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Abstract

Large language models (LLMs) are susceptible001
to generating hallucinated information, despite002
the integration of retrieval-augmented genera-003
tion (RAG). Parallel context extension (PCE)004
is a line of research attempting to effectively005
integrating parallel (unordered) contexts, while006
it still suffers from in-context hallucinations007
when adapted to RAG scenarios. In this paper,008
we propose DePaC (Dehallucinating Parallel009
Context Extension), which alleviates the in-010
context hallucination problem with context-011
aware negative training and information-012
calibrated aggregation. DePaC is designed to013
alleviate two types of in-context hallucination:014
fact fabrication (i.e., LLMs present claims015
that are not supported by the contexts) and016
fact omission (i.e., LLMs fail to present claims017
that can be supported by the contexts). Specif-018
ically, (1) for fact fabrication, we apply the019
context-aware negative training that fine-tunes020
the LLMs with negative supervisions, thus ex-021
plicitly guiding the LLMs to refuse to answer022
when contexts are not related to questions; (2)023
for fact omission, we propose the information-024
calibrated aggregation which prioritizes context025
windows with higher information increment026
from their contexts. The experimental results027
on nine RAG tasks demonstrate that DePaC sig-028
nificantly alleviates the two types of in-context029
hallucination and consistently achieves better030
performances on these tasks.031

1 Introduction032

Retrieval-augmented generation (RAG) (Lewis033

et al., 2020; Gao et al., 2023) is nowadays a preva-034

lent paradigm for incorporating large language035

models (LLMs) (OpenAI, 2023; Touvron et al.,036

2023; Jiang et al., 2023a) with outside knowledge.037

RAG employs a retriever to fetch documents that038

are semantically closest to the question, and incor-039

porates them into LLM’s prompt. Parallel Con-040

text Extension (PCE) (Hao et al., 2022; Ratner041
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Figure 1: DePaC significantly reduces the occurrence
of hallucinations in responses within RAG scenarios.

et al., 2023; Su et al., 2024) is a line of research at- 042

tempting to effectively integrating parallel contexts 043

through an aggregation function. PCE is highly 044

compatible with RAG scenarios, as the candidate 045

retrieved documents of RAG are independ of each 046

other. 047

However, existing PCE approaches still face two 048

types of in-context hallucination issues (Ji et al., 049

2023; Rawte et al., 2023; Yang et al., 2023): fact 050

fabrication and fact omission. (1) fact fabrica- 051

tion occurs when the model presents fabricated 052

claims that are inconsistent with the contextual 053

facts. As shown in Figure 2a, LLM confidently 054

produces a fabricated answer for the window with 055

Doc2, caused PCE to fabricate the wrong answer. 056

(2) fact omission refers to windows lacking useful 057

information may disproportionately affect the ag- 058

gregation function, leading it to omit critical infor- 059

mation present in other windows. This will make 060

LLMs fail to present claims that can be supported 061

by the contexts. As shown in Figure 2b, Doc3 does 062

not contain required information, makes LLM con- 063

fidently generate "Unknown" for the window with 064

Doc3, further leading to the wrong final answer. 065

In this paper, we propose DePaC to alleviate the 066

hallucination issue of parallel context extension 067

on RAG. DePaC contains two parts: NegTrain 068

(Context-aware Negative Training) to address fact 069

fabrication issue and ICA (Information-Calibrated 070
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(a) Fact fabrication example. Doc2 is useless to answer the question. The higher confidence in "Wendy" on Doc2 caused PCE
to fabricate the answer "Alice’s grandfather is Wendy."
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(b) Fact omission example. Doc3 is useless to answer the question. The higher confidence in "unknown" on Doc3 caused PCE
to omit the fact on Doc1, resulting an incorrect final answer after aggregation.

Figure 2: Existing PCE approaches face two types of in-context hallucination issues when applied to RAG: (1) Fact
fabrication. LLM generates fabricated answers that are inconsistent with the contextual facts. (2) Fact omission. The
absence of required information in certain windows disproportionately influence the aggregation function, leading
to disregard critical information in other windows.

