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ABSTRACT
Reinforcement Learning from Human Feedback (RLHF) is popular
in large language models (LLMs), whereas traditional Reinforce-
ment Learning (RL) often falls short. Current autonomous driving
methods typically utilize either human feedback in machine learn-
ing, including RL, or LLMs. Most feedback guides the car agent’s
learning process (e.g., controlling the car). RLHF is usually applied
in the fine-tuning step, requiring direct human "preferences," which
are not commonly used in optimizing autonomous driving models.
In this research, we innovatively combine RLHF and LLMs to en-
hance autonomous driving safety. Training a model with human
guidance from scratch is inefficient. Our framework starts with
a pre-trained autonomous car agent model and implements mul-
tiple human-controlled agents, such as cars and pedestrians, to
simulate real-life road environments. The autonomous car model is
not directly controlled by humans. We integrate both physical and
physiological feedback to fine-tune the model, optimizing this pro-
cess using LLMs. This multi-agent interactive environment ensures
safe, realistic interactions before real-world application. Finally, we
will validate our model using data gathered from real-life testbeds
located in New Jersey and New York City.

CCS CONCEPTS
• Human-centered computing → Ubiquitous computing; •
Computer systems organization→ Robotic control; • Com-
puter systems organization→ Embedded and cyber-physical
systems;
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1 INTRODUCTION
Reinforcement Learning (RL) and Large Language Models (LLMs)
play a crucial role in the development of autonomous driving sys-
tems. RL, a branch of machine learning, focuses on enabling agents
to make optimal decisions over time by learning from their mis-
takes and experiences. Numerous studies have demonstrated the
application of RL in autonomous driving. For instance, [5] proposed
using RL to map sensor observations to control outputs in simulated
environments. Similarly, [9] explored deep RL for continuous con-
trol tasks, which are applicable to autonomous driving scenarios.
Additionally, [15] introduced ASAP-RL, an efficient RL algorithm
that utilizes motion skills and expert priors to enhance learning
efficiency and driving performance in dense traffic. Moreover, [6]
presented a method for making decisions such as lane changing, ac-
celerating, and braking on highways, employing Deep Q Networks
(DQN) to train their model and predict optimal actions. Recent
research has increasingly incorporated Large Language Models
(LLMs) into autonomous driving systems, leveraging their capabili-
ties for decision-making, reasoning, and interaction. For instance,
[1, 4, 10] integrated LLMs to enhance commonsense reasoning and
high-level decision-making. In another study, [2] utilized LLMs to
help autonomous driving models mimic human behavior, thereby
improving end-to-end driving performance. [16] employed GPT to
extract crucial information from NHTSA accident reports using a
QA approach, enabling the generation of diverse scene codes for
simulation and testing. Additionally, [14] demonstrated the use
of LLMs as powerful interpreters that translate user text queries
into structured specifications of map lanes and vehicle locations for
traffic simulation scenarios. RLHF is a fundamental component in
the training of Large Language Models (LLMs) and is regarded as
an essential element of the modern LLM training pipeline [7, 18, 19].
RLHF is particularly well-suited for LLMs [13], as it involves RL
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agents learning from human preference feedback. This type of feed-
back is considered more intuitive for human users, better aligned
with human values, and easier to obtain in various applications [7].

Most works apply RLHF to optimize LLMs because the scenarios
in which humans use LLMs are more suitable for tracking human
preferences. This alignment with human values ensures that the
models perform more intuitively in real-world applications. In con-
trast, for autonomous driving scenarios, it is impractical for humans
to provide preference feedback on a frame-by-frame basis. Conse-
quently, RLHF is seldom used in autonomous driving contexts.

In this research, we creatively apply RLHF to autonomous driving
by modeling human preferences through various sensor feedback
from our environment.We incorporate both physical and physiolog-
ical feedback into the simulation to optimize the RL training loop
for autonomous driving. Additionally, the LLM agent facilitates
interaction within our multi-agent system. We posit that training
autonomous car agents alongside human-driven cars in the sim-
ulation can significantly enhance safety and allow the agents to
learn human preferences concurrently. This approach aligns the
autonomous car models more closely with real-world scenarios,
ultimately making the application of autonomous driving models
safer in real-life contexts.

