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Abstract
Recently, large pre-trained language models001
(LLMs) have demonstrated superior language002
understanding abilities, including zero-shot003
causal reasoning. However, it is unclear to004
what extent their capabilities are similar to hu-005
man ones. We here study the processing of an006
event B in a script-based story, which causally007
depends on a previous event A. In our manipu-008
lation, event A is stated, negated, or omitted in009
an earlier section of the text. We first conducted010
a self-paced reading experiment, which showed011
that humans exhibit significantly longer reading012
times when causal conflicts exist (¬A → B)013
than under logical conditions (A → B). How-014
ever, reading times remain similar when cause015
A is not explicitly mentioned, indicating that016
humans can easily infer event B from their017
script knowledge. We then tested a variety of018
LLMs on the same data to check to what ex-019
tent the models replicate human behavior. Our020
experiments show that 1) only recent LLMs,021
like GPT-3 or Vicuna, correlate with human022
behavior in the ¬A → B condition. 2) Despite023
this correlation, all models still fail to predict024
that nil → B is less surprising than ¬A → B,025
indicating that LLMs still have difficulties inte-026
grating script knowledge.027

1 Introduction028

Causal reasoning is fundamental for both human029

and machine intelligence (Pearl, 2009) and plays an030

important role in language comprehension (Keenan031

and Kintsch, 1974; Graesser et al., 1994, 1997;032

Van den Broek, 1990). Large pre-trained language033

models (LLMs) such as GPT-3.5 (Neelakantan034

et al., 2022) have demonstrated excellent zero-shot035

capabilities in causal reasoning tasks and human-036

like behaviors (Wang et al., 2019; Kojima et al.,037

2022). On the other hand, some early pieces of038

evidence show that LLMs lack global planning of039

different events in long texts (Bubeck et al., 2023).040

So it is unclear to what extent LLMs can conduct041

causal reasoning about events.042

In turn, humans have been shown to be extremely 043

good at building causal connections in long dis- 044

course comprehension (Radvansky et al., 2014; 045

Graesser et al., 1994). In doing so, they rely not 046

only on explicit causal links (signalled in the text 047

– see Trabasso and Sperry, 1985; Keenan and 048

Kintsch, 1974) but also on implicit ones that are in- 049

ferable based on commonsense knowledge (Keenan 050

and Kintsch, 1974; Singer and Halldorson, 1996). 051

In particular, subjects were found to be sensitive to 052

causal conflicts arising when something in the text 053

contradicts either what was written before or sub- 054

jects’ commonsense knowledge (Radvansky et al., 055

2014; Singer and Halldorson, 1996). An example 056

of a causal conflict is presented in Figure 1, Part II, 057

condition ¬A → B, where decorating a cake with 058

star-shaped sprinkles is inconsistent with the previ- 059

ously mentioned information that cake decorations 060

are not available. 061

In this paper, we investigate language process- 062

ing in humans and compare it to a large variety 063

of LLMs, following the “psycholinguistic assess- 064

ment of language models paradigm” (Futrell et al., 065

2019). In our analyses, we compare human read- 066

ing times to PLM surprisal estimates. Surprisal is 067

the negative log probability of a word in context 068

and has been previously related to human read- 069

ing times (Hale, 2001; Levy, 2008; Demberg and 070

Keller, 2008; Smith and Levy, 2013) as well as neu- 071

ropsychological effects such as the N400 (Frank 072

et al., 2015; Kutas and Hillyard, 1989), which rep- 073

resent human processing difficulty. We collect a 074

new dataset, Causality in Script Knowledge (CSK), 075

consisting of short stories about daily activities 076

which are typically part of the script knowledge of 077

humans, see Figure 1 for an example. The term 078

“script knowledge” refers to commonsense knowl- 079

edge about everyday activities, where “scripts” are 080

defined as prototypical sequences of events in these 081

activities. The stories are constructed such that 082

they contain a pair of events, A and B which are 083
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0. Script initiation
1. Choose a recipe     
2. Turn on the oven    
3. Get ingredients       
4. Get utensils
5. [Event A] Prepare cake
decorations
6. Add ingredients       
7. Prepare ingredients 
8. Put the cake in the oven
9. Wait                      
10. Take the cake out of the oven 
11. [Event B] Decorate the cake
12. Clean the kitchen
13. Closing sentence

I. Event sequence: II. Resulting narrative that was presented to
humans (by story condition):

III. Questions about
target events:

How sure are you that
Anne grabbed some cake
decorations?

Not sure at all vs. Very
sure (0-7)

Question about event A:

Question about event B:

How sure are you that
Anne added star sprinkles
to the cake?

Not sure at all vs. Very
sure (0-7)

A→B condition ¬A→B condition nil →B condition

Yesterday Anne had a party at her house, so she decided to bake a cake. First, she
chose a recipe from a cookbook and set out all the ingredients.

Next, she gathered her
utensils and got out the
cake decorations. 

Next, she gathered her
utensils and realised she
didn't have any cake
decorations. 

Next, she gathered her
utensils and turned on the
oven. 

Then she turned on the oven and started measuring the
ingredients. 

Then she started
measuring the ingredients. 

She added them one by one into a bowl and mixed them carefully with her new
mixer until she got a homogenous batter. Afterwards, she poured the mixture into a
pan, placed it in the oven, and set a timer.

When the timer went off, she removed the cake from the oven and let it cool. In the
meantime, she prepared some vanilla frosting. When the cake had cooled, she
frosted it thoroughly.

Then, she added star-shaped sprinkles and cleaned up the kitchen.

After that, she looked at the cake. It was a real piece of art!

