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Abstract

Text data has become extremely valuable due to
the emergence of machine learning algorithms
that learn from it. A lot of high-quality text data
generated in the real world is private and there-
fore cannot be shared or used freely due to pri-
vacy concerns. Generating synthetic replicas of
private text data with a formal privacy guarantee,
i.e., differential privacy (DP), offers a promising
and scalable solution. However, existing meth-
ods necessitate DP finetuning of large language
models (LLMs) on private data to generate DP
synthetic data. This approach is not viable for
proprietary LLMs (e.g., GPT-3.5) and also de-
mands considerable computational resources for
open-source LLMs. Lin et al. (2024) recently
introduced the Private Evolution (PE) algorithm
to generate DP synthetic images with only API
access to diffusion models. In this work, we pro-
pose an augmented PE algorithm, named AUG-
PE, that applies to the complex setting of text.
We use API access to an LLM and generate DP
synthetic text without any model training. We con-
duct comprehensive experiments on three bench-
mark datasets. Our results demonstrate that AUG-
PE produces DP synthetic text that yields com-
petitive utility with the SOTA DP finetuning base-
lines. This underscores the feasibility of rely-
ing solely on API access of LLMs to produce
high-quality DP synthetic texts, thereby facilitat-
ing more accessible routes to privacy-preserving
LLM applications. Our code and data are avail-
able at https://github.com/AI-secure/aug-pe.
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1. Introduction
With recent advances in natural language processing
(NLP), text-based applications have greatly facilitated our
lives. These include AI-assisted medical record summaries
(Rumshisky et al., 2016), email and document autocom-
plete tools (Voytovich & Greenberg, 2022; CNN, 2023),
and personalized chatbots (Chew, 2022). However, all these
applications (among others) rely on collecting private text
data from users to train LLMs, which raises serious pri-
vacy concerns as LLMs may memorize and leak sensitive
information about users (Carlini et al., 2021; Lukas et al.,
2023; Wang et al., 2023). Differentially private synthetic
text is a promising and actively studied solution (Putta et al.,
2022; Bommasani et al., 2019). It aims to create a new text
dataset with similar characteristics to the original private
data while ensuring privacy by protecting sensitive infor-
mation in each sample (known as Differential Privacy (DP)
(Dwork et al., 2014)). The DP synthetic text can then be
used in developing any downstream NLP system without
adding extra privacy risks. It also allows the safe sharing of
private data more broadly. For example, hospitals can share
their private medical data for research purposes by creating
a DP synthetic version of their data.

The state-of-the-art DP synthetic text approach is to finetune
pretrained generative language models (LMs) on private
data with DP-SGD (a DP variant of SGD (Abadi et al.,
2016)) (Yue et al., 2023; Kurakin et al., 2023; Mattern
et al., 2022a) (short-handed as DP finetune generator; see
Fig. 1). Unlike non-DP ML applications, which have been
greatly advanced by powerful LLMs such as GPT-4 (Ope-
nAI, 2023b) and LLaMA (Touvron et al., 2023a;b) in a
short time after they are released, the state-of-the-art DP
synthetic text approaches are unfortunately still based on
GPT-2.1 The reasons are: (1) Many powerful LLMs such as
GPT-4, Claude, and Bard are only accessible through APIs.
DP finetuning them is not feasible.2 (2) Even though some
LLMs (e.g., LLaMA) are open-source, finetuning them with

1The 175 billion-parameter GPT-3 has also been used for DP
synthetic text (He et al., 2022). However, the solution is not
publicly accessible as GPT-3 is proprietary.

2Although standard finetuning APIs are provided for some of
the models (OpenAI, 2023a), DP finetuning requires a special
implementation and no model provides this custom API to date.
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Figure 1: Instead of finetuning LLMs with DP-SGD to generate synthetic text, our AUG-PE only requires inference APIs of LLMs.
AUG-PE works with the latest open-source LLMs and API-based LLMs to generate DP synthetic text with improved utility on OpenReview
dataset, where DP-SGD finetuning is either hard to implement or infeasible.

DP is resource-intensive and non-trivial to implement due
to the need to calculate per-sample gradients (see § 2).

A recent DP synthetic data framework called Private Evo-
lution (PE) (Lin et al., 2024) offers a new opportunity to
circumvent these challenges by only requiring API access
to foundation models, without needing any model training.
The high-level idea is to first draw random samples from a
foundation model, and then iteratively improve them by se-
lecting (with DP) the most similar ones to the private dataset
and querying foundation models to generate more of such
samples. PE shows promising results on images by lever-
aging pretrained Diffusion Models (Rombach et al., 2022):
in certain cases, PE achieves an even better privacy-utility
trade-off than DP finetuned generators (Lin et al., 2024).

However, extending PE to text is highly non-trivial. PE
requires APIs that generate random samples and variations
of a given sample, which need to be redesigned for text. In
particular, unlike generating image variants in the continu-
ous pixel space where diversity can be easily manipulated
using existing model hyperparameters (e.g., guidance scale
in diffusion model (Ho & Salimans, 2021)), texts operate in
a discrete space, making it challenging to effectively control
the generation diversity. In addition, in contrast to images
with fixed dimensionality, text data exhibit varied lengths
which adds another layer of complexity. To this end, we
propose an augmented PE algorithm (AUG-PE) with new
generation and selection techniques that allow us to i) elicit
a larger set of more diverse and higher-quality texts from
LLMs with appropriate sequence length and ii) effectively
select the most relevant texts. Our contributions are:

• We propose AUG-PE for high-quality DP synthetic text
generation leveraging API access to powerful LLMs. This
includes both a practical instantiation of PE on texts and
fundamental algorithmic innovations that may benefit fu-
ture applications of PE.

• We conduct comprehensive evalutions of AUG-PE on
Yelp, OpenReview (ICLR 2023), and PubMed (Aug 2023)

datasets with various LLMs, including GPT-2-series mod-
els, GPT-3.5, and open-source LLMs. We show that under
the same pretrained LM (GPT-2-series) and privacy bud-
get ϵ = 4, 2, 1, AUG-PE can generate DP synthetic text
that achieves comparable or even better performance than
finetuning baselines in some cases, in terms of down-
stream task utility and similarity between synthetic and
real samples. Leveraging more powerful LLMs such as
GPT-3.5 (where DP finetuning is not applicable) and five
open-source LLMs (where DP finetuning is hard to imple-
ment), the performance of AUG-PE can be significantly
improved. Additionally, AUG-PE can be more computa-
tionally efficient than DP finetuning by requiring LLM
inference APIs only.

• We explore the properties of AUG-PE including its text
length distribution, its compatibility with stronger LLMs
as data generators and downstream models, and its be-
haviors under data scaling, to provide insights for future
development of PE.

2. Background
Differential Privacy (DP). (ϵ, δ)-DP ensures that the out-
put of a randomized mechanism M is close regardless
of whether an individual data record is included in the
input or not. Specifically, given any pair of two adja-
cent datasets D,D′ (i.e., adding or removing one sam-
ple), any possible output set E, it holds that Pr[M(D) ∈
E] ≤ eϵ Pr [M (D′) ∈ E] + δ. Moreover, arbitrary post-
processing of the output of an (ϵ, δ)-DP mechanism does not
incur additional privacy loss, based on the post-processing
property of DP (Dwork et al., 2014).

DP synthetic text. To guarantee DP for private training
data, one method involves using DP-SGD (Abadi et al.,
2016) during model training for specific NLP tasks (Yu
et al., 2022; Li et al., 2021). Alternatively, one can finetune
pretrained generative language models, such as GPT-2, with
private data using DP-SGD and then generate synthetic
text datasets (Putta et al., 2022; Bommasani et al., 2019)
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(Fig. 1). Such DP synthetic texts can be employed in an
arbitrary number of non-privately trained downstream tasks
without increasing privacy loss. Studies by Yue et al. (2023);
Mattern et al. (2022a); Kurakin et al. (2023) indicate that
training downstream models on DP synthetic text yields
performance akin to directly training them on real data with
DP, highlighting the good quality of synthetic data.

However, given that state-of-the-art LLMs (e.g., GPT-4,
Claude, GPT-3.5) do not provide model weights, DP fine-
tuning them is infeasible. Even for open-source LLMs (e.g.,
LLaMA (Touvron et al., 2023a;b)), it is resource-intenstive
to perform finetuning (Malladi et al., 2023). Finetuning with
DP-SGD is even harder due to the well-known challenges of
per-sample gradient calculations for clipping to guarantee
DP. Even with optimization techniques (Malladi et al., 2023;
He et al., 2022), DP finetuning is still memory and computa-
tionally intensive due to large batch sizes and long training
iterations required to reach a good fidelity-privacy trade-off
(Anil et al., 2021). Here, we study an API-based method for
DP synthetic text generation to overcome these challenges,
which only requires model inference and is applicable no
matter whether the LLM is open-sourced or not.

Additionally, there is a line of work on text-to-text privatiza-
tion techniques, which provide different privacy guarantees
than DP, such as word-level metric DP or sample-level local
DP. We defer more discussion and comparison to App. C.11.

3. Method
3.1. Preliminaries on Private Evolution (PE)

PE is recently proposed as an alternative to DP finetuning
for DP synthetic data generation (Lin et al., 2024) by merely
requiring APIs of pretrained models, and thus is easier to
implement and deploy and can leverage API-based models.
The original PE algorithm (for unconditional generation)3

is the L = 1 case in Alg. 1. PE works by first calling RAN-
DOM_API that generates random samples from the founda-
tion model (Line 2), and then iteratively: (1) using private
samples to vote for their nearest synthetic samples (under
embedding model Φ) to construct a DP_NN_HISTOGRAM
(Line 11), (2) drawing samples according to the histogram
(Line 15), and (3) passing those samples through VARIA-
TION_API which generates new samples that are similar to
the given one (Line 16), e.g., images with a similar object.

While the PE framework is general across modalities, its
core components including Φ (the embedding model), RAN-
DOM_API (API for generating random samples from the
pretrained model), and VARIATION_API (API for generat-
ing new samples that are similar to the given one) require

3The conditional version of PE is running Alg. 1 for the private
samples from each class/label separately; see Lin et al. (2024).
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Figure 2: Overview of AUG-PE. We use two private & syn-
thetic samples (reviews for the “restaurant” class) for illustration.
Step 1 (RANDOM_API, Line 2): we use prompts to generate
random samples from the LLM. Step 2: we iteratively go through
steps 2.1-2.3 to refine the synthetic samples towards the private
samples. Step 2.1 (Line 11): each private sample votes for their
closet synthetic sample (using self-embedding Line 6 or mean
embedding Line 9) in the embedding space induced by embedding
model Φ. “A great spot for pizza” gets 2 votes, and the other
sample gets 0 votes. We then add Gaussian noise to the votes
to ensure DP. This gives us the DP Nearest Neighbor Histogram
(DP_NN_HISTOGRAM). Step 2.2: we resample the generated
texts according to the histogram. We assume that only “A great
spot for pizza” remains. Step 2.3 (VARIATION_API): we use
prompts to ask the LLM to generate new similar samples, which
are the initial synthetic samples in the next iteration. The prompts
are simplified for illustration; see App. B for the complete prompts.

domain-specific designs, and the original paper (Lin et al.,
2024) only explores their implementation for images. Com-
pared to images, text introduces unique challenges. For
example, unlike images which have a fixed dimensionality,
the length of text can vary. In addition, the original PE algo-
rithm yields unsatisfactory text quality. In the following, we
explore our design choices for each component and propose
our augmented version on text, AUG-PE (shown in Alg. 1
and Fig. 2) with new algorithmic techniques to increase the
diversity and quality of text generation.

3.2. AUG-PE Design

RANDOM_API. Given the strong instruction-following ca-
pability of LLMs, we consider directly using prompts to
generate samples (step 1 in Fig. 2). Following Yue et al.
(2023), we assume that class labels are non-private. There-
fore, we put class label in the prompt (e.g., “restaurant” in
Fig. 2). To encourage diverse generation, we propose a
pseudo-class approach, where we generate a list of subcat-
egories for each class from GPT-3.5 and randomly sample
one subcategory as the keyword to put in the prompt for
each generation (e.g., Steakhouse, Bistros for restaurants).

VARIATION_API takes a sample as input and outputs its
variations.4 Unlike image diffusion models used in Lin et al.

4While the function processes each sample independently, for
notation simplicity, we input an entire dataset to VARIATION_API,
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(2024), text models usually do not provide off-the-shelf
variation APIs. Again, we leverage the instruction-following
capability of LLMs to implement this via prompting. We
propose two variation methods: paraphrasing and fill-in-
the-blanks. For paraphrasing, we use the prompt “Please
rephrase the below sentences: {input}”. For fill-in-the-
blanks, we mask p% tokens of input as blanks, resulting
in masked_input, and use “Please fill in the blanks for the
below sentences: {masked_input}” as the prompt. Given
the in-context learning ability of recent LLMs, we provide
few-shot demonstrations to improve the generation quality.
To add diversity to the generated variations, we create tone
candidates (e.g., “in a creative way”, “in a professional
style”), randomly subsample one tone, and add such phrase
into the prompt for each generation.

Algorithm 1 Augmented Private Evolution (AUG-PE)

Input: private dataset Spri, noise multiplier σ, text embedding model Φ, number of
synthetic samples Nsyn, K, L

Output: Synthetic text dataset SsynT

1 Epri = Φ(Spri)

2 S0 ← RANDOM_API (Nsyn ∗L )
3 for iteration t = 0 to T − 1 do
4 // embedding calculation for synthetic samples

5 if K == 0 then
6 Et = Φ(St)
7 else if K > 0 then
8 Sk

t ← VARIATION_API (St) for k = 1, 2 . . . , K

9 Et = 1
K

∑K
k=1 Φ(Sk

t )

10 // DP histogram calculation

11 Histogramt ← DP_NN_HISTOGRAM(Et, Epri, σ)
12 Pt ←Histogramt / sum (Histogramt)
13 // synthetic sample selection and generation

14 if L == 1 then
15 S′

t ← draw Nsyn samples with replacement from St with probability Pt

16 St+1 ← VARIATION_API (S′
t)

17 save dataset Ssynt+1 ← St+1

18 else if L > 1 then
19 S′

t ← rank samples by probabilities Pt and draw top Nsyn samples
20 save dataset Ssynt+1 ← S′

t

21 Sj
t+1 ← VARIATION_API(S′

t) for j = 1, 2 . . . ,L− 1

22 St+1 ← [S1
t+1, ..., S

L−1
t+1 ,S′

t]

23
24 return SsynT

25 Procedure DP_NN_HISTOGRAM(Esyn, Epri, σ)
Input: synthetic embedding set Esyn = {ej}nj=1, private embedding set Epri,

noise level σ, distance function d(·, ·)
26 Histogram← [0, ..., 0]
27 for epri ∈ Epri do
28 i = argminj∈[n] d(epri, ej);
29 Histogram[i]← Histogram[i] + 1

30 Histogram← Histogram +N (0, σ2In)
31 return Histogram

Adaptive text lengths in VARIATION_API. The distribution
of text length in real-world datasets is usually fat-tailed:
most samples are short while a few are long (Fig. 4). In
DP-finetuning-based approaches, to faithfully capture long
texts, we need to set a large max token length (denoted by
max_token). However, this would significantly increase the
computation cost. Prior work (Yue et al., 2023) circumvents

which outputs corresponding variations for each sample within it.

this problem by setting a small max_token at the cost of the
capability to generate long texts. AUG-PE faces the same
challenge. Since APIs usually charge by token usage, a
high max_token raises costs (as generated text can exceed
needs), while a low max_token sacrifices fidelity.