2 METHODOLOGY
Our system (figure 2) is designed as a multi-agent framework, cen-
tering on human interaction while incorporating both LLM agents
and autonomous car agents. The system includes human drivers,
human pedestrians, and an LLM agent that mimics their behavior
to generate training interactions for the car agent. Humans control
the car using physical controllers such as steering wheels and ped-
als. Additionally, they wear various wearable sensors, including VR
headsets, wristbands to collect and monitor physiological signals
in real-time, and smart glasses to track eye gaze. A camera is also
set up in the environment to record human reactions. This col-
lected multimodal data is sent to the simulation. Before integration,
the LLM assists the car agent in understanding this data and aids
the human agent in adapting to the simulation environment. The
autonomous vehicle model learns from human feedback within
the RL loop, with the LLM helping to interpret human data into
"preferences" to optimize the model in the RL loop.

2.1 RLHF
In traditional reinforcement learning, the objective of the agent
is to develop a policy, a function that dictates its actions. This
policy is optimized to maximize rewards provided by a distinct
reward function based on the agent’s performance in a given task
[11]. However, defining a reward function that accurately reflects
human preferences is challenging. To address this, RLHF aims to
train a "reward model" directly from human feedback [20].

However, in our scenario, it is typically difficult to obtain "pref-
erence" feedback directly on a frame-by-frame basis. For instance,
when training an autonomous car model using RL, the car might
simply reward itself with a positive score for avoiding collisions.
However, the car might execute a rapid lane change that frightens
the user. This type of feedback—reflecting user comfort and safety

preferences—is crucial but challenging to capture. Additionally, sce-
narios such as aggressive braking, abrupt acceleration, or failing to
yield to pedestrians can all contribute to negative user experiences,
which are important "preferences" in the autonomous driving RL
loop. At the same time, human driving behavior provides valuable
feedback to the system, as it reflects real-world driving preferences
and responses to various driving conditions.

In our autonomous driving RLHF framework, the objective function[12]
is defined as follows:

objective(𝜙) = E(𝑥,𝑦)∼𝐷
𝜋𝑅𝐿
𝜙

𝑟𝜃 (𝑥,𝑦) − 𝛽 log ©«
𝜋𝑅𝐿
𝜙

(𝑦 |𝑥)

𝜋𝑆𝐹𝑇 (𝑦 |𝑥)
ª®¬
 (1)

where ,in our work, 𝑥 represents the input data from various
sensors, including physical sensors, physiological sensors, and sim-
ulation data such as LiDAR and camera inputs. The output𝑦 denotes
the actions taken by the autonomous vehicle. The reward function
𝑟𝜃 (𝑥,𝑦) evaluates the quality of the action𝑦 given the sensor inputs

𝑥 , guided by human feedback. The term 𝛽 log
(
𝜋𝑅𝐿
𝜙
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𝜋𝑆𝐹𝑇 (𝑦 |𝑥 )

)
intro-

duces a KL divergence penalty to ensure the new policy remains
close to the initial supervised model, balancing learning from new
data while retaining useful information from the initial model.

2.2 LLM Integration in Autonomous Driving
The primary functions of the LLM in our work include acting as an
agent in the simulation, facilitating interaction between humans
and the simulation system, and optimizing the RL training loop.

2.2.1 LLM Agent in the Simulation. In this section, we emphasize
our multi-agent systemwith two key use cases. First, the LLM agent
can mimic human behavior to interact with the car agent when a
human is not available. Second, when a human is in the loop, the
LLM agent can act as another agent, such as a car or pedestrian,
to increase the system’s complexity. For instance, human feedback
differs when there is one car versus multiple cars on the road. The
feedback in such a complex scenario is more representative of real-
life situations.

2.2.2 EnhancedHuman-Simulation Interaction Based on LLM. When
the simulation interacts with the human agent, the LLM can en-
hance the interaction. Firstly, when sending data collected from
humans to the system, the LLM can help interpret the data. For
example, if a driver is skilled, the LLM might adjust the simulation
weather to foggy conditions. Conversely, if the driver is less skilled,
the LLM can help the user adapt to the environment before the car
agent begins its training.