Figure 1: Example of a script structure (I), the resulting narrative in three conditions (II) and questions that subjects
were asked (III), for "baking a cake" story.

causally contingent on one another. We manipulate084

event A to be stated, negated or omitted, and sub-085

sequently measure processing difficulty on event086

B.087

Our first research question (RQ1) relates to the088

effect of the incoherence in the ¬A → B condition,089

compared to the coherent A → B condition. For090

humans, a large body of previous literature (Bloom091

et al., 1990; Radvansky et al., 2014; Singer and092

Ritchot, 1996) leads us to expect that human read-093

ers will notice the inconsistency and that this can be094

measured in terms of slower reading times on event095

B. For language models, we want to test whether096

and which models also exhibit a similar effect, by097

comparing the surprisal values for the words of098

event B following the A vs. ¬A mentioned in the099

previous context. In order for a language model100

to handle this case, it needs to (a) understand the101

contingency between events A and B (even though102

they systematically don’t use overlapping lexical103

items) and (b) be able to represent event A or ¬A104

effectively across the intervening sentences so it105

is still represented when encountering B. We find106

that the large models (GPT-3 and Vicuna) do well107

on this task, but smaller models mostly fail.108

Our second research question (RQ2) aims to tap109

into how script knowledge facilitates language com-110

prehension. To this end, we compare the processing111

of event B in a setting where neither event A nor112

event ¬A are mentioned in the previous context.113

If comprehenders integrate their script knowledge114

with the text, they should have an easy time pro-115

cessing event B even without the prior mention of 116

event A (Bower et al., 1979). The previous litera- 117

ture on human sentence processing has no direct 118

evidence about the processing difficulty of event B 119

in this case, so here our experiment makes a new 120

contribution: we find that humans are significantly 121

faster in reading segment B in the nil → B condi- 122

tion compared to ¬A → B, and that reading times 123

between conditions nil → B and A → B do not 124

differ significantly from one another. Our subse- 125

quent evaluation of LLMs on the same contrast 126

however shows that all LLMs fail to show human- 127

like processing: they do not have lower surprisal on 128

the nil → B condition than on ¬A → B – some 129

models even assign higher surprisal estimates to the 130

nil → B condition, indicating that even the most 131

recent large LLMs in our evaluation cannot effec- 132

tively integrate script knowledge for estimating the 133

probability of upcoming words. 134

2 Background 135

2.1 Causal inference and script knowledge 136

When humans read text, they connect events men- 137

tioned in the text into a locally and globally coher- 138

ent causal network, thereby not only integrating 139

information from the text but also based on con- 140

text and commonsense knowledge (Van den Broek, 141

1990; Graesser et al., 1997). It has been shown 142

that when the causal network does not support new 143

events or the new event contradicts the previous 144

text, readers experience processing difficulties, re- 145

sulting in longer reading times (Bloom et al., 1990; 146
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Radvansky et al., 2014). The comprehension of a147

