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ABSTRACT

This paper studies how to assess the generalization ability of classification models
on out-of-distribution test sets without relying on test ground truths. Existing works
usually compute an unsupervised indicator of a certain model property, such as
confidence and invariance, which is correlated with out-of-distribution accuracy.
However, these indicators are generally computed based on a single test sample
in isolation (and subsequently averaged over the test set), and thus are subject to
spurious model responses, such as excessively high or low confidence. To address
this issue, we propose to integrate model responses of neighboring test samples
into the correctness indicator of the every test sample. Intuitively, if a model
consistently demonstrates high correctness scores for nearby samples, it becomes
more likely that the target sample will also be correctly predicted, and vice versa.
This score is finally averaged across all test samples to indicate model accuracy
holistically. This strategy is developed under the vicinal risk formulation, and,
since its computation does not rely on labels, is called vicinal risk proxy (VRP).
We show that VRP methodologically can be applied to existing generalization
indicators such as average confidence and effective invariance and experimentally
brings consistent improvements to these baselines. That is, stronger correlation
with model accuracy is observed, especially on severe out-of-distribution test sets.

1 INTRODUCTION

Because of the ubiquitous existence of distributional shifts in real-world systems, it is important
to evaluate the generalization capacity of trained models on out-of-distribution (OOD) test data.
In practical OOD scenarios, because obtaining test ground truths is expensive, model evaluation
techniques that do not rely on test labeled are attracting increasing attention.

For this problem, unsupervised risk measurements are introduced that capture useful model properties,
such as confidence and invariance. These measurements serve as indicators of a model’s generalization
ability. Importantly, for a sample of interest without ground-truth, these methods compute a risk
proxy merely using this sample alone. For example, Hendrycks and Gimpel (2017) use the maximum
Softmax value of a test sample itself as its confidence score, and show that once averaged over the
OOD test set, it serves as a reliable indicator. The Effective Invariance score (Deng et al., 2022) is
computed as the prediction consistency between this sample and its transformed version (e.g., rotation
and grey-scale). Because these indicators measure model properties that underpin its generalization
ability, they generally exhibit fair correlation with the model’s out-of-distribution accuracy.

However, we find this isolated way of measuring model effectiveness for a sample of interest suffers
from spurious model responses. In Fig. 1, we show two examples where an incorrect prediction
on a test sample may have a much higher confidence score than a correct prediction. In other
words, a high (resp. low) confidence or invariance score sometimes does not mean a correct (resp.
incorrect) prediction. These erroneous scores, once accumulated in the test set, would compromise
the effectiveness of risk measurements.

To address this problem, when computing the risk proxy for a test sample, we propose to integrate
into its risk proxy the model behaviour on its adjacent samples, where such integration is performed
using the vicinal distribution for the test sample (Fig. 1). Intuitively, if neighboring samples generally
exhibit high risks (e.g., low confidence), the center sample with excessively low risk will be assigned
an increased risk score, and vice versa. Here, the contribution of each neighboring sample to the
center sample is proportional to their similarity. This strategy allows model responses (risk proxy
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Figure 1: Examples of spurious model responses and an intuitive illustration how our method
corrects them. Here we use confidence as model generalization indicator and aim to improve it.
x1 and x2, from ImageNet-R (Hendrycks et al., 2021a), are classified correctly and incorrectly,
respectively. However, their confidence scores are excessively high (0.991) and excessively low
(0.139), respectively, indicating spuriousness. More reasonable scores (0.431 and 0.816) are given by
the proposed vicinal method, which is a similarity weighted sum of confidence. For example, the
vicinal score of x1 is computed as: 0.431 = 0.653×0.207+0.766×0.217+0.815×0.721+0.785×0.525

0.653+0.766+0.815+0.785 .

score) to better indicate prediction correctness for the test sample, as shown in Fig. 2 (b) and (d). To
indicate the overall generalization ability of models, we further compute the vicinal risk proxy (VRP)
as the average individual vicinal score over the entire test set.

