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Abstract
Many practical systems are not amenable to the reachability methods that give guarantees of cor-
rectness, since they have dynamics that are strongly nonlinear, uncertain, and possibly unknown.
While reachable sets for these kinds of systems can still be estimated in a data-driven way, data-
driven methods typically do not guarantee the validity of their results. However, certain data-driven
approaches may be given a probabilistic guarantee of correctness, by reframing the problem as a
chance-constrained optimization problem that is solved with scenario optimization. We apply this
approach to the problem of approximating a reachable set by a norm ball from data. The method
requires only O(n2) sample trajectories and the solution of a convex problem. A variant of the
method restricted to axis-aligned norm balls requires only O(n) samples.
Keywords: Reachability analysis; Scenario optimization; Randomized algorithms.

1. Introduction

Control systems that manage safety-critical applications must be guaranteed to keep the system safe
in the face of uncertainty. An increasingly popular and effective way to provide such a guarantee
is reachability analysis, a set-based method that characterizes all possible evolutions of the system
by computing reachable sets. However, reachability analysis poses a significant computational
challenge. Even for simple systems, computing exact reachable sets is known to be an unsolvable
problem (Fijalkow et al. (2019)), meaning that computing exact reachable sets is not a plausible
goal. All practical reachability analysis methods therefore settle for computing approximations to
the true reachable set.

Many methods have been developed to compute reachable set approximations. The methods that
produce the most accurate approximations are those based on Hamilton-Jacobi equation (Mitchell
et al. (2005)) or dynamic programming (Bertsekas and Rhodes (1971)), but their accuracy comes at
the cost of scalability. Methods designed for better scalability typically draw approximations from
a restricted family of sets, such as ellipsoids (Kurzhanski and Varaiya (2000)), zonotopes (Althoff
(2015)), or multidimensional intervals (Chen et al. (2013); CAPD (2019); Meyer et al. (2019)).
Many methods also focus on a specific class of system dynamics, such as linear systems or systems
with bounded or sign-stable Jacobians, and use these system properties to speed up computations.

However, there are many important cases in which these methods cannot be applied. Some cases
arise when the system of interest is high-dimensional and does not satisfy the system assumptions
that allow the faster methods to be used. Others arise when the system of interest is only available



in a form that is mathematically inaccessible (such as a large SIMULINK model), or is only available
through simulations or experiments. For systems such as these, reachable sets can still be computed
in a data-driven manner, in which the reachable set is estimated using a finite collection of sample
trajectories of the system. For example, the samples can be generated by simulating trajectories
with initial conditions selected from a uniform grid, and used to approximate a bound on the reach-
able set. Under suitable system assumptions, this quasi-Monte Carlo approach can provide a formal
guarantee of correctness (Tempo et al. (2012)). However, the grid-based sampling scheme requires
a number of samples that increases exponentially in n, so it does not scale well to high-dimensional
systems. To combat the exponential complexity of the quasi-Monte Carlo method, another com-
mon approach is to simply select a number of initial conditions at random. In practice this Monte
Carlo approach can be effective, but it is often applied without any formal guarantee of correctness.
Without a guarantee, a reachable set loses much of its power, as it cannot provide any assurance that
controller specifications have been met.

In this paper, we show that a class of Monte Carlo-type data-driven methods for reachability
analysis may be given a probabilistic guarantee of correctness, meaning that the estimated reachable
set can be guaranteed to contain a certain measure of the reachable set with high probability. The
probabilistic guarantee is established by reframing the problem of estimating a reachable set from
trajectory data as a scenario optimization problem. Scenario optimization is an approach to solving
chance-constrained optimization problems by solving a convex, non-probabilistic relaxation of the
problem (Dembo (1991)). Solutions of the relaxed problem, if they exist, are guaranteed to satisfy
the original problem with high probability. Furthermore, scenario optimization provides a sample
complexity bound: for a desired probability of satisfying the original problem, the size of the relaxed
problem is known in advance (Calafiore and Campi (2006); Campi and Garatti (2008)). These
results hold for a wide range of probabilistic uncertainties, including those that inhabit infinite-
dimensional spaces (Esfahani et al. (2014)). Scenario optimization has been used as a randomized
approach to solving robust control problems. For example, Margellos et al. (2014) uses scenario
optimization to construct axis-aligned hyperrectangles that contain a certain probability mass of a
random disturbance. We apply a similar construction, allowing for more general sets, to the problem
of reachability analysis.

