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ABSTRACT

Graph-based RAG methods like GraphRAG demonstrate strong global understand-
ing of the knowledge base by constructing hierarchical entity graphs, but often
suffer from inefficiency and rigid, manually defined query modes, limiting prac-
tical use. To address these limitations, we present E2GraphRAG, a streamlined
graph-based RAG framework that advances the Pareto frontier of Efficiency and
Effectiveness. In the indexing stage, E2GraphRAG utilizes large language models
to generate a summary tree, and NLP tools to construct an entity graph from docu-
ment chunks, with bidirectional indexes linking entities and chunks for efficient
lookup. In the retrieval stage, the graph structure filters related entities, while the
bidirectional indexes map these entities to their corresponding chunks, support-
ing an adaptive mechanism that dynamically switches between local and global
modes. Experiments show that E2GraphRAG achieves up to 10× faster indexing
than GraphRAG while maintaining comparable QA performance, advancing the
Pareto frontier with respect to effectiveness and efficiency. Our code is available at
https://anonymous.4open.science/r/E-2GraphRAG-8897.

“Everything should be made as simple as possible, but not simpler.”

— Albert Einstein

1 INTRODUCTION

With the continuous advancement, large language models (LLMs) (Dao et al., 2022; Pope et al., 2023;
Vaswani et al., 2017) have become a cornerstone in NLP, which have been widely applied in tasks such
as text summarization (Kirstein et al., 2024; Nakshatri et al., 2023), machine translation Koshkin et al.
(2024); Lu et al. (2024), and question answering (Chen et al., 2024b; Li et al., 2024b; Schimanski et al.,
2024). However, they still face limitations, including hallucinations (Du et al., 2024; Ramprasad et al.,
2024; Sahoo et al., 2024; Sriramanan et al., 2024) and a lack of domain-specific knowledge (Jiang
et al., 2024; Liu et al., 2024; Shen et al., 2024; Wang et al., 2025b). To address these issues, Retrieval-
Augmented Generation (RAG) has been proposed (Fan et al., 2024; Laban et al., 2024; Lewis et al.,
2020). By retrieving relevant knowledge from external sources and leveraging the in-context learning
capabilities of LLMs, RAG allows models to integrate timely and domain-specific information,
thereby mitigating issues such as hallucinations and knowledge gaps.

Traditional RAG methods typically retrieve only a small set of chunks from original documents as
supplemental knowledge. However, this limited context could be insufficient for providing the model
with a comprehensive and global understanding of the knowledge base, such as understanding and
summarizing a character’s personality transformation, as in NovelQA (Wang et al., 2025a). Consider
the novel Harry Potter and the Prisoner of Azkaban and the question: “Peter Pettigrew used to be
positive and finally becomes a negative one. Tell in one sentence what marks this character’s change.”
Traditional RAG methods typically retrieve only a few isolated chunks about Peter Pettigrew, whereas
answering this question requires a comprehensive understanding of his entire character arc.

To address the problem, existing state-of-the-art methods, including RAPTOR (Sarthi et al., 2024),
GraphRAG (Edge et al., 2025), and LightRAG (Guo et al., 2024), adopt an indexing-and-retrieval
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paradigm: they first use LLMs to index the documents into tree- or graph-based structures1 and then
retrieve on these structured data. While hierarchical trees, constructed by recursively merging text
chunks, provide global understanding, they are limited in capturing fine-grained knowledge, such as
entities and their relations. Entity graphs, on the other hand, enable the extraction and integration of
such fine-grained knowledge across dispersed chunks, but they heavily rely on LLM-based entity and
relation extraction, leading to substantial computational and time costs during indexing.

To summarize, existing approaches face three major challenges. First, efficiency remains the pri-
mary bottleneck: although several efforts (fas, 2024; Guo et al., 2024) have attempted to reduce
computational overhead, indexing and retrieval are still far from optimal. Second, most methods rely
exclusively on either tree or graph structures to organize raw, lengthy text. While each structure has
its advantages, their joint integration has not been thoroughly investigated. Third, in the retrieval
stage, some approaches (Edge et al., 2025; Guo et al., 2024) depend on manually pre-defined query
modes (e.g., local or global), resulting in limited flexibility. Therefore, a research question naturally
emerges: Is it possible to design a graph-based RAG model that advances the Pareto frontier of
efficiency and effectiveness, while adaptively responding to queries at varying granularities?

In this paper, we streamline graph-based RAG for high efficiency and effectiveness, and propose the
E2GraphRAG model, which combines the strengths of both tree and graph structures. Specifically,
we first recursively merge and summarize text chunks to construct a hierarchical tree, enabling
multi-granularity summarization of raw text. To integrate fine-grained knowledge from dispersed
chunks, we also construct a concise entity graph. Rather than relying on LLMs for entity extraction,
we employ the standard NLP tools such as SpaCy (Honnibal et al., 2020), and define relations based
on entity co-occurrence within a sentence. We further construct bidirectional entity-to-chunk and
chunk-to-entity indexes to bridge the entity graph and the summary tree, facilitating efficient lookup
during subsequent retrieval. In the retrieval stage, we introduce a lightweight adaptive strategy that
leverages the entity graph to select between local and global query modes: queries whose entities are
densely connected are processed locally, while others fall back to global retrieval. This mechanism
models structural relationships among entities explicitly, eliminating the need for manually predefined
query modes and enabling more efficient and flexible retrieval for diverse query types.

In summary, our contributions are threefold:

• We propose E2GraphRAG, a novel framework that integrates a summary tree and an entity graph
via bidirectional indexes, bringing new insights into lightweight graph-based RAG indexing by
constructing the entity graph without relying on LLMs.

• We design a graph-driven adaptive retrieval mechanism that automatically switches between local
and global modes, eliminating the need for manual query presets.