Another advantage of this vicinal assessment scheme is that it can be applied on top of various risk
proxies based on individual test samples, including confidence, invariance and their variants. Our
experiments show that VRP brings consistent improvements to them: stronger correlation between
risk proxies rectified by VRP and model OOD accuracy over 200 different classifiers is generally
observed on 9 benchmarks. In summary, this paper has the following main points.

• We examine existing methods in OOD generalization assessment in the lens of risk estimation.

• We propose to integrate vicinal distribution of a sample into its risk estimate, to inhibit spurious
model responses.

• The proposed vicinal risk proxy (VPR), when applied to existing risk proxies, brings consistent
improvement: stronger correlation is observed between vicinal proxies and model OOD accuracy.

2 RELATED WORK

Data-centric model generalization assessment aims to predict the accuracy of a given model on
various unlabeled test sets. Average model confidence (Hendrycks and Gimpel, 2017; Tu et al.,
2023) on the testing samples is a simple and useful indicator of model accuracy. Guillory et al.
(2021) propose using the confidence discrepancy between the validation and test sets to correct the
confidence-based accuracy. Deng et al. (2021) tackle this challenge by comparing models based on
their accuracy in self-supervised tasks. Garg et al. (2022) predict accuracy by using the percentage of
testing samples exceeding a threshold learned from a validation set in the source domain. In addition
to confidence, domain shift can also be used as a cue to predict model accuracy on the target set
(Guillory et al., 2021; Deng and Zheng, 2021). This paper does not focus on this setup and only
provides some results in the supplementary materials.

Model-centric generalization assessment. Some works focus on in-distribution generalization
(Garg et al., 2021; Jiang et al., 2021; Negrea et al., 2020; Zhou et al., 2020). This paper instead
studies OOD generalization. In this problem, we train a variety of models on a training set and
predict and compare their performance on an unlabeled out-of-distribution test set. Deng et al.
(2022) propose effective invariance (EI) to measure the consistency between model predictions on the
original image and its transformed versions. It is also feasible to use data-centric indicators such as
average confidence (Hendrycks and Gimpel, 2017; Tu et al., 2023). However, we find these methods
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Figure 2: Examples how vicinal risks of individual samples better separate models making
a correct/incorrect prediction. We use a single test sample from ImageNet-R and 140 models
trained on the ImageNet training set. From (a) to (d), we use confidence (Tu et al., 2023; Hendrycks
and Gimpel, 2017), confidence + our method, EI (Deng et al., 2022), and EI+our method, as risk
estimate, respectively, and draw its distribution across the 140 models. Because confidence and EI
leverage the sample in isolation, we observe spurious model responses: in (a) and (c) many models
making incorrect predictions may give excessively high confidence/EI, while many making correct
predictions give unexpectedly low confidence/EI. In (b) and (d), our method effectively rectifies
the erroneous risk estimates, so that risk estimates of the individual sample better separate good
models from poor ones. As such, the vicinal risk proxy averaged over the entire OOD test set is more
indicative of model accuracy. More examples are shown in the supplementary material.

sometimes give excessively high (low) scores to incorrect (correct) samples, which compromise
performance assessment; we show this problem can be alleviated by the proposed method.

Vicinal risk was originally introduced in the vicinal risk minimization (VRM) principle (Chapelle
et al., 2000). In VRM, each training sample defines a vicinal distribution, and accordingly, model
risk is evaluated based on these distributions instead of individual training samples. VRM is widely
reflected in data augmentation methods (Chapelle et al., 2000; Cao and Rockett, 2015; Ni and Rockett,
2015; Zhang et al., 2017; Yun et al., 2019; Qin et al., 2020; Kim et al., 2020). For example, MixUp
(Zhang et al., 2017) generates samples from vicinal distributions by mixing two images and their
corresponding labels with random mixing weights. Other examples are CutMix (Yun et al., 2019),
ResizeMix (Qin et al., 2020), and PuzzleMix (Kim et al., 2020). While these methods reflect vicinal
risks on labeled training data, we apply this idea to unlabeled test data. Our strategy smooths out
spurious proxy scores and allows for better approximation to model OOD accuracy.