To address the challenge, we leverage PE to learn text
lengths automatically by adjusting per-sample max_token
adaptively. Specifically, in VARIATION_API, we add “with
{targeted_word} words” in the prompt to specify the de-
sired word count in the generation. targeted_word is modi-
fied by setting targeted_word = max{original_word +
N (0, σ2

word),min _word} where original_word is the
word count of input, σ2

word is Gaussian noise variance
and min _word is a minimal targeted word ensuring use-
ful generations. We set max_token = ⌊targeted_word ∗
w2t_ratio⌋ for LLM API calls where w2t_ratio is the ap-
proximate number of tokens per word (OpenAI, 2023c).

Embeddings calculation and DP nearest neighbor his-
togram. We use off-the-shelf text embedding models Φ
to calculate the embedding of private/synthetic samples.
Notably, the embedding of synthetic samples can be de-
fined either by their self-embedding (when K = 0) or the
averaged embedding from K variations (when K > 0).
After calculating embeddings, each private sample votes
for its nearest synthetic sample in the embedding distance,
which results in the Histogramt for synthetic samples. As
the voting utilizes private samples, we add Gaussian noise
N (0, σ2) to each bin of Histogramt to ensure DP.

Sample selection and generation. AUG-PE introduces
significant enhancements over the original PE for gener-
ating more diverse samples and selecting/retaining high-
quality samples. Specifically, to enhance sample diversity,
we propose the following methods: (1) The random sam-
pling based on the histogram probability Pt (Line 15) in
original PE results in repeated samples, causing perfor-
mance degradation for S′t. To mitigate this, AUG-PE ranks
synthetic samples according to their probability and selects
only the top Nsyn samples, enhancing the diversity without
sample redundancy (Line 19). (2) Instead of a single varia-
tion, AUG-PE generates L− 1 variations for each selected
sample in S′t, creating a larger and more diverse synthetic
dataset St+1 for subsequent iterations (Line 21). (3) We
modify the size of the initial dataset to be L times larger
than Nsyn, matching the expanded size of St+1 (Line 2). To
select/retain high-quality samples, we propose the following
methods: (1) The selected samples S′t are also included in
the next iteration’s dataset St+1, increasing the likelihood
of retaining high-quality synthetic candidates (Line 22). (2)
For LLMs, we find that when the variation API produces
samples with large variations, the averaged embedding from
the variations is not representative of the actual sample.
Therefore, we use K = 0 so the nearest neighbor voting is
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performed on the self-embedding of synthetic samples and
we directly use those selected, good samples as algorithm’s
output Ssynt+1 ← S′t (Line 20).

In practice, we use {K = #variations, L = 1} as original
PE, and {K = 0, L = #variations + 1} as AUG-PE, so
that the number of API calls for generating variations (i.e.,
#variations) are kept the same for fair comparisons.

These enhancements position AUG-PE as a more effective
method to generate diverse and high-quality synthetic text.

Privacy analysis of AUG-PE follows original PE and we
provide detailed privacy analysis in App. A. Specifically,
since each private sample only contributes 1 vote for one bin
in the histogram (i.e., nearest synthetic sample), the sensitiv-
ity is 1. The histograms are privatized by adding Gaussian
noise. The adaptive DP composition theorem (Dong et al.,
2019) is applied to track the privacy loss across T iterations.

4. Experiments
Datasets. We evaluate AUG-PE on three datasets: Yelp
Review (Inc, 2023), OpenReview, and PubMed abstracts.
We use Yelp, a public benchmark providing reviews on busi-
nesses, following the choice in prior work for DP synthetic
text (Yu et al., 2022). To mitigate the concerns that existing
benchmarks are potentially used at LLM’s pretraining stage,
we crawl the latest reviews for ICLR 2023 submissions from
OpenReview website5 to construct a new dataset, where the
reviews are made public after recent LLMs are trained. We
also use PubMed with abstracts of medical papers6 crawled
by Yu et al. (2023) from 2023/08/01 to 2023/08/07 after re-
cent LLMs are trained. Notably, texts from Yelp are mainly
in styles of daily conversation, while the other two datasets
require domain-specific knowledge about machine learning
or biomedical literature when generating DP synthetic repli-
cas. For conditional generation, we use below attributes as
labels: the review ratings and business category for Yelp,
and the review recommendation and area for OpenReview.
For PubMed, we use unconditional generation.

Models. For data generators, we use GPT-2 (Radford et al.,
2019), GPT-2-Medium, GPT-2-Large, GPT-3.5 (OpenAI,
2022), and non-GPT based LLMs including four 7b-sized
models – OPT (Zhang et al., 2022), Vicuna (Zheng et al.,
2023), Falcon (Almazrouei et al., 2023), LLaMA-2 – as
well as one Mixture-of-Expert model Mixtral-8x7B (Mis-
tralAI, 2022). For embedding models, we use sentence-
transformer (Reimers & Gurevych, 2019). We study more
types of embedding models as ablation study in § 4.2.

Metrics. We evaluate synthetic texts regarding (i) accuracy
on downstream tasks, and (ii) similarity between real and

5https://openreview.net/group?id=ICLR.cc/2023/Conference
6https://www.ncbi.nlm.nih.gov/

synthetic data.

Downstream tasks: we finetune downstream models on the
synthetic text and evaluate their accuracy on the real test
dataset. We pick two representative use cases: using DP
synthetic text to train DP text classifiers (Yue et al., 2023)
and to train efficient DP lanaguge models (Yu et al., 2023).
Specifically, we finetune RoBERTa-base (Liu et al., 2019)
as text classifiers to classify review ratings and business
categories for Yelp, and to classify review recommenda-
tions and areas for OpenReview. For PubMed, we finetune
BERTMini/BERTSmall (Turc et al., 2019)7 on synthetic text
and evaluate their next-word prediction accuracy. We study
more types downstream models as ablation study in § 4.2.

Similarity between real and synthetic data: we quantitively
compare (a) embedding distribution distance (i.e., Fréchet
Inception Distance (FID) (Heusel et al., 2017), Precision,
Recall, F1 score (Kynkäänniemi et al., 2019), MAUVE
score (Pillutla et al., 2021), KL and TV divergences (Chung
et al., 1989)) and qualitatively compare (b) text length dis-
tribution difference (Yue et al., 2023).

Baselines. We consider two SOTA baselines involving DP
finetuning: (1) DP-FT-DOWNSTREAM (Yu et al., 2022; Li
et al., 2022): finetuning downstream model on real data
with DP-SGD. Note that this baseline is not a competitor
to our method, since our goal is to generate DP synthetic
data and not merely train a downstream model. (2) DP-
FT-GENERATOR (Yue et al., 2023): finetuning generator
(e.g., GPT-2) with DP-SGD (note that we cannot finetune
closed-source GPT-3.5) and using synthetic texts to finetune
downstream model with non-private SGD.

We defer more details about the setups, hyperparameters
and metrics to App. B.

4.1. Understanding the Performance of AUG-PE

Here, we analyze the performance of AUG-PE by answer-
ing five research questions about its utility, efficiency, and
robustness against empirical privacy attacks under DP com-
pared to DP-finetuning-based baselines.

RQ1: Can DP synthetic texts generated from AUG-PE
outperform those from DP-FT-GENERATOR? DP syn-
thetic texts from AUG-PE can have comparable privacy-
utility trade-off to those from DP-FT-GENERATOR us-
ing the same generator, while outperforming it using the
stronger generator GPT-3.5. The downstream model ac-
curacy of different methods along 4 generators on different
benchmark datasets is shown in Tb. 1. (1) When using the
same LM (GPT-2-series) as the generator for fair compar-

7Following (Yu et al., 2023), we apply a causal language mod-
eling mask that restricts each token to only attend to its preceding
tokens.
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Table 1: Evaluation on downstream model accuracy of three methods along 4 data generators. The highest accuracy across all methods
( obtained by AUG-PE ) is bolded (underlined). (i) Compared to DP-FT-GENERATOR, in some cases, downstream accuracy of AUG-PE
is higher (↑ ) under the same size of GPT-2-series data generator. Leveraging the inherent knowledge within stronger LLM, GPT-3.5,
AUG-PE can achieve higher accuracy, especially on challenging datasets OpenReview and PubMed, outperforming DP-FT-GENERATOR
by a notable margin. (ii) Compared to traditional method DP-FT-DOWNSTREAM, AUG-PE can also obtain higher accuracy under DP.

Dataset Method Data Type (Size) Data Generator ϵ =∞ ϵ = 4 ϵ = 2 ϵ = 1

Yelp

Rating Category Rating Category Rating Category Rating Category

DP-FT-DOWNSTREAM
Original (1939290 / full data) - 76.0 81.6 67.5 72.8 67.2 72.0 66.8 71.8
Original (5000) 70.5 75.1 44.8 61.8 44.8 61.8 44.8 61.8

DP-FT-GENERATOR Synthetic (5000)
GPT-2 70.3 75.9 68.2 74.1 67.2 73.1 66.4 73.9
GPT-2-Medium 70.0 75.0 69.0 74.6 67.8 74.3 67.4 74.1
GPT-2-Large 70.4 75.4 68.7 74.2 69.8 75.1 68.7 74.6

GPT-2 67.5 74.8 66.4 74.9 ↑ 67.1 74.7 ↑ 66.9 ↑ 74.4 ↑

GPT-2-Medium 67.5 74.9 66.8 74.6 67.7 74.7 ↑ 67.3 74.6 ↑

GPT-2-Large 67.5 74.5 67.3 74.4 ↑ 65.8 74.1 66.5 75.0 ↑
AUG-PE Synthetic (5000)

GPT-3.5 68.4 74.1 68.1 74.0 67.8 74.3 67.9 74.0

OpenReview

Area Rating Area Rating Area Rating Area Rating

DP-FT-DOWNSTREAM
Original (8396 / full data) - 65.1 50.8 30.5 32.0 30.5 32.0 30.5 32.0
Original (2000) 55.3 47.8 30.5 32.0 30.4 25.5 6.3 19.8

DP-FT-GENERATOR Synthetic (2000)
GPT-2 47.5 32.0 32.1 32.0 31.9 32.0 32.1 32.0
GPT-2-Medium 49.7 36.5 40.3 32.0 33.5 31.9 35.5 31.9
GPT-2-Large 48.3 42.9 38.9 33.7 40.4 33.6 38.6 32.1

GPT-2 42.4 32.1 ↑ 39.9 ↑ 32.1 ↑ 38.8 ↑ 32.1 ↑ 37.6 ↑ 32.0
GPT-2-Medium 41.0 32.3 36.9 32.0 36.0 ↑ 32.0 ↑ 36.6 ↑ 32.1 ↑

GPT-2-Large 42.1 32.1 38.8 32.0 38.4 32.0 38.1 32.0AUG-PE Synthetic (2000)

GPT-3.5 45.4 43.5 43.5 44.6 42.8 44.5 41.9 43.1

PubMed

BERTMini BERTSmall BERTMini BERTSmall BERTMini BERTSmall BERTMini BERTSmall

DP-FT-DOWNSTREAM
Original (75316 / full data) - 43.5 47.6 30.7 34.1 28.9 32.5 26.7 30.4
Original (2000) 33.5 34.6 2.2 1.1 1.8 0.8 1.4 0.6

DP-FT-GENERATOR Synthetic (2000)
GPT-2 30.2 32.4 27.8 29.7 27.6 29.3 27.2 29.2
GPT-2-Medium 31.0 33.1 28.4 30.2 28.1 30.0 27.8 29.8
GPT-2-Large 31.0 33.1 29.2 31.2 29.2 31.1 28.9 31.1

GPT-2 24.5 26.7 24.7 27.0 24.7 26.9 24.3 26.5
GPT-2-Medium 25.5 27.7 25.4 27.6 25.1 27.4 24.9 27.0
GPT-2-Large 25.7 28.0 25.8 27.9 25.5 27.7 25.1 27.2AUG-PE Synthetic (2000)

GPT-3.5 30.4 32.7 30.3 32.5 30.2 32.5 30.1 32.4

isons, DP synthetic texts from AUG-PE demonstrate com-
petitive or even better (↑ ) utility than DP-FT-GENERATOR
on Yelp and OpenReview. However, AUG-PE underper-
forms DP-FT-GENERATOR on PubMed. This is expected
because AUG-PE relies on the knowledge within LLMs to
generate high-quality texts without domain-specific finetun-
ing, while GPT-2-series models might have limited exposure
to biomedical literature (Radford et al., 2019). (2) AUG-PE
only requires API access, making it possible to use closed-
source LLM such as GPT-3.5 for generating DP synthetic
text. The results of GPT-3.5 outperform not only AUG-PE
GPT-2-series, but also DP-FT-GENERATOR GPT-2-series
by a significant margin, especially on challenging datasets
such as OpenReview and PubMed. It shows that AUG-PE
can effectively leverage the inherent knowledge (e.g., medi-
cal knowledge, sentiment of reviews, research areas about
machine learning) in stronger LLMs to generate higher-
quality DP synthetic texts. (3) In addition to downstream
utility, we measure the embedding distribution distance be-
tween real and synthetic samples. The results in App. C.9
show that AUG-PE can obtain similar and even lower dis-
tances (reflected by FID, TV divergence, Recall, F1, and
MAUVE scores, etc.) compared to DP-FT-GENERATOR.
(4) Some methods consistently show a 32.0 accuracy for
Rating and 30.5 for Area classification, due to the failure
of the downstream RoBERTa-base model under DP, always

outputting majority class (see App. B for label distributions).

RQ2: Can DP synthetic texts from AUG-PE be a better
choice than DP-FT-DOWNSTREAM on real data with DP?
AUG-PE obtains comparable and higher accuracy than
DP-FT-DOWNSTREAM under DP. (1) Tb. 1 shows that
under ϵ = 2, 1 on PubMed, AUG-PE GPT-3.5 with a smaller
synthetic dataset size (2k) is sufficient to produce better
downstream models compared to models directly trained
with DP on the original data of the full (75k) or same size
(2k). Similar conclusions hold for other two datasets, and
the advantages of AUG-PE on OpenReview are evident
across all generators. (2) DP-FT-DOWNSTREAM performs
fairly poor when the data size is small (e.g., 2k on PubMed
and OpenReview), indicating that LMs finetuned with DP-
SGD is unable to learn meaningful information under DP
noises when samples are limited (Yu et al., 2021; Li et al.,
2022; Bu et al., 2022). In contrast, postprocessing property
of DP allows us to train downstream tasks on DP synthetic
text (with any size) via normal training techniques, without
incurring additional privacy loss, potentially leading to a
better downstream model than DP-FT-DOWNSTREAM.

