Hungary using three Toyota
Camry and one Toyota Prius. The recording phase of the footage was spread across a year to gather
data in different seasons and weather conditions. As a result, our dataset consists of a diverse set of
locations (highway, suburban, urban), times (daytime, night), and weather conditions (sun, cloud,
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Table 3: Data distribution w.r.t weather and en-
vironment.

Table 4: Average cuboid dimensions (m).

rain, glare). The data collection method has satisfied the requirements given by the Institutional
Review Board approval.

3.2 SENSOR SETUP

Sensor layout. The data was recorded using a roof-mounted, rotating 64-beam LiDAR, four cam-
eras, and two long-range radars, providing 360◦ coverage with sensor redundancy. The localization
was based on a high-precision GNSS+INS sensor. Additional details can be found in Figure 1 and
Table 2.

Synchronization. All of the recorded sensor data are synchronized. The LiDAR and radars share
the same timestamp source. Our cameras capture images using the rolling shutter method, which
scans the environment rapidly instead of capturing the image as a snapshot of the entire scene at a
single time moment. Since the used cameras capture the scene row by row, the camera timestamp is
approximately the exposure time when the middle row is captured.

Coordinate system. The dataset uses five coordinate systems, namely global, body, radar, camera,
and image coordinate systems. We have used ECEF (Snay & Soler, 1999) as the global coordinate
system and provided a 6-DOF ego-vehicle pose for each annotated frame. The reference coordinate
system used for defining the annotated objects is called the body coordinate system that is attached
to the vehicle body. The origin is the projected ground plane point under the center of the vehicle’s
rear axis at nominal vehicle body height and zero velocity. The radar coordinate system uses the
same axes as the body coordinate system (x-axis positive forward, y-axis positive to the left, and
z-axis positive upwards). The LiDAR point cloud was transformed into the body coordinate system
as a preprocessing step. The origin of the camera coordinate system is the camera’s viewpoint and
the axes are defined the same as the OpenCV(Kaehler & Bradski, 2016) camera coordinate system
(x-axis positive to the right, y-axis positive downwards, z-axis positive forward). Camera-to-body
and radar-to-body transformations can be performed using camera and radar extrinsic matrices. We
utilized OpenCV’s image coordinate system for rendering annotations using intrinsic matrices to
project from camera coordinates to image coordinates.

3.3 GROUND TRUTH GENERATION

We used two approaches for generating ground truth labels: an automatic annotation method for
training data generation and manual annotation for creating validation data. The automatic annota-
tion relies on LiDAR measurements and searches possible candidates in the entire point cloud of a
15 s long sequence. Non-causal object tracking (i.e. both directions in time) including the associ-
ation of new detections to the existing tracks is realized in the 2.5D descriptor space with the joint
probability distribution of the modeled detection uncertainty and object dynamics. Utilizing the in-
formative point cloud along with the physical constraints, the consecutive detections (i.e. positions
and orientations) of the same object can be optimized recursively. In this way, the point cloud of a
given object can be accumulated from different views. As the tracked object’s trajectory becomes
more accurate with the optimization steps, the model point cloud of the detected object becomes
sharp, thus, a bounding box can be fitted on it. The annotated sequences were manually quality-
checked based on multiple criteria. This inspection checks the position, orientation, and size of the
amodal bounding boxes projected back to all available cameras. The oriented bounding boxes are
inspected from the top view too. The manual quality checking is performed on the scene level. Some
label noise still might be included in the dataset even though we aimed to minimize it using human
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validation. In this way, we selected sufficiently accurately labeled recordings, and most erroneous
annotations were discarded.

In the case of the validation set, we hired manual annotators to label objects on the recorded sensor
data. The human annotators used LiDAR and camera sensor data during the annotation phase to fit
cuboids on any object of interest appearing on the camera images. For the cuboid sizes, annotators
used default dimensions. If the default dimensions do not match the size of a given object in the
point cloud or on the images, annotators adjusted the non-matching dimensions of the given cuboid
based on their own decision. The manual labor also ensured that one cuboid axis is aligned with the
object orientation and within 5 degrees of precision.