3 PRELIMINARIES

3.1 RISK AND ACCURACY IN SUPERVISED EVALUATION

We consider a model f belonging to a class of models F and a target distribution P (x, y). Model
risk can be formulated as the expectation of a given loss function ℓ(f(x), y) on the distribution P :

R(f) =

∫
ℓ(f(x), y)dP (x, y). (1)

In practice, since distribution P (x, y) is unknown, Eq. 1 cannot be directly computed. Standard prac-
tice thus approximates the test risk by replacing P (x, y) with an empirical distribution Pemp(x, y),
formed by assembling Dirac delta functions (Dirac, 1981) centered at each sample in a given test set
D := {(xi, yi)}ni=1:

dPemp(x, y) =
1

n

n∑
i=1

δxi
(x) · δyi

(y). (2)

Substituting Eq. 2 into Eq. 1, the empirical risk under empirical target distribution Pemp becomes:

Remp(f) =
1

n

n∑
i=1

ℓ(f(xi), yi). (3)

By convention, accuracy can be viewed as a type of empirical risk with the accuracy loss:

ℓacc =

{
0, if ŷ = y

1, if ŷ ̸= y
,
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where ŷ is the predicted class with maximum (Softmax) confidence in f(x).

3.2 VICINAL RISK MINIMIZATION

In training, the risk (loss values) of individual training samples may not fairly reflect the true
generalization ability of a model on this sample. That is, the model may trivially minimize Remp(f)
in Eq. 3 by mere memorization of the samples (Zhang et al., 2017; 2021) rather than learn effective
patterns. To address this problem, vicinal risk minimization (Chapelle et al., 2000) suggests to
replace the Dirac delta function δxi

(x) and δyi
(y) in Eq. 2 by some density estimates of the vicinity

of point (xi, yi):

dPv(x, y) =
1

n

n∑
i=1

dv(x, y|xi, yi), (4)

where dv(x, y|xi, yi) is the vicinal density function describing the probability of finding point (x, y)
in the vicinity of (xi, yi), and Pv is a mixture distribution of n vicinal distributions v. The expectation
of the vicinal risk of model f is now the mean of risk expectation in each vicinal distribution v:

Rv(f) =

∫
ℓ(f(x), y)dPv(x, y) =

1

n

n∑
i=1

∫
ℓ(f(x), yi)dv(x, y|xi, yi). (5)

The uniform vicinal distribution (Chapelle et al., 2000), Gaussian vicinal distribution (Chapelle
et al., 2000) and mixup vicinal distribution (Zhang et al., 2017) are well-known vicinity in the risk
minimization task (Zhang et al., 2018). The success of vinical risk minimization in model training
(Chapelle et al., 2000; Cao and Rockett, 2015; Ni and Rockett, 2015; Hai-Yan and Hua, 2010; Dong
et al., 2022; Zhang et al., 2017) demonstrates the effectiveness of this idea, which inspires us to
enhance the risk estimation in the unsupervised evaluation problem.

4 PROPOSED METHOD

4.1 FROM RISK TO RISK PROXY IN UNSUPERVISED EVALUATION

In unsupervised evaluation, it is infeasible to use ℓacc defined in Eq. 3 because of the absence of
ground-truths. To still be able to indicate model risk, existing methods typically design a proxy loss ℓ̂
and compute its expectation on the unlabeled distribution P (x):

R̂(f) =

∫
ℓ̂(f,x, φ)dP (x), (6)

where R̂(f) is defined as risk proxy. ℓ̂, usually reflecting crucial model properties (e.g., confidence
and invariance), is computed based on the response of model f to input x, and additional knowledge
φ of the model. In average confidence (Tu et al., 2023) and EI (Deng et al., 2022), ℓ̂ takes the
confidence of x or its transformation, so φ = ∅. In DoC (Guillory et al., 2021), φ means model
accuracy and average confidence evaluated on a validation set. In ATC (Garg et al., 2022), φ is a
model-specific confidence threshold learned from a validation set.