There is some precedent for using scenario optimization to solve problems related to reachabil-
ity. Yang et al. (2016) uses scenario optimization to solve a chance-constrained formulation of a
multi-aircraft collision avoidance problem with ellipsoidal reachable sets, in which the randomness
in the problem arises from unknown wind conditions. Ioli et al. (2017) proposes a benchmark prob-
lem for robust control synthesis in which the controller must minimize the size of the reachable set of
energy fluctuations for a microgrid modeled as a discrete-time linear time-invariant system, and pro-
pose a scenario-based solution to the problem. Sartipizadeh et al. (2019) develops a scenario-based
approach for solving reach-avoid problems on discrete-time linear time-invariant systems with addi-
tive probabilistic uncertainty. Hewing and Zeilinger (2019) investigates a scenario-based approach
to provide prediction error bounds for stochastic model-predictive control of discrete-time, linear
time-invariant systems with additive noise. These works focus on controller synthesis for cases in
which the system dynamics are known to be of a certain type such as linear time-invariant, and
where reachability is used to verify safety of the synthesized controller. They use scenario opti-
mization to mitigate the difficulty of robust synthesis and reach-avoid analysis. However, scenario
optimization may also be used to mitigate the issue of model uncertainty when computing reachable
sets.



Our contribution is to show that scenario optimization may be used to provide guarantees for a
range of data-driven reachability analysis methods that are applicable to a general class of systems.
Specifically, we investigate a Monte Carlo-type method that provides reachable set estimates in the
form of norm ball sets, with the optional restriction that the norm balls be axis-aligned. For each
of these classes of norm ball sets, we provide a sample complexity bound derived from the scenario
optimization representation of the problem. The sample complexity turns out to be quadratic with
respect to the state dimension for the general norm ball case, and linear in the axis-aligned case.

2. Forward Reachable Sets

We consider a general dynamical system with a state transition function Φ(t1; t0, x0, u, d) that maps
an initial state x0 ∈ Rn at time t0 to a unique final state at time t1, under the influence of the system
dynamics, an input u : [t0, t1] → Rp, and a disturbance d : [t0, t1] → Rw. For instance, when
the system state dynamics ẋ(t) = f(t, x(t), u(t), d(t)) are known and has unique solutions on the
interval [t0, t1], then Φ(t1; t0, x0, u, d) is just the value φ(t1), where φ is the solution satisfying
φ(t0) = x0.

For the problem of forward reachability analysis, we are also given an initial set X0 ⊂ Rn, a set
U of allowed inputs, and a set D of allowed disturbances. The forward reachable set is then defined
as

R[t0,t1] = {Φ(t1; t0, x0, u, d) : x0 ∈ X0, u ∈ U , d ∈ D}, (1)

that is the set of all states to which the system can transition at time t1 if it starts in a state in X0 at
time t0 and is subject to an input in U and a disturbance in D.

Since the exact reachable set cannot be computed, we must settle for the goal of computing
some approximation R̂[t0,t1]. The approximating set is drawn from a family of sets that is described
by a vector parameter θ, so that the task of computing the approximation is reduced to finding a
parameter. For instance, if we choose to approximate the reachable set with an ellipsoid, that is a
set of the form R̂[t0,t1](A, b) = {x : ||Ax− b||2 ≤ 1}, then the parameter is θ = (A, b).

Typically, R̂[t0,t1] is designed to be either an overapproximation (so that R[t0,t1] ⊂ R̂[t0,t1]) or
an underapproximation (so that R̂[t0,t1] ⊂ R[t0,t1]). These approximations are useful for making
safety guarantees, but reachable sets that are estimated from samples will generally not be either.
Since we are focusing on a data-driven approach to reachable set computation, we will instead aim
to compute an approximation that is similar to the true reachable set in a probabilistic sense.

Suppose we have a random variable Z whose support is the reachable set, that is such that
its probability density function (pdf) pZ satisfies pZ(x) = 0 for x outside of the reachable set and
pZ(x) > 0 for x inside it. In that case,R[t0,t1] is by definition an event with probability one, and any
set that is disjoint with R[t0,t1] has probability zero. Any set that contains part of the reachable set
will have some probability in between, with a higher probability indicating that it contains more of
the reachable set. We therefore want to compute a reachable set approximation that is guaranteed to
have a high probability under such a distribution. If an approximation satisfies PZ(R̂[t0,t1]) ≥ 1− ε,
where PZ is the probability measure of Z, then we say that this is an ε-accurate approximation with
respect to the distribution pZ .

