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ABSTRACT

Federated learning (FL) systems are vulnerable to malicious clients that submit
poisoned local models to achieve their adversarial goals, such as preventing the
convergence of the global model or inducing the global model to misclassify some
data. Many existing defense mechanisms are impractical in real-world FL sys-
tems, as they require prior knowledge of the number of malicious clients or rely
on re-weighting or modifying submissions. This is because adversaries typically
do not announce their intentions before attacking, and re-weighting might change
aggregation results even in the absence of attacks. To address these challenges in
real FL systems, this paper introduces a cutting-edge anomaly detection approach
with the following features: i) Detecting the occurrence of attacks and perform-
ing defense operations only when attacks happen; ii) Upon the occurrence of an
attack, further detecting the malicious client models and eliminating them without
harming the benign ones; iii) Ensuring honest execution of defense mechanisms
at the server by leveraging a zero-knowledge proof mechanism. We validate the
superior performance of the proposed approach with extensive experiments.

1 INTRODUCTION

Federated Learning (FL) (McMahan et al., 2017a) enables clients to collaboratively train machine
learning models without sharing their local data with other parties, maintaining the privacy and se-
curity of their local data. Due to its privacy-preserving nature, FL has attracted considerable atten-
tion across various domains and has been utilized in numerous areas (Hard et al., 2018; Chen et al.,
2019; Ramaswamy et al., 2019; Leroy et al., 2019; Byrd & Polychroniadou, 2020; Chowdhury et al.,
2022). However, even though FL does not require sharing raw data with others, its decentralized
and collaborative nature inadvertently introduces privacy and security vulnerabilities (Cao & Gong,
2022; Bhagoji et al., 2019; Lam et al., 2021; Jin et al., 2021; Tomsett et al., 2019; Chen et al., 2017;
Tolpegin et al., 2020; Kariyappa et al., 2022; Zhang et al., 2022c). Malicious clients in FL systems
can harm training by submitting spurious models to disrupt the global model from converging (Fang
et al., 2020; Chen et al., 2017), or planting backdoors to induce the global model to perform wrongly
for certain samples (Bagdasaryan et al., 2020b;a; Wang et al., 2020).

Existing literature on robust learning and mitigation of adversarial behaviors includes Blanchard
et al. (2017); Yang et al. (2019); Fung et al. (2020); Pillutla et al. (2022); He et al. (2022); Cao et al.
(2022); Karimireddy et al. (2020); Sun et al. (2019); Fu et al. (2019); Ozdayi et al. (2021); Sun et al.
(2021), etc. These approaches exhibit shortcomings, making them less suitable for real FL systems.
Some of these strategies require prior knowledge about the number of malicious clients within the
FL system (Blanchard et al., 2017), even though in practice an adversary would not notify the system
before attacking. Also, some of these methods mitigate impacts of potential malicious client sub-
missions by re-weighting the local models (Fung et al., 2020), retaining only several local models
that are most likely to be benign while removing others (Blanchard et al., 2017), or modifying the
aggregation function (Pillutla et al., 2022). These methods have the potential to unintentionally alter
the aggregation results in the absence of deliberate attacks, considering attacks happen infrequently
in real-world scenarios. While the defense mechanisms can mitigate the impact of potential attacks,
they can inadvertently compromise the result quality when applied to benign cases.
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Figure 1: Overview of the proposed anomaly detection for FL systems.

Moreover, existing defense mechanisms are deployed at the FL server without any verification pro-
cedures to ensure their correct execution. While most of the clients are benign and wish to collabo-
ratively train machine learning models, they can also be skeptical about the server’s reliability due
to the execution of the defense mechanisms that modify the original aggregation procedure. Thus, a
successful anomaly detection approach should simultaneously satisfy the following: i) It should be
able to detect the occurrence of attacks and exclusively handle the cases when attacks happen. ii) If
an attack is detected, the strategy must further detect malicious client submissions and accordingly
mitigate (or eliminate) their adversarial impacts without harming the benign client models. iii) There
should be a robust mechanism to corroborate the honest execution of defense mechanisms.