new event also relies on commonsense knowledge148

(Hare et al., 2009). In fact, Singer and Ritchot149

(1996) showed that when commonsense knowl-150

edge does not support an event described in the151

text, comprehenders take more time processing it.152

A special type of commonsense knowledge that153

was shown to also modulate reading comprehen-154

sion is script knowledge (Abbott et al., 1985;155

Bower et al., 1979; Schank, 1975). Scripts rep-156

resent knowledge structures consistent with sets of157

beliefs built on past experiences about everyday,158

routine, and conventional activities like baking a159

cake. Importantly, the events constituting a script160

can be highly causally inter-connected and are crys-161

tallized in memory – one can expect script-related162

events to be activated once the script is invoked.163

In a series of experiments, Bower et al. (1979)164

showed that after subjects read an everyday story165

that constituted a script, they also recalled script-166

related events that were not explicitly mentioned in167

the story (see Gibbs and Tenney, 1980, for similar168

findings showing that script knowledge is an in-169

distinguishable part of the memory representation).170

In turn, it is expected that when reading a story,171

script-related events can be primed by the script172

itself rather than by some single events mentioned173

in the text, without processing time loss (Keenan174

and Kintsch, 1974).175

2.2 Experiments with language models176

Causal Reasoning. Recent LLMs such as GPT-3.5177

(Neelakantan et al., 2022) have achieved strong per-178

formance in many reasoning tasks under zero-shot179

settings, such as symbolic reasoning, logical rea-180

soning, mathematical reasoning and commonsense181

inference (Kojima et al., 2022). The common prac-182

tice to conduct zero-shot reasoning is prompting,183

i.e. to append a task-specific text to the input to184

LLMs and then sample the output (Radford et al.,185

2019). Although the cause is usually provided in186

the prompt (like condition A → B), LLMs can187

reason without relying only on surface cues like188

word overlap (Lampinen et al., 2022). On top of189

that, LLMs can be prompted to produce explicit190

reasoning steps with chain-of-thought prompting191

(Wei et al., 2022).192

Script knowledge. Early works regarding script193

knowledge also apply language models (LMs). We-194

ber et al. (2020) apply LMs for script induction195

from causal effects. Ciosici et al. (2021) build a196

human-LM collaborative system for script author- 197

ing. 198

Recent studies have suggested that LLMs may 199

learn script knowledge as part of their training (Sak- 200

aguchi et al., 2021; Sancheti and Rudinger, 2022). 201

Ravi et al. (2023) fine-tune GPT-3 to automatically 202

generate plausible events that happen before and 203

after a given event, and Yuan et al. (2023) report 204

promising results on prompting an InstructGPT 205

model (Ouyang et al., 2022) to automatically gen- 206

erate scripts and then filtering results in the second 207

step. Similarly, Brahman et al. (2023) use a dis- 208

tilled small LM as script planner and fine-tuned 209

RoBERTa as verifiers. 210

There are however also reports that indicate that 211

script knowledge in LLMs may not yet be suffi- 212

cient: zero-shot probing on GPT-2 has been found 213

to generate poor event sequences (Sancheti and 214

Rudinger, 2022), and GPT-3 was found to be only 215

marginally better than chance on predicting event 216

likelihoods (Zhang et al., 2023) and exhibit poor 217

performance on event temporal ordering (Suzgun 218

et al., 2023). 219

Several ways of specifically integrating common- 220

sense knowledge into LLMs have been proposed: 221

some LLMs are trained from scratch on structural 222

data with commonsense knowledge like knowledge 223

graphs (ERNIE; Zhang et al., 2019) and semantic 224

frames (SpanBERT; Joshi et al., 2020). Bosselut 225

et al. (2019); Hwang et al. (2021) further equips 226

LLMs with structural input and output to model 227

commonsense knowledge. In the present contribu- 228

tion, we explore previous models that have been 229

reported to be successful on inference tasks. More 230

details of the choice of LLMs are in Section 4.1. 231

2.3 The TRIP dataset 232

A dataset that is particularly relevant to the present 233

study is the TRIP dataset, which contains 1472 234

pairs of two similar stories, which differ by one 235

sentence at a “breakpoint” position (Storks et al., 236

2021). One of the stories is plausible, and the 237

other one is implausible, due to a causal conflict 238

between the sentence at the breakpoint position 239

and an earlier part of the text. The plausible sto- 240

ries correspond to the A → B condition in our 241

dataset, while the implausible stories correspond to 242

our ¬A → B condition. The breakpoint sentence 243

corresponds to our critical sequence B. 244

Richardson et al. (2022) fine-tune a T5 model 245

augmented with logical states (BPT) of each event 246
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to detect the causal conflicts and outperform a247

RoBERTa baseline by a large margin. Ma et al.248

(2022) fine-tune a framework to integrate global249

and local information, which further outperforms250

BPT. Our aim is not to finetune the LLMs on TRIP251

but test them in a zero-shot fashion.252

3 Experiments with Humans253

3.1 Dataset254

The Causality in Script Knowledge (CSK) data set255

consists of 21 English stories describing everyday256

activities, built on top of DeScript dataset (Wan-257

zare et al., 2016) – see Figure 1, part I. Each story258

starts with a script initiation (e.g., “she decided to259

bake a cake”) – thus, readers can already activate260

script knowledge about the event at that point. A261

pair of events A and B represent our main interest.262

They were chosen in such a way that event A (“get263

the cake decorations”) enabled the happening of264

event B (“add star-shaped sprinkles”). Importantly,265

no other events in the story draw a direct causal266

link to event B, except event A and the script it-267

self. Events A and B were always separated by268

other intermediate script events (73.6 words on269

average; sd = 10.3; min: 59; max: 91). The de-270

scriptive statistics for the stories are presented in271

Appendix A.272

3.2 Experimental conditions273

Our target manipulation relates to the appearance274

of events A and B in the story thus producing three275

different story conditions:276

A → B. Event B logically follows event A within277

the story context. In this way, event A draws a278

direct causal link to event B, and thus event B is279

anticipated to happen on the basis of event A.280

¬A → B. Event A is explicitly negated, mak-281

ing the occurrence of event B implausible or even282

impossible. The mention of event B thus is un-283

expected and stands in a causal conflict with the284

earlier information.285

nil → B. Event A is omitted. Even though event286

A is not explicitly stated, it is expected that humans287

will easily infer its occurrence from the context,288

making the mention of event B plausible and easy289

to integrate (Bower et al., 1979).290

3.3 Experimental procedure291

For data collection, each story was divided into292

paragraphs or text chunks (as shown, for exam-293

ple, in Figure 1, part II). During the experiment,294

Figure 2: Mean by-character reading times at event B,
by story condition; p-values are taken from the corre-
sponding LMER models, see Section 3.5.

subjects saw only one paragraph at a time (chunk- 295

by-chunk presentation). After reading each story, 296

subjects had to rate how sure they were about the 297

events A and B to have occurred, on a Likert scale 298

ranging from 0 (Not sure at all) to 7 (Very sure) 299

– see Figure 1, part III. To measure the process- 300

ing difficulties of humans, we compare the reading 301

times for event B across the experimental condi- 302

tions. More details about subjects’ belief ratings 303

are presented in Appendix B. 304

251 native English speakers were hired via a 305

crowdsourcing platform Prolific1 to participate in 306

the study. Each participant read three stories. Each 307

story had a different topic and was presented in a 308

different condition. 309

3.4 Analysis 310

To investigate the effects of processing difficulty 311

that event B causes in subjects depending on a story 312

condition, we analyse mean per character reading 313

times associated with the chunks that contain event 314

B. The log-transformed reading times were anal- 315

ysed using linear mixed-effects regression models 316

(LMER; Bates et al., 2015). The maximal random 317

effects structure included by-subject and by-item 318

random intercepts and by-item random slopes for 319

story condition and was simplified for convergence 320

when needed. 321

3.5 Results 322

To answer to what extent causal inconsistencies 323

are reflected in human language processing (RQ1), 324

we compared reading times on segment B in the 325

A → B vs. ¬A → B conditions. The random ef- 326

fects structure included by-subject and by-item ran- 327

dom intercepts and by-item random slopes for story 328

1https://www.prolific.co/
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conditions. We found that subjects read chunks329