A reachable set approximation that is ε-accurate may still be quite conservative: in addition
to the part of the approximation with measure 1 − ε, it could also contain a large portion of the
state space outside of the reachable set with measure zero. For most approximation classes this



conservatism cannot be eliminated, but it should be avoided. Therefore, our goal is not just to
compute an ε-accurate reachable set, but to compute an ε-accurate reachable set with as small a
volume as possible.

This goal can be stated as a chance-constrained optimization problem:

minimize
θ

Vol(R̂[t0,t1](θ))

subject to PZ(R̂[t0,t1](θ)) ≥ 1− ε
(2)

This optimization problem is intractable in general. However, in certain cases we may approxi-
mately solve this problem using scenario optimization, arriving at a probabilistically guaranteed
Monte Carlo approach to estimating the reachable set.

3. Scenario Optimization

Scenario optimization is a technique to approximately solve optimization problems of the form

minimize
θ

J(θ)

subject to PZ(g(θ, Z) ≤ 0) ≥ 1− ε
θ ∈ Θ,

(3)

where J and g are convex functions, Θ ∈ Rnθ is convex and compact, and PZ is a probability
measure with respect to a random variable Z. Solving (3) directly is an intractable problem because
the probabilistic constraint is difficult to enforce for general random variables, and is not guaranteed
to be convex even when g is a convex.

Scenario optimization proceeds by solving a deterministic approximation of the problem:

minimize
θ

J(θ)

subject to g(θ, z(i)) ≤ 0, i = 1, . . . , N

θ ∈ Θ,

(4)

where {z(i)}Ni=1 are N independently and identically-distributed (iid) samples from Z. This prob-
lem is a non-probabilistic convex program, and so can be solved efficiently even in the general case
by a range of standard solvers.

The Scenario optimization approach proposes that the minimizer of (4), which we can easily
find, is also a feasible solution of (3) with high probability. Furthermore, there is a lower bound on
this probability with respect to N :

Theorem 1 (Tempo et al. (2012), Corollary 12.1) let δ ∈ (0, 1). If N is selected according to

N ≥ 1

ε

(
e

e− 1

)(
log

1

δ
+ nθ

)
, (5)

where e is the Euler number, then a minimizer of (4), if it exists, is a feasible solution to (3) with
probability ≥ 1− δ.

While the convexity requirements on J and g can be restrictive, there is a hidden freedom: the
random variable Z in the probabilistic constraint may have arbitrary support. In our case, we will
choose a random variable whose support is R[t0,t1].



4. Scenario-Based Reachability with Norm Balls

The method presented here uses trajectory data to approximate the reachable set with a p-norm ball,
that is a set of the form

R̂[t0,t1](A, b) = {x : ||Ax− b||p ≤ 1} (6)

where x, b ∈ Rn, A ∈ Rn×n, and p may be either any real ≥ 1 or ∞. The class of p-norm balls
encompasses several types of sets that are popular in reachability analysis. For instance, choosing
p = 2 leads to the class of ellipsoids, and choosing p =∞ and restricting A to be diagonal leads to
the class of multidimensional intervals.

4.1. Unconstrained Norm Balls

We first consider the general case, where A may be any symmetric matrix. We use − log detA
as a proxy for the volume of R̂[t0,t1](A, b). The value − log det(A) is directly proportional to the
volume of a 2-norm ball; by the equivalence of norms, it is a suitable proxy for the volume of other
p-norm balls as well. Using this proxy, the minimum-volume ε-accurate reachable set problem (2)
becomes

arg min
A,b

− log detA

s.t. PZ(||AZ − b||p − 1 ≤ 0) ≤ 1− ε,
(7)

where Z is a random variable whose support is R[t0,t1]. Since − log detA and ||AZ − b||p − 1 are
convex in A and b, (7) is a convex chance-constrained optimization problem, meaning that it can be
solved using scenario optimization.

We use the transition function Φ to construct a suitable Z. Specifically, let X0, U , and D be
given random variables whose supports are the initial set, input set, and disturbance set. Then the
support of the random variable Z = Φ(t1; t0, X0, U,D) is exactly the reachable set.