• We conduct extensive experiments showing that E2GraphRAG achieves up to 10× faster indexing
than GraphRAG while maintaining comparable QA performance, advancing the Pareto frontier.

2 RELATED WORK

RAG has been extensively studied, where most existing methods fall into two main categories based
on the type of external knowledge source. Most approaches (Asai et al., 2024; Yao et al., 2023)
rely on unstructured textual knowledge bases, which are easy to organize and adaptable to various
tasks, but often lack a global and structured understanding of the content. Others utilize structured
knowledge graphs (He et al., 2024; Li et al., 2024a; Sun et al., 2024), which naturally support
multi-hop reasoning and information aggregation. However, building high-quality, domain-specific
knowledge graphs typically requires substantial expert efforts and is difficult to scale.

GraphRAG (Edge et al., 2025) is the first method to automatically construct knowledge graphs
from raw text, supporting both local and global queries, which attracts considerable attention (Peng
et al., 2024; Zhou et al., 2025). While it achieves strong effectiveness through multi-granularity
reasoning and community-based summarization, its indexing and retrieval incur substantial costs
due to numerous LLM calls and complex JSON outputs. To improve efficiency, subsequent methods
explored different trade-offs. LightRAG (Guo et al., 2024) and FastGraphRAG (fas, 2024) eliminate
community summarization, with LightRAG directly extracting low- and high-level nodes from each

1Since tree is a special form of graph, we uniformly use graph-based RAG in this paper.
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Figure 1: Overview of the indexing stage of E2GraphRAG. The left part shows the indexing tasks,
the center presents the four data structures, and the right part displays the two constructed indexes.

chunk, and FastGraphRAG leveraging PageRank for query-time aggregation. However, both methods
still rely heavily on LLMs to produce verbose structured outputs. HippoRAG (Gutiérrez et al., 2024)
and HippoRAG2 (Gutiérrez et al., 2025) further reduce indexing complexity by extracting only entity
and relation names. They employ PageRank to redistribute weights among query-relevant entities to
aid retrieval, but at the expense of global reasoning and still depending on LLM-based extraction.
LazyGraphRAG defers all LLM calls to retrieval, minimizing indexing cost but introducing high
query-time latency. In contrast, RAPTOR adopts a hierarchical summary tree to efficiently preserve
multi-level context, offering a lightweight indexing strategy while trading off detailed entity-level
reasoning. Overall, existing methods illustrate a clear tension between efficiency and effectiveness:
graph-based methods favor performance but incur high computational cost, whereas tree- or simplified-
graph methods improve efficiency at the cost of global comprehension or fine-grained knowledge.

Different from the above, E2GraphRAG leverages traditional NLP tools to efficiently construct an
entity co-occurrence graph for capturing relationships among entities, while simultaneously building
a hierarchical summary tree to preserve multi-granularity information. This design enhances retrieval
effectiveness while maintaining high efficiency, resulting in comparable QA performance.

3 METHOD

Similar to GraphRAG and other methods, our approach consists of two main stages: indexing and
retrieval. For our task, we first introduce some symbolic definitions to facilitate clearer explanations
in subsequent sections. As input, we use D to represent the document, q to denote the query, and k to
denote the maximum number of chunks retrieved.

3.1 INDEXING STAGE

As in standard RAG indexing, we first split each document into n chunks. We tokenize the document
using the tokenizer corresponding to the model used in the subsequent summarization task, and
divide it into chunks of 1200 tokens each, with an overlap of 100 tokens between adjacent chunks
to mitigate the semantic loss caused by potential sentence fragmentation. The resulting chunked
document is denoted as D = {c1, c2, · · · , cn}. Then, as illustrated in Figure 1, the indexing stage
comprises two main tasks: construction of a summary tree and extraction of an entity graph. To
enhance subsequent retrieval, we further introduce two types of indexes that establish many-to-many
mappings between the tree and the graph.

For the summary tree construction, we preserve the original chunk order and employ an LLM to
summarize every consecutive group of g chunks. Notably, since most modern LLMs have been
extensively trained on text summarization tasks during the instruction tuning (Sanh et al., 2022; Wei
et al.), we adopt a minimal prompting strategy—providing only task instructions without lengthy
few-shot examples, —thereby improving indexing efficiency. Once all the original chunks have been
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Figure 2: The retrieval stage of E2GraphRAG. Operations belonging to the local retrieval are
highlighted in light yellow, while those for global retrieval are highlighted in light green and marked
with a F.

summarized, the resulting summaries are treated as a new sequence of inputs. This recursive summa-
rization process continues, grouping every g summaries at each level, until only g or fewer segments
remain. Through the above procedure, the raw document is transformed into a tree structure, where
the leaf nodes correspond to chunks and the intermediate or root nodes correspond to the summaries.
Nodes closer to the root contain more global and abstract information, while those nearer to the leaves
retain more detailed and specific content. We then utilize a pretrained embedding model to encode
all chunks and summaries, storing the resulting vectors using Faiss (Douze et al., 2024) to enable
efficient dense retrieval. Formally, we denote the summary tree as T = {c1, · · · , cn, s1, · · · , so},
where each chunk ci and summary si corresponds to a node in the tree.

For the entity graph extraction task, instead of relying on LLMs to extract entities and relations as
in GraphRAG-style approaches, we employ lightweight entity extractors, such as SpaCy (Honnibal
et al., 2020), NLTK (Bird & Loper, 2004), and fine-tuned BERT (Tjong Kim Sang & De Meulder,
2003), which are significantly more efficient than LLMs for large-scale information extraction. In
particular, we extract named entities and common nouns (as nouns often indicate potential entities),
and uniformly refer to them as entities hereafter. Formally, for each chunk ci, we denoted the
extracted entities as Eci = {e1ci , · · · , e

m
ci}, where m is the number of entities identified in chunk ci.