In practice, on a test set with n test samples, R̂(f) is approximated by the empirical risk proxy:

̂Remp(f) =
1

n

n∑
i=1

ℓ̂(f,xi, φ). (7)

4.2 PROPOSED VICINAL RISK PROXY

Issues of empirical risk proxies. Existing methods in unsupervised evaluation assume that the
designed risk proxy R̂(f) well correlates with model generalization on the target OOD distribution.
However, this assumption can be tenuous when we zoom in individual samples. As depicted in Fig. 2
(a-b), many models correctly classifying a sample have unexpected low confidence/invariance scores,
and many incorrectly model predictions have excessively high confidence/invariance scores. The
presence of such spurious model responses in individual samples introduces noise to the empirical
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risk proxy defined in Eq. 7, rendering it less effective in assessing model generalization capabilities.
Note that a dual problem that exists in training is described in Section 3.2.

Solution. Given an unlabeled test set D := {(xi)}ni=1, we propose to compute the vicinal risk proxy
on D as an unsupervised indicator of the accuracy of model f on this test set. We first define vicinal
distribution µ for each test sample xi below:

µ(x, y|f,xi). (8)

The probability density function for µ in this paper is defined as:

dµ(x, y|f,xi) =

{
s(f(xt), f(xt

i)), if y = ŷti
0, if y ̸= ŷti

, (9)

where xt is a transformed view of x, and ŷti is the predicted class of xt
i. There are different choices of

image transformations in practice and we empirically choose rotation. s(·, ·) computes the similarity
between the outputs given by model f , where we empirically compute the dot product between the
Softmax vectors. Intuitively, µ is the probability distribution of finding pair (x, y) in the vicinity of
xi, and dµ is its probability density function. Integrating such vicinal assessment into the point-wise
empirical risk proxy, Eq. 7 can be updated as the vicinal risk proxy:

R̂v(f) =
1

n

n∑
i=1

∫
ℓ̂(f,x, φ)dµ(x, y|f,xi). (10)

Essentially, instead of merely using xi itself for risk estimation, we also use its neighboring samples.
A sample with higher similarity with xi contributes more to the risk. We find that spurious model
responses on xi can be effectively inhibited by its vicinal risks. For example, in Fig. 2(c-d), for a test
sample, models making correct and incorrect predictions are better separated. Quantitative analysis
will be provided in Section 5.

In practice, we approximate the expectation of ℓ̂ within the i-th distribution µ as:

ℓ̂(f,x, φ) =

∑m
j=1 ℓ̂(f,xj , φ)dµ(xj , ŷj |f,xi)∑m

j=1 dµ(xj , ŷj |f,xi)
, (11)

where ŷj is the predicted class of xj in D, and m is the number of samples in a vicinal distribution.
Intuitively, Eq. 11 gives an empirical estimation of the risk proxy considering the vicinal distribution
of xi and the probability density defined in Eq. 9 for each vicinal sample.

For individual samples, the vicinal score allows correct and incorrect model predictions to be better
separated (refer Fig. 2 for an example). Collectively on the test set, models making more correct
predictions (higher accuracy) will receive higher vicinal scores than models make less correct
prediction (lower accuracy). An illustrative derivation is presented in the supplementary material.