In this work, we propose a novel anomaly detection mechanism that is specifically tailored to address
genuine challenges faced by real-world FL systems. Our approach follows a two-stage scheme at
the server to filter out malicious client submissions before aggregation. It initiates with a cross-
round check based on some cache called “reference models” to determine whether any attacks have
occurred. In case of attacks, a subsequent cross-client detection is executed to eliminate malicious
clients models without harming the benign client models. Meanwhile, the reference models in the
cache is renewed. We provide an overview in Figure 1. Our contributions are summarized as follows:

i) Proactive attack detection. Our strategy is equipped with an initial cross-round check to detect
the occurrence of potential attacks, ensuring that defensive methods are only activated in response
to the presence of attacks, thereby maintaining the sanctity of the process in attack-free scenarios.

ii) Enhanced anomaly detection. By coupling the cross-round check with a subsequent cross-
client detection, our approach efficiently eliminates malicious client submissions without harming
the benign local submissions.

iii) Autonomy from prior knowledge. Our method operates effectively without any prerequisites
such as data distribution or the number of malicious clients. Such autonomous nature ensures
widespread applicability and adaptability of our approach across different FL tasks, regardless of
the data distribution and the selection of models.

iv) Rigorous verification protocol. Incorporating Zero-Knowledge Proof (ZKP) (Goldwasser et al.,
1989) methodologies, our approach guarantees that the elimination of malicious client models is
executed correctly, ensuring that clients can place trust in the defense mechanism in the FL system.

2 PROBLEM SETTING

2.1 ADVERSARY MODEL

We consider an FL system where some clients are malicious, while most clients are honest. The
clients have full access to their local data and can train models using their data. They also would like
to collaboratively train a model without sharing their data. However, the malicious clients among
them may conduct attacks to achieve some adversarial goals, including: i) planting a backdoor
to misclassify a specific set of samples while minimally impacting the overall performance of the
global model, i.e., backdoor attacks (Bagdasaryan et al., 2020b; Wang et al., 2020); ii) altering the
local models to prevent the global model from converging, i.e., Byzantine attacks (Chen et al., 2017;
Fang et al., 2020); and iii) randomly submitting contrived models without actual training, i.e., free
riders (Wang, 2022). Clients are aware that the server can take some defensive methods to remove
potential malicious local models, and they want to verify the mechanism is processed correctly and
honestly at the server.

2



Under review as a conference paper at ICLR 2024

Figure 2: Three Sigma Rule.
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Figure 3: Cosine similarities.

2.2 PRELIMINARIES

Krum. Krum (Blanchard et al., 2017) is a well-known distance-based anomaly detection method
in distributed learning that accepts local models that deviate less from the majority based on their
pairwise distances. Given that there are f byzantine clients among L clients that participate in
each FL iteration, Krum selects one model that is the most likely to be benign as the global model.
An optimization of Krum is m-Krum (Blanchard et al., 2017) that selects m local models, instead
of one, to compute an average model when aggregating local models. Algorithms for Krum and
m-Krum is shown in Algorithm 2 in Appendix A.1.

Three Sigma Rule. The three sigma rule is an empirical rule stating that almost all of the popula-
tion lies within three standard deviations of the mean in normal distributions. Specifically, in normal
distributionsN (µ, σ), the percentage of values within one, two, and three standard deviations of the
mean are 68%, 95%, and 99.7%, respectively. This rule can be widely applied in real-world applica-
tions, since normal distributions are consistent with real-world data distributions (Lyon, 2014), and
according to the central limit theorem (Rosenblatt, 1956), when aggregating independent random
variables, even if the variables are generated by various distributions, the aggregation tends towards
a normal distribution. Further, when the data are not normally distributed, we can transform the dis-
tribution to a normal distribution (Aoki, 1950; Osborne, 2010; Sakia, 1992; Weisberg, 2001). The
three sigma rule has been used in anomaly detection (Han et al., 2019) since data outside two or
three standard deviations of the mean take a very limited proportion; see Figure 2.

Zero-knowledge proofs. Zero-Knowledge Proofs (ZKPs)(Goldwasser et al., 1989) is a proof sys-
tem that allow a prover to convince a verifier that a function on prover’s secret input (witness) is
correctly computed. ZKPs ensures three properties: correctness, soundness, and zero-knowledge.
Correctness means that if the prover is honest, then the proof they produce should check out (in-
tegrity property). Soundness ensures that a cheating prover will not convince verifier with over-
whelming probability. Zero-knowledge guarantees that prover’s winess will be not learned by the
verifier (privacy). Due to these properties, ZKP has been widely used in machine learning and
blockchain applications (Lee et al., 2020; Feng et al., 2021; Liu et al., 2021; Sasson et al., 2014).

3 THE PROPOSED TWO-STAGED ANOMALY DETECTION

3.1 CROSS-ROUND CHECK

The goal of the cross-round check is to detect whether attacks happened in the current FL iteration.
Below, we first give a high-level idea of the algorithm, then explain the algorithm in more details.