After extracting entities, we construct an undirected weighted edge between any two entities that
co-occur within the same sentence, where the edge weight reflects their sentence-level co-occurrence
frequency. This results in a subgraph Gci for each chunk ci, which captures the relations among
entities mentioned within the chunk and allows us to construct associations between entities and
chunks. To support efficient retrieval, we build two one-to-many indexes to link entities and chunks,
thereby capturing the many-to-many relations between them. The entity-to-chunk index, Ie→c(·),
maps each entity to the set of chunks where it appears. The chunk-to-entity index, Ic→e(·), records
the entities extracted from each chunk. These two indexes establish a many-to-many mapping
between the entities in the entity graph and the chunks in the summary tree, facilitating the subsequent
entity-aware retrieval stage. For the entire document, we merge all chunk-level subgraphs into a
single graph G, where identical entities are unified and edges with the same source and target entities
have their weights summed. Since some entities appear in multiple chunks, this merging allows the
graph to capture the co-occurrence relationships among entities across the entire document.

In conclusion, as illustrated in Figure 1, our method involves four types of data stored in two data
structures: summary nodes and original chunk nodes in the tree, along with entities and weighted
edges in the graph. In addition, our method relies on two key indexes, chunk-to-entity index Ic→e(·)
and entity-to-chunk index Ie→c(·), which bridge the tree and the graph. These indexes enable efficient
mapping from a chunk to its associated entities, and from an entity to the chunks in which it appears,
respectively, thereby facilitating subsequent retrieval.
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3.2 RETRIEVAL STAGE

In the retrieval stage, previous work faces two main challenges: (1) global queries heavily rely on
LLMs, resulting in high retrieval latency, and (2) the retrieval hierarchy and methods often require
manual specification, introducing additional hyperparameters that are difficult to optimize. To address
these issues, we first introduce a novel retrieval mechanism that adaptively selects between global
and local retrieval when specific logical conditions are met. Then, we rank and format the retrieved
pieces of evidence, therefore enhancing the LLM. To clearly distinguish between the two adaptively
selected retrieving modes, we highlight global retrieval starting with a F throughout this section.
The complete pseudo-code is provided in Appendix A, and an overview of our retrieval and ranking
pipeline is shown in Figure 2.

At the core of our approach is the intuition that each local query typically involves relevant entities,
like “Slytherin” and “House Cup” in the question “Has Slytherin won the House Cup?”, and potential
relationships among these entities can guide the retrieval process by identifying the most relevant
chunks. Therefore, we first use the entity extractor, as in the indexing stage, to extract entities from
the query, denoted as Eq = {e1q, · · · emq }. The entities in the query are then mapped to the vertices in
our constructed graph. For simplicity, entities that cannot be mapped to any graph vertex are treated
as invalid and ignored, as they are likely noise introduced by the entity extractor.

FIf no entities are identified, we cannot utilize the entities to support meaningful retrieval. In such
cases, the query is treated as a global query, and Dense Retrieval is performed over the summary tree.
Specifically, we adopt a collapsed-tree dense retrieval approach similar to RAPTOR, leveraging the
embedding model used in the indexing stage to encode the query. The similarity between the query
embedding and these indexed embeddings is then computed to select the top-k most relevant chunks
as supplementary information, which are ranked in descending order of similarity.

Otherwise, since the entity extractor lacks the ability to capture semantic relevance, it often fails
to identify the core entities aligned with the query intent, resulting in noisy extractions. Simply
mapping these entities to the graph is insufficient for filtering out the noise. Therefore, we introduce
a Graph Filtering step to retain only the core entities for effective retrieval. The underlying heuristic
is that truly relevant entities tend to be semantically related and thus connected in the constructed
graph. Formally, they should lie within h hops of each other as neighbors. Specifically, we enumerate
all pairwise combinations of entities from the query as candidate entity pairs. For each pair, if the
two entities are within h hops in the knowledge graph, they are considered semantically related
and retained; otherwise, they are discarded as likely irrelevant. The set of selected entity pairs is
denoted as Ph. This step is formally defined in Equation 1, where DistG(·, ·) returns the hop count
of the shortest path between two entities in the graph. If no path exists, it returns infinity. The
hyperparameter h controls the strictness of the filtering and can be adaptively adjusted to balance the
number of chunks recalled during the following steps.

Ph =
{
(eiq, e

j
q) ∈ Eq × Eq

∣∣ i < j,DistG(eiq, e
j
q) ≤ h

}
(1)

FAfter this filtering step, if no entity pairs meet the criteria, i.e., there are no fine-grained, interrelated
entities in the query, which means their relations cannot be extracted within several local chunks. In
such cases, we classify it as a coarse-grained global query as well. This also includes cases where
the query contains only a single entity, as there are no pair-wise combinations. However, unlike
the previous scenario, entities related to both question and context are still present and can assist in
improving chunk selection. To leverage them, we first retrieve the top-2k chunks from the summary
tree based on vector similarity as candidate supplementary chunks. We then apply an Occurrence
Ranking strategy, ranking these candidate chunks according to the frequency of entity occurrences,
defined as w(ci) = Count(ci, Eq). For each candidate summary node, the weight is recursively
computed as the sum of the weights of its child nodes, i.e. w(si) =

∑
c/s∈Tchild(si)

w(c/s), where c/s
may refer to either chunk nodes or summary nodes. This recursive weighting naturally assigns higher
scores to high-level summary nodes, aligning with the intuition behind global retrieval. Finally, we
rank the candidate chunks by their computed weights and select the top-k highest-ranked ones as
supplementary information.