4.3 APPLY VICINAL RISK PROXY TO EXISTING RISK PROXIES.

In Eq. 6 and Eq. 7 of Section 4.1, we show that some existing approaches in unsupervised evaluation
can be seen as unsupervised proxies for the empirical risk on the test set. Moreover, Eq. 10 means that
the proposed vicinal risk proxy marries existing risk proxies with vicinal distribution. In other words,
the idea of considering vicinal samples can be applied to various proxy loss functions ℓ̂. For example,
when ℓ̂ is sample confidence, or equivalently, ̂Remp(f) is the test average confidence (Tu et al., 2023;
Hendrycks and Gimpel, 2017) computed empirically, also called empirical risk proxy (ERP). R̂v(f)
is the the vicinal average confidence under our vicinal assessment, so is called vicinal risk proxy
(VRP). By default, we search for neighboring samples for each vicinal distribution throughout the
entire dataset. Samples with similarities greater than 0 are used to approximate the VRP score in Eq.
11. for this vicinity of interet.

4.4 DISCUSSIONS

Why are there spurious model responses? One possible reason for excessively high confidence
for incorrect predictions is the over-confidence problem (Guo et al., 2017). This problem, when
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happening in in-distribution (IND) test sets, can be rectified by model calibration, but there still lack
adaptive solutions to different OOD datasets. As for excessively low confidence for correct OOD
prediction, we are yet to find a convincing solution, and it would be an interesting problem to study
in the future.

Effectiveness of vicinal assessment under in-distribution test sets. For IND data, models generally
have good behaviours, so the effectiveness of vicinal assessment may be limited, but applying it does
not compromise the system (partially demonstrated in Table 1). On OOD data, on the other hand,
vinical assessment will be very useful as model responses are much less indicative of its correctness.

Vicinal assessment for data-centric unsupervised evaluation. When we assume fixed classifier
and training data and vary the test data (Deng et al., 2021; Garg et al., 2022), technically vicinal
assessment can still be applied. However, because it is designed to differentiate models (see Fig.
2) rather than differentiate test sets, it does not give noticeable improvement under the data-centric
setup, shown in our supplementary material.

5 EXPERIMENTS

5.1 DATASETS AND EVALUATION METRICS

ImageNet-1k setup. 1. Model. We use 140 models that have been trained or fine-tuned using
the ImageNet-1k (Deng et al., 2009) training set. We source these models from the models
zoo Timm (Wightman, 2019). As suggested by Deng et al. (2022), these models exhibit a di-
verse range of architectures, training strategies, and pre-training settings. 2. Data. (1) ImageNet-
A(dversarial) (Hendrycks et al., 2021b) comprises natural adversarial examples that are unmodified
and occur in the real-world. (2) ImageNet-S(ketch) (Wang et al., 2019) contains images with a
sketch-like style. (3) ImageNet-R(endition) (Hendrycks et al., 2021a) comprises of 30,000 images
that exhibit diverse styles. (4) ImageNet-Blur (Hendrycks and Dietterich, 2019) was produced by
applying a Gaussian function to blur the images from ImageNet-Val. We use blur with highest
severity. (5) ObjectNet (Barbu et al., 2019) is a real-world set for object recognition with control
where object backgrounds, rotations, and imaging viewpoints are random. (6) ImageNet-V2 (Recht
et al., 2019) is a reproduced ImageNet dataset, whose distribution is similar to the ImageNet dataset.

CIFAR10 setup. 1. Model. We use 101 models in this set sup. We follow the practice in (Deng et al.,
2022) to access model weights. 2. Data. (1) CINIC-10 (Darlow et al., 2018) is a fusion of CIFAR-10
and ImageNet-C (Hendrycks and Dietterich, 2019) image classification datasets. It contains the
same 10 classes as CIFAR-10. (2) CIFAR-10.1 (Recht et al., 2018)is produced with almost the same
distribution as CIFAR-10.

iWildCam setup. 1. Model. We use 35 models trained on the iWildCam(Beery et al., 2020) training
set. 2. Data. iWildCam-OOD test set contains animal pictures captured by camera traps in the wild.