RQ 3: How does AUG-PE perform across different pri-
vacy budget ϵ? (1) Tb. 1 shows that AUG-PE in general
achieves better performance as ϵ increases from 1, 2, 4 to
∞, suggesting that AUG-PE scales well with the privacy
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Figure 3: Efficiency comparison
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budget ϵ. (2) On OpenReview, from ϵ =∞→ 1, the rating
classification accuracy obtained from DP-FT-GENERATOR
GPT-2-Large generated text drops from 48.3→ 38.6, and
DP-FT-DOWNSTREAM on full training data drops from
65.1→ 30.5, while the accuracy of AUG-PE GPT-3.5 ex-
hibits marginal drop 45.4→ 43.1. It suggests that in some
cases, the performance of AUG-PE (paired with power-
ful generator) can be more robust under DP noise than
FT baselines. The reason could be that LMs are vulnerable
to the perturbations introduced in model parameters through
DP-SGD, whereas AUG-PE strategically adds noise to the
histogram votes, effectively preserving the utility.

RQ 4: Compared to DP-FT-GENERATOR, how efficient
the API-access-based AUG-PE is in terms of GPU hours?
With inference API access, AUG-PE is more efficient
than DP-FT-GENERATOR that requires DP-SGD fine-
tuning. (1) As shown in Fig. 3, to generate 100k synthetic
samples on Yelp under ϵ = 1, given the same generator
GPT-2-Large, AUG-PE L = 7 provides 12.7x speedup and
L = 2 further provides 65.7x speedup. (2) The running
time of AUG-PE is mainly scaled with # API calls, which is
associated with the number of variations L− 1 in Line 21.
(3) The bottleneck of DP-FT-GENERATOR is DP-SGD fine-
tuning: it takes 1764 GPU hours on 32G NVIDIA V100 to
finetune GPT-2-Large on Yelp and 7 hours to generate 100k
samples, while AUG-PE L = 2 (L = 7) only requires 27
hours (139 hours). It highlights the computational expense
of DP-SGD training, particularly for training LLMs, and
underscores the efficiency of the API-based DP algorithm
AUG-PE. A detailed breakdown of the GPU hours for each
setting is in Appendix Tb. 23. (4) We use half precision
(FP16) for LLM inference in AUG-PE. With the emerg-
ing efficient inference techniques (e.g., Liu et al. (2023)),
AUG-PE runtime can be further optimized.

RQ 5: How robust AUG-PE is under empircal privacy at-
tacks compared to DP-finetuning-based baselines? We
perform state-of-the-art text membership inference at-
tacks (MIAs) against the finetuned downstream models on
PubMed dataset. We consider three types of MIAs and re-
port the AUC score: (1) PPL thresholds perplexity to predict
membership (Carlini et al., 2021); (2) REFER computes the

ratio of the log perplexity of the tested model against a refer-
ence model (Carlini et al., 2021); (3) LIRA uses the ratio of
likelihood (Carlini et al., 2022) and we use the pre-trained
model as a reference following (Mattern et al., 2023). The
results in Tb. 3 show that AUG-PE exhibits lower AUC
scores under MIAs compared to DP-FT-GENERATOR
and DP-FT-DOWNSTREAM. This indicates a higher ro-
bustness to empirical privacy attacks, potentially due to the
synthetic nature of the data used for downstream model
finetuning, which inherently reduces the risk of overfitting
to real private data. We defer the details to App. C.1.

4.2. Understanding the Properties of AUG-PE

Here we study properties of AUG-PE including text lengths,
its compatibility with stronger data generators and down-
stream models, and its behaviors under data scaling.

RQ 6: Can AUG-PE produce sentence length distributions
similar to real data? AUG-PE produces favorable text
length distributions. From Fig. 4, we see that the text
length distribution of synthetic samples produced from GPT-
3.5 through AUG-PE is close to the distribution of the origi-
nal Yelp data, highlighting the effectiveness of our adaptive
sequence length mechanism (§ 3.2). Note that the finetuning
baseline requires a fixed max_token (e.g., 128 for GPT-2),
which leads to a hard threshold for maximal text length,
which is not the case in our method with our adaptive length
technique. Nevertheless, there is a peak near 30 tokens for
AUG-PE, which is due to the min _word set in the prompt
to prevent empty generation. We defer the convergence of
text length distributions over PE iterations to App. C.2.

RQ 7: Can AUG-PE benefit from more powerful LLMs?
AUG-PE is effective across a wide range of API-
accessible LLMs. We have observed from Tb. 1 that GPT-
3.5 can lead to higher downstream accuracy than GPT-2-
series, especially on PubMed and OpenReview. Here we
evaluate more API-accessible, non-GPT based LLMs. (1)
As shown in Tb. 2, under ϵ = ∞, 1, those modern LLMs
can obtain comparable and even higher accuracy than GPT-
3.5 on Yelp, suggesting that AUG-PE can effectively elicit
and select high-quality synthetic text from various types of
LLMs. Note that DP finetuning often needs to be imple-

7



Differentially Private Synthetic Data via Foundation Model APIs 2: Text

Table 2: Using powerful LLMs as data generators leads to improved downstream accuracy on three datasets.

Yelp OpenReview PubMed

ϵ =∞ ϵ = 1 ϵ =∞ ϵ = 1 ϵ =∞ ϵ = 1

LLM Rating Category Rating Category Area Rating Area Rating BERTMini BERTSmall BERTMini BERTSmall

GPT-2 67.5 74.8 66.9 74.4 42.4 32.1 37.6 32.0 24.5 26.7 24.3 26.5
GPT-2-Medium 67.5 74.9 67.4 74.6 41.0 32.3 36.6 32.1 25.5 27.7 24.9 27.0
GPT-2-Large 67.5 74.5 66.6 75.0 42.1 32.1 38.1 32.0 25.7 27.9 25.1 27.2

Opt-6.7b 68.7 75.3 67.7 75.3 43.6 32.2 30.5 32.1 26.5 28.6 25.8 27.9
Vicuna-7b-v1.5 68.8 74.1 67.2 74.9 42.9 35.7 35.2 35.4 24.6 26.9 23.1 24.9
Falcon-7b-instruct 67.4 74.9 67.3 74.2 38.6 32.6 39.0 33.3 22.3 24.4 22.4 24.5
Llama-2-7b-chat-hf 68.6 74.9 68.0 75.1 45.5 38.5 36.4 37.0 25.8 28.4 24.8 27.5
Mixtral-8x7B-v0.1 68.2 74.6 67.6 74.6 45.9 41.8 43.6 42.3 24.9 27.6 24.5 27.1
GPT-3.5 68.4 74.1 67.9 74.0 45.4 43.5 41.9 43.1 30.4 32.7 30.1 32.4

Table 3: AUG-PE generally yields lower AUC scores
against membership inference attacks on PubMed than DP-
FT-GENERATOR and DP-FT-DOWNSTREAM, indicating a
higher robustness to empirical privacy attacks.
Method Generator AUC (ϵ =∞) AUC (ϵ = 4) AUC (ϵ = 2) Avg

PPL REFER LIRA PPL REFER LIRA PPL REFER LIRA

DP-FT-DOWNSTREAM / 77.60 74.93 65.05 49.32 54.58 56.82 48.96 50.41 51.56 58.80

DP-FT-GENERATOR GPT-2 55.50 51.35 51.97 53.90 51.12 51.84 53.31 50.81 51.61 52.38
DP-FT-GENERATOR GPT2-M 54.91 51.25 51.88 54.72 51.13 51.76 54.58 51.28 51.85 52.60
DP-FT-GENERATOR GPT2-L 54.81 51.22 51.86 54.56 50.81 51.64 55.05 51.01 51.69 52.52

AUG-PE GPT-2 50.08 50.92 51.66 50.10 50.97 51.70 49.94 50.85 51.64 50.87
AUG-PE GPT2-M 49.85 50.73 51.57 50.10 50.95 51.69 49.73 50.65 51.51 50.75
AUG-PE GPT2-L 49.43 50.40 51.40 49.61 50.56 51.48 49.66 50.60 51.49 50.51
AUG-PE GPT-3.5 52.23 49.67 50.85 52.68 49.84 50.93 52.77 49.77 50.85 51.07

Table 4: The next word prediction accuracy increases when using
larger downstream models for PubMed synthetic texts.
ϵ Method Generator bert-tiny bert-mini bert-small Llama2-7b-chat-hf

4.4M 11.2M 28.8M 7B

DP-FT-GENERATOR GPT-2-Large 24.6 31.0 33.1 53.1∞ AUG-PE GPT-3.5 23.0 30.3 32.7 56.5

DP-FT-GENERATOR GPT-2-Large 23.1 28.9 31.1 52.0
1 AUG-PE GPT-3.5 22.9 30.1 32.4 56.4

mented case-by-case for LLMs and currently lacks open-
source implementations for these LLMs, whereas AUG-PE
can easily leverage them. (2) The results on OpenReview
and PubMed in Tb. 2 show that GPT-3.5 leads to higher util-
ity than opensource LLMs (e.g. LLaMA-2), demonstrating
the stronger generation power of GPT-3.5 in academic/med-
ical domains. Interestingly, Mixtral-8x7B can also generate
high-quality synthetic texts for OpenReview, but not for
PubMed.

RQ 8: Can more powerful downstream models benefit from
synthetic text generated via AUG-PE? The high-quality
synthetic text from AUG-PE is better utilized by larger
downstream models. (1) From each row in Tb. 4, we
see that next-word prediction accuracy monotonically in-
creases with the use of larger downstream models trained
on PubMed synthetic text. (2) Under both ϵ = 1,∞, the
smallest model BERTTiny favors the synthetic texts from DP-
FT-GENERATOR GPT-2-Large, while larger models such
as LLaMA-2 favor synthetic text from AUG-PE GPT-3.5.
This observation underscores the importance of choosing
downstream models of a suitable size; employing overly
small models could under-estimate the quality of synthetic
texts produced by AUG-PE with GPT-3.5. We hypothesize
that this is because i) GPT-3.5 generated texts might already
be of higher quality in terms of vocabulary, syntax, semantic
coherence, etc., compared to generated texts from finetuned

GPT-2-Large; and ii) larger downstream LMs like LLaMA-
2 can better understand and utilize the nuances in synthetic
texts for improved performance than BERTTiny.

RQ 9: Can we further improve downstream task accu-
racy with more synthetic samples generated from AUG-
PE? To study the scaling law of AUG-PE, we use GPT-2-
series models to generate {5k,10k,100k} samples for Yelp,
and {2k,3k,5k} samples for other two datasets. As shown
in App. C.10, under ϵ = 1, 2, 4,∞, AUG-PE in general
achieves better performance across all datasets as the data
size increases, suggesting that AUG-PE scales well with
the number of synthetic samples.

4.3. Validating the Design of AUG-PE

As AUG-PE introduces novel sample selection and gen-
eration techniques, here we study algorithm components
related to the two steps, respectively (under ϵ = ∞), and
compare its performance against the original PE.

RQ 10: Can AUG-PE surpass original PE? Tb. 5 shows
that AUG-PE achieves notable improvement over PE
for GPT-2, e.g., +22.6% on Yelp rating classification. We
observe similar conclusions for GPT-3.5 in Tb. 24 in App.
Table 5: AUG-PE outperforms PE with GPT-2 on all datasets.

Method Yelp OpenReview PubMed
Rating Category Area Rating BERTMini BERTSmall

PE← AUG-PE (k = 6, L = 1) 44.9 71.8 35.3 32.0 20.1 22.3
AUG-PE (k = 0, L = 7) 67.5 74.8 42.4 32.1 24.5 26.7

RQ 11: How does the private data guided sample selection
affect AUG-PE performance? Here we aim to verify
the components related to sample selection: i) usage
of private data; ii) rank-based selection; iii) embedding
model used during nearest neighbor voting.

i) Usage of private data. Tb. 6 shows that the initial sam-
ples (generated from Random API) or their variants (gen-
erated from Random API + Variation API) exhibit limited
utility without using private data. However, the quality of
the synthetic text improves notably after just one iteration
of AUG-PE (t = 1) when guided by private data, and this
improvement continues to amplify with T iterations. We
report the results under DP in App. C.8.

ii) Rank-based sampling. The results in App. C.7 indicate
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Table 6: Private-data guided sample selection in AUG-PE im-
proves the utility of GPT-3.5 generated texts.

Setting Yelp OpenReview PubMed
Rating Category Area Rating BERTMini BERTSmall

Random API 62.3 73.7 34.4 42.0 29.7 31.9
Random API + Variation API 62.3 73.7 36.4 42.0 29.6 31.9
AUG-PE (t = 1) 64.9 73.8 39.3 42.5 30.0 32.2
AUG-PE (t = T ) 68.4 74.1 45.4 43.5 30.4 32.7

that our proposed rank-based sampling (Line 19) consis-
tently outperforms probability-based random sampling in
the original PE (Line 15), due to the elimination of sample
redundancy inherent in random sampling, as rank-based
sampling exclusively selects the top Nsyn samples.

iii) Embedding models. Tb. 7 shows that larger embedding
models such as “sentence-t5-xl” can more accurately capture
the nuances of texts in the embedding space, leading to
higher utility for GPT-2 generated texts.

Table 7: More powerful embedding model leads to higher utility
for GPT-2 generated texts via AUG-PE.

Embeddding model
(Reimers & Gurevych, 2019)

Yelp PubMed
Rating Category BERTMini BERTSmall

sentence-t5-xl 67.6 75.1 25.1 27.4
sentence-t5-base 67.2 75.2 24.5 26.7
stsb-roberta-base-v2 67.5 74.8 23.9 26.1
all-MiniLM-L6-v2 62.6 75.3 24.7 26.7
paraphrase-MiniLM-L6-v2 64.7 75.1 24.3 26.5
all-mpnet-base-v2 64.1 74.6 24.0 26.0

RQ 11: How to improve the generation quality through
Variation API in AUG-PE? We analyze key componenents
related to generation: i) variation API prompt designs;
ii) LLMs generation configuration (e.g., temperature);
iii) number of variations L− 1.

i) Variation API prompt designs. We evaluate the impact
of four types of Variation API prompts on Yelp: paraphras-
ing and fill-in-the-blanks prompts under zero-shot and few-
shot settings. (1) Qualitatively, we observed that GPT-2
struggles to adhere to the fill-in-the-blanks instruction, often
leaving blanks (“__”) in the generated texts. In contrast,
GPT-3.5 can effectively fill in the blanks, potentially be-
cause GPT-3.5 has been instruction-tuned (Wei et al., 2021)
and thus follows the instructions better. (2) The quantita-
tive results in Appendix Tb. 25 reveal that paraphrasing can
be an effective strategy for GPT-2, while fill-in-the-blanks
yields better results for GPT-3.5. (3) Fill-in-the-blanks of-
fers more control over the diversity of generated content.
By increasing the mask probability p%, we can create more
room for imaginative responses from GPT-3.5, leading to
more diverse generations. As indicated in Fig. 6, a higher
mask probability corresponds to increased accuracy in down-
stream area classification tasks when using GPT-3.5.

ii) Temperature is a key parameter in controlling the diver-
sity of LLM generation. A higher temperature leads LLMs
to generate less frequent tokens, thereby increasing diver-
sity. However, an excessively high temperature may result
in overly random outputs and potentially hurt generation.