If entity pairs exist, this indicates the presence of fine-grained relational entities in the query. In
such cases, we perform Index Mapping, leveraging the entity-to-chunk index Ie→c(·) constructed
during the indexing stage. Specifically, for each entity pair (eiq, e

j
q) in Ph, we map each entity to the

corresponding sets of chunks through the index, and then take their intersection to identify the set of
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chunks associated with both entities, denoted as C(e
i
q,e

j
q)

evidence. Cevidience, the union of the C
(eiq,e

j
q)

evidence means
all the candidate chunks. Formally, we define the Index Mapping operation with Equation 2.

Cevidience =
⋃

(eiq,e
j
q)∈Ph

C(e
i
q,e

j
q)

evidence =
⋃

(eiq,e
j
q)∈Ph

{
Ie→c(e

i
q) ∩ Ie→c(e

j
q)
}

(2)

Once the indexes are mapped, if the number of retrieved chunks does not exceed k, we directly
return them as the final evidence set. Otherwise, we first attempt to reduce the number of chunks
by decreasing the hop threshold h step-by-step, as tighter structural constraints help eliminate less
relevant neighbors. This continues until either the number of chunks drops below k or the retrieval
returns no chunks at all. If the latter occurs (i.e., the retrieval result becomes empty), we revert to
the last non-empty result before the drop and apply an Entity-Aware Ranking mechanism to select
the top-k chunks from it. This ranking is based on multiple structural and statistical signals derived
during retrieval. Specifically, we compute two metrics for each candidate chunk: Entity Coverage
Ranking counts the number of distinct query-related entities present in the chunk. Chunks covering
more entities are prioritized as they are not only more likely to be relevant but also tend to contain
more comprehensive contextual information. Entity Occurrence Ranking ranks the chunks by the
total frequency of query-related entities, which is the same as the Occurrence Ranking. Chunks are
ranked by these metrics in sequence, first by entity coverage, then by entity occurrence, and the top-k
are selected as supplementary evidence. This operation can be facilitated by the chunk-to-entity index
Ic→e(·) to minimize the time cost.

After retrieving all relevant chunks, we proceed to rank and format the chunks and entities as
supplementary input to the LLM. Following the earlier intuition that entities serve to highlight the
key information while chunks provide the supporting details, we organize the retrieved evidence in an
“entity1-entity2: chunks” format. To further reduce token consumption, we apply two optimization
strategies. First, to eliminate redundant input caused by chunks associated with multiple entity pairs,
we consolidate these chunks into a single format such as “entity1-entity2-· · · -entityn: chunks”. This
de-duplication step ensures that each chunk is included only once, even if it is linked to multiple
entity pairs. Second, we detect and merge continuous chunks within the evidence set to eliminate
overlaps between adjacent chunks. This chunk merging step further reduces input redundancy and
helps minimize token costs. Finally, we rank the entity pairs based on entity coverage and arrange
their corresponding chunks according to their original chunk order in the document.

4 EXPERIMENT

4.1 EXPERIMENT SETTINGS

We describe our experimental setup, including the choice of base models, datasets, and evaluation
metrics. For each component, we detail both the selection criteria and the rationale behind them,
aiming to ensure the reproducibility, practicality, and fairness of our evaluation.

Base Models We adopt two open-source lightweight models, Qwen2.5-7B-Instruct (Qwen et al.,
2025) and Llama3.1-8B-Instruct (Grattafiori et al., 2024), to ensure practicality and reproducibility
under limited resources and privacy constraints. For embeddings, we use BGE-M3 (Chen et al.,
2024a), a state-of-the-art open-source model. Entity extraction is exemplified by the use of SpaCy,
including the ablation study, while comparisons with other extractors are reported in Appendix D.1.

Datasets We evaluate on QA datasets built from extremely long documents, including Nov-
elQA (Wang et al., 2025a) and two subsets of Infinite-Bench (Zhang et al., 2024), namely In-
finiteChoice and InfiniteQA. Each document averages about 200k tokens, allowing us to assess global
query performance over long contexts (see Appendix B for details). We exclude UltraDomain (Qian
et al., 2025) used in LightRAG due to its reliance on LLM-as-judge evaluation (Szymanski et al.,
2025; Tian et al., 2023; Ye et al., 2025), which raises concerns about reliability. Instead, following
RAPTOR (Sarthi et al., 2024), we focus on closed-ended QA and multiple-choice tasks for more
accurate and interpretable evaluation.

Metrics For multiple-choice and closed-ended QA tasks, we employ accuracy and ROUGE-L (Lin,
2004), respectively. To evaluate efficiency, we measure the average indexing time for each document
and the average retrieval latency per query.
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Table 1: Overall results of the three datasets, the best results are in bold and the runner-up is
underlined. Met. denotes the evaluation metric (accuracy for NovelQA/InfiniteChoice, Rouge-L for
InfiniteQA). IT means indexing time per document, and QT means querying time per question.

Backbone Model Qwen2.5-7B-Instruct Llama3.1-8B-Instruct

Dateset NovelQA InfiniteChoice InfiniteQA NovelQA InfiniteChoice InfiniteQA

GraphRAG-L
Met. ↑ 43.34 46.72 13.51 43.64 43.66 6.37
IT ↓ 13793.89 11816.15 15686.53 4517.09 3921.95 5533.68
QT ↓ 0.20 0.25 0.82 0.43 0.41 1.16

GraphRAG-G
Met. ↑ 17.48 18.78 2.32 10.93 9.17 1.98
IT ↓ 13793.89 11816.15 15686.53 4517.09 3921.95 5533.68
QT ↓ 15.72 16.65 2.83 3.25 3.86 3.33

HippoRAG2
Met. ↑ 44.60 48.91 8.43 26.03 20.69 3.58
IT ↓ 11102.11 10624.65 13525.97 14279.35 17131.67 18384.76
QT ↓ 3.81 2.40 3.10 2.82 3.84 2.06