The approach is outlined in Algorithm 1. The output is a matrix A and vector b for a norm
ball reachable set estimate that is ε-accurate with high probability with respect to Z. This is the
probabilistic guarantee of correctness, which we formally present with Theorem 2.

Theorem 2 Let ε, δ ∈ (0, 1), and let X0, U , and D be random variables over X0, U , and D
respectively, and let Z = Φ(t1; t0, X0, U,D). Denote by PS the probability measure corresponding
to the multisample ofN =

⌈
1
ε

e
e−1

(
log 1

δ + n(n+ 1)/2 + n
)⌉

points taken fromX0, U , andD, and
by PZ the probability measure corresponding to Z. Then the output (A, b) of Algorithm 1 satisfies
the following probability inequality:

PS(PZ(R̂[t0,t1](A, b)) ≥ 1− ε) ≥ 1− δ; (9)

or, in other words,

PS(R̂[t0,t1](A, b) is ε-accurate with respect to Z) ≥ 1− δ. (10)

Proof If (A, b) is a feasible solution to (7), then R̂[t0,t1](A, b) is by construction an ε-accurate
estimate. Algorithm 1 finds a solution to (8), which is the scenario problem corresponding to (7).
The decision variables of (7) are a symmetric n × n real matrix and a real n-vector, so nθ =
n(n+ 1)/2 +n. The N chosen in Algorithm 1 satisfies the sample bound in Theorem 1 for this nθ.
Therefore, the A and b that minimize (8) is a feasible solution to (7) with probability 1− δ.



Algorithm 1: Scenario-based estimate of a reachable set by a p-norm ball.
Input: Transition function Φ of a system with state dimension n; random variables X0, U and

D supported on X0, U , and D respectively; time range [t0, t1]; norm index p;
probabilistic guarantee parameters ε and δ.

Output: Matrix A and vector b representing an ε-accurate reachable set estimate
R̂[t0,t1](A, b) = {x : ‖Ax+ b‖p ≤ 1}, with confidence 1− δ.

Set number of samples N =
⌈
1
ε

e
e−1

(
log 1

δ + n(n+ 1)/2 + n
)⌉

;

forall i ∈ {1, . . . , N} do
Take samples x(i), u(i), and d(i) from X0 U , and D;
evaluate z(i) = Φ(t1; t0, x

(i), u(i), d(i));
end
Solve the convex problem

arg min
A,b

− log detA

subject to ‖Az(i) − b‖p − 1 ≤ 0, i = 1, . . . , N
(8)

and return A, b;

While Theorem 2 does not guarantee that the reachable set approximation provided by Algo-
rithm 1 is an over- or under-approximation of the true reachable set, it still asserts that the computed
reachable set approximation is accurate in a probabilistic sense with respect to the random variables
used to compute it.

The sample complexity of a randomized algorithm is the number of samples needed for the
algorithm to run such that its output satisfies a guarantee of correctness. For instance, from the
sample bound (5), the sample complexity of an algorithm based on scenario optimization with
respect to the probabilistic guarantee parameters isO(1ε ) andO(log 1

δ ). For Algorithm 1, the sample
complexity also depends on the state dimension n. This dependence can be determined from (5),
and depends on how n affects the number nθ of decision variables. In Algorithm 1, the A matrix
requires n(n + 1)/2 decision variables and the b vector requires n decision variables. This means
that nθ = n(n+ 1)/2 +n, so the sample complexity of Algorithm 1 is O(n2). Note that the sample
bound of Theorem 2 depends only on the parameters ε and δ, and the state dimension n. The
system may therefore have inputs and disturbances of any dimension without affecting the sample
complexity.

4.2. Axis-aligned Norm Balls

The quadratic sample complexity of the method in the previous section is not scalable to systems
of high dimension, or systems for which the transition function takes a long time to evaluate. For
these systems, we would like a variant of the method with less than quadratic sample complexity.
The source of the quadratic term in the sample complexity is the number of free variables in the A
matrix. If we constrain the structure of the A matrix so that it has fewer than O(n2) free variables,
then the sample complexity will be lowered.