The manually or automatically annotated objects belonging to 14 classes are represented as 3D
cuboids with some additional physical properties. Each labeled bounding box has a 3D center point,
3D extent (length along the horizontal x-axis, width along the vertical y-axis, height along the z-
axis), orientation (represented as a quaternion), relative velocity, and a unique track ID. Furthermore,
we provide 2D bounding boxes utilizing an FCOS (Tian et al., 2019) detector. The 2D-3D anno-
tations are associated using the Hungarian algorithm (Kuhn, 1955) for allowing the utilization of
2D-3D consistency or semi-pseudo-labeling (Matuszka & Kozma, 2022). The resulting dataset was
anonymized using Dashcam-Cleaner1.

3.4 DATASET ANALYSIS

The dataset includes 26 583 annotated frames with sensor data from multiple modalities, split into
21 402 train and 5 181 validation frames (80/20 train/val split). The scenes were recorded in diverse
weather and environmental conditions. See Table 3 for the data distribution.

The dataset contains more than 425k objects organized into 14 categories. See the class distribution
in Figure 4. The distance distribution of the annotated objects is visualized in Figure 5. About 24%
of the cuboids are beyond 75 m, Argoverse2 has about 14%, Waymo, nuScenes, and ONCE have
less than 1%. This property enables the training of long-range perception systems with the help of
our dataset.

Several additional statistics of the generated dataset are described by Table 4, 8, Figure 6 and 7. The
average cuboid dimensions for distinguished classes help to better understand how good the cuboids
are per class. The number of average cuboids per environment indicates how crowded the scenes
are. The percentage of empty boxes beyond 50 m and 75 m after the annotation process is 4.2%
and 5.4%, respectively, as opposed to the conventional benchmarks where almost 50% of objects
beyond 50 m contain zero LiDAR points (Gupta et al., 2023).

4 EXPERIMENTS

We trained several 3D object detection baselines on our dataset using publicly available models. In
order to utilize annotations located in distant areas, we defined the target grid as [−204.8, 204.8] m
in longitudinal and [−25.6, 25.6] m in lateral directions. We mapped the 14 classes included in the
dataset into four categories (car, truck/bus, motorcycle, pedestrian) and evaluated the model perfor-
mance using the all-point and 11-point interpolated Average Precision (AP) metrics (Everingham
et al., 2010) in Bird’s-Eye-View (BEV) space in a class agnostic manner. The Hungarian method
(Kuhn, 1955) is used for associating ground truth and predictions with a 0.3 IoU threshold. We
selected a small IoU value for the association threshold to handle displacement errors which are es-
pecially frequent in distant regions in BEV. Furthermore, the Average Orientation Similarity (AOS)
(Geiger et al., 2012a) metric is utilized for evaluating the performance of the models in terms of
orientation prediction.

4.1 BASELINE MODELS

Our baseline models are based on VoxelNet (Zhou & Tuzel, 2018), BEVDepth (Li et al., 2022), and
BEVFusion (Liu et al., 2022) for LiDAR, camera, and multimodal models. Since BEVFusion does
not use radar sensors, we designed a simple solution for LiDAR-radar fusion. Namely, we treated

1https://github.com/tfaehse/DashcamCleaner
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Table 5: Comparison of baseline models. First group: all-point AP metric, second group: 11-point
interpolation AP metric, third group: AOS metric averaged over val set.

Figure 2: PR curves of baseline models.

the radar point cloud as a regular LiDAR point cloud. After a point cloud merging step, data from
different modalities can be processed by VoxelNet as if it would be a regular LiDAR point cloud.

VoxelNet has the capability to operate on the point cloud directly and consists of three main parts.
The Voxel Feature Encoder (VFE) is responsible for encoding raw point clouds at the individual
voxel level. VoxelNet utilizes stacked VFE layers and their output is further processed by a mid-
dle convolutional neural network (CNN) to aggregate voxel-wise features. The final component
performing the 3D object detection is the region proposal network (Ren et al., 2015).

BEVDepth is a camera-only 3D object detection network that provides reliable depth estimation.
The main observation of the authors is that recent camera-only 3D object detection solutions uti-
lizing pixel-wise depth estimation generate suboptimal results due to inadequate depth estimation.
Therefore, explicit depth supervision encoding intrinsic and extrinsic parameters is utilized. In addi-
tion, a depth correction subnetwork is introduced using sparse depth data from a LiDAR point cloud
to provide supervision for the depth estimation network.