2.2.3 LLM-Enhanced RLHF. In the RLHF loop, "preferences" are
not as straightforward as yes or no answers. The LLM can translate
physical and physiological data into preference formats, which
are then incorporated into the objective function. For example,
if a driver’s heart rate increases significantly during a particular
maneuver, the LLM can interpret this physiological response as a
negative preference for that action. Similarly, if sensor data indicates
smooth and confident handling of the vehicle, this can be translated
into a positive preference. By integrating these nuanced preferences
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Auto driving simulation

Pretrained Model optimization

LLM enhanced RLHF

LLM agent

Figure 1: Overview of our human-centric multi-agent LLM-enhanced RLHF system framework. During the fine-tuning of an
autonomous car model, human agents and proliferated LLM agents mimicking multiple human behaviors are incorporated
into the environment to align with real-world human preferences.

Figure 2: Simulation roomwith VR headset, steering controls,
and monitors for real-time multimodal data collection and
autonomous driving optimization.

into the RL training loop, the autonomous driving model can be
better aligned with human comfort and safety standards.

3 HARDWARE SETUP
The sensors utilized in ourmulti-agent LLM-enhanced RLHF system
are categorized into two primarymodalities: vehicle and physiological[17].
The vehicle sensors, primarily sourced from the CARLA simulator
and Logitech hardware, include acceleration, rotation (gyroscope),
speed, brake, steering, throttle, and reverse, all sampled at approxi-
mately 60 Hz. These sensors capture the dynamic state and control
inputs of the autonomous vehicle. The physiological sensors, pro-
vided by Empatica, measure various physiological signals such as
blood volume pulse (64 Hz), heart rate (1 Hz), interbeat interval
(varying), electrodermal activity (4 Hz), wrist acceleration (32 Hz),
and body temperature (4 Hz). Additionally, the gaze modality em-
ploys an Adhawk sensor to track coordinates on the screen at a
sampling rate of 125 Hz, capturing the human agent’s visual focus

GPT4o imitate human agent
The front car is driving steadily and appears to 
be keeping within its lane. No erratic behavior is 
observed, making it safe for overtaking. 

As a human agent, I'd signal to overtake the car, 
ensure it's safe to maneuver, and then proceed 
to overtake.

- Throttle: Increase
- Steer: Slight left
- Brake: None
- Reverse: None
- Hand brake: None
- Manual: None
- Gear: Shift up to 3 or more if necessary

Figure 3: Example of GPT-4o imitating a human agent in the
CARLA simulation. The LLM agent is attempting to overtake
the car in front in a human-like manner.

and attention. These sensors monitor the human agent’s physi-
cal and emotional responses during the simulation. Except for the
monitor, we also have a VR headset to create an immersive environ-
ment. Additionally, a Raspberry Pi camera in the simulation room
observes the human reaction to the simulation. This multi-modal
data integration is crucial for fine-tuning the autonomous driving
model, providing comprehensive feedback to align the model’s per-
formance with human preferences and ensuring realistic and safe
interactions in the simulation environment.

4 INITIAL IMPLEMENTATION
Our initial implementation demonstrates the integration of the LLM
with the car simulation system using the GPT-4 interface. The LLM
agent can imitate human driving behavior, especially when interact-
ing with a car agent in front (figure 3). It also assists the car agent
in managing situations such as avoiding collisions(figure 4). Addi-
tionally, the LLM agent helps human users by instructing them on
how to effectively navigate and use the simulation system(figure 5).

Furthermore, we plan to implement our experiments in our real-
life city test bed, located in Harlem[8], NYC, and New Brunswick[3],
NJ. The real-life data collected from these locations will be used to
test the robustness of our algorithm. Additionally, we can import
real-life data into the simulation as a cross-validation method. Fig-
ure 6 shows an example of importing real-life road data from New
Brunswick into the CARLA system.
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GPT4o feedback to the simulation
The car has detected a collision and is currently stationary 
near a building. The car needs to take corrective actions to 
return to the normal track safely.

### Actions for the car agent:
1. **Reverse:** Engage reverse to move away from the 
building.
2. **Steering Adjustment:** Steer slightly to the left to position 
the vehicle away from the wall.
3. **Throttle Control:** Apply a minimal throttle to start 
moving backward safely.
4. **Collision Recovery Mode:** Activate to handle post-
collision scenario.

### Recommended Parameters for the Next Move:
- **Throttle:** 0.2
- **Steer:** -0.2
- **Brake:** 0
- **Reverse:** 1
- **Hand Brake:** 0
- **Manual:** 0
- **Gear:** -1

Figure 4: Example of the LLM agent guiding the autonomous
car agent to reverse away from a collision with a building.