Table 8: For GPT-2 generated texts, high temperatures are pre-
ferred for Yelp while moderate temperatures are favored for Open-
Review and PubMed to balance generation diversity and quality.

Temperature Yelp OpenReview PubMed
Rating Category Area Rating BERTMini BERTSmall

0.8 66.9 74.2 42.0 32.2 24.5 26.8
1.0 66.8 74.8 41.5 32.1 24.5 26.7
1.2 67.0 74.9 42.4 32.1 24.4 26.5
1.4 67.5 74.8 40.8 32.0 23.6 25.6
1.7 67.1 75.2 40.6 32.1 21.9 24.0

The impact of different temperatures for AUG-PE on GPT-2
is shown in Tb. 8. (1) On Yelp, a higher temperature (1.4 to
1.7) proves beneficial for GPT-2, as business reviews often
encompass daily conversations with a variety of sentence
formats and tones. Additional findings in Fig. 5 indicate that
large temperatures can also lead to low (better) FID scores
for GPT-3.5. (2) Conversely, on OpenReview and PubMed,
a moderate temperature setting (around 1.0) is more suitable
for GPT-2, as academic and medical literature demand more
precise and accurate text generation.
Table 9: Increasing the number of variations L− 1 in AUG-PE
yields higher utility for GPT-2 generated texts.

L− 1
Yelp OpenReview PubMed

Rating Category Area Rating BERTMini BERTSmall

1 65.8 74.4 39.2 32.1 23.9 26.1
3 66.7 75.1 41.1 32.0 24.6 26.8
6 67.5 74.8 42.4 32.1 24.5 26.7
9 67.7 74.9 42.7 32.0 24.9 26.8

iii) Increasing the number of variations L− 1 generally
enhances performance of AUG-PE as shown in Tb. 9, due
to the expansion of the candidate synthetic sample pool,
which increases the likelihood of getting high-quality texts.
However, generating more variations requires additional
API calls, leading to increased computational costs as dis-
cussed in Fig. 3. To balance the trade-off between utility
and efficiency, we use L = 7 for GPT-2-series experiments.

AUG-PE convergence. We provide generation results show-
ing the convergence of AUG-PE under one private sample
in App. C.12, which demonstrate our sample selection and
generation process in a more direct manner.

5. Conclusion
In this work, we propose AUG-PE for DP synthetic text
generation without model training. We conduct comprehen-
sive experiments on three datasets and show that AUG-PE
can generate high-quality DP synthetic text with compara-
ble privacy-utility tradeoff to DP finetuning baselines under
the same data generator. Leveraging more powerful open-
source LLMs or API-based LLMs as data generators, AUG-
PE can generate DP synthetic text with improved utility.
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A. Privacy Analysis
We first introduce a related theorem from Balle & Wang (2018) in Thm. 1.
Theorem 1 (Analytic Gaussian Mechanism (Balle & Wang, 2018)). Let f : X→ Rd be a function with global L2 sensitivity
∆. For any ε ≥ 0 and δ ∈ [0, 1], the Gaussian output perturbation mechanism M(x) = f(x) + Z with Z ∼ N

(
0, σ2I

)
is

(ε, δ)−DP if and only if

Φ

(
∆

2σ
− εσ

∆

)
− eεΦ

(
− ∆

2σ
− εσ

∆

)
≤ δ.

Next, we provide the privacy guarantee for Alg. 1 in Thm. 2
Theorem 2 (Privacy Guarantee for Alg. 1). Let Alg. 1 run T iterations, with noise multiplier σ (noise is added to each bin
of the histogram), the DP mechanism satisfies (ε, δ)-DP if and only if

Φ

(√
T

2σ
− εσ√

T

)
− eεΦ

(
−
√
T

2σ
− εσ√

T

)
≤ δ.

Proof Sketch. The proof is very similar to the one in Lin et al. (2024). So we just describe the key steps at a high level.
The L2 sensitivity of the histogram created in each iteration of Alg. 1 is ∆ = 1, to which we add Gaussian noise of scale
σ. Therefore T iterations of the algorithm can be seen as the adaptive composition of T Gaussian mechanisms with L2

sensitivity 1 and noise scale σ. The privacy loss of the composition is equivalent to that of a single Gaussian mechanism with
L2 sensitivity 1 and noise scale σ/

√
T according to the adaptive composition theorem of Gaussian mechanisms (Corollary

3. of (Dong et al., 2019)). Therefore the privacy gaurantee follows from Theorem 1.

B. Additional Experimental Details
B.1. Datasets and Downstream Tasks.

Table 10: Dataset details.

Dataset # Train # Val # Test label 1 label 2

Yelp 1.9M 5000 5000 business category (10 classes) review ratings (5 classes)
OpenReview (ICLR2023) 8396 2798 2798 review area (12 classes) review recommendation (5 classes)

PubMed (2023/08/01-2023/08/07) 75316 14423 4453 next-word prediction

We evaluate AUG-PE on there datasets:

• Yelp: Yelp data is a public benchmark providing reviews on businesses, and we used the preprocessed Yelp from (Yue
et al., 2023). The number of train/val/test samples and label information in Tb. 10.

• OpenReview: For OpenReview ICLR2023 data, we crawl the meta-data for each review using the OpenReview Python
library,8 and concatenate the fields “summary_of_the_paper”, “strength_and_weaknesses” and “summary_of_the_review”
as one sample in our dataset. We group the two attributes – review area and recommendation – together as a combination,
and drop the training samples from combinations that contain fewer than 50 training samples. The number of samples
after such preprocessing and label information is provided in Tb. 10. The number of samples for each class is provided in
Tb. 11 and Tb. 12.

• PubMed: we use PubMed with abstracts of medical papers9 crawled by Yu et al. (2023) from 2023/08/01 to 2023/08/07.
The number of train/val/test samples are reported in Tb. 10.

For Yelp and OpenReview, we focus on conditional generation and use two attributes (i.e., labels) for each dataset: the
review ratings (ranging from 1 star to 5 stars) and business category for Yelp data, and the review recommendation (ranging
from “1: strong reject” to “8: accept, good paper”) and review area for OpenReview ICLR2023 data. We then use those
labels for downstream classification tasks based on synthetic texts.

For PubMed, we focus on unconditional generation and use next-word prediction as downstream tasks. This is motivated by
(Yu et al., 2023)

8https://github.com/openreview/openreview-py
9https://www.ncbi.nlm.nih.gov/
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Table 11: Area label statistics of OpenReview.

Class Name # Train Samples (Proportion) # Test Samples (Proportion)

Deep Learning and Representational Learning 2479 (29.53%) 854 (30.52%)
Applications (e.g., speech processing, computer vision, NLP) 1100 (13.10%) 380 (13.58%)
Reinforcement Learning (e.g., decision and control, planning, hierarchical RL, robotics) 1016 (12.10%) 344 (12.29%)
Social Aspects of Machine Learning (e.g., AI safety, fairness, privacy, interpretability, human-AI interaction, ethics) 765 (9.11%) 248 (8.86%)
General Machine Learning 598 (7.12%) 177 (6.33%)
Theory (e.g., control theory, learning theory, algorithmic game theory) 458 (5.45%) 144 (5.15%)
Unsupervised and Self-supervised Learning 452 (5.38%) 135 (4.82%)
Machine Learning for Sciences (e.g., biology, physics, health sciences, social sciences, climate/sustainability) 440 (5.24%) 166 (5.93%)
Generative Models 390 (4.65%) 119 (4.25%)
Optimization (e.g., convex and non-convex optimization) 318 (3.79%) 96 (3.43%)
Probabilistic Methods (e.g., variational inference, causal inference, Gaussian processes) 230 (2.74%) 81 (2.89%)
Neuroscience and Cognitive Science (e.g., neural coding, brain-computer interfaces) 150 (1.79%) 54 (1.93%)

Table 12: Rating label statistics of OpenReview.

Class Name # Train Samples (Proportion) # Test Samples (Proportion)

Recommendation: 6: marginally above the acceptance threshold 2870 (34.18%) 896 (32.02%)
Recommendation: 5: marginally below the acceptance threshold 2144 (25.54%) 760 (27.16%)
Recommendation: 3: reject, not good enough 1703 (20.28% ) 571 (20.41%)
Recommendation: 8: accept, good paper 1629 (19.40%) 554 (19.80%)
Recommendation: 1: strong reject 50 (0.60%) 17 (0.61%)

B.2. Implementation Details of AUG-PE.

B.2.1. MODEL AND HYPERPARAMETERS

We consider four LLMs as data generators in AUG-PE via API-access: GPT-2 (Radford et al., 2019), GPT-2-Medium, GPT-
2-Large, and GPT-3.5 (“gpt-35-turbo” hosted on Microsft Azure10) (OpenAI, 2022). We provide the default hyper-parameter
setup for GPT-3.5 in Tb. 13 and GPT-2 series models in Tb. 14.

The embedding model Φ in AUG-PE is instantiated by the sentence-transformer from HuggingFace. We use “stsbroberta-
base-v2” for OpenReview and Yelp and “sentence-t5-base” for PubMed.

After generating the synthetic samples, we remove those with fewer than 100/50 tokens for OpenReview/PubMed. We
noticed that samples with token lengths below those thresholds usually result from an unsuccessful API call for paper
review/medical abstract generation (e.g. GPT-3.5 refuses to answer).

In terms of downstream models,

• For Yelp and OpenReview, we finetune the pre-trained RoBERTa-base model for all downstream text classification
tasks. We set the max sequence length as 512, the batch size as 64, the learning rate as 3e-5, and the number of epochs
as 5 for Yelp and 10 for OpenReview.

• For PubMed, we leverage pre-trained BERTMini and BERTSmall released by (Turc et al., 2019), which are lightweight to
meet the inference time and computational cost requirements in many real-use cases. These models employ WordPiece
tokenization and were trained on Wikipedia and BookCorpus using masked language modeling. During our downstream
task fine-tuning, we implement a causal language modeling mask, restricting each token to attend only to its preceding
tokens (Yu et al., 2023). We set the max sequence length as 512, batch size as 32, learning rate as 3e-4, the weight
decay as 0.01. We finetune 20 epochs for BERTMini and 10 for BERTSmall epochs.

Table 13: Hyperparameters for GPT-3.5.

Nsyn K VARIATION_API mask prob. p% L PE iteration temperature w2t_ratio σword min _word max _token for RANDOM_API

Yelp 5k 3 fill-in-the-blanks (3-shot) 50% 1 20 1.4 1.2 40 25 128
OpenReview 2k 0 fill-in-the-blanks (1-shot) 50% 4 10 1.2 5 60 25 1000

PubMed 2k 0 fill-in-the-blanks (0-shot) 50% 4 10 1.2 5 60 25 1000

10https://learn.microsoft.com/en-us/azure/ai-services/openai/concepts/models
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Table 14: Hyperparameters for GPT-2, GPT-2-Medium, and GPT-2-Large.

Model Nsyn K VARIATION_API L PE iteration T temperature max _token

Yelp 5k, 10k, 100k 0 paraphrasing (zero-shot) 7 20 1.4 64
OpenReview 2k, 3k, 5k 0 paraphrasing (zero-shot) 7 10 1.2 448

PubMed 2k, 3k, 5k 0 paraphrasing (zero-shot) 7 10 1.0 448

Table 15: Prompts as RANDOM_API for GPT-3.5.

Speaker Yelp OpenReview PubMed

System You are required to write an
example of review based on the
provided Business Category
and Review Stars that fall
within the range of 1.0-5.0.

Given the area and final decision of a
research paper, you are required to
provide an example of the review
consisting of the following content: 1.
briefly summarizing the paper in 3-5
sentences; 2. listing the strengths and
weaknesses of the paper in details; 3.
briefly summarizing the review in 3-5
sentences.

Please act as a sentence
generator for the
medical domain.
Generated sentences
should mimic the style
of PubMed journal
articles, using a variety
of sentence structures.

User Business Category: {label_1} |
Review Stars: {label_2} with
keyword {subcategory}

Area: {label_1} | Recommendation:
{label_2}

Suppose that you are a
{writer}. Please write
an abstract for a
medical research paper:

B.2.2. API PROMPT DESIGNS

In terms of RANDOM_API,

• For Yelp data, we generate 100 subcategories under each business category via ChatGPT and use them as keywords in the
prompts.

• For OpenReview data, we do not generate subcategories, as the review area label (e.g., “Social Aspects of Machine
Learning (eg, AI safety, fairness, privacy, interpretability, human-AI interaction, ethics)”) already provides detailed
information about the area. Instead, we generate a list of writers with their corresponing tones via ChatGPT (e.g.,
“Postdoctoral Researcher: Advanced and knowledgeable insights”, “AI Policy Maker: Concerned with regulatory and
policy implications”, “Robotics Engineer: Focus on practical applications in robotics”) and use them as keywords in the
prompt.

• For PubMed data, we also generate a list of writers for medical abstracts via ChatGPT, such as “Clinical Researcher,
Principal Investigator, Biomedical Engineer”, etc., and use them as keywords in the prompt.

We provide the prompts of RANDOM_API for all datasets in Tb. 15 for GPT-3.5 and Tb. 16 for other LLMs.

In terms of VARIATION_API, (1) for GPT-3.5, we utilize fill-in-the-blanks with adaptive text lengths, providing few-shot
demonstrations. To obtain {masked_input} used for fill-in-the-blanks, we calculate the tokens for {input} based on GPT-
3.5 tokenizer11, mask p% of them as blanks “_”, and decode them back to the text. (2) In contrast, for GPT-2-series models,
we opt for zero-shot paraphrasing with fixed max _token as VARIATION_API. This choice is based on our observation that
GPT-2-series models do not follow the instructions of fill-in-the-blanks and adaptive text lengths well, as they are only
pretrained on next-word-prediction tasks without further instruction tuning or reinforcement learning from human feedback
(RLHF) (Lambert et al., 2022) for blank filling tasks. Moreover, GPT-2-series models do not gain much from few-shot
demonstrations for paraphrasing, possibly due to their inferior instruction-following and in-context learning capabilities
compared to GPT-3.5.

We provide the prompts of VARIATION_API for GPT-2-series models in Tb. 17 and for GPT-3.5 in Tb. 18, Tb. 19 and Tb. 20.

11https://github.com/openai/tiktoken
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Table 16: Prompts as RANDOM_API for GPT-2-series models.

Yelp OpenReview PubMed

Business Category: {label_1} |
Review Stars: {label_2} with
keyword {subcategory}

Suppose that you are a {writer}. Write
a paper review based on Area:
{label_1} | Recommendation:
{label_2}

Using a variety of
sentence structures,
write an abstract for a
medical research paper:

Table 17: Prompts as VARIATION_API for GPT-2-series models on Yelp and OpenReview.