LightRAG
Met. ↑ 38.57 45.41 10.41 21.82 20.52 3.44
IT ↓ 5290.93 4732.98 6976.55 3416.31 3225.94 5231.11
QT ↓ 15.68 16.03 15.97 11.44 12.92 15.44

RAPTOR
Met. ↑ 37.27 34.93 6.42 40.48 37.12 5.83
IT ↓ 2847.25 2568.26 3407.41 2874.65 2551.89 2844.55
QT ↓ 0.02 0.08 0.03 0.02 0.03 0.03

E2GraphRAG
Met. ↑ 45.60 43.23 13.65 41.26 39.74 11.07
IT ↓ 1397.11 1244.56 1630.87 1641.49 1433.74 1839.26
QT ↓ 0.02 0.05 0.03 0.03 0.05 0.03

4.2 BASELINES

We compare against all publicly available open-source methods to ensure a comprehensive evaluation,
including GraphRAG-Local, GraphRAG-Global, LightRAG-Hybrid, HippoRAG2, and RAPTOR.
For RAPTOR, we aligned its prompting format with ours, while for LightRAG, HippoRAG2, and
GraphRAG, we adopted their default prompts with retries to address JSON extraction failures in
smaller models. Further implementation details are provided in Appendix C.

4.3 EXPERIMENTAL RESULTS

As shown in Table 1, E2GraphRAG achieves the highest efficiency in the indexing stage, being up
to 10× faster than GraphRAG and about 2× faster than RAPTOR. In retrieval, E2GraphRAG
also shows superior speed, reaching over 100× faster than LightRAG and nearly 10× faster than
GraphRAG (local). Meanwhile, E2GraphRAG maintains effectiveness on par with GraphRAG,
achieving the best performance on NovelQA with Qwen and on InfiniteQA across both backbones.

In contrast, existing baselines reveal an inherent trade-off between effectiveness and efficiency.
GraphRAG achieves the highest QA accuracy, but suffers from extremely low efficiency. LightRAG
and HippoRAG2 improve efficiency by simplifying the workflow and reducing some overhead, yet
this comes at the cost of decreased QA accuracy. Among the baselines, RAPTOR is the most efficient,
but its effectiveness is among the lowest. It’s also worth noting that HippoRAG2 and LightRAG
exhibit a substantial decline in performance when the base model switches from Qwen to Llama. We
attribute this degradation to the variation in entity extraction capabilities across different LLMs.

In summary, existing methods involve trade-offs and lack Pareto-frontier improvements. As illustrated
in Figure 3, our method (red star) consistently operates in the desired top-left quadrant, surpassing
the established Pareto front in most scenarios and achieving superior cost-performance efficiency. To
facilitate a clearer understanding of how our method works, we provide a case study in Appendix D.5.

4.4 COMPUTATIONAL COST ANALYSIS

In addition to the wall-time comparison reported in Table 1, Table 2 summarizes the average indexing
cost and token usage per book on NovelQA, InfiniteChoice, and InfiniteQA, calculated using the

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Figure 3: Comparative analysis of our method against baselines based on Qwen across three datasets.
Each plot evaluates the trade-off between performance and cost. The black dashed line represents the
Pareto front established by the baseline methods.

Table 2: Average indexing cost per book and token usage on NovelQA, InfiniteChoice, and In-
finiteQA. Costs are computed using the official pricing of the Qwen2.5-7B-Instruct API. For each
method, we report absolute values along with relative multiples (×) compared to E2GraphRAG.

Backbone Model Qwen2.5-7B-Instruct

Dateset NovelQA InfiniteChoice InfiniteQA

GraphRAG
Input tokens ↓ 1,684,445 (×6.54) 1,069,421 (×4.70) 1,396,578 (×4.80)

Output tokens ↓ 1,778,697 (×37.55) 1,343,773 (×32.58) 1,768,985 (×33.50)
Cost ↓ 2.62 (×14.56) 1.88 (×12.53) 2.47 (×12.35)

HippoRAG2
Input tokens ↓ 1,236,157 (×4.80) 1,133,410 (×4.98) 1,237,688 (×4.25)

Output tokens ↓ 319,988 (×6.75) 297,295 (×7.21) 358,637 (×6.79)
Cost ↓ 0.94 (×5.22) 0.87 (×5.87) 0.98 (×4.9)

LightRAG
Input tokens ↓ 713,782 (×2.77) 621,740 (×2.73) 795,834 (×2.74)

Output tokens ↓ 173,186 (×3.66) 156,146 (×3.78) 212,674 (×4.03)
Cost ↓ 0.53 (×2.94) 0.47 (×3.13) 0.61 (×3.05)

RAPTOR
Input tokens ↓ 323,233 (×1.26) 277,796 (×1.22) 362,129 (×1.24)

Output tokens ↓ 88,889 (×1.88) 71,582 (×1.74) 92,138 (×1.74)
Cost ↓ 0.25 (×1.39) 0.21 (×1.40) 0.27 (×1.35)

E2GraphRAG
Input tokens ↓ 257,500 227,474 290,923

Output tokens ↓ 47,375 41,244 52,800
Cost ↓ 0.18 0.15 0.20

official pricing of the Qwen2.5-7B-Instruct API. For clarity, we report both the absolute values
and relative multiples compared to E2GraphRAG, which provides further evidence of the superior
efficiency of our approach. As a complement, we provide a more intuitive visualization of indexing
efficiency in Appendix D.4, which presents scatter plots of indexing time across varying document
lengths based on the Qwen model. Each method is fitted with a linear function to highlight the
differences in time overhead, indicating that our method scales linearly with the lowest slope among
all methods.