Evaluation metrics. We use the same evaluation metrics as (Deng et al., 2022), i.e., Pearson’s Corre-
lation coefficient (γ) (Cohen et al., 2009) and Spearman’s Rank Correlation coefficient (ρ) (Kendall,
1948). They assess the degree of linearity and monotonicity between risk proxies and OOD accuracy,
respectively. The values of both coefficients fall between -1 and 1. A coefficient being close to -1
or 1 indicates a robust negative or positive correlation. Conversely, a value of 0 denotes no correla-
tion (Cohen et al., 2009). Following (Deng et al., 2022), we use top-1 classification accuracy as a
metric to measure model generalization.

5.2 EXISTING RISK PROXIES AS BASELINES

We evaluate the effectiveness of vicinal assessment in enhancing the following risk proxies in
unsupervised generalization prediction. 1) Average Confidence (AC) (Tu et al., 2023; Hendrycks and
Gimpel, 2017). The mean of the softmax confidence for each samples on the test set. 2) Effective
Insurance (EI) (Deng et al., 2022) is the multiplication between the confidence of the image and
a different view of it (e.g., rotation) if the predicted class of them is the same. Otherwise, it is
equal to zero for this sample. 3) Consistency Invariance (CI) (Aithal et al., 2021) is the predicted
probability of the transformed view affecting the predicted class of the original image. 4) Difference of
Confidence (DoC) (Guillory et al., 2021) is obtained by using the accuracy on the held-out validation
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Figure 3: Comparing existing risk estimates and their vicinal improvements. We first estimate
the distributions of risk estimate scores for correct and incorrect model predictions (140 in total) for
each test sample. Then, the overlap of the two distributions for each sample is computed and finally
averaged over the entire test set. All models are trained on ImageNet. In each figure, we use four test
sets, ImageNet-A (A), ImageNet-R (R), ImageNet-S (S), and ObjectNet (O). From (a) to (e), EI, AC,
CI, DoC, and ATC are used as baselines, respectively. a smaller value indicates lower overlap or
higher separability. We clearly observe that vicinal risk scores statistically better differentiate models
making correct and incorrect predictions by better separating their scores.

set to subtract the gap between the AC on the validation set and the AC on the test set. 5) Average
Thresholded Confidence (ATC) (Garg et al., 2022) quantifies the proportion of samples that have a
softmax confidence score exceeding the threshold learned from the validation set.

5.3 MAIN OBSERVATIONS

Statistically, vicinal risk scores better differentiate correct and incorrect model predictions.
Apart from the example shown in Fig. 2, we further provide statistical evidence of the working
mechanism of our method. Specifically, we employ the Gaussian kernel density estimation (KDE) to
estimate the distributions of proxy scores of models that make correct and incorrect predictions for
each sample. Then, we use numerical integration to calculate the their overlap, known as the overlap
coefficient. In Fig. 3, we present the average coefficient across each test set. Results demonstrate
that vicinal assessment has lower overlap coefficient than the baseline proxies, making it easier to
differentiate between correct and incorrect predictions at the individual sample level.

Vicinal assessment consistently improves existing risk proxies on OOD test sets. In Table 1, we
compare five existing risk proxies and their vicinal versions on OOD test sets. Each experiment
is repeated three times to show statistical significance. We observe a consistent improvement in
the strength of correlation between accuracy and risk proxy. For example, on ImageNet-A, vicinal
assessment brings about 4.8%, 3.9%, 10.5%, 3.6%, and 4.5% improvement in the Spearman’s
coefficient over EI, AC, CI, DoC, and ATC, respectively. These results indicate the effectiveness of
the proposed method. The improvements can be illustrated by two examples in Fig, 4, where the
ranks of the majority models have been adjusted to be closer to the actual rank.

Vicinal assessment is neither beneficial nor detrimental on near-OOD test sets. When test data
are near OOD or even IND, the use of vicinal assessment does not have noticeable performance
improvement or compromise. For example, on ImageNet-V2, we observe slight improvement for EI,
CI, DoC and ATC, and slight decrease for AC. On the CIFAR10.1 test set, similar observations are
made. Further given its effectiveness in OOD scenarios, this allows for safe deployment of vicinal
assessment in practice.