with event B significantly more slowly when event330

A was explicitly negated in the story (b = 0.21,331

se = 0.04, t = 4.77, p < .01), see also Figure 2.332

To analyse subjects’ ability to infer causal links333

from script knowledge (RQ2), we compared the334

reading times in nil → B vs. A → B condi-335

tions. The random effects structure included by-336

item random intercepts. We observed no significant337

difference between these conditions (b = −0.04,338

se = 0.05, t = −0.7, p = .48). Thus, the absence339

of event A, which serves as a direct causal link340

to event B, does not slow event’s B processing in341

terms of reading times. Note that the reading time342

of condition ¬A → B is significantly slower than343

the reading time in condition nil → B (b = 0.17,344

se = 0.05, t = 3.23, p < .01).345

4 Can LLMs Detect Causal Conflicts346

(RQ1)?347

In this section, we measure the ability of differ-348

ent LLMs to track event contingency. We feed the349

script stories into the language models and record350

the LM’s surprisal scores on a word-by-word basis.351

We then test whether the mean surprisal scores for352

the critical region (event B) differ between con-353

ditions. As the script stories corpus is relatively354

small, we additionally test the models on the TRIP355

dataset (Storks et al., 2021) to assess their recog-356

nition of causal incongruencies on a wider set of357

materials (see Section 4.6).358

4.1 Choices of LLMs359

We select a set of more than 30 LLMs including360

both causal language models (CLMs) and masked361

language models (MLMs) because we want to see362

the effects of these two loss functions.363

CLMs. We first select CLMs because they work364

in a left-to-right fashion, similar to how the human365

readers in our experiment read the experimental366

materials. We chose GPT-1/2/3 and Instruct GPT367

(Radford et al., 2018, 2019; Brown et al., 2020;368

Ouyang et al., 2022) models to represent CLMs369

because these models have been showing the high-370

est performance on many NLP tasks (Chang and371

Bergen, 2023). We choose GPT-3.5 (Neelakan-372

tan et al., 2022) because it was trained with both373

programming code and text which demonstrates374

strong performance on entity tracking (Kim and375

Schuster, 2023), a prerequisite for causal reason-376

ing. Notably, ChatGPT (OpenAI, 2022) and GPT-4377

(OpenAI, 2023) can not be used with our meth- 378

ods, because the API does not allow access to the 379

probabilities. Additionally, we use Vicuna mod- 380

els (Chiang et al., 2023) as an approximation to 381

ChatGPT, which is a fine-tuned LLaMA model 382

(Touvron et al., 2023) trained on 70K user-shared 383

ChatGPT conversations. Open models like Vicuna 384

have the advantage of results being reproducible. 385

Similarly, we choose OPT (Zhang et al., 2022) and 386

GPT-Neo (Black et al., 2021) as open versions of 387

GPT-3. 388

We also selected task-specific models that could 389

potentially capture script knowledge via exposure 390

to more diverse datasets like summarization mod- 391

els, Pegasus (Zhang et al., 2020), Bigbird-pegasus, 392

and a multilingual model XGLM (Lin et al., 2022). 393

Lastly, we chose XLNet because it has been previ- 394

ously shown to be effective for zero-shot script pars- 395

ing (Zhai et al., 2021, 2022) wrt. handling causal 396

inferences in commonsense stories in a zero-shot 397

setting. 398

MLMs. MLMs are another group of language 399

models that obtained state-of-the-art performances 400

across many NLP tasks. We note that the way they 401

work is not similar to human language process- 402

ing, and the surprisal estimates obtained from them 403

are not directly comparable to surprisals obtained 404

from left-to-right models. However, we decided 405

to include some MLMs that have been specifically 406

designed to handle long-distance dependencies (via 407

their efficient self-attention mechanisms) into our 408

evaluation, to observe how these models perform 409

regarding the causal inferences given long com- 410

monsense stories. Specifically, we test Bigbird- 411

roberta (Michalopoulos et al., 2022), FNet (Lee- 412

Thorp et al., 2022), Nystromformer (Xiong et al., 413

2021) and Perceiver (Jaegle et al., 2022). 414

All models used here were available through 415

either HuggingFace models or the OpenAI API. 416

More details are in Appendix C, where we briefly 417

describe all the models. 418

4.2 Method 419

For causal language models (CLMs), we perform 420

word-by-word next-word prediction for event B, 421

recording the next token probabilities for each to- 422

ken in segment B. For masked language models 423

(MLMs), we follow Salazar et al. (2020) to pro- 424

vide models with the context before and after the 425

target token in segment B. The pertinent token 426

itself is masked, forcing the masked language mod- 427
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Model Name # para. b t sign b t sign b t sign
(M) CSK CSK (short dist) TRIP

CLM
GPT-3.5: text-davinci-003 175K 0.59 5.87 *** 0.20 1.59 n.s. 0.30 10.82 ***
GPT-3.5: text-davinci-002 175K 0.51 2.75 * 0.10 0.70 n.s. 0.26 7.41 ***
InstructGPT: text-davinci-001 175K 0.26 2.03 . -0.02 -0.18 n.s. 0.29 5.81 ***
InstructGPT: davinci-instruct-beta 175K 0.21 2.76 * 0.12 1.78 . 0.20 8.68 ***
GPT-3: davinci 175K 0.21 2.76 * 0.19 2.69 * 0.20 8.25 ***
Vicuna-13B 13016 0.22 2.25 * -0.01 -0.07 n.s. 0.26 7.56 ***
Vicuna-7B 6738 0.28 2.56 * 0.12 1.08 n.s. 0.22 6.35 ***
InstructGPT: text-curie-001 6700 0.03 0.31 n.s. 0.06 0.56 n.s. 0.19 5.78 ***
GPT-3: curie 6700 0.23 3.43 ** 0.21 3.75 ** 0.12 5.92 ***
GPT-2: XL 1638 0.05 0.96 n.s. 0.08 1.54 n.s. 0.06 3.15 **
GPT-2: L 838 0.04 0.77 n.s. 0.04 0.64 n.s. 0.05 2.77 **
XGLM 827 -0.03 -0.79 n.s. 0.02 0.38 n.s. 0.02 1.38 n.s.
Bigbird-pegasus-large-arxiv 470 0.06 1.20 n.s. 0.00 -0.04 n.s. 0.00 -0.02 n.s.
Pegasus-large 467 0.02 0.85 n.s. 0.00 0.00 n.s. 0.00 -0.48 n.s.
XLNet-large-cased 393 -0.03 -1.99 . -0.04 -2.42 * 0.00 0.66 n.s.
OPT 357 0.01 0.12 n.s. 0.02 0.32 n.s. 0.03 1.78 .
GPT-Neo 164 0.03 0.67 n.s. 0.05 1.11 n.s. 0.01 0.90 n.s.
GPT-2 163 0.00 -0.10 n.s. 0.03 0.74 n.s. 0.01 0.53 n.s.
GPT: openai-gpt 148 0.00 -0.01 n.s. 0.06 1.35 n.s. 0.05 3.18 **