Furthermore, to better understand the computational burden, we estimate the theoretical costs
associated with these results. As the primary expense in both indexing and querying arises from
LLM inference, we derive the number of LLM calls required by each method and report them in the
Table 4. This result shows that E2GraphRAG significantly lowers the cost in both stages. Details of
the theoretical estimation are provided in Appendix D.2 and Appendix D.3.
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Table 3: Ablation study results. The best results for each dataset are highlighted in bold. For other
methods, the performance difference compared to E2GraphRAGis annotated below each value, with
↓ (in red) indicating a decrease and ↑ (in green) indicating an increase. The annotated numbers
represent the absolute difference in performance relative to E2GraphRAG.

Dataset NovelQA InfiniteChoice InfiniteQA
Metric Acc. Acc. R-L

E2GraphRAG 45.38 43.23 13.65

Dense Retrieval Only 42.00 (↓ 3.38) 41.04 (↓ 2.19) 10.03 (↓ 3.62)

w/o Graph Filter 44.30 (↓ 1.08) 36.68 (↓ 6.55) 10.47 (↓ 3.18)
w/o Entity-Aware Ranking 44.12 (↓ 1.26) 40.17 (↓ 3.06) 8.25 (↓ 5.40)

w/o Graph Filter & Entity-Aware Ranking 44.08 (↓ 1.30) 35.81 (↓ 5.23) 10.58 (↓ 3.07)

w/o Dense Retrieval 45.90 (↑ 0.52) 37.99 (↓ 5.24) 13.03 (↓ 0.62)
w/o Occurrence Ranking 44.25 (↓ 1.13) 37.99 (↓ 5.24) 8.39 (↓ 5.16)

w/o Dense Retrieval & Occurrence Ranking 45.33 (↓ 0.05) 37.55 (↓ 5.68) 11.07 (↓ 2.58)

4.5 ABLATION STUDY

Table 4: Comparison of theoretical LLM calls
across methods, where n is the number of chunks
and m is the community counts for GraphRAG.
Cwindow is the length of LLMs’ context window.

Method Indexing Query

GraphRAG n+m m× len(m)/Cwindow
LightRAG n 1
HippoRAG2 2n 1
RAPTOR ≥ dn/(g − 1)e 0
E2GraphRAG dn/(g − 1)e 0

To thoroughly evaluate the contribution of each
component in E2GraphRAG, we conduct a com-
prehensive ablation study on three datasets using
the Qwen model. The results are summarized in
Table 3, which consists of three main sections:

Baseline Dense Retrieval Only: To verify the
necessity and effectiveness of our retrieval strat-
egy, we compare E2GraphRAG with a base-
line that relies solely on dense retrieval and the
built summary tree. The results demonstrate
that E2GraphRAG significantly outperforms this
baseline, validating the importance of our re-
trieval enhancements.

Local Retrieval Ablations: To assess the impact of the local retrieval components, we individually
and jointly ablate the Graph Filter and Entity-Aware Ranking modules. Results show that both
modules are crucial for local evidence selection. The removal of either leads to a significant
performance drop, confirming their complementary roles.

Global Retrieval Ablations: Similarly, we evaluate the contribution of the global retrieval by
ablating Dense Retrieval and Occurrence Ranking. Among these, Occurrence Ranking appears more
impactful, likely due to its more frequent use in our datasets. Interestingly, we observe an anomalous
improvement when removing Dense Retrieval on NovelQA. We hypothesize that this is caused by
occasional hallucinations, where the model guesses the correct answer without actual evidence.

5 CONCLUSION

In this paper, we addressed the inefficiency of existing graph-based RAG methods that hinders their
practicality. We streamlined the graph-based RAG pipeline and propose E2GraphRAG. During the
indexing stage, we recursively built document summary trees with LLMs and efficiently extracted
entity-level knowledge graphs using traditional NLP toolkits such as SpaCy, BERT, and NLTK,
significantly reducing time costs and improving practicality. In the retrieval stage, we proposed
an adaptive strategy that leverages the graph structure to locate relevant chunks and automatically
select between local and global retrieval modes, eliminating the need for manually pre-defined query
settings. By combining the summary tree and knowledge graph, E2GraphRAG enables adaptive
global and local retrieval. Extensive experiments demonstrate that E2GraphRAG achieves state-of-
the-art efficiency in both indexing and retrieval stages, with up to 10× speedup over GraphRAG in
indexing and 100× over LightRAG in retrieval, while maintaining comparable effectiveness.
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REPRODUCIBILITY

Our code is available at https://anonymous.4open.science/r/E-2GraphRAG-8897
with the configuration files for reproducing our results. We also provide the pseudo-code in Ap-
pendix A.

ETHICS STATEMENT

Our work proposes a more efficient and effective graph-based retrieval-augmented generation (RAG)
framework, which may benefit downstream applications such as open-domain question answering,
knowledge-intensive NLP tasks, and long-document understanding. By significantly reducing the
indexing and retrieval cost, our approach could improve the accessibility of large-scale knowledge
systems in low-resource or cost-sensitive settings.

However, like other RAG-based systems, our model depends heavily on the quality and neutrality
of the underlying documents. If biased or incorrect data are indexed, the system may generate
misleading or harmful outputs.

While we do not directly address issues such as fairness or bias mitigation, we encourage responsible
use of our framework in conjunction with trustworthy data sources and human oversight. Future work
could explore debiasing methods and improved transparency in retrieval paths.
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A PSEUDO CODE

Algorithm 1 The pseudo-code for retrieval stage.