5.4 FURTHER ANALYSIS OF VICINAL RISK PROXY

Comparing different similarity measurements in Eq. 9. Dot product is used in Eq. 9 to compute
similarity between a sample of interest and a sample in its vicinity. Here, we compare it with other
options including random value (giving random similarity values), equal similarity (i.e., uniform
vicinal distribution (Chapelle et al., 2000)), and the Gaussian kernel function (i.e., Gaussian vicinal
distribution (Chapelle et al., 2000)). Results of ranking the 140 models on ImageNet-A are summa-
rized in Table 2. We find that dot product generally has similar performance with Gaussian similarity,
and both are much better than random similarity and equal similarity. It illustrates the benefit of
letting closer sample to contribute more to the score of the sample of interest.
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Table 1: Comparing vicinal risk proxies (VRP) and empirical risk proxies (ERP) on various test sets.
For each test set, results in the first row is from ERP and the second is VRP. γ and ρ represent the
Pearson’s coefficient and the Spearman’s correlation coefficient, respectively. ♣ means near IND test
sets. The notations ↑ (↓) on our score means the correlation coefficient of VRP is higher (lower) than
that of ERP with statistical significance (p-value < 0.05) based on the two-sample t-test. Otherwise,
their difference is not statistical significant.

Train Test EI AC CI DoC ATC

γ ρ γ ρ γ ρ γ ρ γ ρ

ImageNet

ImageNet-A 0.882 0.645 0.581 0.464 0.856 0.617 0.877 0.761 0.851 0.436
0.900↑ 0.692↑ 0.624 ↑ 0.503 ↑ 0.905 ↑ 0.722 ↑ 0.908 ↑ 0.797 ↑ 0.866 ↑ 0.481 ↑

ImageNet-R 0.914 0.814 0.736 0.625 0.873 0.729 0.898 0.862 0.937 0.887
0.956↑ 0.931↑ 0.818↑ 0.736↑ 0.931↑ 0.854↑ 0.905↑ 0.894↑ 0.967↑ 0.946↑

ImageNet-S 0.893 0.853 0.742 0.711 0.868 0.820 0.911 0.919 0.948 0.915
0.920↑ 0.871↑ 0.763↑ 0.728↑ 0.878↑ 0.840↑ 0.926↑ 0.931↑ 0.954↑ 0.953↑

ObjectNet 0.961 0.949 0.788 0.777 0.958 0.946 0.819 0.834 0.841 0.860
0.975↑ 0.972↑ 0.838↑ 0.814↑ 0.969↑ 0.962↑ 0.849↑ 0.868↑ 0.857↑ 0.876↑

ImageNet-Blur 0.870 0.831 0.711 0.730 0.824 0.793 0.781 0.776 0.882 0.867
0.907↑ 0.857↑ 0.737↑ 0.741↑ 0.829↑ 0.802↑ 0.821↑ 0.821↑ 0.912↑ 0.890↑

ImageNet-V2♣ 0.889 0.884 0.609 0.501 0.882 0.870 0.982 0.979 0.993 0.990
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0.883 0.886↓ 0.982 0.972 0.813↑ 0.855↑ 0.992 0.985 0.991 0.982

iWildCam iWildCam-OOD 0.337 0.362 0.635 0.445 0.268 0.258 0.547 0.532 0.509 0.526
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Figure 4: Correlation between Effective Invariance (EI) and accuracy. In each figure, every dot
represents a model, and straight lines are fitted using a robust linear fit. A blue dots represent the
rectified score (VRP score) of this models brings its rank closer to the actual accuracy rank. On
the other hand, the rank of red models deviates further from the real accuracy when using the VRP
paradigm. The rank of black models remains unchanged. ρ and γ have the same meaning as those
in Table 1 The shaded region in each figure represents a 95% confidence region for the linear fit,
calculated from 1,000 bootstrap samples. We observe that the VRP paradigm can effectively rectify
the proxy score for the majority of models in both the ImageNet-R and ObjectNet datasets.