Overview. In the cross-round check, the server computes similarity scores between some “reference
models” stored in cache and the local models of the current FL training round. As in Fung et al.
(2020), we utilize cosine similarities, where lower cosine similarities indicate higher likelihood
of attack occurrences. For each local model, denoted as wi, and a reference model, denoted as
wr, the cosine similarity Sc(wi,wr) is computed as Sc(wi,wr) = wi·wr

||wi||·||wr|| . The reference
models are the global model of the last training round and respective cached local models of each
client from the last FL training round. Figure 3 illustrates the information deduced from the cosine
similarities regarding malicious and benign local models. We expect the similarity scores across
local models to be high, which shows that those local models are more likely to be benign and
indicates a “converging” trend for the FL training, while lower similarities might indicate attacks
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Algorithm 1: Cross-round check

Inputs: τ : training round id, e.g., τ = 0, 1, 2, . . .;W(τ): client submissions of the current FL
training round; γ: upper bound of similarities for malicious client models.

1 function cross round check(W(τ), τ, γ) begin
2 if τ=0 then return True;
3 potential malicious clients ← [], attacks detected ← False
4 Wτ−1 ← get cached client models()
5 wτ−1

g ← get global model of last round()

6 for w
(τ)
i ∈ Wτ do

7 Sc ← compute cosine similarity(w
(τ)
i ,w

(τ−1)
i )

8 S
(g)
c ← compute cosine similarity(w

(τ)
i ,w

(τ−1)
g )

9 if Sc < γ or S(g)
c < γ then

potential malicious clients .add (w(τ)
i )

10 if attacks detected is False then attacks detected ← True;

11 save(potential malicious clients)
12 return attacks detected

happened in the current training round, as the malicious clients may have submitted arbitrary or
tampered local models through some attacks (Bagdasaryan et al., 2020b; Wang et al., 2020; Chen
et al., 2017; Fang et al., 2020), introducing low similarities. The algorithm sets a threshold for the
similarity scores for malicious models, denoted by γ. Based on this threshold, the server determines
whether potential attacks have happened in the current training round.

The cross-round check algorithm is given in Algorithm 1, which has the following steps.

Step 1: Initialization. The server loads the reference models, including the global model from
the last FL training round, as well as the cached local models that are deemed as “benign” from the
previous FL training round (Line 4 and 5). For the first round that does not have a reference global
model and cached local models, the algorithm assumes there are attacks and skips the cross-round
check stage to directly go into the second stage.

Step 2: Detect potential attacks. For each local model w(τ)
i submitted by the ith client in round

τ , the server computes two cosine similarity scores: i) a cosine score Sc between w
(τ)
i and the

cached local model from the same client, denoted as w
(τ−1)
i (Line 7), and ii) a cosine score S

(g)
c

between w
(τ)
i and the global model of the last FL round, denoted as w(τ−1)

g (Line 8). Using the two
cosine similarity scores for w(τ)

i , the algorithm detects whether potential attacks have happened in
the current FL training round. To do so, we set a threshold, denoted as γ, for the cosine similarity
scores, where −1 < γ < 1. Any cosine score that is lower than γ indicates that potential attack has
happened in the current FL round. Note that at this stage we do not actually remove the models that
are detected malicious; instead, we just mark them as “potentially malicious” and decide whether to
remove them in the latter stage of the proposed approach.

Step 3: Return an indicator of potential attacks. If any client models are detected as “potentially
malicious”, the server outputs an indicator that attacks might have happened in the current FL round,
and the algorithm then enters the next stage to further inspect and remove malicious client models.

3.2 CROSS-CLIENT ANOMALY DETECTION

During detection, the server utilizes 3σ rule to further determine whether attacks have indeed hap-
pened on the potentially malicious clients determined in the first stage. The 3σ rule is pivotal for two
reasons: i) parameters of local models are i.i.d. in distributed learning (Baruch et al., 2019; Chen
et al., 2017; Yin et al., 2018); and ii) even when client data are non-i.i.d., the Central Limit Theo-
rem (Rosenblatt, 1956) indicates that local models tend towards a normal distribution. In each FL
iteration, the server computes an L2 score between each local model and an approximate average
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model. The server then uses these scores to compute an approximate normal distribution. Based
on 3σ rule, the server computes a bound for filtering out potentially malicious client models. The
algorithm is in Algorithm 3 in §A.2. Below, we explain the algorithm in steps.