MLM
Bigbird-roberta-large 412 0.18 1.64 n.s. 0.33 1.72 n.s. 0.04 2.90 **
Perceiver 201 -0.02 -0.51 n.s. 0.04 0.79 n.s. 0.01 1.29 n.s.
Bigbird-roberta-base 167 0.05 0.34 n.s. -0.03 -0.13 n.s. 0.03 2.62 **
Nystromformer-512 132 0.06 1.50 n.s. 0.04 0.80 n.s. -0.01 -0.46 n.s.
FNet-base 108 0.01 0.14 n.s. 0.02 0.41 n.s. -0.01 -0.80 n.s.

Table 1: Results for RQ1 (A → B versus ¬A → B) on CSK (original and intervention removal) and TRIP
dataset. The # para. (M) column shows the number of parameters in millions. n.s. represent that the results are not
statistically significant. The ., *, **, and *** in the sign column represent p-values < 0.1, 0.05, 0.01, and 0.001.

els to infer it based on the surrounding context.428

For instance, in the example story in Figure 1, the429

words “added star-shaped sprinkles” constitute the430

target region describing event B. Each token in431

this sequence was masked one at a time. We then432

calculated the probabilities of the masked tokens433

given the surrounding story context. MLM mod-434

els thus have more information than CLM models435

due to the additional information from other tokens436

in the event B and the context after event B. We437

therefore would like to point out that this method438

is not cognitively plausible, and that the surprisal439

scores obtained from them hence will also reflect440

this “privileged” knowledge. We also note that the441

surprisal estimation from MLMs can in principle442

be adapted to simulate left-to-right processing bet-443

ter, but think that this is only worthwhile to explore444

in more detail if MLMs prove to be successful at445

modelling the long-distance dependencies relevant446

to our texts.447

Based on the probability of the target words w448

given the story context, we then calculate the target449

tokens’ surprisal as their negative log probability: 450

surprisal(w) = − logP (w|story_context). We 451

then calculate the average per-word surprisal by av- 452

eraging the surprisal of each word into an estimate 453

of the surprisal of the critical region for each item. 454

4.3 Data Analysis 455

To identify the PLM(s) that show comparable ef- 456

fects to humans, we run an equivalent analysis to 457

how the reading time data were analysed: we esti- 458

mate linear mixed effects models with surprisal 459

as a response variable and condition (A → B 460

vs. ¬A → B) as a predictor. The model also 461

includes by-item random intercepts. The formula 462

is: log(surprisal) ∼ story_condition+(1|story). 463

4.4 Results 464

Table 1 (column named CSK) presents the results 465

for all language models on whether model sur- 466

prisals were significantly higher for the ¬A → B 467

condition than in the A → B condition, indicating 468

that the model’s surprisal scores reflect the inco- 469
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nil vs. ¬A nil vs. A
Model Name (CLMs only) b t sign b t sign
GPT-3.5: text-davinci-003 0.08 0.77 n.s. -0.52 -5.10 ***
GPT-3.5: text-davinci-002 -0.06 -0.38 n.s. -0.57 -3.65 ***
InstrGPT: davinci-instr-beta -0.17 -1.96 . -0.39 -4.36 ***
GPT-3: davinci -0.15 -1.79 . -0.36 -4.34 ***
Vicuna-13B -0.15 -1.52 n.s. -0.37 -3.73 ***
Vicuna-7B -0.07 -0.58 n.s. -0.36 -2.91 **
GPT-3: curie -0.23 -2.74 ** -0.46 -5.54 ***
Human 0.17 3.23 ** -0.04 -0.7 n.s.

Table 2: Results for RQ2 (nil → B versus ¬A → B
and A → B) on CSK dataset. Note that coefficient
estimates for human data refer to log reading times, and
are hence not directly comparable to the numbers in the
CLMs, which estimate the surprisal effect.