Require: q, G, T , k, h, l
Ensure: Supplemental text Cs = {c1, c2 · · · cn}, n ≤ k

1: entities Eq = SpaCy(q)
2: if Count(Eq) == 0 then
3: return F Cs = DenseRetrieval(q, k)
4: end if
5: selected pairs Ph = GraphFilter(Eq, h) [Equation 1]
6: if Count (Ph) == 0 then
7: F candidate supplementary chunks Ĉ = DenseRetrieval(q, 2k)

8: return F Cs = OccurrenceRank(Ĉ)
9: end if

10: candidate supplementary chunks Ĉ = IndexMapping(Ph) [Equation 2]
11: while Count(Ĉ) > 25 do
12: h = h− 1 or l = l + 1
13: Ĉprev = Ĉ
14: Ph = GraphFilter(Eq, h) [Equation 1]
15: Ĉ = IndexMapping(Ph) [Equation 2]
16: end while
17: if Count(Ĉ==0) then
18: return Cs = EntityAwareFilter(Ĉprev)
19: else
20: return Cs = Ĉ
21: end if

B DATASET DETAILS

In this section, we provide detailed descriptions of the datasets used in our experiments. While the
main paper introduces the overall dataset choices and their relevance to our task, here we include
further information on data statistics.

NovelQA has 89 books along with 2305 multiple-choice questions in total, which contain 65 free
public-domain books and 24 copyright-protected books purchased from the Internet. It is released
with an Apache-2.0 License. InfiniteChoice has 58 books along with 229 multiple-choice questions
in total. InfiniteQA has 20 books along with 102 questions in total. The InfiniteBench is released
with an MIT License. The links to the two datasets are provided in our code repository, and both
datasets are publicly accessible.

To provide a deeper insight into our method, we analyze the number of entities involved in each
question for all datasets. Specifically, we count the entities mentioned in the question text, excluding
those appearing only in the multiple-choice options. The detailed statistics, including the average,
minimum, and maximum number of entities per question, are reported in Table 5. In addition,
Figure 4 illustrates the distribution of questions across different entity count buckets, offering a
clearer view of how entity complexity varies across the datasets.

Table 5: Entity count of each question in each dataset with SpaCy as the extractor.

Dataset NovelQA InfiniteChoice InfiniteQA

avg. 4.60 3.24 3.37

min. 0 1 0

max. 24 9 7
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(a) NovelQA (b) InfiniteChoice (c) InfiniteQA

Figure 4: Distribution of questions across different entity count buckets with SpaCy as the extractor.

C IMPLEMENTATION DETAILS OF BASELINE METHODS

Because of excessive redundant design in the official GraphRAG implementation, we opted for the
most widely adopted open-source implementation, nano-GraphRAG 2 for our experiments. To adapt
GraphRAG for local deployment with Huggingface models, we utilized the code from LightRAG
that supports Huggingface integration and embedded it into nano-GraphRAG.

For a fair comparison, the hyperparameter settings of all the methods and all baselines are chosen to
ensure that the entire pipeline can run on a single NVIDIA A800 GPU with 80GB of memory. For
the retrieval level of GraphRAG, we choose the best level, i.e., level 2, reported in the corresponding
paper. For the retrieval mode of LightRAG, we choose the Hybrid mode, which is reported as the best
mode in the paper. All LLMs are implemented using the HuggingFace transformers framework,
with temperature=0.7 and max_new_tokens=1200 for summarization or entity extraction,
except for the GraphRAG, which requires raising the max_new_tokens to 8192 for generating a
complete JSON structure. For our method, the configuration files for reproducing the results have
been provided on GitHub, with the hyperparameter k = 25, which is determined by the GPU memory,
and h is automatically adjusted during retrieval; therefore, we choose a relatively large value of 4.

D SUPPLEMENTARY ANALYSIS

D.1 COMPARISON BETWEEN DIFFERENT EXTRACTORS

Table 6: Overall results with different entity extractors on NovelQA, InfiniteChoice, and InfiniteQA.
Met. means the metric for each dataset, and ET means extracting time.

Backbone Model Qwen2.5-7B-Instruct Llama3.1-8B-Instruct

Extractor NovelQA InfiniteChoice InfiniteQA NovelQA InfiniteChoice InfiniteQA

NLTK Met. ↑ 46.77 40.61 16.99 40.13 37.12 10.18
ET ↓ 2577.14 2315.52 3286.00 2511.18 2241.62 3263.51

BERT Met. ↑ 45.94 37.99 12.60 39.92 37.99 13.21
ET ↓ 58.76 60.42 84.64 63.19 60.48 84.24

SpaCy Met. ↑ 45.60 43.23 13.65 41.26 39.74 11.07
ET ↓ 39.82 35.15 45.26 38.47 33.26 46.43

To save computing resources and ensure a fair comparison, we do not rebuild the summary tree
for different extractors. Instead, we apply each extractor to the same summary tree and report the
extraction time and performance in the Table 6. The performance of different extractors is relatively
close, and all remain competitive. With the support of modern GPUs, the BERT-based extractor
also demonstrates high efficiency. In contrast, the NLTK extractor exhibits low efficiency, since
it is primarily a non-industrial toolkit. The SpaCy extractor achieves the highest efficiency while
maintaining independence from GPU resources.

2https://github.com/gusye1234/nano-graphrag
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D.2 COMPARISON ON INDEXING COST OF DIFFERENT METHODS

Following the symbols defined in Table 4, we use n to denote the number of chunks, m for the
number of communities detected by GraphRAG, and g represents the group size (or maximum group
size) for E2GraphRAG and RAPTOR.

E2GraphRAG Our method builds a tree with n leaf nodes and each non-leaf node has g child
nodes. The number of LLM calls is equal to the number of non-leaf nodes. The non-leaf nodes can
be listed by level and form a geometric sequence with the first term dng e and the common ratio 1

g ,
where each term is rounded up to the nearest integer. Consequently, the total number of LLM calls
can be expressed as:

S =

K∑
k=1

⌈ n

gk

⌉
,

where K = dlogg ne. Since dxe ∈ (x, x+ 1], the upper and lower bounds of the equation above can
be derived as:

K∑
k=1

n

gk
< S ≤

K∑
k=1

n

gk
+K

Applying the geometric series sum formula S = a 1−rn
1−r , the equation above can be rewritten as:

n

g − 1

(
1− g−K

)
< S ≤ n

g − 1

(
1− g−K

)
+K

Because K grows only logarithmically with respect to n, its contribution to the overall number of
LLM calls is negligible. For simplicity, we therefore approximate the count by n/(g − 1).