Step 1: Obtain an average model. Our algorithm takes the global model computed after removing
all malicious local models in the last round as the average model for the current FL round. For the
first FL training round that does not have an average model for reference, our algorithm uses m-
Krum to compute an approximate average model. As the FL server does not know the number of
potential malicious clients, we set m to L/2 to compute an approximate average model based on the
assumption that the number of malicious clients is less than L/2, where L is the number of clients
in each FL round. Such an approximate average model is used to compute L2 distances for local
models in the current FL training round.

Step 2: Compute scores for each client model. The algorithm utilizes the average model, denoted
as wavg , and uses it to compute an L2 score (i.e., the Euclidean distance) for each local model wi

as Si = ||wi −wavg || in the current FL training round.

Step 3: Compute an approximate distribution of the L2 scores. The server computes an approx-
imate normal distributions using the Euclidean distance scores, specifically, the two parameters, the
mean µ and the standard deviation σ. Let SE denote a list of L2 distances with cardinality |SE |,

then, µ and σ, are given by µ =
∑

ℓ∈SE
ℓ

|SE | and σ =

√∑
ℓ∈SE

(ℓ−µ)2

|SE |−1 .

Step 4: Remove malicious local models based on the three sigma rule and the L2 scores. The
bound for removing malicious clients is defined as λ (λ > 0) standard deviation of the mean as
µ + λσ. The server deems local models with scores higher than the boundary as “anomaly local
models” and removes them from the aggregation. Note that we only take one side of the bounds of
the three sigma rule, as we prefer lower L2 scores, which indicate that the local model is “closer” to
the average model. Thus, we do not filter out client models with scores lower than µ− λσ.

Step 5: Compute a new average model for later FL iteration. After removing malicious client
models, the server uses the benign local models to compute an average model for the next round.

Optimizations for computation and storage. Algorithm 1 and Algorithm 3 utilize local models
and global models to compute scores, which requires storing entire client models in cache and use
them in computation. To reduce the cache size and the computation time, similar to Fung et al.
(2020), we utilize a layer that can represent a whole model, called the “importance layer”, instead of
using full models. Intuitively, we select the second-to-the-last layer, as it contains more information
in regards to the whole model. We experimentally verify this in Section 5.

4 VERIFIABLE ANOMALY DETECTION USING ZKP

This section introduces a ZKP-based verification procedure so that the benign clients can ensure the
correct execution of the anomaly detection mechanism at the server. The intuition is that clients may
be skeptical about the removal of some client models during the anomaly detection process at the
server, as it may change the aggregation results. To verify anomaly detection procedure, we utilize
zkSNARKs (Bitansky et al., 2012), which offer constant proof size and constant verification time
regardless of the size of computation. This property is crucial for applications where the verifier’s
(i.e., FL client) resources are limited. Details of implementations are deferred to Appendix §B. In
what follows, the prover is the FL server, whereas the verifiers are the FL clients.

ZKP-Compatible Language. The first challenge of applying ZKP protocols is to convert the
computations into a ZKP-compatible language. ZKP protocols model computations as arithmetic
circuits with addition and multiplication gates over a prime field. However, our computations for
anomaly detection are over real numbers. The second challenge is that some computations such
as square root are nonlinear, making it difficult to wire them as a circuit. To address these issues,
we implement a class of operations that map real numbers to fixed-point numbers. To build our
ZKP scheme, we use Circom library (Contributors, 2022), which can compile the description of an
arithmetic circuit in a front-end language similar to C++ to back-end ZKP protocol.
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Table 1: Models and datasets for evaluations.
Dataset FEMNIST (Caldas et al., 2018) Cifar10, Cifar100 (Krizhevsky et al., 2009) Shakespeare (McMahan et al., 2017b)
Model CNN (McMahan et al., 2017a) ResNet20, ResNet56 (He et al., 2016) RNN (bi-LSTM) (McMahan et al., 2017a)

ZKP for Anomaly Detection. Most of the computations in Algorithm 1 and Algorithm 3 are linear,
which can be compiled into an arithmetic circuit easily. For instance, computing cosine similarity
between two matrices of size n × n requires a circuit with O(n2) multiplication gates and one
division. While it is difficult to directly compute division on a circuit, it can be easily verified with
the prover providing the pre-computed quotient and remainder beforehand. We can utilize this idea
and apply Freivalds’ algorithm (Freivalds, 1977) to verify matrix multiplications.