One such constraint is to require that the A matrix be diagonal. In this case, the A matrix has
only n free variables, and the overall sample complexity is reduced from O(n2) to O(n). Specifi-
cally, in the case of diagonal A, Algorithm 1 can run with the reduced sample size

Ndiag =

⌈
1

ε

e

e− 1

(
log

1

δ
+ 2n

)⌉
, (11)

since the free variables in A and b lead to nθ = 2n.
However, the constraint on the structure of A also induces a constraint on the types of norm ball

sets that are available as reachable set estimates. In the p = 2 case, the norm balls with diagonal A
are ellipsoids whose principal axes are parallel to the coordinate axis defined by the standard basis
for Rn. By analogy with these “axis-aligned” ellipsoids, we call any p-norm ball with a diagonal A
matrix an axis-aligned norm ball.

The class of axis-aligned p-norm balls with p =∞ is identical to the set of axis-aligned hyper-
rectangles. In this case, the difficulty of the optimization problem is reduced as well as the sample
complexity: solving (8) reduces to finding the smallest axis-aligned hyperrectangle containing all
of the sample points z(i). This is just the hyperrectangle whose largest and smallest points (with
respect to the standard partial order) are the elementwise maximum and minimum of the z(i).

5. Example: Safety Verification of a Medical Exoskeleton

We consider a problem posed in Narvaez-Aroche et al. (2018) to evaluate the safety of a control
system in a medical application. The system is an exoskeleton: specifically, a brace for the lower
limbs, which has actuators to assist with movement. The exoskeleton and its user are modeled as
a three-link planar robot, which has six states and 12 parameters that depend on the user’s weight.
The controller is a finite-time LQR controller that follows a trajectory that brings the user from a
sitting position to a standing position over the course of 3.5 seconds. The problem is to verify that
the controller can safely bring the user from sitting to standing over a range of parameters effected
by a 5% variation in body weight. The authors of Narvaez-Aroche et al. (2018) solve the problem
by computing the forward reachable set at three times and ensuring that no unsafe states (such as a
fallen position) are reached.

We perform the same reachability-based safety verification using Algorithm 1, treating the un-
certain parameters as constant-valued disturbances with values sampled uniformly from the allowed
range. We take p = 2, and for the guarantee we take ε = 0.05, δ = 10−9. This guarantees that
Algorithm 1 will produce an ellipsoid containing at least 0.95 of the measure of the reachable set
distribution, with only a “one in a billion” chance of failure. To assert this guarantee, the sample
bound of Algorithm 1 requires N = 1510 samples. Using the axis-aligned variant of Algorithm
1 reduces the bound to Ndiag = 1036 samples. Figure 1 shows the reachable sets computed by
Algorithm 1 in the unconstrained and axis-aligned cases, projected from the six kinematic states
onto the x- and y- coordinates of the center of mass.

To verify that the computed reachable sets satisfy the a priori guarantee that they are ε-accurate,
we compute an a posteriori empirical estimate of their measures with an additional 46, 052 samples.
With this number of samples, a one-sided Chernoff bound holds, which ensures that the a posteriori
estimate of the measure exceeds the true measure by no more than .01 with confidence 0.9999. The
results are shown in Table 1, and validate that the sets are indeed ε-accurate. Table 1 also shows
the details of the computation times. All computations were done on a 3.6 GHz Intel CPU, running
MATLAB on one thread.
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Figure 1: Reachable set estimates for the exoskeleton computed using Algorithm 1, projected from
six kinematic states to the x- and y-positions of the center of mass. The sample points
used to compute each ellipsoid are also shown.

Sampling z(i) solving (8) t = 0 measure t = 1.75 measure t = 3.5 measure

Unconstrained 1 hr 16 min 23.6 s 0.9971 0.9927 0.9964
Axis-aligned 52 min 14.1 s 0.9977 0.9971 0.9961

Table 1: Computation times and empirical measures for the reachable sets shown in Fig. 1.

6. Conclusions

The method of scenario optimization offers a partial solution to the lack of correctness guarantees
for data-driven approaches to reachability analysis. We have found that several simple Monte Carlo-
type approaches to approximating reachable sets can be put on a solid foundation and supplied with
probabilistic guarantees of correctness by framing them as scenario optimization problems. In this
paper we have focused on two variants of the case of approximation by norm balls, which lead to
scalable sample complexities and efficiently-solvable optimization problems.

However, the scenario optimization approach has two limitations. First, the reachable set ap-
proximations must be convex sets, since the scenario optimization guarantee will not hold otherwise.
Second, the requirement that the scenario optimization problem be constructed from iid samples
precludes this approach from providing guarantees for active learning-based approaches, in which
case the sample distribution would have correlations.
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