Datast Prompt

Yelp Based on “Business Category: {label_1} | Review Stars: {label_2}”, please rephrase the following sentences
{in a selected_tone}:
{input}

OpenReview Based on “Area: {label_1} | Recommendation: {label_2}”, please rephrase the following sentences {in a
selected_tone}:
{input}

PubMed Please rephrase the following sentences {in a selected_tone} as an abstract for medical research paper:
{input}

Table 18: Prompts as VARIATION_API for GPT-3.5 on Yelp.

Speaker Prompt

System You are a helpful, pattern-following assistant.

User Based on the Business Category and Review Stars, you are required to fill in the blanks in the Input sentences. If
there are no blanks, you are required to output the original Input sentences.

Business Category: Restaurants | Review Stars: 2.0
Input: _ that great , terrible _ rolls and fish _ smelling _ _.
Fill-in-Blanks and your answer MUST be exactly 10 words: Not that great, terrible egg rolls and fishy smelling
shrimp.

Business Category: Beauty & Spas | Review Stars: 5.0
Input: Very clean! Staff are super friendly!!
Fill-in-Blanks and your answer MUST be exactly 6 words: Very clean! Staff are super friendly!!

Business Category: Shopping | Review Stars: 3.0
Input: I _ in _ and stopped in for a _. I was _ surprised. Good _, nice price.
Fill-in-Blanks and your answer MUST be exactly 19 words: I was in a rush and stopped in for a mani-pedi. I
was pleasantly surprised. Good service, nice price.

Business Category: {label_1} | Review Stars: {label_2}
Input: {masked_input}
Fill-in-Blanks and your answer MUST be exactly {targeted_word} words:

B.2.3. DIFFERENTIAL PRIVACY.

Following Yue et al. (2023), we set δ = 1
Npriv·log(Npriv)

for (ϵ, δ)-DP. As different datasets have different sizes of private train-
ing data, they require different δ. We run 10 PE iterations under DP on all datasets. To achieve ϵ = {1, 2, 4,∞}, we use noise
multiplier σ = {15.34, 8.03, 4.24, 0} for Yelp; σ = {11.60, 6.22, 3.38, 0} for OpenReview; σ = {13.26, 7.01, 3.75, 0} for
PubMed.
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Table 19: Prompts as VARIATION_API for GPT-3.5 on OpenReview.

Speaker Prompt

System You are an AI assistant that helps people find information.

User Based on the area and final recommendation of a research paper, you are required to fill in the blanks for the input sentences
{in a selected_tone}. If there is no blanks, please output the original input sentences.

Area: Applications (eg, speech processing, computer vision, NLP) | Recommendation: 3: reject, not good enough
Input: __ proposes an__ method_ ROI detection__arial_f_ without attention_. The_ map can_ used____ for__ and____
show_ improvements on different medical__._Strength__ \n–The idea using__actual images_ sali__ generation_
interesting.\n\n_The improvement____aks is significant. \n\nWeak____The___ and_____ experiments are needed_ such
as__f___the_ method_ interesting_ but_ novelty_ limited
Fill-in-Blanks and your answer MUST be exactly 85 words: This paper proposes an attention generation method for ROI
detection by adversarial counterfactual without attention label. The attention map can be used to highlight useful information
for disease classification and detection. The experiments show its improvements on different medical imaging tasks.
\nStrengths: \n–The idea using counterfactual images for saliency map generation is interesting.\n\n–The improvement for
medical imaging taks is significant. \n\nWeaknesses:\n\n–The novelty is simple and limited. \n\n–More experiments are
needed, such as existing counterfactual generation.\nthe proposed method is interesting, but the novelty is limited.

Area: {label_1} | Recommendation: {label_2}
Input: {masked_input}
Fill-in-Blanks and your answer MUST be exactly {targeted_word} words:

Table 20: Prompts as VARIATION_API for GPT-3.5 on PubMed.

Speaker Prompt

System Please act as a sentence generator for the medical domain. Generated sentences should mimic the style of PubMed journal
articles, using a variety of sentence structures.

User You are required to fill in the blanks with more details for the input medical abstract {in a selected_tone}. If there is no
blanks, please output the original medical abstract.
Please fill in the blanks in the following sentences to write an abstract of a medical research paper: {masked_input} and
your answer MUST be exactly {targeted_word} words.

B.3. Implementation Details of Baselines.

For DP-FT-GENERATOR, we finetune the GPT-2-series models following the hyperparameters setup in Table 8 of (Yue
et al., 2023).

For DP-FT-DOWNSTREAM, we report the hyperparameters for OpenReview and Yelp in Tb. 22, and PubMed in Tb. 21. For
a target ϵ, a noise multiplier is set as the smallest value such that DP-SGD can run the target number of steps.

Table 21: Hyperparameters for DP-FT-DOWNSTREAM on PubMed.

BERTTiny, BERTMini, BERTSmall for PubMed LLaMA-2-7B for PubMed
downstream (non-pri.) downstream (pri.) downstream (non-pri.) downstream (pri.)

Epoch [5, 10, 30] [10, 30, 50, 100] 10 10
Batch size [32, 64] [1024, 2048, 4096] 128 128

Clipping norm - [0.1, 0.5, 1, 3, 5] - 1
Learning rate [3× 10−5, {1, 3}×10−4] [3× 10−4, {1, 3}×10−3] 1× 10−3 1× 10−3

B.4. Metrics.

Here we provide more details about the metrics regarding embedding distribution distance. We use sentence-transformer
“stsb-roberta-base-v2” from HuggingFace12 to embed the real and synthetic datasets, and use seven evaluation metrics
to measure embedding distribution distance: 1) Fréchet Inception Distance (FID) evaluates the feature-wise mean and

12https://huggingface.co/models
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Table 22: Hyperparameters for DP-FT-DOWNSTREAM on Yelp and OpenReview.

RoBERTa-base for Yelp RoBERTa-base for OpenReview
downstream (non-pri.) downstream (pri.) downstream (non-pri.) downstream (pri.)

Epoch [1,10] [1,10] 10 10
Batch size [128, 1024] [128, 1024] 8 128

Clipping norm - 1 - 1
Learning rate 3× 10−5 3× 10−5 3× 10−5 3× 10−5

covariance matrices of the embedding vectors and then computes the Fréchet distance between these two groups (Heusel
et al., 2017) ; 2) Precision estimates the average sample quality; 3) Recall assesses the breadth of the sample distribution; 4)
F1 score is the harmonic mean of Precision and Recall, serving as a balance of the two (Kynkäänniemi et al., 2019); 5)
MAUVE evaluates the distributional distance of the synthetic and real data via divergence frontiers (Pillutla et al., 2021); 6)
KL div. measures the distance of embedding distributions based on KL divergence; 7) TV div. quantifies the distance based
on Total Variation divergence (Chung et al., 1989).

For downstream classification accuracy, we train downstream models three times and report the average accuracy. For each
metric associated with embedding distribution distance (except FID for which we use the whole dataset), we randomly draw
5000 samples (for efficiency) from the private dataset and the synthetic dataset respectively, to calculate the distance. We
then report the averaged results based on five independent draws.

C. Additional Experimental Results
C.1. Robustness Against Membership Inference Attacks

In this work, we focus on DP, a type of widely accepted privacy guarantee with profound theoretic backup which provides an
upper bound for empirical membership privacy attacks. To better understanding empirical risk, we perform state-of-the-art
membership inference attacks (MIAs) (Shokri et al., 2017) in the text domain.

We perform MIAs against the finetuned downstream models (which are fine-tuned on synthetic data for AUG-PE/ DP-FT-
GENERATOR; on real private data for DP-FT-DOWNSTREAM). We randomly sample 4000 PubMed real private samples
as members and 4000 PubMed test samples as non-members for evaluation. We report AUC (Area Under the Curve) to
evaluate the risks of MIAs. We consider three types of MIAs: (1) PPL thresholds perplexity to predict membership (Carlini
et al., 2021). (2) REFER computes the ratio of the log perplexity of the tested model against a reference model (Carlini et al.,
2021). (3) LIRA uses the ratio of likelihood instead of log-perplexity (Carlini et al., 2022). LiRA assumes the availability
of high-quality data distributed similarly to the training set, which was thought to be impractical (Tramèr et al., 2022).
Therefore, we follow (Mattern et al., 2023) to use the pre-trained model as a reference.

The results in Tb. 3 show that AUG-PE exhibits lower MIA AUC scores compared to both DP-FT-GENERATOR and
DP-FT-DOWNSTREAM models. This indicates a higher robustness to empirical privacy attacks, potentially due to the
synthetic nature of the data used for downstream model finetuning, which inherently reduces the risk of overfitting to real
private data.

C.2. Convergence of Text Length Distribution

As shown in Fig. 7, Fig. 8 and Fig. 913, we see that over the PE iterations, the text length distribution of synthetic samples
produced from GPT-3.5 through our AUG-PE converges, as it becomes closer to the distribution of the original data. This
showcases the effectiveness of our adaptive text length mechanism. We note that there is a noticeable peak near 30 tokens
for our synthetic texts on Yelp, which is attributed to the min _word used in the VARIATION_API prompt to avoid generating
blank outputs.
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Figure 7: Convergence of text length distribution over AUG-PE iterations on Yelp synthetic text generated from GPT-3.5.
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Figure 8: Convergence of text length distribution over AUG-PE iterations on PubMed synthetic text generated from GPT-3.5.
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Figure 9: Convergence of text length distribution over AUG-PE iterations on OpenReview synthetic text generated from GPT-3.5.
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Table 23: GPU hours on one 32G NVIDIA V100 for AUG-PE DP-FT-GENERATOR on Yelp under ϵ = 1. AUG-PE is more
efficient with fewer total GPU hours.

DP-SGD finetune Generation
5k samples 10k samples 100k samples

DP-FT-GENERATOR
GPT2 456.71 0.22 0.45 4.47
GPT2-Medium 709.50 0.25 0.50 5.03
GPT2-large 1764.42 0.35 0.70 6.96

AUG-PE (L = 2)
GPT2 / 1.76 2.48 13.35
GPT2-Medium / 2.30 2.89 18.68
GPT2-large / 2.68 3.83 26.98

AUG-PE (L = 7)
GPT2 / 6.04 9.07 66.66
GPT2-Medium / 6.94 11.55 91.07
GPT2-large / 9.62 16.77 139.35

C.3. Efficiency in Terms of GPU Hours

In Tb. 23, we provide a detailed breakdown of the GPU hours shown in Fig. 3. We consider the process of generating DP
synthetic data given a private dataset. DP-FT-GENERATOR (Yue et al., 2023) requires two steps: (1) finetuning a pretrained
data generator with DP-SGD, and (2) generating samples from the finetuned data generator, whereas AUG-PE requires
only one step (Alg. 1). In Tb. 23, we list the GPU hours of each step of each method. For Yue et al. (2023), we use the
hyper-parameters in their Table 8.

We can see that the majority of the time spent by DP-FT-GENERATOR is the DP-fine-tuning stage, which is already much
more costly than the total cost of AUG-PE. This results from two factors: (1) Training is costly due to the backpropagation,
especially for large models; (2) DP-SGD requires per-sample gradients, which further increases the memory and computation
cost. In contrast, AUG-PE only requires model inference and does not require model training, and is thus more efficient.

It is also worth noting that once the model is DP finetuned, DP-FT-GENERATOR can efficiently generate many samples with
only model inference. It is illustrated by the small GPU hours in the “Generation” step of DP-FT-GENERATOR. In contrast,
in AUG-PE, the required GPU hour is positively correlated with the number of samples. Therefore, DP-FT-GENERATOR
can become more efficient than AUG-PE when the number of generated samples is large enough. However, the original PE
paper (Lin et al., 2024) proposed an efficient way to generate more DP samples after PE is done, by passing the generated
samples through VARIATION_API. In the context of text generation with LLMs, this approach is expected to have a similar
overhead as generating more samples from the DP-finetuned generator in DP-FT-GENERATOR. We defer the study of this
approach to future work.

C.4. Comparison Between AUG-PE and PE

We compare AUG-PE against PE when using GPT-3.5 as the generator on three datasets. The results in Tb. 24 show that AUG-
PE is always better than PE on PubMed for GPT-3.5. Moreover, AUG-PE is better for OpenReview Rating classification
task and Yelp Rating classification task. As AUG-PE supports PE as a special case by changing the hyperparameters of L
and K, the practitioner can adjust those hyperparameters for a specific downstream task and find the best settings to generate
synthetic data.

C.5. Ablation Study on Variation API Prompt Design

The results in Tb. 25 show that fill-in-the-blanks prompt (with few-shot demonstrations) yields better results for GPT-3.5.
For GPT-2, paraphrasing can be an effective strategy. Although fill-in-blanks leads to high accuracy on Yelp Category
classification task, we find that the generated texts have many unfilled blanks “__” upon inspection.

13For OpenReview in Fig. 9, we use a temperature of 1.4.
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Table 24: Comparision between AUG-PE and PE when using GPT-3.5 as generator on three datasets.

Data Type (Size) Method ϵ =∞ ϵ = 4 ϵ = 2 ϵ = 1

Yelp Rating Category Rating Category Rating Category Rating Category

Synthetic (5000) PE← AUG-PE (k = 3, L = 1) 67.9 74.7 67.1 74.6 67.2 74.6 67.6 74.7
Synthetic (5000) AUG-PE (k = 0, L = 4) 68.4 74.1 68.1 74.0 67.8 74.3 67.9 74.0

OpenReview Area Rating Area Rating Area Rating Area Rating

Synthetic (2000) PE← AUG-PE (k = 3, L = 1) 43.6 42.4 43.6 43.5 44.6 43.7 42.0 42.9
Synthetic (2000) AUG-PE (k = 0, L = 4) 45.4 43.5 43.5 44.6 42.8 44.5 41.9 43.1

PubMed BERTMini BERTSmall BERTMini BERTSmall BERTMini BERTSmall BERTMini BERTSmall

Synthetic (2000) PE← AUG-PE (k = 3, L = 1) 29.7 31.8 29.6 31.8 29.7 31.9 29.8 31.9
Synthetic (2000) AUG-PE (k = 0, L = 4) 30.4 32.7 30.3 32.5 30.2 32.5 30.1 32.4

Table 25: Evaluation on Variation API designs for GPT-2 and GPT-3.5 on Yelp. Fill-in-the-blanks is prefered for GPT-3.5.