herence (RQ1). High positive b values indicate470

that surprisal values are higher on segment B in471

the ¬A → B condition compared to the A → B472

condition. Significance stars indicate whether the473

differences were statistically reliable. Our results474

show that none of the MLM models, and only some475

of the largest CLM models showed a reliable dif-476

ference in surprisal estimates between the coherent477

and the incoherent (¬A → B) condition.478

GPT-3.5: text-davinci-003 shows the largest ef-479

fect and high statistical reliability. Further models480

that show the expected behaviour include other481

versions of GPT-3/GPT-3.5 and the Vicuna model.482

Surprisingly, InstructGPT models that are trained483

with human-selected samples don’t show signifi-484

cant effects. This result implies additional training485

on high-quality samples harms the models’ ability486

to identify causal conflicts.487

4.5 Effect of dependency length (distance488

between events A and B)489

Next, we wanted to check whether the failure of490

the models that don’t show a significant difference491

between conditions is due to problems with encod-492

ing the text effectively and “remembering” event A493

or ¬A when processing event B, or whether it is re-494

lated to failure to detect the mismatch between the495

events. We therefore modified the original exper-496

iment’s design by reducing the distance between497

events A and B in the story by removing all in-498

tervening sentences. (Note that we did not ensure499

that the removed sentences did not contain crucial500

information that would compromise the coherence501

of the story.)502

If model failure on the previous task is due to503

difficulty in handling a long intervening context,504

we expect that models would show a significant505

difference between surprisal estimates in this short- 506

distance condition. 507

As shown in Table 1 column named “CSK (short 508

dist)”, we find that most models show the same 509

behaviour in the short-distance condition and the 510

long-distance condition. Interestingly, the results 511

of both GPT-3.5 and Vicuna are non-significant in 512

this condition. This could be due to the removal 513

of intermediary materials, thereby potentially inter- 514

rupting the causal chains and adversely affecting 515

the activation of event B. Other models that are 516

still not showing a significant difference between 517

surprisal estimates in the different conditions might 518

be failing due to not recognizing the semantic in- 519

consistency between ¬A and B. 520

4.6 Experiments on TRIP dataset 521

As the CSK dataset, for which we collected read- 522

ing times, is relatively small, we also compared 523

the surprisals of the same set of models on the 524

substantially larger TRIP dataset (cf. Section 2.3), 525

which also contains causal inconsistencies. Their 526

dataset has multiple splits. We do not use the "Or- 527

der" splits, because that split is too different to our 528

dataset. In those splits, the order of the sentences 529

is switched. We do not use the train splits, as we 530

don’t need that many data points. 531

We take the stories from the "ClozeDev" split 532

and run our methods on them and we again esti- 533

mated surprisal values for each language model, in 534

the same way as described in section 4.2. The criti- 535

cal segment B for this dataset corresponds to the 536

breakpoint sentence. The analysis was analogous 537

to the analysis for the CSK dataset. 538

Table 1 column “TRIP” presents the results of 539

our method on the TRIP dataset. Significant pos- 540

itive effects indicate a significant difference be- 541

tween the model surprisals in the implausible condi- 542

tion compared to the plausible one, indicating that 543

the model recognized the inconsistency correctly. 544

Among the CLMs, GPT-3.5 performs notably well, 545

again displaying the largest effect size and p-value 546

< .001. 547

4.7 Discussion 548

Given the analysis of the CSK and TRIP datasets, 549

we conclude that only some of the GPT models 550

were able to consistently assign higher surprisal 551

to event B (or the breakpoint sentence in TRIP) 552

in the case that causally related event A was ex- 553

plicitly negated earlier in the story. None of the 554

MLMs consistently show this behaviour across the 555
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Figure 3: Performance of GPT-3: curie in both research
questions. Mean surprisal presented by story condition;
p-values are taken from Tables 1 and 2

two datasets. Among the GPT models, we find that556

GPT-3.5: text-davinci-003 shows the most consis-557

tent performance. It differs from the others in that558

it was trained using reinforcement learning from559

human feedback, which has been found to be cor-560

related with better performance on many reasoning561

tasks (Chang and Bergen, 2023).2562

5 Do LLMs incorporate script knowledge563

(RQ2)?564

In this section, we are interested in whether the565

models that can capture the causal link between566

A and B are also able to integrate script knowl-567

edge to a similar extent as humans, i.e. whether568

they show a relatively low surprisal even if event A569

was not explicitly mentioned in the story context.570

We continue with those models showing a signifi-571

cant effect of the ¬A → B condition compared to572

A → B consistently across the CSK and the TRIP573

dataset, as these are the only models that seem to574

reliably capture the causal link.575

5.1 Analysis and Results576

Analysis was performed using linear mixed-effects577

models (LMER), similar to Section 4.3. This578

time, we compare surprisal estimates of condi-579

tions nil → B to ¬A → B to show firstly580

whether the model correctly captures the incon-581

gruency of ¬A → B. Next, we compare con-582

dition nil → B to condition A → B in order583

to determine whether the models are consistent584

with human readers in terms of NOT showing a585

2We would like to note that we did not apply a correction
for multiple testing in the analysis. If we were to more conser-
vatively account for multiple testing, then the results of most
models except for GPT-3.5: text-davinci-003 would not be
judged as statistically reliable.

large effect. The formula of each LMER model is: 586

log(surprisal) ∼ story_condition + (1|story). 587

Table 2 shows the results for research question 588

2. While humans read sequence B is significantly 589

faster in the nil → B condition than in the condi- 590

tion with the causal conflict (¬A → B), none of the 591

computational models show this effect: most mod- 592

els do not show a significant difference between 593

these conditions, and one model (GPT-3: curie) in 594

fact shows significant effects in the wrong direc- 595

tion (B has higher surprisal in the nil condition 596

than in the ¬A condition), see also Figure 3. This 597

might indicate that the lexically related material 598

in condition ¬A (e.g., “cake decorations”) leads 599

to a relatively low surprisal at region B even if it 600

stands in causal conflict with it. The significantly 601

lower surprisal in condition A → B compared to 602

condition nil → B, which is observed for almost 603

all of the models, furthermore indicates that models 604

fail to include script knowledge effectively in their 605

next word predictions. 606

6 Conclusions 607

In this paper, we inspect the behaviors of both large 608

language models and humans in zero-shot causal 609

inference. We conducted a self-paced reading ex- 610

periment on common sense stories to inspect hu- 611

man processing difficulty when reading the stories. 612

Reading time results indicate that humans stumble 613

across causally incoherent text segments, exhibit- 614

ing longer reading times in these cases. On the 615

other hand, they easily integrate script-predictable 616

information, even if the explicit causal component 617

(event A) is missing from the story. 618

When we apply the same study to LLMs, only 619

the newest LLMs show similar behavior to humans 620

on encountering casual conflicts. All models fail to 621

replicate human behaviors when the cause is omit- 622

ted. Even models trained with programming code 623

and instructions fail to make use of script knowl- 624

edge, which indicates that script knowledge may 625

not be represented sufficiently well in the LLMs 626

tested in this study. We also inspect the effects of 627

the dependency length between the causally linked 628

segments in the text and find that removing the in- 629

tervention contexts does not improve the models’ 630

performance. 631

7 Limitations 632

One limitation from the NLP perspective of our 633

study is that the size of the CSK dataset is small 634
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and only in English (only 21 stories). This is a635