The main contribution of BEVFusion is the utilization of the BEV space as the unified representation
for camera and LiDAR sensor fusion. The image backbone proposed by BEVFusion explicitly
predicts a discrete depth distribution for each image pixel, similar to BEVDepth (without the depth
correction subnetwork). Then, a BEV pooling operator is applied on the 3D feature point cloud
which is later flattened along the z-axis to get a feature map in BEV. The point cloud produced by
a LiDAR is processed the same way as in the case of VoxelNet and the two BEV feature maps are
fused by a CNN. Finally, the detection heads are attached to the output of the fusion subnetwork.

4.2 IMPLEMENTATION DETAILS

The LiDAR components of the baseline models use HardSimpleVFE (Yan et al., 2018) as the Voxel
Feature Encoder and SparseEncoder (Yan et al., 2018) as the middle encoder CNN. The image com-
ponents adopt Lift-Splat-Shoot (Philion & Fidler, 2020) as an image encoder with a ResNet-50 back-
bone followed by a Feature Pyramid Network (Lin et al., 2017) for leveraging multi-scale features.
An additional depth correction network is also part of the image stream, inspired by BEVDepth. In
the case of multimodal models, features from different modalities are fused using a simple fusion
subnetwork consisting of convolution and Squeeze-and-Excitation (Hu et al., 2018) blocks. Finally,
a CenterPoint (Yin et al., 2021) head is responsible for detecting objects from the BEV features both
in unimodal and multimodal cases.

Since our goal is not to develop state-of-the-art models in this work but to facilitate multimodal
object detection research, we used the hyperparameters provided by BEVDepth 2 without any heavy

2https://github.com/Megvii-BaseDetection/BEVDepth
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Table 6: Comparison of baseline models in the distant region (>75m). First group: all-point AP
metric, second group: 11-point interpolation AP metric, third group: AOS metric averaged over the
validation set.

Figure 3: PR curves of baseline models in distant region (>75m).

parameter tuning. We adapted the grid resolution to enable long-range detection and trained the
models for 16k iterations (3 epochs) using batch size 4 with a learning rate of 6.25e−5 using flip,
rotation, and scale augmentations in the BEV feature space. We used an NVIDIA A100 TensorCore
GPU for neural network training. The models are implemented using mmdetection3d3 and will be
made publicly available.

4.3 EXPERIMENTAL RESULTS

The performance comparison of the baseline models on different metrics is described in Table 5.
Since the literature has several examples (Qian et al., 2022; Liu et al., 2022) of the superiority of
LiDAR-only unimodal solutions over camera-only models, we did not train a camera-only baseline.
As the table describes, every multimodal model overperforms the LiDAR-only baseline in highway
and urban environments in non-adverse weather and time. The additional sensor signals signif-
icantly increase detection performance in the dense urban environment. However, the unimodal
baseline performs best in heavy rain where one would think a radar signal should help to increase
performance. This phenomenon suggests that more sophisticated radar fusion techniques might be
beneficial for enhancing multimodal models.

Cameras play a crucial role in terms of orientation prediction. The models without RGB images
struggle to consistently keep the orientation, especially in the case of large vehicles. This flickering
effect is less visible for models using camera sensors. The model using all modalities performs best
on the AOS metric.

Surprisingly, the model using LiDAR + camera modalities overperforms all other models in the
night and urban environments by a large margin. We investigated the learning curves and found
that increasing the number of training steps can help to enhance performance further. To validate
our hypothesis, we trained our models for 5 additional epochs. Unfortunately, models using camera
sensors became unstable after the third epoch causing an explosion in the depth loss. Table 7 de-
scribes the result of the longer training process using the 11-point interpolation AP metric. A solid
improvement can be seen in all environments, especially on the rainy validation set (+8.8/+5.2 AP
for LiDAR and LiDAR+radar models, respectively). This can be explained by the fact that the de-
tection heatmaps became sharper after longer training. Blurry heatmaps were responsible for lower
AP metrics in the case of the first group of baseline models. The blurring effect on the heatmap was
very visible around the ego car in the case of heavy rain due to LiDAR reflections from raindrops.