Variation API prompt GPT-2 GPT-3.5
Rating Category Rating Category

paraphrasing 67.5 74.8 67.5 74.3
paraphrasing w/ few-shot demos 67.8 73.6 65.7 74.2
fill-in-the-blanks 66.3 74.6 67.9 74.6
fill-in-the-blanks w/ few-shot demos 67.6 74.8 67.9 74.7

C.6. Leveraging Open-source LLMs as Generator for AUG-PE

We use opensource LLMs from Huggingface as data generators in AUG-PE. We find that LLaMA-2-7B does not follow
the fill-in-the-blank prompts well and often leaves blanks (“__”) in the generated texts. Also, it struggles to adhere to the
word prompt and the length of synthetic sequences exhibits a large gap from the targeted word specified in the prompt. It
might be because they are not explicitly instruction/RLHF-tuned for those blank-filling and word count tasks, and have
inferior instruction-following and in-context learning capabilities compared to GPT-3.5. Therefore, we turn to use the
same hyperparameter setup as GPT-2-series models for those open-source LLMs. The results in Tb. 2 show that GPT-3.5
outperforms most of the models on PubMed tasks and OpenReview Rating classification task by a large margin. For
OpenReview Area task, Mixtral-8x7B-v0.1 is better than GPT-3.5, demonstrating the competitive generation power of
Mixtral-8x7B-v0.1 for academic reviews in machine learning domains.

C.7. Effect of Rank-based Sampling

Table 26: Comparing rank-based sampling against probability-based random sampling for AUG-PE with GPT-2-series
models on three datasets.

Data Type (Synthetic Data Size) Data Generator Rank Prob Rank Prob

Rating Category

Yelp (5000)
GPT-2 67.5 66.7 74.8 74.7
GPT-2 Medium 67.5 67.7 74.9 74.6
GPT-2 Large 67.5 67.1 74.5 74.4

Area Rating

OpenReview (2000)
GPT-2 42.4 39.8 32.1 32.1
GPT-2 Medium 41.0 37.1 32.3 32.0
GPT-2 Large 42.1 40.1 32.1 32.0

BERTMini BERTSmall

PubMed (2000)
GPT-2 24.5 23.4 26.7 25.4
GPT-2 Medium 25.5 23.9 27.7 25.9
GPT-2 Large 25.7 24.1 28.0 26.0

We compare our proposed rank-based sampling (Line 19) against probability-based random sampling in the original PE
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(Line 15) across GPT-2, GPT-2-Medium and GPT-2-Large on three datasets. The results in Tb. 26 indicate that our proposed
rank-based sampling (Line 19) consistently outperforms probability-based random sampling in the original PE (Line 15),
due to the elimination of sample redundancy inherent in random sampling, as rank-based sampling exclusively selects the
top Nsyn samples.

C.8. Effect of Iteration T on DP Utility

Tb. 6 presents the results on the non-DP setting, serving as an ablation study to underscore the role of private data in
AUG-PE. In the DP setting, given a fixed privacy budget, a larger T requires more noise, which may compromise the utility
of the DP histogram. On the other hand, a larger T allows for more iterations of sample improvement. We want to study the
joint effect of these two factors.

We conducted experiments comparing the utility of the algorithm at t = 1 and t = 10 on three datasets under ϵ = 4, 2, 1.
The results in Tbs. 27 to 29 show that t = 10 consistently yields better utility than t = 1 across all three privacy budget
levels, underscoring the effectiveness of AUG-PE’s iterative improvement mechanism. This finding suggests that, despite
the increased noise, the algorithm can robustly preserve useful statistical properties in the DP histogram and generate
high-quality texts under t = 10.

Table 27: Effect of AUG-PE iteration t on the DP utility under ϵ = 4.

Yelp OpenReview PubMed

Rating Category Area Rating BERTMini BERTSmall

t = 1 64.7 73.5 36.5 42.1 29.9 32.3
t = 10 67.8 74.6 43.5 44.6 30.3 32.5

Table 28: Effect of AUG-PE iteration t on the DP utility under ϵ = 2.

Yelp OpenReview PubMed

Rating Category Area Rating BERTMini BERTSmall

t = 1 63.9 73.6 37.2 42.0 29.9 32.3
t = 10 67.4 74.3 42.8 44.5 30.2 32.5

Table 29: Effect of AUG-PE iteration t on the DP utility under ϵ = 1.

Yelp OpenReview PubMed

Rating Category Area Rating BERTMini BERTSmall

t = 1 63.8 73.1 37.4 41.7 30.0 32.3
t = 10 66.8 74.7 41.9 43.1 30.1 32.4

C.9. Embedding Distribution Distance Between Real and Synthetic data

We report the results of embedding distribution distance between real and synthetic data on Yelp in Fig. 10, and on PubMed
in Fig. 11. When using the same base model GPT-2 for a fair comparison, we observe that under DP and non-DP settings,
AUG-PE can obtain similar and even lower embedding distribution distances between real and synthetic samples for certain
metrics compared to fine-tuning. For example, on Yelp dataset, under DP, AUG-PE yields better FID, precision, recall, F1
than DP-FT-GENERATOR and achieves comparable MAUVE scores. On PubMed dataset, under DP, AUG-PE yields better
FID, MAUVE scores, KL divergence, and TV divergence than DP-FT-GENERATOR. These findings highlight the promise
of employing the API-only method for DP synthetic text generation.
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Figure 10: Evaluation on distribution distances between Yelp real data and GPT-2 generated 10k DP synthetic samples.
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Figure 11: Evaluation on distribution distances between PubMed real data and GPT-2 generated 2k DP synthetic samples.

C.10. Downstream Task Utility Under Various Synthetic Data Size

C.10.1. UTILITY ON YELP

We report the full results of downstream accuracy on Yelp in Tb. 30. We find that (1) when using the same base model for a
fair comparison, we see that under DP settings, AUG-PE demonstrates competitive (or even better) utility on downstream
classification tasks compared to fine-tuning. The scores are also close to that of the downstream algorithms trained on the
real data under DP directly, demonstrating the promise of DP synthetic text as a tool for DP machine learning. (2) For large
models like GPT-2-Large and GPT-2-Medium, more synthetic samples (e.g., 100k) from AUG-PE can enhance downstream
utility. However, for GPT-2, sometimes 10k synthetic samples can lead to better downstream utility than 100k samples,
which might be due to the low-quality data generated from the small model that hurts the performance.

C.10.2. UTILITY ON OPENREVIEW

We report the downstream accuracy on OpenReview in Tb. 31. The key observations are: (1) Under DP when using the same
GPT-2/GPT-2-Medium/GPT-2-Large as the base model, AUG-PE achieve similar classification accuracy and classification
accuracy compared with DP-FT-GENERATOR. This again demonstrates that AUG-PE is a promising alternative to DP
fine-tuning. (2) More synthetic samples lead to better area classification accuracy for the three GPT-2-series models,
indicating that AUG-PE scales well with the synthetic sample size. Note that both AUG-PE and DP-FT-GENERATOR do
not perform well on review rating classification tasks across different data sizes, which shows the inherent limitation of
GPT-2-series models – they may struggle to generate academic texts with correct sentiments. (3) AUG-PE with GPT-3.5
achieves better utility than AUG-PE with GPT-2-Large on both tasks with or without DP. This suggests that AUG-PE
benefits from larger and more powerful LLMs. We expect that as the capability of LLMs quickly evolves, AUG-PE can be
even more promising in the future. (4) However, there is still a gap between the results of AUG-PE under non-DP setting
ϵ =∞ and the results on the original data. This suggests that even in the non-DP setting, AUG-PE is still not able to recover
the distribution of the real data. This gap is unavoidable in the DP setting. We hypothesize that better hyper-parameter
tunings (e.g., the variation degree) could lower the gap. We leave a more careful investigation of this issue to future work.

C.10.3. UTILITY ON PUBMED

We report the next-word prediction accuracy on OpenReview of downstream model BERTMini in Tb. 32 and BERTSmall in
Tb. 33 We find that (1) under the same GPT-2-series model as generator, AUG-PE underperforms DP-FT-GENERATOR on
PubMed. This is expected because AUG-PE relies on the knowledge within LLMs to generate high-quality texts without
domain-specific finetuning, while GPT-2-series models might have limited exposure to biomedical literature (Radford et al.,
2019). (2) With powerful LLMs like GPT-3.5, AUG-PE can outperform DP-FT-GENERATOR under DP. (3) Additionally,
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Table 30: Classification accuracy of downstream RoBERTa-base model under ϵ =∞, 4, 2, 1 on Yelp for two downstream
tasks: review rating and business category classification. (i) Compared to DP-FT-GENERATOR, in some cases, downstream
accuracy of AUG-PE is higher (↑ ) under the same synthetic data size and the same GPT-2-series data generator. Leveraging
the inherent knowledge within stronger LLM, GPT-3.5, AUG-PE can achieve higher accuracy. (ii) Compared to traditional
method DP-FT-DOWNSTREAM, AUG-PE can also obtain higher accuracy under DP with the same synthetic data size.

Data Type (Size) Method Data Generator ϵ =∞ ϵ = 4 ϵ = 2 ϵ = 1
Rating Category Rating Category Rating Category Rating Category

Original (1,939,290) DP-FT-DOWNSTREAM - 76.0 81.6 67.5 72.8 67.2 72.0 66.8 71.8
Original (100,000) DP-FT-DOWNSTREAM - 72.7 75.5 65.0 71.2 64.1 70.0 62.9 68.7
Original (10,000) DP-FT-DOWNSTREAM - 70.9 76.2 44.8 61.8 44.8 61.8 44.8 61.8
Original (5,000) DP-FT-DOWNSTREAM - 70.5 75.1 44.8 61.8 44.8 61.8 44.8 61.8

Synthetic (5000) DP-FT-GENERATOR GPT-2 70.3 75.9 68.2 74.1 67.2 73.1 66.4 73.9
Synthetic (10000) DP-FT-GENERATOR GPT-2 71.1 75.8 68.2 73.0 67.7 73.2 66.7 73.7
Synthetic (100000) DP-FT-GENERATOR GPT-2 71.0 75.6 66.8 72.6 67.0 72.3 65.5 71.8
Synthetic (5000) AUG-PE GPT-2 67.5 74.8 66.4 74.9 ↑ 67.1 74.7 ↑ 66.9 ↑ 74.4 ↑

Synthetic (10000) AUG-PE GPT-2 67.2 75.1 66.6 75.3 ↑ 66.2 74.9 ↑ 66.0 74.6 ↑

Synthetic (100000) AUG-PE GPT-2 67.1 76.0 ↑ 66.3 75.1 ↑ 66.1 75.0 ↑ 65.7 ↑ 74.5 ↑

Synthetic (5000) DP-FT-GENERATOR GPT-2-Medium 70.0 75.0 69.1 74.6 67.8 74.3 67.4 74.1
Synthetic (10000) DP-FT-GENERATOR GPT-2-Medium 70.7 75.6 68.8 74.4 68.2 73.8 67.5 73.9
Synthetic (100000) DP-FT-GENERATOR GPT-2-Medium 71.9 76.3 68.1 73.9 67.8 74.3 67.9 73.3
Synthetic (5000) AUG-PE GPT-2-Medium 67.5 74.9 66.8 74.6 67.8 74.7 ↑ 67.4 74.6 ↑

Synthetic (10000) AUG-PE GPT-2-Medium 67.5 74.9 67.4 74.9 ↑ 67.6 75.1 ↑ 67.1 74.7 ↑

Synthetic (100000) AUG-PE GPT-2-Medium 68.2 75.8 67.4 75.5 ↑ 66.6 75.3 ↑ 66.2 74.7 ↑

Synthetic (5000) DP-FT-GENERATOR GPT-2-Large 70.4 75.4 68.7 74.2 69.8 75.1 68.7 74.6
Synthetic (10000) DP-FT-GENERATOR GPT-2-Large 70.7 74.3 69.2 74.9 69.7 75.2 68.9 74.6
Synthetic (100000) DP-FT-GENERATOR GPT-2-Large 71.8 74.1 69.5 74.5 68.7 74.5 69.6 74.4
Synthetic (5000) AUG-PE GPT-2-Large 67.5 74.5 67.3 74.4 ↑ 65.8 74.1 66.6 75.0 ↑

Synthetic (10000) AUG-PE GPT-2-Large 67.1 74.7 ↑ 67.1 74.9 66.6 74.7 67.0 74.4
Synthetic (100000) AUG-PE GPT-2-Large 67.3 75.8 ↑ 67.6 75.7 ↑ 66.8 75.4 ↑ 66.0 75.3 ↑

Synthetic (5000) AUG-PE GPT-3.5 68.4 74.1 68.1 74.0 67.8 74.3 67.9 74.0

more synthetic samples lead to better downstream classification accuracy for the three GPT-2-series models on PubMed.

C.11. Comparision to Text-to-Text Privatization Approaches

This is an active line of research on text-to-text privatization techniques for generating differentially private text. We do not
directly compare these methods in our main paper due to the key distinctions in privacy definitions:

1. Different privacy definitions. Our method adopts the standard (ϵ, δ)-DP defined over neighboring datasets. This
contrasts with

(a) Word-level metric DP (Feyisetan et al., 2020; Carvalho et al., 2023): a specific metric for measuring word distance
needs to be written in the privacy notation, and privacy guarantee is defined over neighboring words;

(b) Local DP (Mattern et al., 2022b; Utpala et al., 2023): privacy guarantee is defined over neighboring samples.

2. Poor privacy-utility trade-off in existing text-to-text anonymization methods: While innovative, Feyisetan et al.
(2020); Carvalho et al. (2023); Mattern et al. (2022b); Utpala et al. (2023) encounter challenges in achieving a good
privacy-utility tradeoff under practical privacy budgets.

3. Absence of privacy budgets: The absence of detailed reporting on exact privacy budgets in (Utpala et al., 2023)
hinders direct comparisons with our work.

A qualitative comparison between text-to-text privatization methods and our method is shown in Tb. 34.

Next, we compare AUG-PE with the text-to-text privatization frameworks in detail: word-level metric-DP frameworks
(Feyisetan et al., 2020; Carvalho et al., 2023) and sample-level local-DP frameworks (Mattern et al., 2022b; Utpala et al.,
2023).
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Table 31: Classification accuracy of downstream RoBERTa-base model under ϵ = ∞, 4, 2, 1 on OpenReview for two
downstream tasks: review area and rating classification. (i) Compared to DP-FT-GENERATOR, in some cases, downstream
accuracy of AUG-PE is higher (↑ ) under the same synthetic data size and the same GPT-2-series data generator. Leveraging
the inherent knowledge within stronger LLM, GPT-3.5, AUG-PE can achieve higher accuracy. (ii) Compared to traditional
method DP-FT-DOWNSTREAM, AUG-PE can also obtain higher accuracy under DP with the same synthetic data size.