very common limitation of psycholinguistic studies636

due to the costs of human experiments. We here637

addressed this shortcoming by also evaluating on638

the larger dataset TRIP, but a dataset with more639

stories or more readers would further improve the640

reliability of the results. Another limitation is that641

we don’t experiment with few-shot examples in642

prompts, which could have been used to remind643

the LLMs to make use of script knowledge. We644

chose the zero-shot setting because humans use645

script knowledge for casual inference without any646

“examples” and we believe that the LLMs should647

have the same behaviors as humans. However, this648

means that our results do not necessarily generalize649

to other ways of prompting models. Additionally,650

we didn’t experiment with the most recent Ope-651

nAI models like GPT-4 because their official API652

doesn’t support generating the probability output.653

Lastly, We didn’t test models with more than 20B654

parameters on our own server due to limited hard-655

ware resources. We plan to test these models when656

we have access to more resources.657

Another possible limitation of our experiment is658

that we cannot comment on the generalizability of659

our script materials to more general script-based660

stories for scripts that may be less well-known to661

human readers. For our materials, we asked par-662

ticipants after each experimental trial whether they663

were familiar with the script (“Please tick this box664

if you have never baked a cake or you have very665

little experience with it)”. Participants answered666

in 11.2% of trials that they were not familiar with667

the script. We observed an effect of familiarity on668

reading times, showing that subjects read the story669

faster when they were not familiar with the topic.670

We note that findings also remained stable when671

we removed such trials from our analysis.672

8 Ethics Statement673

We will release our CSK dataset under the CC BY-674

NC-SA license. The human study was approved675

by the ethics committee. The name of the organiza-676

tion is hidden to keep the submission anonymous.677

All participants are paid fairly according to the lo-678

cal standard. We anonymize the dataset to protect679

participants’ identities. We will release the demo-680

graphic information upon acceptance of this work.681

The TRIP dataset was released under an un-682

known license but the paper described this dataset683

was published in an ACL proceeding. We use it for684

academic purposes only. 685

The potential risk of this work is that the find- 686

ings can be used to design attacks on LLMs to 687

harm their capability of conducting casual infer- 688

ence given script knowledge. 689
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A Experimental materials 1052

Our experimental materials are in the Data of sup- 1053

plemental. When constructing the experimental 1054

materials, we controlled for the following param- 1055

eters: the number of words and text chunks in a 1056

story, the number of text chunks and words be- 1057

tween events A and B, the number of words in the 1058

text chunks that contained event B, and number of 1059

words in the chunk after the chunk with event B. 1060

The full list of descriptive statistics for our materi- 1061

als is presented in Table 3. 1062

Each story starts with script initiation – a sen- 1063

tence in the first chunk that introduces the topic 1064
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parameter mean sd
# of words in story:
A → B 158.2 12
¬A → B 159.1 14
nil → B 150.1 11.7
# of text chunks in story 6.8 0.77
# of words in chunk with A 27.6 11.3
# of words in chunk with ¬A 29.3 13.1
# of words in chunk with B 12.9 1.7
# of words in chunk after B 12.9 1.8
# of words b/w A and B:
A → B 73.6 10.3
¬A → B 71.8 12.9
# of words in A 7.3 3.8
# of words in ¬A 11.2 5.3
# of words in B 5.4 1.6

Table 3: Decriptive statistics for stories.

to the reader, e.g., “Yesterday Anne had a party at1065

her house, so she decided to bake a cake.” from1066

Figure 1. Sequences of script-related events were1067

built on top of Wanzare et al. (2016). Script-related1068

events A and B were chosen in such a way that1069

event A (get the cake decorations) enabled the oc-1070

currence of event B (add star-shaped sprinkles).1071

There were no other events in the story that are1072

causally linked to event B. Finally, the chunk with1073

event B always consists of one sentence with the1074

following structure: “ADVERB PERSON X did ac-1075

tion B and then did a subsequent action from the1076

script sequence.” (except the laundry story, where1077

the sentence started with “She”).1078

Prior to the analysis, we removed all trials related1079

to the bowling story item, due to a typo. Further, we1080

removed trials where the reading times in the chunk1081

containing event B were shorter than 100ms or1082

larger than 50s. 704 trials from 251 subjects (73%1083

female; mean age = 40, sd = 14.6, [18;80] range)1084

were available for analysis (1.81% data loss).1085

B Analysis of Human Beliefs about events1086

A and B1087

In addition to measuring the reading times that1088

reflect online processing, we also collected the an-1089

swers to the questions about occurrences of events1090

A and B that were presented after each story (“How1091

sure are you that event A/B happened? – see Figure1092

1, part III”).1093

The motivation for this was to gain insights into1094

A → B nil → B ¬A → B

Event A 6.41 (1.45) 4.85 (2.89) 3.67 (3.19)
Event B 6.13 (1.84) 4.91 (2.80) 3.79 (3.13)

Table 4: Mean subjects’ belief ratings (and SD in paren-
theses) that the event actually happened in the story,
by event type (A or B) and story condition (A → B,
nil → B, and ¬A → B).