In order to validate the long-range perception capabilities of the baseline models, we benchmarked
the longer-trained models on distant object detection. Detections and ground truth were filtered out
where the distance from the ego car is less than 75 meters. The results are summarized in Table 6

3https://github.com/open-mmlab/mmdetection3d
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Table 7: Effects of longer training.

(see Figure 10 for qualitative examples). Both models perform similarly in the highway environment
without any significant difference in performance. However, the model with additional radar signals
significantly overperforms the LiDAR-only baseline in all other environments. The fact, that radar
sensors provide reliable and accurate signals for perceiving objects in distant areas even in adverse
weather can be leveraged for boosting 3D object detector performance, as can be seen in Figure 3.
A similar effect can be observed in a dense urban environment where radar signals are utilized by
the multimodal baseline and resulted in a significant performance increase in long-range perception
(+5.5/+4.7 all-point / 11-point interpolation AP).

The training results demonstrate that our dataset can serve as a base for multimodal long-range
perception neural network training. Advanced evaluation techniques such as test-time augmentation
or model ensembling could lead to further improvements. However, none of them were applied
during the evaluation method. Table 7 suggests that further improvements in sensor fusion methods
are needed for fully leveraging each modality and our naive method provides a suboptimal solution
(especially in the case of heavy rain). Nevertheless, we hope the research community will find our
dataset useful, can build on our baselines, and will significantly improve its performance.

5 ADDITIONAL PROPOSED TASKS

We propose additional tasks benefiting from our dataset besides 3D object detection. Since unique
track IDs are provided, end-to-end long-range multiple object tracking models can also be trained
using the dataset. MOTA and MOTP metrics can be used for evaluating model performance.

Another proposed task is motion prediction. The egomotion is included in the dataset and the tra-
jectories of exo-objects can be computed using the unique track IDs. We propose a specific case of
motion prediction, namely lead car prediction, which is essential for autonomous driving functions
such as Automatic Emergency Braking or Adaptive Cruise Control. The lead cars can be deter-
mined by the intersection of egomotion and the trajectories of exo-objects. The proposed task is to
detect and predict the current and future lead cars. The model performance can be measured using
precision and recall metrics.

The dataset also includes high-quality GNSS-INS sensory data, thus enabling the training and bench-
marking of various odometry algorithms. Finally, the dataset can be used for contrastive representa-
tion learning. A similar representation can be learned for different sensor modalities corresponding
to the same frame in a self-supervised manner.

6 CONCLUSION

In this paper, we present a multimodal dataset for robust autonomous driving with long-range per-
ception. Our diverse dataset recorded in three countries on two continents includes sensor data from
LiDAR, radars, and cameras providing redundant 360-degree sensor coverage. The dataset con-
tains a large number of annotated objects in distant areas, allowing the development of multimodal
long-range perception neural networks. In addition, we developed several unimodal and multimodal
baseline models and compared their performance on the proposed dataset based on different criteria.
We showed that our dataset can be used for training multimodal long-range perception neural net-
works leveraging the advantages of the recorded sensor modalities. In the future, we aim to extend
our collected dataset with additional environmental and weather conditions. Furthermore, we will
conduct more in-depth experiments regarding sensor fusion for multimodal neural networks. We
seek to facilitate research in multimodal sensor fusion and robust long-range perception systems by
releasing our dataset.
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A APPENDIX

A.1 DATASET STATISTICS

Figure 4: Class distribution. Figure 5: Distance distribution of annotated ob-
jects.

(a) Width distribution. (b) Height distribution. (c) Length distribution.

Figure 6: Dimension distribution of the annotated objects.

Figure 7: Orientation distribution of annotated
objects.

Table 8: Additional statistics of the annotations.

A.2 SAMPLES AND QUALITATIVE RESULTS

Figure 8: Example motorbike GT created by automatic annotation.
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Figure 9: Example ground truth annotations.
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Figure 10: Qualitative results: detections of the LiDAR+radar baseline model. Top row: detections
on LiDAR point cloud. Middle row: detections on radar targets, bottom row (from left to right):
detections on left, front, right, and back cameras.
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