GPT4o guide human agent 
The car in front is maintaining a slow and steady 
pace within the speed limit. There are no 
indications of erratic driving or sudden lane 
changes. you should decide to stay in your 
current lane and keep a safe distance from the 
car in front, considering the surroundings and 
potential for pedestrians or unexpected stops 
due to urban traffic.

Be mindful of the following parameters:
- **Speed:** Maintain at 25 km/h
- **Throttle:** Light throttle to keep current 

speed
- **Steer:** Minimal steering input to stay 

within the lane
- **Brake:** Ready to apply brakes if 

necessary
- **Distance:** Keep a safe following distance 

to the car ahead (105m or more)
- **Awareness:** Be vigil

Figure 5: Example of the LLM agent assisting the human
agent in using the simulation.

5 CONCLUSION AND FUTUREWORK
In this work, we introduce a novel framework that integrates
RLHF and LLMs to optimize autonomous driving models. We de-
fine human preferences within the RLHF framework and build a
simulation-to-reality system based on this concept. Our method
simulates a multi-agent environment for training the car agent,
allowing it to learn human behaviors through multimodal sensory
data. The LLM agent can proliferate multiple human agents by
mimicking human behavior and facilitating interactions between
the car agent and other agents on the road within the simulation.
When optimizing the model, the LLM agent also interprets human
data to enhance the model via RLHF. Our system incorporates both
physical and simulation sensors. The initial implementation demon-
strates various scenarios where LLMs are applied to the framework.
This preliminary work establishes the foundational infrastructure
for our experiments and discusses the theoretical feasibility of the
framework.

However, there is still much work to be done in the next stage
of our plan. Firstly, the GPT-4 interface has rate limits; we may
need to explore different interfaces for this study. The machine
learning model for autonomous driving should be evaluated across
different types of multimodal models to prove the robustness of
our method. We will apply more real-life data to our research to
improve the robustness of our method. We will recruit subjects
with diverse backgrounds and varying driving skills for human
evaluation. Individuals with good driving skills and those with

Figure 6: Example of importing real-life road data from New
Brunswick testbed into the CARLA simulation.

less experience present different challenges in our study. We plan
to provide a comprehensive evaluation of how different levels of
background influence the RLHF autonomous driving framework.

Finally, we hope that through our study, we can eventually pro-
pose a safe driving model that can help autonomous vehicles nav-
igate real-life roads and contribute to the overall road safety of
society.

6 ACKNOWLEDGMENTS
This work was supported by the National Science Foundation (NSF)
as part of the Center for Smart Streetscapes, under NSF Cooper-
ative Agreement EEC-2133516. DataCity Smart Mobility Testing
Ground is jointly funded by Middlesex County Resolution 21-821-R,
New Jersey Department of Transportation and Federal Highway
Administration Research Project 21-60168.

REFERENCES
[1] Yaodong Cui, Shucheng Huang, Jiaming Zhong, Zhenan Liu, Yutong Wang, Chen

Sun, Bai Li, Xiao Wang, and Amir Khajepour. 2023. DriveLLM: Charting the path
toward full autonomous driving with large language models. IEEE Transactions
on Intelligent Vehicles (2023).

[2] Yiqun Duan, Qiang Zhang, and Renjing Xu. 2024. Prompting Multi-Modal Tokens
to Enhance End-to-End Autonomous Driving Imitation Learning with LLMs.
arXiv preprint arXiv:2404.04869 (2024).

[3] Center for Advanced Infrastructure and Transportation. 2024. DataCity Smart
Mobility Testing Ground. https://cait.rutgers.edu/datacity/ Accessed: 2024-05-26.

[4] Daocheng Fu, Wenjie Lei, Licheng Wen, Pinlong Cai, Song Mao, Min Dou, Botian
Shi, and Yu Qiao. 2024. LimSim++: A Closed-Loop Platform for Deploying
Multimodal LLMs in Autonomous Driving. arXiv preprint arXiv:2402.01246 (2024).

[5] Christopher Galias, Adam Jakubowski, Henryk Michalewski, Błażej Osiński, and
Paweł Zięcina. 2019. Simulation-based reinforcement learning for autonomous
driving. (2019).