Matrix multiplication constitutes the basis of the verification schemes used for anomaly detection.
Naively verifying a matrix multiplication AB = C where A,B,C are of size n×n requires proving
the computation step by step, which requires O(n3) multiplication gates. With Freivalds’ algorithm,
the prover first computes the result off-circuit and commits to it. Then, the verifier generates a
random vector v of length n, and checks A(Bv)

?
= Cv. This approach reduces the size of the circuit

to O(n2). We exploit this idea of verifying the computation again to design an efficient protocol for
square root, which is used in Algorithm 3. To verify that x =

√
y is computed correctly, we ask the

prover to provide the answer x as witness and then we check in the ZKP that x is indeed the square
root of y. Note that we cannot check x2 is equal to y because zkSNARK works over prime field
and the square root of an input number might not exist. Therefore, we check if x2 is close to y by
checking that x2 ≤ y and (x+ 1)2 ≥ y. This approach reduces the computation of square root to 2
multiplication and 2 comparison.

5 EVALUATIONS

This section presents a comprehensive evaluation of our approach. We focus on the following as-
pects: (i) effectiveness of cross-round check detection; (ii) effectiveness of the cross-client detec-
tion; (iii) performance comparison of our approach against other defenses; (iv) robustness of our
approach against a dynamic subset of malicious clients; (v) defense coverage of our approach on
different models; (vi) performance of our ZKP-verified anomaly detection protocol.

Experimental setting. A summary of datasets and models for evaluations can be found in Table 1.
By default, we employ CNN and the non-i.i.d. FEMNIST dataset (partition parameter α = 0.5), as
the non-i.i.d. setting closely captures real-world scenarios. We utilize FedAVG in our experiments.
By default, we use 10 clients for FL training – all clients participate in training in each round. We
employ three attack mechanisms, including Byzantine attacks of random mode (Chen et al., 2017;
Fang et al., 2020), and model replacement backdoor attack (Bagdasaryan et al., 2020b). We utilize
three baseline defense mechanisms: m-Krum (Blanchard et al., 2017), Foolsgold (Fung et al., 2020),
and RFA (Pillutla et al., 2022). For m-Krum, we set m to 5, which means 5 out of 10 submitted local
models participate in aggregation in each FL training round. By default, the results are evaluated
with the accuracy of the global model. Evaluations for anomaly detection are conducted on a server
with 8 NVIDIA A100-SXM4-80GB GPUs, and evaluations for ZKP are conducted on Amazon
AWS with an m5a.4xlarge instance with 16 CPU cores and 32 GB memory.

Exp1: Selection of importance layer. We utilize the norm of gradients to evaluate the “sensitivity”
of each layer. A layer with a norm higher than most of the other layers indicates higher sensitivity
compared with most of the other layers, thus can be utilized to represent the whole model. We
evaluate the sensitivity of layers of CNN, RNN, and ResNet56. The results for RNN are shown in
Figure 4, and the results for ResNet56 and CNN are deferred to Figure 14 and Figure 13 in Appendix
§B.2, respectively. The results show the sensitivity of the second-to-the-last layer is always higher
than most of the other layers, which includes adequate information of the whole model, thus can be
selected as the importance layer.
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Figure 4: RNN layer sensitivity. Figure 5: Varying γ. Figure 6: Varying # deviations.

5.1 CROSS-ROUND CHECK EVALUATIONS

In this subsection, we assess the efficiency of the cross-round check in detecting attacks. We employ
the random-Byzantine and the model replacement backdoor attacks, and set the attack probability
to 40% for each FL iteration, where 1 out of the clients are malicious when the attack happens.
Ideally, the cross-round check should confirm the absence or presence of an attack accurately. The
effectiveness of our approach is evaluated by the cross-round check accuracy, which measures the
proportion of iterations in which the algorithm correctly detects cases with or without an attack
relative to the number of total iterations. A 100% cross-round check accuracy means that all attacks
are detected, and none of the benign cases are identified as “attacks”.

Exp2: Impact of the similarity threshold. We evaluate the impact of the cosine similarity threshold
γ in the cross-round check by setting γ to 0.5, 0.6, 0.7, 0.8, and 0.9. According to Algorithm 1, a
cosine score lower than γ indicates lower similarities between client models of the current round
and the last round, which may be an indicator of the occurance of an attack. As shown in Figure 5,
the cross-round accuracy is close to 100% in the case of random-Byzantine attacks. Further, when
the cosine similarity threshold γ is set to 0.5, the performance is good in all cases, with at least 93%
cross-round detection accuracy.