a) how exactly subjects accommodate a causal con- 1095

flict (the ¬A → B condition) and b) whether sub- 1096

jects indeed infer event A when it is omitted from 1097

the story (the nil → B condition). The A → B 1098

condition serves as a baseline. We analyse the 1099

collected ratings using ordinal regression models 1100

(Christensen, 2018). 1101

In the A → B condition, both events A and B 1102

were given on average high ratings (6.41 and 6.13, 1103

respectively – see Table 4), meaning that subjects 1104

were sure that the events happened when they both 1105

were explicitly mentioned in the story. Further, for 1106

both events, the ratings in the ¬A → B (event A: 1107

b = −2.03, se = 0.24, z = −8.67, p < .001; 1108

event B: b = −1.6, se = 0.2, z = −8.22, p < 1109

.001) and nil → B (event A: b = −1.46, se = 1110

0.22, z = −6.6, p < .001; event B: b = −0.99, 1111

se = 0.2, z = −4.97, p < .001) were significantly 1112

lower compared to the A → B condition. 1113

The analysis of subjects’ ratings showed that 1114

the causal conflict (the ¬A → B condition) re- 1115

sulted in lowered beliefs about both events A and 1116

B (3.67 and 3.79, respectively). One potential ex- 1117

planation for this is that subjects might have used 1118

different strategies to resolve the conflict. For ex- 1119

ample, some subjects could assume that event B in 1120

fact did not happen, (however, contrary to the narra- 1121

tive) because the premise is not met. While others 1122

could resolve the conflict by assuming that event A 1123

in fact happened thus making event B also possible 1124

to happen. Both strategies would explain relatively 1125

lower strength of beliefs about both events B and A 1126

to happen. Any explanations, however, necessitate 1127

a follow-up study with more elaborative questions 1128

that potentially require subjects to provide explana- 1129

tions of the given ratings. 1130

Interestingly, we also observe lower ratings for 1131

both events in the nil → B condition, compared to 1132

the A → B condition, which is contrary to our ex- 1133

pectations. In the nil → B condition, event B was 1134

overtly mentioned in the story, which should lead 1135

to comparable strength in subjects’ beliefs with the 1136
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A → B condition. Subsequently, event A, even1137

though not mentioned explicitly, should be inferred1138

on the basis of the causal link between them and1139

script knowledge: if she added star-shaped sprin-1140

kles (event B), then she should have prepared cake1141

decorations beforehand (event A) – see Figure 1,1142

part II.1143

A probable rationale for the discrepancy between1144

our expectation and the actual ratings is that, when1145

faced with the questions, subjects may have retro-1146

spectively re-evaluated the story, relying more on1147

their memory representations. Compared to condi-1148

tion A → B, event B might have been perceptually1149

less salient in the nil → B condition. Event B1150

is easy to integrate due to its relation to the corre-1151

sponding script (which we observe in the reading1152

time analysis – see Section 3.5, RQ2) and may not1153

receive a lot of attention from the reader, hence1154

reducing its memorization and subsequent retrieval1155

of event B. In the A → B condition, on the other1156

hand, attention to event B is strengthened by the1157

causal link coming from an explicitly mentioned1158

event A that might facilitate its retrieval from mem-1159

ory at the question answering stage (see Bower1160

et al., 1979, for similar results in reading every-1161

day stories where subjects were asked to evaluate1162

which events were mentioned in the text).1163

C Details of LLMs1164

We use one Nvidia A100 GPU card to run all of1165

our experiments. Thanks to our zero-shot setting,1166

the experiment of each model takes less than 101167

minutes.1168

C.1 GPT models1169

GPT-2. GPT-2 (Radford et al., 2019) is one of the1170

most influential language models by OpenAI. As a1171

decoder-only causal PLM, GPT-2 is often used as1172

a baseline.1173

GPT-3 models. GPT-3 (Brown et al., 2020) is1174

the upgraded version of GPT-2 which uses almost1175

the same model and architecture but with a signif-1176

icantly larger amount of parameters, which was1177

ten times more than any previous non-sparse lan-1178

guage model. GPT-3 and GPT-3.5 were chosen1179

to be evaluated as they were expected to perform1180

the best, based on their strong performance on1181

a range of NLP tasks. We experiment with dif-1182

ferent versions of GPT-3 and GPT-3.5.3 GPT-31183

3More details are on https://platform.openai.
com/docs/model-index-for-researchers

models (Brown et al., 2020): curie is a GPT-3 1184

with 6B parameters. davinci is a GPT-3 with 1185

175B parameters. InstructGPT models (Ouyang 1186

et al., 2022): davinci-instruct-beta is a 1187

model trained with supervised fine-tuning on hu- 1188

man demonstrations; text-davinci-001 and 1189

text-curie-001 further includes top-rated 1190

model samples from quality assessment by human 1191

labellers. GPT 3.5 models (Neelakantan et al., 1192

2022): text-davinci-002 is an InstructGPT 1193

model based on a model trained with a blend of 1194

code and text; text-davinci-003 was further 1195

trained using reinforcement learning with human 1196

feedback. 1197

Newer models from OpenAI like GPT-4 (OpenAI, 1198

2023) or gpt-3.5-turbo-0301 don’t support 1199

the "Completions" API and can’t return probabili- 1200

ties so we don’t include them. 1201

C.2 Chatbots 1202

As the two current state-of-the-art LLMs, GPT-4 1203

and ChatGPT, are both designed to function as 1204

chatbots, our aim is to harness the potential of the 1205

most capable open-source chatbot available to us. 1206

Chatbots, by design, need to comprehend and re- 1207

spond contextually to inputs, often requiring them 1208

to make connections between disparate pieces of 1209

information in a conversation. Vicuna is an open- 1210

source chatbot created by fine-tuning an LLaMA 1211

base model with approximately 70K user-shared 1212

conversations collected from ShareGPT.com. Pre- 1213

liminary evaluation in their paper (Chiang et al., 1214

2023) suggests that Vicuna reaches 90% of the 1215

quality of chatbots such as ChatGPT and Google’s 1216

Bard. 1217

C.3 Efficient Models 1218

There are models that need less memory or less 1219

time. Methods that reduce space could have a better 1220

performance here, because, for most of this experi- 1221

ment, we had limited space. Efficient models are 1222

interesting for long-range dependencies because 1223

they employ innovative techniques or optimizations 1224

to handle dependencies more effectively. Efficient 1225

models might be better or worse at capturing the 1226

relationships between distant parts of the text due 1227

to their unique approaches. 1228

Nyströmformer and language perceiver are ex- 1229

amples of models with efficient self-attention. 1230
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