[6] Carl-Johan Hoel, Krister Wolff, and Leo Laine. 2018. Automated speed and
lane change decision making using deep reinforcement learning. In 2018 21st
International Conference on Intelligent Transportation Systems (ITSC). IEEE, 2148–
2155.

[7] Robert Kirk, Ishita Mediratta, Christoforos Nalmpantis, Jelena Luketina, Eric
Hambro, Edward Grefenstette, and Roberta Raileanu. 2023. Understanding the
effects of rlhf on llm generalisation and diversity. arXiv preprint arXiv:2310.06452
(2023).

[8] COSMOS Lab. 2024. COSMOS Lab. https://cosmos-lab.org/ Accessed: 2024-05-26.
[9] Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez,

Yuval Tassa, David Silver, and Daan Wierstra. 2015. Continuous control with
deep reinforcement learning. arXiv preprint arXiv:1509.02971 (2015).

[10] Jimuyang Zhang Zanming Huang Arijit Ray and Eshed Ohn-Bar. [n. d.]. Feedback-
Guided Autonomous Driving. ([n. d.]).

[11] Stuart J Russell and Peter Norvig. 2016. Artificial intelligence: a modern approach.
Pearson.

[12] Nisan Stiennon, Long Ouyang, Jeffrey Wu, Daniel Ziegler, Ryan Lowe, Chelsea
Voss, Alec Radford, Dario Amodei, and Paul F Christiano. 2020. Learning to
summarize with human feedback. Advances in Neural Information Processing
Systems 33 (2020), 3008–3021.

79

https://cait.rutgers.edu/datacity/
https://cosmos-lab.org/


Optimizing Autonomous Driving for Safety: A Human-Centric Approach with LLM-Enhanced RLHF UbiComp Companion ’24, October 5–9, 2024, Melbourne, VIC, Australia

[13] Hao Sun. 2023. Reinforcement learning in the era of llms: What is essential?
what is needed? an rl perspective on rlhf, prompting, and beyond. arXiv preprint
arXiv:2310.06147 (2023).

[14] Shuhan Tan, Boris Ivanovic, Xinshuo Weng, Marco Pavone, and Philipp Krae-
henbuehl. 2023. Language conditioned traffic generation. arXiv preprint
arXiv:2307.07947 (2023).

[15] Letian Wang, Jie Liu, Hao Shao, Wenshuo Wang, Ruobing Chen, Yu Liu, and
Steven L Waslander. 2023. Efficient reinforcement learning for autonomous
driving with parameterized skills and priors. arXiv preprint arXiv:2305.04412
(2023).

[16] Sen Wang, Zhuheng Sheng, Jingwei Xu, Taolue Chen, Junjun Zhu, Shuhui Zhang,
Yuan Yao, and Xiaoxing Ma. 2022. ADEPT: A testing platform for simulated
autonomous driving. In Proceedings of the 37th IEEE/ACM International Conference

on Automated Software Engineering. 1–4.
[17] Tong Wu, Navid Salami Pargoo, and Jorge Ortiz. 2023. Multi-sensor Fusion for

In-cabin Vehicular Sensing Applications. In Proceedings of the 22nd International
Conference on Information Processing in Sensor Networks. 332–333.

[18] Chen Zheng, Ke Sun, Hang Wu, Chenguang Xi, and Xun Zhou. 2024. Balancing
Enhancement, Harmlessness, and General Capabilities: Enhancing Conversa-
tional LLMs with Direct RLHF. arXiv preprint arXiv:2403.02513 (2024).

[19] Banghua Zhu, Michael Jordan, and Jiantao Jiao. 2023. Principled reinforcement
learning with human feedback from pairwise or k-wise comparisons. In Interna-
tional Conference on Machine Learning. PMLR, 43037–43067.

[20] Daniel M Ziegler, Nisan Stiennon, Jeffrey Wu, Tom B Brown, Alec Radford, Dario
Amodei, Paul Christiano, and Geoffrey Irving. 2019. Fine-tuning language models
from human preferences. arXiv preprint arXiv:1909.08593 (2019).

80


	Abstract
	1 Introduction
	2 Methodology
	2.1 RLHF
	2.2 LLM Integration in Autonomous Driving

	3 hardware setup
	4 Initial Implementation
	5 Conclusion and Future Work
	6 Acknowledgments
	References