5.2 CROSS-CLIENT DETECTION EVALUATIONS

This subsection evaluates whether the cross-client detection can successfully detect malicious client
submissions given the cases with attacks. We evaluate the quality of anomaly detection using mod-
ified Positive Predictive Values (PPV) (Fletcher, 2019), i.e., precision, the proportions of positive
results in statistics and diagnostic tests that are true positive results. Let us denote the number of
true positive and the false positive results to be NTP and NFP , respectively, then PPV = NTP

NTP+NFP
.

In the context of anomaly detection in FL, client submissions that are detected as “malicious” and
are actually malicious are defined as True Positive, corresponding to NTP , while client submissions
that are detected as “malicious” even though they are benign are defined as False Positive, corre-
sponding to NFP . Since we would like the PPV to reveal the relation between NTP and the total
number of malicious submissions across all FL iterations, denoted as Ntotal , whether they are de-
tected or not, we introduce a modified PPV as PPV = NTP

NTP+NFP+Ntotal
, where 0 ≤ PPV ≤ 1

2 . In
ideal cases, all malicious submissions are detected, where NTP = Ntotal , and PPV is 1

2 . Due to
the page limitations we deferred the proof of this statement to Appendix A.3.

Exp 3: Selection of the number of deviations. This experiment utilizes PPV to evaluate the
impact of the number of deviations, i.e., the parameter λ in the anomaly bound µ+ λσ. To evaluate
a challenging case where a large portion of the clients are malicious, we set 4 out of 10 clients to be
malicious in each FL training round. Given the number of FL iterations to be 100, the total number
of malicious submissions Ntotal is 400. We set the number of deviations λ to be 0.5, 1, 1.5, 2,
2.5, and 3. We select the Byzantine attack of random mode and the model replacement attack, and
evaluate our approach on three tasks, as follows: i) CNN+FEMNIST, ii) ResNet-56+Cifar100, and
iii) RNN + Shakespeare. The results, as shown in Figure 6, indicate that when λ is 0.5, the results
are the best, with the PPV being at least 0.37. In fact, when λ is 0.5, all malicious submissions are
detected for the random Byzantine attack for all three tasks, with the PPV being exactly 1/2. In
subsequent experiments, unless specified otherwise, we set λ to 0.5 by default.
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Figure 7: Defenses against
random-Byzantine attack.

Figure 8: Defenses against
model replacement attack.

Figure 9: Varying # malicious
clients.

Figure 10: ResNet20 & Cifar10 Figure 11: ResNet56 & Cifar100 Figure 12: RNN & Shakespeare

Exp 4: Comparisons between anomaly detection and various defenses against attacks. This
experiment evaluates the effect of our approach compared with various defense mechanisms, includ-
ing Foolsgold, m-Krum (m = 5), and RFA in the context of ongoing attacks. We include a “benign”
baseline scenario with no activated attack or defense, and select random-Byzantine and model re-
placement backdoor attacks. The results for the random-Byzantine attack and model replacement
backdoor attack are shown in Figure 7and Figure 8, respectively. These results demonstrate that our
approach effectively mitigates the negative impact of the attacks and significantly outperforms the
other defenses, with the test accuracy much closer to the benign case.

Exp 5: Varying the number of malicious clients. This experiment evaluates the impact of varying
number of malicious clients on test accuracy. We set the number of malicious clients out of 10
clients in each FL training round to 2 and 4, and include a baseline case where all clients are benign.
As shown in Figure 9, the test accuracy remains relatively consistent across different numbers of
malicious clients, as in each FL training round, our approach filters out the local models that tend to
be malicious to effectively minimize the impact of malicious client models on the aggregation.

Exp 6: Evaluations on different models. We evaluate defense mechanisms against the random
mode of the Byzantine attack with different models and datasets, including: i) ResNet-20 + Cifar10,
ii) ResNet-56 + Cifar100, and iii) RNN + Shakespeare. The results are shown in Figures 10, 11,
and 12, respectively. The results show that while the baseline defense mechanisms can mitigate the
impact of attacks in most cases, some defenses may fail in some tasks, e.g., m-Krum fails in RNN in
Figure 12. This is because those methods either select a fixed number of local models or re-weight
the local models in aggregation, which potentially eliminates some local models that are important
to the aggregation, leading to an unchanged test accuracy in later FL iterations. In contrast, our
approach outperforms those baseline defense methods by effectively filtering out local models that
are detected as “outliers”, with a test accuracy close to the benign scenarios.