Comparing different image transformations. In Eq. 9, we define the probability density function
for vicinal distribution using transformed images. Here we compare the effectiveness of different
transformations, and results on ImageNet-A are presented in Table 2. We find that there is no
significant performance difference between rotation, gray-scale transformation and color jitters.

Impact of the number of neighbors. The number of neighbors m is an important hyper-parameter
used in Eq. 11. To evaluate system sensitivity to m, we experiment with ImageNet-R as OOD test set
and five baseline risk proxies setting m = 25, 50, 75, 100, 125, 1501. We repeated each experiment
three times and reported the mean and standard deviation. From Fig. 5 we have two observations.

1Because of the limited size of ImageNet-R, 150 is the maximum value we can set m to.
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Table 2: Comparison of variants of vicinal risk proxy. (Top): various similarity metrics that can be
used in Eq. 9. (Bottom): various image transformations that can be used in Eq. 9. Bold numbers
denote the best one across compared settings.

Settings EI AC CI DoC ATC

γ ρ γ ρ γ ρ γ ρ γ ρ

Random 0.003 0.197 0.072 0.133 0.216 0.350 0.073 0.160 0.066 0.055
Equal 0.883 0.659 0.554 0.446 0.857 0.624 0.864 0.757 0.837 0.424
Gaussian kernel 0.876 0.675 0.611 0.498 0.887 0.706 0.887 0.797 0.881 0.532
Dot product 0.903 0.713 0.605 0.489 0.903 0.731 0.901 0.801 0.867 0.490

None 0.901 0.705 0.564 0.480 0.881 0.669 0.907 0.806 0.863 0.487
Grey-scale 0.898 0.686 0.617 0.503 0.879 0.655 0.917 0.812 0.889 0.514
Color jitters 0.897 0.674 0.632 0.512 0.861 0.642 0.919 0.811 0.874 0.482
Rotation 0.903 0.713 0.605 0.489 0.903 0.731 0.901 0.801 0.867 0.490
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Figure 5: Impact of the number of neighbors m on the correlation between proxy scores and
accuracy. We use five existing proxies as baselines and report the mean and standard deviation for
each data point. We observe that vicinal assessment is consistently beneficial under various m values
and yields stronger correlation with m increases.

First, using more neighboring samples is generally beneficial, evidenced by the increasing correlation
strength. It is probably because a larger m allows for better approximation of the true vicinal
distribution. We set m = 150 by default. Second, when using fewer neighbors, e.g., m = 25, vicinal
assessment is still beneficial, yielding stronger correlation than existing risk proxies.

Table 3: Impact of the test set size. We
evaluate our method on the ImageNet-R
set with different number of test samples.

# samples 3,000 6,000 12,000 18,000 24,000
DoC 0.856 0.848 0.877 0.874 0.874
DoC + Ours 0.873 0.874 0.892 0.895 0.896

Impact of test set size. Table 3 presents our method under
varying test set sizes using ImageNet-R as an OOD test
set. We observe that the performance of all compared
methods drops under smaller test sets. Nevertheless, the
use of vicinal assessment consistently improves the cor-
relation strength of the baselines under each test set size,
demonstrating the effectiveness of our method.

6 CONCLUSION

In this paper, we propose the vicinal assessment strategy to improve existing risk proxies computed
based on a single test sample. We demonstrate that existing point-wise methods are prone to
erroneous model responses, a problem that can be alleviated by considering the responses of adjacent
test samples. Inspired by the philosophy of vicinal risk minimization, we design a vicinal risk proxy.
We find that its computation on individual samples better differentiates models that make correct
predictions from those that make incorrect ones. Therefore, when averaged across the test set, the
vicinal risk proxy more accurately reflects the out-of-distribution (OOD) generalization ability of
models. This main conclusion is verified through extensive experiments and further supported by
analysis of its variants, sensitivity to key hyper-parameters, and application scope.
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