Data Type (Size) Method Data Generator ϵ =∞ ϵ = 4 ϵ = 2 ϵ = 1
Area Rating Area Rating Area Rating Area Rating

Original (8396) DP-FT-DOWNSTREAM - 65.2 50.9 30.5 32.0 30.5 32.0 30.5 32.0
Original (2000) DP-FT-DOWNSTREAM - 55.3 47.8 30.5 32.0 30.4 25.5 6.3 19.8

Synthetic (2000) DP-FT-GENERATOR GPT-2 47.5 32.0 32.1 32.0 31.9 32.0 32.1 32.0
Synthetic (3000) DP-FT-GENERATOR GPT-2 48.0 32.0 34.1 32.0 33.6 32.0 33.6 32.0
Synthetic (5000) DP-FT-GENERATOR GPT-2 48.3 35.8 32.7 32.0 30.5 32.0 35.6 31.1
Synthetic (2000) AUG-PE GPT-2 42.4 32.1 ↑ 39.9 ↑ 32.1 ↑ 38.8 ↑ 32.1 ↑ 37.6 ↑ 32.0
Synthetic (3000) AUG-PE GPT-2 43.2 32.0 39.1 ↑ 32.0 38.6 ↑ 32.1 ↑ 39.5 ↑ 32.1 ↑

Synthetic (5000) AUG-PE GPT-2 43.4 32.1 40.1 ↑ 32.0 39.2 ↑ 32.0 37.9 ↑ 32.0 ↑

Synthetic (2000) DP-FT-GENERATOR GPT-2-Medium 49.7 36.5 40.3 32.0 33.5 31.9 35.6 31.9
Synthetic (3000) DP-FT-GENERATOR GPT-2-Medium 50.6 38.7 38.4 32.0 36.5 31.3 33.1 30.6
Synthetic (5000) DP-FT-GENERATOR GPT-2-Medium 50.3 41.2 39.8 31.4 37.4 31.7 34.6 31.0
Synthetic (2000) AUG-PE GPT-2-Medium 41.0 32.3 36.9 32.0 36.0 ↑ 32.0 ↑ 36.6 ↑ 32.1 ↑

Synthetic (3000) AUG-PE GPT-2-Medium 42.1 32.1 38.3 32.1 ↑ 38.9 ↑ 32.1 ↑ 37.5 ↑ 32.1 ↑

Synthetic (5000) AUG-PE GPT-2-Medium 43.5 32.5 37.5 32.0 ↑ 35.5 32.0 ↑ 36.8 ↑ 32.1 ↑

Synthetic (2000) DP-FT-GENERATOR GPT-2-Large 48.3 42.9 38.9 33.7 40.4 33.6 38.6 32.2
Synthetic (3000) DP-FT-GENERATOR GPT-2-Large 49.8 43.7 41.3 33.9 42.8 31.6 38.2 32.7
Synthetic (5000) DP-FT-GENERATOR GPT-2-Large 52.5 44.5 42.0 34.2 41.7 34.9 40.1 32.8
Synthetic (2000) AUG-PE GPT-2-Large 42.1 32.1 38.8 32.0 38.4 32.0 38.1 32.0
Synthetic (3000) AUG-PE GPT-2-Large 44.0 32.1 39.7 32.2 38.4 32.1 ↑ 36.4 32.0
Synthetic (5000) AUG-PE GPT-2-Large 44.1 32.1 39.3 32.1 39.5 32.1 37.4 32.1

Synthetic (2000) AUG-PE GPT-3.5 45.4 43.5 43.5 44.6 42.8 44.5 41.9 43.1

C.11.1. COMPARISON TO WORD-LEVEL METRIC-DP FRAMEWORKS

Madib (Feyisetan et al., 2020) and TEM (Carvalho et al., 2023) employ metric differential privacy to privatize each word
independently and achieve word-level ϵd-Metric DP, where d is the distance metric for neighboring words. Specifically, they
perturb the embedding of each word and replace the current word with a new word whose embedding is closest to the noisy
embedding. However, AUG-PE focuses on generating synthetic datasets with stronger guarantees provided by standard
(ϵ, δ)-DP. Due to the fundamental differences in privacy definition: (1) metric-DP v.s. DP; (2) word-level v.s. dataset-level
privacy, directly comparing our work with word-level metric-DP frameworks (Feyisetan et al., 2020; Carvalho et al., 2023)
is not feasible.

To understand their privacy-utility tradeoff, we run Madib (Feyisetan et al., 2020) to generate samples under word level
metric-DP with a high privacy budget ϵ = 10. We followed their approach of perturbing 50-dimensional Euclidean
GloVe embeddings with Laplace noise. We are unable to evaluate TEM (Carvalho et al., 2023) given that its code is not
open-sourced.

Tb. 35 shows randomly sampled generated sentences from Madib and AUG-PE. Even with a high metric-DP budget (ϵ = 10),
Madib struggles to generate meaningful sentences on Yelp, OpenReview, and PubMed datasets. In contrast, AUG-PE, with
a low DP budget (ϵ = 1), can leverage GPT-3.5 as a data generator to produce fluent sentences across all three datasets.

C.11.2. COMPARISON TO SAMPLE-LEVEL LOCAL-DP FRAMEWORKS

Paraphraser (Mattern et al., 2022b) and DP Prompt (Utpala et al., 2023) focus on generating paraphrases for each private
sample by varying the temperature during token sampling, which is regarded as a form of noise injection under the Local DP
(LDP) framework. The sensitivity of each sample to the output can be constrained by clipping the logits of each generated
token. While innovative, these methods’ privacy budget scales linearly with the output’s token length, presenting a challenge
for generating longer sequences under a meaningful privacy budget.
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Table 32: Next word prediction accuracy of downstream BERTMini model under ϵ =∞, 4, 2, 1 on PubMed. (i) Compared to
DP-FT-GENERATOR, AUG-PE with a strong LLM GPT-3.5 can achieve higher accuracy under DP with the same synthetic
data size. (ii) Compared to DP-FT-DOWNSTREAM, AUG-PE can also obtain higher accuracy under ϵ = 2, 1.

Data Type (Size) Method Data Generator ϵ =∞ ϵ = 4 ϵ = 2 ϵ = 1
Accuracy Accuracy Accuracy Accuracy

Original (75316) Fine-tune - 43.5 30.7 28.9 26.7
Original (2000) Fine-tune - 33.5 2.2 1.8 1.4

Synthetic (2000) DP-FT-GENERATOR GPT-2 30.2 27.8 27.6 27.2
Synthetic (3000) DP-FT-GENERATOR GPT-2 31.1 28.7 28.4 28.1
Synthetic (5000) DP-FT-GENERATOR GPT-2 32.4 29.7 29.4 29.2
Synthetic (2000) AUG-PE GPT-2 24.5 24.7 24.7 24.3
Synthetic (3000) AUG-PE GPT-2 25.7 25.6 25.4 25.0
Synthetic (5000) AUG-PE GPT-2 26.7 26.6 26.2 25.7

Synthetic (2000) DP-FT-GENERATOR GPT-2-Medium 31.0 28.4 28.1 27.8
Synthetic (3000) DP-FT-GENERATOR GPT-2-Medium 32.0 29.2 29.1 28.8
Synthetic (5000) DP-FT-GENERATOR GPT-2-Medium 33.4 30.5 30.4 29.9
Synthetic (2000) AUG-PE GPT-2-Medium 25.5 25.4 25.1 24.9
Synthetic (3000) AUG-PE GPT-2-Medium 26.4 26.4 26.1 25.7
Synthetic (5000) AUG-PE GPT-2-Medium 28.0 27.6 26.9 26.1

Synthetic (2000) DP-FT-GENERATOR GPT-2-Large 31.0 29.2 29.2 28.9
Synthetic (3000) DP-FT-GENERATOR GPT-2-Large 32.2 30.3 30.1 29.8
Synthetic (5000) DP-FT-GENERATOR GPT-2-Large 33.5 31.5 31.4 31.1
Synthetic (2000) AUG-PE GPT-2-Large 25.7 25.8 25.5 25.1
Synthetic (3000) AUG-PE GPT-2-Large 26.8 26.8 26.3 25.7
Synthetic (5000) AUG-PE GPT-2-Large 28.2 27.8 27.3 26.1

Synthetic (2000) AUG-PE GPT-3.5 30.4 30.3 30.2 30.1

It is worth noting that the mechanism for Local DP (taking a sample as input) and the mechanism for DP (taking a dataset as
input) are not directly compatible. To establish a fair comparison between the Local DP in (Mattern et al., 2022b; Utpala
et al., 2023) and DP employed by AUG-PE, we leveraged the conversion methodology in Feldman et al. (2022) to convert
(ϵ0)-LDP mechanism to (ϵ, δ)-DP mechanism for ϵ≪ ϵ0, which requires shuffling the LDP outputs from each sample.

We use the code implementation provided by Feldman et al. (2022).14 Due to the constraint that ϵ ≪ ϵ0,15 the maximal
Local DP ϵ0 that can be used for a valid conversion on Yelp (with 1.9M private samples) is ϵ0 = 8.785, which corresponds
to DP ϵ = 1.10.

According to the Local DP guarantee in (Mattern et al., 2022b; Utpala et al., 2023), ϵ0 = 2 ∗ n_tokens ∗ (b2 −
b1)/temperature, where b2, b1 is the upper/lower bound for each token logit. We set b2 = 1 and b1 = 0 following
(Mattern et al., 2022b). With temperature = 2, ϵ0 = 8.785 only allows generating n_tokens = 8 tokens, which
significantly hurts the utility of generated texts. To generate n_tokens = 64 tokens for Yelp, one would need at least LDP
ϵ0 = 64 under temperature = 2, and LDP ϵ0 = 128 under temperature = 1, which far exceeds practical limits for
meaningful privacy guarantees. This contrasts with AUG-PE’s capability to generate over n_tokens = 1000 tokens while
maintaining high quality under tight DP budgets (e.g., ϵ = 1) in our experiments.

Furthermore, our attempt to directly evaluate Paraphraser (Mattern et al., 2022b) and DP Prompt (Utpala et al., 2023) was
hindered by several practical challenges.

1. Paraphraser: The dataset used for finetuning in Paraphraser is not publicly available, and the implementation details
necessary for replicating the exact privacy guarantees are absent.

2. DP Prompt does not specify the exact ϵ0 used in the paper, focusing instead on empirical privacy attack accuracy as a
proxy. The epsilon values are reported for all other baselines but not for Paraphraser and DP Prompt in Section 4.1

14https://github.com/apple/ml-shuffling-amplification
15https://github.com/apple/ml-shuffling-amplification/blob/993d285a546114bf8c70c33d053dca322a755707/

computeamplification.py#L160
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Table 33: Next word prediction accuracy of downstream BERTSmall model under ϵ =∞, 4, 2, 1 on PubMed. (i) Compared to
DP-FT-GENERATOR, AUG-PE with a strong LLM GPT-3.5 can achieve higher accuracy under DP with the same synthetic
data size. (ii) Compared to DP-FT-DOWNSTREAM, AUG-PE can also obtain higher accuracy under small privacy budget.

Data Type (Size) Method Data Generator ϵ =∞ ϵ = 4 ϵ = 2 ϵ = 1
Accuracy Accuracy Accuracy Accuracy

Original (75316) Fine-tune - 47.6 34.1 32.5 30.4
Original (2000) Fine-tune - 34.6 1.1 0.8 0.6

Synthetic (2000) DP-FT-GENERATOR GPT-2 32.4 29.7 29.4 29.2
Synthetic (3000) DP-FT-GENERATOR GPT-2 33.1 30.5 30.3 30.0
Synthetic (5000) DP-FT-GENERATOR GPT-2 34.3 31.4 31.2 30.9
Synthetic (2000) AUG-PE GPT-2 26.7 27.0 26.9 26.5
Synthetic (3000) AUG-PE GPT-2 27.7 27.6 27.6 27.3
Synthetic (5000) AUG-PE GPT-2 28.5 28.5 28.3 27.9

Synthetic (2000) DP-FT-GENERATOR GPT-2-Medium 33.1 30.2 30.0 29.8
Synthetic (3000) DP-FT-GENERATOR GPT-2-Medium 33.8 31.3 30.9 30.6
Synthetic (5000) DP-FT-GENERATOR GPT-2-Medium 35.2 32.1 32.1 31.7
Synthetic (2000) AUG-PE GPT-2-Medium 27.7 27.6 27.4 27.0
Synthetic (3000) AUG-PE GPT-2-Medium 28.5 28.5 28.3 27.7
Synthetic (5000) AUG-PE GPT-2-Medium 29.8 29.6 28.9 28.4

Synthetic (2000) DP-FT-GENERATOR GPT-2-Large 33.1 31.2 31.1 31.1
Synthetic (3000) DP-FT-GENERATOR GPT-2-Large 34.2 32.4 32.2 32.0
Synthetic (5000) DP-FT-GENERATOR GPT-2-Large 35.4 33.5 33.2 33.0
Synthetic (2000) AUG-PE GPT-2-Large 27.9 27.9 27.7 27.2
Synthetic (3000) AUG-PE GPT-2-Large 28.9 28.8 28.5 27.7
Synthetic (5000) AUG-PE GPT-2-Large 30.2 29.8 29.3 28.3

Synthetic (2000) AUG-PE GPT-3.5 32.7 32.5 32.5 32.4

of Utpala et al. (2023). Additionally, as mentioned in Section 4.3 of Utpala et al. (2023), models like ChatGPT do
not expose logits, so the authors do not perform a logit clipping operation in many of their experiments. This further
disables the computation of an exact ϵ0 and renders a direct quantitative comparison between DP Prompt and AUG-PE
infeasible.

C.12. AUG-PE Convergence under One Private Sample

In this section, we only use one private example in Alg. 1 to generate one synthetic sample. We qualitatively examine
if the synthetic sample from AUG-PE increasingly resembles this specific private sample over the PE iterations. This
offers a clearer illustration of AUG-PE’s convergence behavior. Specifically, at each iteration, we generate K variations
for the current synthetic sample, use the private sample to identify and vote for its nearest synthetic sample based on their
embeddings, and select the nearest synthetic sample for the next iteration. Tb. 36 and Tb. 37 show the generations results
from GPT-3.5 under one Yelp private sample and one OpenReview private sample, respectively.

As shown Tb. 36, after the voting, the selected synthetic sample relates to the term “taco”, a word present in the private
example. By the second iteration, the synthetic sample includes the term “Mexican food”, which aligns with the central
theme of the private example. By the fifth iteration, the phrase “authentic Mexican food” surfaces in the synthetic sample,
resonating with phrases like “real deal Mexican food” and “great authentic food” from the private example. This demonstrates
that the synthetic sample increasingly aligns with the private sample as the iterations progress.

In the OpenReview example presented in Tb. 36, we note that the initial synthetic sample at iteration 0 pertains to the privacy
aspects of machine learning, whereas the private sample focuses on adversarial detection and robustness. As the iterations
progress, by iteration 4, the topic of synthetic sample shifts to “inference attack in machine learning”, which aligns with the
robustness theme of the private sample. By the fifth iteration, terms like “Adversarial Attacks in Machine Learning” and
"Robustness-Enhancing" emerge in the synthetic sample, similar to the topic of “adversarial detection” from the private
sample. It shows that the synthetic sample shifts the topic from privacy to robustness over PE iterations, progressively
aligning more closely with the private sample.

The above two examples demonstrate that AUG-PE can converge, by producing diverse variations and effectively selecting
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Table 34: A qualitative comparison between AUG-PE and text-to-text privatization approaches.