RAPTOR Similar to our method, RAPTOR builds a tree with n leaf nodes. However, each non-
leaf node has at most g child nodes, resulting in the number of non-leaf nodes being larger than
E2GraphRAG. Therefore, the lower bound is n/(g − 1).

LightRAG LightRAG extracts the entities and relations from each chunk and then assembles them
into an entity graph. The extraction phrase takes n times LLM calls, and the assembling phrase does
not need the LLM calls. Therefore, it requires n times of LLM calls in total.

GraphRAG GraphRAG extracts the entities and relations from each chunk and formats an entity
graph. Then, GraphRAG clusters the nodes and summarizes each community to aggregate the infor-
mation by LLM. Therefore, the extraction phrase evokes n times LLM calls, and the summarization
phrase calls LLM m times, which is n+m in total.

HippoRAG2 HippoRAG2 extracts the entities first and then extracts relations from each chunk.
It takes 2n times LLM calls. It’s worth noting that HippoRAG2 does not generate the tedious
entity descriptions or relation descriptions, which significantly reduces the token cost compared to
LightRAG and GraphRAG.

D.3 COMPARISON ON QUERYING COST OF DIFFERENT METHODS

Following the symbols defined in Section 3 and Table 4, we use n to denote the number of chunks, m
for the number of communities detected by GraphRAG, g for the group maximum group size, and k
to represent the maximum number of chunks to retrieve.

E2GraphRAG In the query stage, the primary computational overhead arises from entity extraction,
whose cost varies with the efficiency of the extractor employed. In comparison, the graph search
introduces only minor latency, which remains negligible relative to the time consumed by LLM
invocations.

RAPTOR The primary computational overhead of RAPTOR lies in the dense embedding retrieval,
which relies on GPUs for acceleration.
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(a) NovelQA (b) InfiniteChoice

Figure 5: Time cost as a function of document token count for each method. The statistic is based on
NovelQA and InfiniteChoice with Qwen as the base model.

LightRAG LightRAG uses the LLM to extract entities from the query; hence, the overhead is
dominated by the LLM invocation.

GraphRAG In local mode, GraphRAG performs dense retrieval to identify the most similar nodes.
In global mode, it relies on the LLM to select relevant communities for answering the query, resulting
in m× len(m)/Cwindow LLM calls.

HippoRAG2 HippoRAG2 employs the LLM for reranking, so the query-time cost is primarily
driven by LLM calls.

D.4 VISUALIZATION OF INDEXING EFFICIENCY

To provide a more intuitive comparison of how indexing time scales with the size of the text corpus, we
fitted a function to the indexing time versus text length data for all four methods, as shown in Figure 5.
The R2 values for each method on every dataset exceed 0.90, indicating a strong goodness-of-fit.
From the figure, it is evident that all four methods exhibit approximately linear growth, while our
method demonstrates the lowest slope. This observation aligns with both our theoretical analysis and
experimental results, providing clear evidence that our approach scales linearly with the knowledge
base size at the minimal rate among the compared methods.

D.5 CASE STUDY

To better illustrate how our method operates, we present two case studies under different query modes,
as shown in Figure 6. In both cases, named entities are first extracted and then mapped onto the graph
constructed during the indexing stage. For the case on the left, among the five extracted entities, three
are absent from the graph, while two are connected. We identify the shortest path, Quirrell - Harry -
Change, which enables us to localize the relevant chunks based on these entities. This leads us to
chunks simultaneously associated with Quirrell and Change, from which we uncover key evidence
that Quirrell attempted to kill Harry during the Quidditch match.

For the case on the right, only one of the three entities appears in the graph. Hence, we employ the
global query mode, performing dense retrieval over the entire summary tree and ranking candidates
by the frequency of the entity Voldemort. We observe that c4 appears 4 times, c6 appears 2 times, and
c8 appears 3 times, while s2 accumulates c4 + c5 + c6 = 4 + 0 + 2 = 6 occurrences. We ultimately
select c4 and s2, and within the summary of s2, we identify an alias of Voldemort generated by the
LLM.
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Query: Quirrell is used to be positive and finally 
becomes a negative one. Tell in one sentence that which 
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type, doesn't he? So useful to 
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an overgrown bat. Next to him, 
who would suspect p-p-poor, st-
stuttering P-Professor Quirrell?"
Harry couldn't take it in. This 
couldn't be true, it couldn't.
"But Snape tried to kill me!"
"No, no, no. I tried to kill you. 
Your friend Miss Granger 
accidentally knocked me over as 
she rushed to set fire to Snape at 
that Quidditch match. ...
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about recent events and the apparent 
disappearance of Lord Voldemort. Out of 
fear, most wizards refuse to speak 
Voldemort's name, instead calling him 
You-Know-Who. McGonagall expresses 
concern about the rumors spreading among 
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Figure 6: Case study examples: local search (left) vs. global search (right).

E LIMITATIONS

Although we present a streamlined graph-based RAG framework that demonstrates both strong
efficiency and effectiveness in this paper, the retrieval design remains relatively intuitive. While we
have conducted extensive experiments and explored various alternative retrieval strategies (some
of which are not included in the paper), it is impossible to exhaust all possible retrieval pipeline
designs. Therefore, there may still exist more optimal retrieval strategies that could further enhance
the performance of our approach.

F THE USE OF LLMS

This paper employed LLMs solely for grammatical correction and stylistic refinement, with the
purpose of more effectively communicating our results and conclusions.
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