5.3 ZKP PERFORMANCE

Exp 7: Evaluations of ZKP circuit size, proving time, and verification time. We implement the
ZKP system in Circom (Contributors, 2022). This system includes a module for cross-round check
and cross-client detection. We also implement a prover’s module which contains JavaScript code to
generate witness for the ZKP, as well as to perform fixed-point quantization. In our experiments, we
include CNN, RNN, and ResNet-56 as our machine learning models. Specifically, we only pull out
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parameters from the second-to-last layer of each model, i.e., the importance layer, as our weights
to reduce complexity. For instance, the second-to-last layer of the CNN model contains only 7, 936
trainable parameters, as opposed to 1, 199, 882 should we use the entire model. We implement both
algorithms across 10 clients, and report our results in Table 2.

Table 2: Cost of ZKP in various models.
Model Stage 1 Circuit Size Stage 2 Circuit Size Proving (s) Verification (ms)
CNN 476,160 795,941 33 (12 + 21) 3
RNN 1,382,400 2,306,341 96 (34 + 62) 3

ResNet-56 1,536,000 2,562,340 100 (37 + 63) 3
Note: Bracketed times denote durations for Stage 1 (Cross-round) and Stage 2 (Cross-client).

6 RELATED WORKS

Detection of occurrence of attacks. Zhang et al. (2022b) employs k-means to partition local
models into clusters that correspond to “benign” or “malicious”. While this approach can efficiently
detect potential malicious client models, it relies too much on historical client models from previous
training rounds and might not be as effective when there is limited information on past client models.
For example, in their implementation (Zhang et al., 2022a), since they need to collect historical client
model information, authors set the starting round to detect attacks to different training rounds, e.g.,
50 when the datasets are MNIST and FEMNIST, and 20 when the dataset is CIFAR10. Apparently,
this is not suitable for real FL systems, as attacks may happen in earlier rounds as well.

Defense mechanisms in FL. Robust learning and the mitigation of adversarial behaviors in FL
has been extensively explored (Blanchard et al., 2017; Yang et al., 2019; Fung et al., 2020; Pillutla
et al., 2022; He et al., 2022; Karimireddy et al., 2020; Sun et al., 2019; Fu et al., 2019; Ozdayi
et al., 2021; Sun et al., 2021; Yin et al., 2018; Chen et al., 2017; Guerraoui et al., 2018; Xie et al.,
2020; Li et al., 2020; Cao et al., 2020). Some approaches keep several local models that are more
likely to be benign in each FL iteration, e.g., (Blanchard et al., 2017; Guerraoui et al., 2018; Yin
et al., 2018), and (Xie et al., 2020). For each FL round, instead of using all client submissions for
aggregation, such approaches keep local models that are the most likely to be benign to represent
the other local models. Such approaches are effective, but they keep less local models than the real
number of benign local models to ensure that all Byzantine local models are filtered out, causing
missing representation of some benign local models in aggregation. This completely wastes the
computation resources of the benign clients that are not being selected and thus, changes the ag-
gregation results as some benign local models do not participate in aggregation. Some approaches
re-weight or modify local models to mitigate the impacts of potential malicious submissions (Fung
et al., 2020; Karimireddy et al., 2020; Sun et al., 2019; Fu et al., 2019; Ozdayi et al., 2021; Sun et al.,
2021), while other approaches alter the aggregation function or directly modify the aggregation re-
sults (Pillutla et al., 2022; Karimireddy et al., 2020; Yin et al., 2018; Chen et al., 2017). While these
defense mechanisms can be effective against attacks, they might inadvertently degrade the quality of
outcomes due to the unintentional alteration of aggregation results even when no attacks are present.
This is especially problematic given the infrequency of attacks in real-world FL scenarios.

7 CONCLUSION

We present a cutting-edge anomaly detection technique specifically designed for the real-world FL
systems. Our approach utilizes an early cross-round check that activates subsequent anomaly detec-
tion exclusively in the presence of attacks. When attacks happen, our approach removes anomaly
client models efficiently, ensuring that the local models submitted by benign clients remain unaf-
fected. Further, by leveraging ZKPs, participating clients get to verify the integrity of the anomaly
detection and removal performed by the server. The practical design and the inherent efficiency of
our approach make it well-suited for real-world FL systems. Our plans for future works include
extending our approach to asynchronous FL and vertical FL scenarios.
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A APPENDIX

A.1 ALGORITHM FOR KRUM AND m-KRUM

Algorithm 2: Krum and m-Krum.
Inputs: W: client submissions of a training round; i: the client id for which we compute a

Krum score SK(wi); f : the number of malicious clients in each FL iteration; m: the number
of “neighbor” client models that participate in computing the Krum score Sk(wi) of each
client model wi; m is 1 by default in Krum.