Name Method Source of
Randomness

Sensitivity Control Privacy Guarantee

Madib (Feyisetan et al., 2020)
TEM (Carvalho et al., 2023)

Word embedding
perturbation

Word Embedding
Noise

N/A (metric distance
is included in privacy
definition)

Word-level metric-ϵd
DP where d is the
distance metric

Paraphraser (Mattern et al., 2022b)
DP Prompt (Utpala et al., 2023)

Paraphrasing with
temperature

Temperature in the
next token sampling
stage

Clipped logits of
each token

(Sample-level) ϵ
Local DP

AUG-PE (Ours) Private evolution Histogram noise Each private sample
only contributes one
vote in the histogram

(Dataset-level)
standard (ϵ, δ)-DP

Table 35: Randomly sampled synthetic data from Madib (Feyisetan et al., 2020) (word level metric-DP ϵ = 10) and AUG-PE
(DP ϵ = 1). AUG-PE with data generator GPT-3.5 yields higher quality texts.

Method Privacy
Guarantee

Yelp OpenReview PubMed

Madib Word level
metric-DP
ϵ = 10

i was born including raised he
hardwick create during combi-
nation school , tony jones was
in ’go to ’ place for the greatest
pizza ever . n’t do n’t live com-
pleted whitley rich and crazy
visit a preparing times a year
with weeks night cut 6 civil us
took to tony ’s work dinner bo-
gota of normal end my ’local ’
strangers , tried would suggest
instance visitors ? seen ’d was
yet to gone . . . (omitted)

. paper proposed bringing rein-
forcement buddhism based ap-
proach money automatically pre-
dictions graph augmentations
for a graph neural network
( gnn ) classification prob-
lem there few authors creates
taken label invariance ( data
augmentations that do protect
risks labels ) is part rich also
felonies problem dealt gnn part-
ner with. . . (omitted)

mandibular overdentures many
a selection treatment option for
placed edentulous diabetes only
long-term predictable outcomes
, using suspension loading facili-
tated cone currently , could early
well repatriation loading proto-
cols same mandibular implant
overdentures number prevalent
in in literature details a system-
atic review ,... (omitted)

AUG-PE (GPT-
3.5)

DP ϵ = 1 The fried chicken and the col-
lard greens were some of the
best Southern fare we’ve ever
had, not to mention the amazing
gumbo. We highly recommend
this restaurant if you’re in the
area and can’t wait to try some
of their other flavorful dishes.
Everything filled us up and left
us satisfied.

This paper presents an innova-
tive method of deep representa-
tional learning for facial expres-
sion recognition. The method is
evaluated on CIFAR-10 and Im-
ageNet datasets and it is compre-
hensive encompassing all facets
of saliency modeling to pro-
posed deep representational fea-
tures for representing multiple
saliencies. The paper is in a
well-structured and the methods
are clear. . . (omitted)

In this retrospective study, we
aimed to investigate the preva-
lence of stroke and identify the
factors associated with its oc-
currence. Data were extracted
from medical records, along
with symptoms, electrocardio-
grams (ECGs), and syncope in
a cohort of patients with a mean
age of 71 years. Of the total 345
patients, 28% had cardiac abnor-
malities as revealed by ECGs,
significantly higher than those
without [p<0.001].. (omitted)

ones that closely align with the private example.
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Table 36: Generation results from AUG-PE under one Yelp private sample. The synthetic sample generated from GPT-3.5 aligns more
closely with the training sample (Yelp review about Mexican food) over iterations. The text length of the synthetic sample is controlled
through our adaptive length mechanism. Keywords with semantic similarity to the private sample are highlighted .

Private Real deal Mexican food in Chadds Ford, PA. Excellent burritos, tacos, and tamales. I plan to be a regular. Meals served traditionally with sliced
radishes, pumpkin seeds and lime. Freshly prepared fillings, onion, cilantro, and red and green sauces. Brightly colored building across from
Bavarian Motors. Nothing fancy, but great authentic food.

iter 0 I recently visited this restaurant having heard that they had one of the best taco stands in town. I was not disappointed! The tacos were incredibly
delicious and tasted like they were made with fresh ingredients. The portions were generous, and the prices were extremely reasonable. The service
was excellent too, with the staff being attentive and accommodating. The ambience of the restaurant was also great, making it a perfect spot for a
casual night out. Overall, I had a fantastic experience and would definitely recommend this place to all those who love tacos. A definite 5-star
rating!

iter 1 Despite having heard that they had one of the best taco stands in town, I was not disappointed. The tacos were incredibly delicious and tasted like
they were made with fresh ingredients. The portions were generous, and the prices were reasonable. The staff was attentive and accommodating.
The ambience was great, making it a perfect spot for a casual night out. Overall, I had a fantastic experience and would highly recommend this
place to all those craving Mexican cuisine. A solid 5-star rating from me!

iter 2 Despite having heard that they had some of the best Mexican food in town, the crowded parking lot stands in contrast. However, that was not the
case. The food tasted authentic and fresh, with the guacamole and salsa being particularly noteworthy. The portions were generous, and the prices
were reasonable. The staff was attentive and accommodating. The ambience was great, making it a perfect spot for a date night or a family dinner.
Overall, I had a fantastic experience and would highly recommend this

iter 3 Many had heard that they had amazing Mexican food in town, but the crowded parking lot stands in contrast. However, once you step inside, the
experience is incredible. The food is authentic , and the guacamole and salsa being particularly noteworthy. Prices were as well quite reasonable.
The staff was attentive and accommodating. The ambiance was great, making it perfect for a date night or family dinner. I had a fantastic experience
and highly recommend the restaurant to anyone seeking quality Mexican cuisine.

iter 4 Many locals had heard that they had the best Mexican food in town and the hype stands in its truth. However, upon stepping into the experience,
it was incredible. The food was fresh, flavorful, and authentic with the guacamole and salsa being particularly noteworthy. The portions were
well-sized and satisfying. The staff was attentive and accommodating. The ambiance was cozy and intimate, making it perfect for a romantic night
out or casual dinner with friends. I had a great time and highly

iter 5 Many locals had raved about the best authentic Mexican food in town and they were not exaggerating. Walking in to the restaurant was
refreshing. The food was fresh, the guacamole and salsa were noteworthy. The margaritas were strong and satisfying. The staff were attentive and
accommodating. The ambiance was cozy and intimate, making it perfect for a romantic dinner with loved ones. The prices were great and the
portions were generous. The fajitas were sizzling and the tacos were packed with flavor. Overall, this

iter 6 Many locals have raved about the best authentic Mexican food in town and they were not exaggerating. Walking in the restaurant was refreshing.
The decor was colorful, lively and festive. The margarita was perfectly balanced and satisfying. The waiter was attentive and accommodating. The
ambiance was cozy and intimate, making it perfect for a romantic dinner. The chips and salsa were packed with flavor. Overall, the food was great
and the portions were generous. The fajitas were sizzling and the chicken was tender. The guacam

iter 7 Many locals consistently rave about the amazing authentic Mexican cuisine and we were not disappointed. The flavors were refreshing, the decor
colorful and lively, and the margaritas satisfying. The waiter was attentive and accommodating. The outdoor seating was perfect for a romantic
dinner and the chips and salsa were packed with flavor. Overall, the food was top-notch and the portions were generous. The chicken enchiladas
and guacamole were particularly noteworthy. It was a great experience and we highly recommend this restaurant to anyone looking for a delicious
meal and a

iter 8 Many foodies rave about the amazing authentic Mexican cuisine and they were not wrong. The flavors were richly robust, colorful and enticing,
and the margaritas were top-notch. The enchiladas and guacamole were particularly outstanding. The service was attentive and accommodating
and the outdoor seating was perfect for a leisurely dinner and people-watching. From the chips and salsa to the flavorful entrees, the food was
superb with generous portions. The menu offers a large selection of delectable options which makes it easy to recommend to anyone looking for a
satisfying meal

iter 9 Many foodies have raved about the amazing authentic Mexican cuisine. The flavors were bold and delicious. The tacos were rich and flavorful,
with enticing toppings and freshly made guacamole. The service was attentive and accommodating, and the outdoor seating was perfect for a
warm summer evening. From the crispy chips and flavorful salsa to the perfectly spiced dishes, the food was generous and satisfying. The menu
offers a large selection of vegetarian and meat options which makes it easy to please anyone’s taste buds. Overall, the experience was excellent
and highly recommended for people looking for an authentic Mexican dining experience.
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Table 37: Generation results from AUG-PE under one OpenReview private sample. The topic (highlighted) of the generated sample
changes from “privacy in machine learning” (iter 0) to “adversarial robustness” (iter 6), which is more closer to “adversarial detection”
topic in the private sample. This shows that the synthetic sample generated from GPT-3.5 aligns more closely with the training sample
over iterations. The text length of the synthetic sample is controlled through our adaptive length mechanism.

Private The authors propose a new statistic, called Expected Perturbation Score (EPS), for adversarial detection. Based on EPS, the authors develop a
Maximum Mean Difference (MMD) metric to measure the difference between test samples and natural samples, and further propose an EPS-based
adversarial detection method (EPS-AD). Sufficient theoretical analysis and extensive experiments demonstrate the correctness and effectiveness
of the proposed method. Strength: 1. This paper is easy to read. 2. The authors propose a new statistical method, called Expected Perturbation
Score (EPS), which is able to obtain enough information to identify adversarial examples with only one example after various perturbations. 3.
Sufficient theoretical analysis is performed to demonstrate that EPS is able to simulate the difference between the two distributions under mild
conditions. Furthermore, extensive experimental results demonstrate the superiority of the proposed EPS-AD. 4. The proposed EPS will be an
effective statistic in many applications, such as out-of-distribution detection and anomaly detection. Weaknesses: This paper is easy to read and
interesting but still has some minor issues, please refer to weaknesses.

iter 0 Review Example: Overall, this paper provides a comprehensive discussion on privacy issues related to machine learning applications. The authors
discuss the concept of differential privacy as a potential solution to protect individual privacy while still maintaining the accuracy of the model.
They also provide examples of implementation and evaluation of privacy-preserving techniques using real-world datasets. Strengths: - The paper
provides a thorough explanation of differential privacy and how it can be utilized in various machine learning techniques. - The use of real-world
datasets to demonstrate implementation and evaluation of privacy techniques adds credibility to the work. - The paper highlights the importance
of privacy in machine learning and provides readers with potential solutions to protect individual privacy. Weaknesses: - More evaluation of
the privacy techniques could be provided to better understand their effectiveness. - The paper focuses primarily on differential privacy and does
not explore other privacy-preserving techniques. - The practical implementation of the techniques may be complex for those without a strong
understanding of machine learning and data analysis. In summary, this paper is a strong contribution to the area of social aspects of machine
learning, specifically in the field of privacy. It analyzes the concept of differential privacy, its implementation, and evaluation to protect individual
privacy in machine learning models. Despite some limitations, the paper contributes significantly to the field and is recommended for acceptance.

iter 1 In their paper ’Privacy in Machine Learning: An Overview’, the authors provide a comprehensive discussion on privacy issues in machine learning.
The authors discuss the concept of differential privacy as a potential solution for individual privacy while maintaining the utility of the data. They
also provide examples and analysis of privacy-preserving techniques on real-world datasets such as the Stanford and MNIST datasets. The thorough
explanation of differential privacy and how it can be utilized in various machine learning techniques adds credibility to the paper. The paper
highlights the importance of privacy in machine learning and provides a potential solution to individual privacy. Weaknesses: More evaluation of
the privacy techniques could be provided to better understand their effectiveness. The paper primarily focuses on differential privacy and does
not explore other privacy-preserving techniques. The technical implementation of the techniques may be difficult for those without a strong
understanding of machine learning and statistical analysis. Overall, this paper contributes significantly to the area of social aspects of machine
learning, and it is recommended for acceptance as a good paper.

iter 2 In this paper, titled ’Policy Machine Learning: An Overview of the Discussion on Privacy Issues in Machine Learning’, the authors discuss
privacy as a potential concern for individual privacy while maintaining the integrity of the data. They also provide examples of privacy-preserving
techniques on real-world data from Stanford and MNIST. The thorough exploration of differential privacy can be utilized effectively which adds
credibility to the paper. The paper emphasizes the importance of privacy in machine learning and provides a valuable contribution to the field.
Weaknesses include the evaluation of techniques to be used to assess their effectiveness. The paper focuses on privacy issues and does not explore
fairness-preserving methods. With its contribution to the social aspects of machine learning and statistical analysis, the paper is recommended with
a rating of 8 as a good paper.

iter 3 In their research paper, Inference Attack Policy Machine Learning: An Interpretable and Almost True Framework for Predictive Analytics, the
authors highlight potential concerns for individual privacy while discussing the importance of privacy in machine learning. They also provide
examples of how sensitive data from ImageNet and MNIST datasets can be utilized effectively while ensuring thorough differential privacy which
adds credibility to the paper. The research emphasizes the importance of interpretability in machine learning, making a valuable contribution to the
field of social aspects of machine learning. We recommend including case studies of how interpretability can be used to assess their effectiveness.
The paper also outlines how it does not explore fairness and ethics methods. With this contribution to the field of machine learning and statistical
modeling, the authors provide a valuable framework for policy inference attack in machine learning.

iter 4 In their research paper, ’ Inference Attacks in Machine Learning: An Interpretability and Almost Interpretability Framework and its Application to
Privacy and Analytics’, the authors highlight the need for protecting sensitive data in machine learning. They provide examples of sensitive data
from ImageNet and NIST datasets, emphasizing the importance of being thorough in privacy protection to ensure credibility to their research. The
paper stresses the importance of interpretability in machine learning. By making a valuable contribution to this field, it provides case studies of how
interpretability can be used to assess the effectiveness of machine learning models. The paper outlines various approaches to exploring fairness,
transparency, and ethics in machine learning. The results of the study contribute to the need for a comprehensive policy to prevent inference attacks
in machine learning.

iter 5 In our research paper, entitled ’Adversarial Attacks in Machine Learning: An Interpretability-Almost-Explainability Framework and its Application
to Private Data Analysis’, the authors emphasize the need for protecting sensitive data in machine learning. They provide examples by using
data from Inet and MNIST dataset, and address the importance of privacy to ensure the credibility of the results. The paper is well-written
and well-structured, making a valuable contribution to the field. Additionally, it highlights the importance of interpretability to enhance the
effectiveness of machine learning models. The paper also focuses on fairness, transparency, and ethics in machine learning and the study presents a
comprehensive analysis in adversarial attacks. We highly recommend accepting this good paper.

iter 6 In our research paper titled ’Adversarial Attacks in Machine Learning: An Interpretable and Robustness-Enhancing Framework and Empirical
Data Analysis’, the authors emphasize the significance of interpretability in machine learning. They provide a comprehensive approach using
Integrated Gradients and M-Taylor expansions, to address the challenges and ensure the robustness of results. The paper is well-written, making
valuable contributions to the field, and emphasizes the importance of interpretability to enhance the effectiveness of machine learning. Moreover,
the study presents a comprehensive approach in defending against adversarial attacks. Therefore, I recommend accepting this good paper.
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