1 function Krum and m Krum(W,m, f) begin
2 Sk ← []
3 for wj ∈ W do
4 Sk(wi)← compute krum score(W, i,m, f)

5 filter(W, Sk) ▷ Keep local models with the L/2 lowest Krum scores
6 return average(W)

7 function compute krum score(W, i,m, f) begin
8 d← [] ▷ Square distances of wi to other local models.
9 L← |W| ▷ L: the number of clients in each FL round.

10 for wj ∈ W do
11 if i ̸= j then

d.append (||wi −wj ||2)

12 sort(d) ▷ In ascending order
13 Sk(wi)←

∑L−f−3
k=0 d ▷ Use the smallest L− f − 2 scores to compute Sk(wi)

14 return Sk(wi)

A.2 ANOMALY DETECTION ALGORITHM

A.3 PROOF OF THE RANGE OF PPV

Below we prove the upper bound of PPV to be 1
2 .

Proof. PPV = NTP

NTP+NFP+Ntotal
, then 1

PPV = 1 + NFP

NTP
+ Ntotal

NTP
. As NFP

NTP
≥ 0 and Ntotal

NTP
≥ 1, we

have 1
PPV ≥ 2, thus PPV ≤ 1

2 .
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Algorithm 3: Cross-client Detection Algorithm.
Inputs: τ : training round id, e.g., τ = 0, 1, 2, . . .;W: client submissions of a training round.

1 function Detect Anomaly Submissions(W, τ ) begin
2 if τ = 0 then

m← |W|/2, f ← |W|/2, wavg ← Krum and m Krum(W,m, f)

3 S ← compute L2 scores(W,wavg)

4 µ←
∑

ℓ∈S ℓ

|S| , σ ←
√∑

ℓ∈S(ℓ−µ)2

|S|−1 .

5 for 0 < i < |S| do
6 if S[i] > µ+ λσ then remove wi fromW ;
7 wavg ← average(W)
8 returnW

B ZKP IMPLEMENTATION

B.1 CHOICE OF THE ZKP SYSTEM

In our implementation, we use the Groth16 (Groth, 2016) zkSNARK scheme implemented in the
Circom library (Contributors, 2022) for all the computations described above. We chose this ZKP
scheme because its construction ensures constant proof size (128 bytes) and constant verification
time. Because of this, Groth16 is popular for blockchain applications due to small on-chain compu-
tation. There are other ZKP schemes based on different constructions that can achieve faster prover
time (Liu et al., 2021), but their proof size is too big and verification time is not constant, which
is a problem if the verifier lacks computational power. The construction of a ZKP scheme that is
efficient for both prover and verifier is still an open research direction.

B.2 SUPPLEMENTARY EXPERIMENTS FOR IMPORTANCE LAYER

Figure 13: CNN layer sensitivity. Figure 14: ResNet56 layer sensitivity.

B.3 SUPPLEMENTARY EXPERIMENTS FOR REAL-WORLD APPLICATIONS

Exp8: Evaluations in real-world applications. We utilize edge devices from the Theta net-
work (Theta Network., 2023) to validate the scalability of our anomaly detection approach to real-
world applications. The FL client package is integrated into Theta’s edge nodes, which periodically
fetch data from the Theta back-end. Subsequently, the FL training server capitalizes on these Theta
edge nodes and their associated data to train, fine-tune, and deploy machine learning models.

We utilize the Byzantine attack of random mode. Considering the challenges posed by real-world
environments, such as devices equipped solely with CPUs (lacking GPUs), potential device con-
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Figure 15: Theta edge devices

Figure 16: Real-world application on Theta network. Yellow: aggregation server waiting time; pink:
aggregation time; green: client training time; blue: client communication.

nectivity issues, network latency, and limited storage on edge devices (for instance, some mobile
devices might have less than 500MB of available storage), we choose a simple task by employing
the MNIST dataset for a logistic regression task. We deploy 20 client edge devices, and set 5 of
them as malicious for each FL training round. The information of the Theta devices is shown in Fig-
ure 15. The training process is shown in Figure 16, and the total training time is 221 seconds. We
also include the CPU utilization and network traffic during training, which are shown in Figure 17
and Figure 18, respectively.
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Figure 17: CPU utilization

Figure 18: Network traffics
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