Aggregation) to address fact omission issue. (1)071

NegTrain guides the LLMs to refuse to answer072

when contexts are not related to the question. Neg-073

Train consists of two parts of training data: one part074

comprises useful documents and questions as in-075

put, with corresponding answers as output. While076

the other part treats irrelevant documents and ques-077

tions as input, with a rejection token as output.078

(2) ICA prioritizes context windows with higher079

information increment from their contexts. Specif-080

ically, we utilize Kullback-Leibler (Kullback and081

Leibler, 1951) divergence to measure the informa-082

tion increment of with-document compared to non-083

document. This approach enhances DePaC’s capa-084

bility to identify useful information within parallel085

windows. Moreover, DePaC has lower computa-086

tional complexity than vanilla inference approach.087

The inference time of DePaC increases linearly088

with the number of documents, while inference089

time of vanilla approach increases quadratically.090

We conduct experiments on various RAG tasks,091

demonstrate that DePaC significantly alleviates092

the two types of hallucinations and consistently093

achieves promising performances. Then we ana-094

lyze the proportion of hallucination produced by095

different approaches, demonstrating that DePaC096

can effectively mitigate the two types of hallucina-097

tions (Figure 1). We also conducte ablation study098

to identify that information-calibrated aggregation099

and context-aware negative training are both essen-100

tial for DePaC performance.101

The main contents of this paper are organized 102

as follows. Section 2 introduces the formalization 103

of PCE and two existing aggregation methods for 104

PCE. Section 3 introduces the methodology and 105

implementation details of DePaC. Section 4 intro- 106

duces the complexity analysis of DePaC. Section 107

5 introduces our experimental results on informa- 108

tion seeking and DocQA. Section 6 discusses the 109

related work. Finally, section 7 provides a conclu- 110

sion regarding our work. 111

2 Background: Parallel Context 112

Extension (PCE) 113

The core idea of PCE involves aggregating informa- 114

tion from multiple context windows into a unified 115

representation space. Such a representation aggre- 116

gation can be formalized on either the probability 117

distributions of output tokens (Su et al., 2024), or 118

the internal hidden states in attention layers (Hao 119

et al., 2022; Ratner et al., 2023). Su et al. (2024) 120

claimed the above two formalizations have simi- 121

lar practical performances. In this work, we adopt 122

the formalization in (Su et al., 2024) that takes the 123

aggregation of output distributions. 124

Given an question Q, a set of retrieved docu- 125

ments D = {d1, d2, ..., dn}, and a language model 126

with parameters θ, PCE first computes the output 127

distribution of each context window, 128

pi,j = pθ( · | dj ⊕Q⊕A1:i−1), (1) 129

where pi,j is the probability distribution of the i- 130
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th token for output A based on the dj document,131

and ⊕ represents the concatenation of sequences.132

Subsequently, these individual distributions are ag-133

gregated into a single distribution,134

pi = AGG(pi,1, pi,2, ..., pi,n), (2)135

where AGG(·) represents the aggregation method.136

Finally, the output token Ai will be sampled based137

on the aggregated distribution pi,138

Ai ∼ p̂i, p̂i = pi − α · pi,c, (3)139

140
pi,c = pθ( · | Q ⊕ A1:i−1), (4)141

where the p̂i is the calibrated distribution to facili-142

tate generation. We set α = 0.2 following Su et al.143

(2024).144

The effectiveness of the PCE paradigm is signif-145

icantly influenced by the design of the aggregation146

method AGG(·). Here, we discuss two aggregation147

methods used in existing studies.148

Average Aggregation (Hao et al., 2022; Ratner149

et al., 2023). The aggregated distribution is com-150

puted as the average of n individual distributions,151

pi =
1

n

n∑
j=1

pi,j. (5)152

In practice, the size of the retrieved document set153

D can be large, potentially containing only a few154

relevant documents. Average aggregation treats155

each context window with equal importance, makes156

it unable to seek critical information when applied157

to RAG.158

Lowest-Uncertainty Aggregation (Su et al.,159

2024). This method selects the individual distribu-160

tion with the lowest uncertainty as the aggregation161

result,162

pi = argmin
pi,j

H(pi,j), (6)163

164
H(pi,j) = −pi,j(logpi,j)

T . (7)165

Lowest-uncertainty aggregation addresses the limi-166

tations of average aggregation by filtering out high-167

uncertainty windows. However, it remains a sub-168

optimal solution as it still suffers from the two types169

of hallucinations illustrated in Figure 2.170

3 Dehallucinating Parallel Context171

Extension (DePaC)172

As shown in Figure 3, we propose two methods173

to alleviate the fact fabrication and fact omission174

hallucinations of PCE for RAG scenarios. First, 175

we introduce Context-aware Negative Training 176

to enable the model to refuse to answer questions 177

when the relevant information is missing in the con- 178

text, thereby mitigating fact fabrication. Then, we 179

propose Information-Calibrated Aggregation to 180

measure the information increment given by the 181

document, preventing the model from fact omis- 182

sion. 183

Context-aware Negative Training (NegTrain). 184

We introduce context-aware negative training to 185

alleviate fact fabrication, which explicitly train the 186

backbone model to determine whether a question is 187

answerable based on the provided document. If not, 188

we hope the model to refuse to answer the question 189

rather than generating hallucinations. 190

Given an RAG example with a question Q, a 191

ground-truth answer A, and a retrieved document 192

dj , we fine-tune the backbone model θ according 193

to the following loss function, 194

Loss(Q,A1:m, dj) = (8) 195{
CE[pθ( · | dj ⊕Q), A1:m], related(Q, dj),
CE[pθ( · | dj ⊕Q⊕A1:i), td], else,

196

where CE[·] represents the cross-entropy loss, td 197

is a pre-defined rejection token, m refers to the 198

sequence length of the ground-truth answer, A1:m 199

refers to the complete ground-truth answer with 200

all tokens, A1:i refers to the partial ground-truth 201

answer the first tokens. As shown in Figure 3(1), 202

to prevent DePaC from generating rejection token 203

only at the beginning of the answer, we also include 204

the positive answer clauses as input. After context- 205

aware negative training, we use td to explicitly 206

judge the usefulness of each context window. We 207

set td as the UNK token to minimize interference 208

with normal tokens during training. 209

Information-Calibrated Aggregation (ICA). 210

As discussed in Section 2, merely measuring the 211

uncertainty of the final output distribution can be 212

heavily influenced by fact omission hallucination. 213

We propose to measure the changes of uncertainty 214

from the non-document output distribution to the 215

with-document output distribution, reflecting the 216

information increment provided by the retrieved 217

document. 218

Specifically, we apply the Kullback-Leibler (KL) 219

divergence to measure the information increment, 220

∆(pi,j,pi,c) = DKL(pi,j || pi,c), (9) 221
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Doc1: Alice’s father is Bob. 
Bob’s father is Charlie.
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Figure 3: DePaC consists of two key components: (1) a context-aware negative training technique to alleviate fact
fabrication, and (2) an information-calibrated aggregation method to alleviate fact omission.

222
pi,c = pθ( · | Q ⊕ A1:i−1), (10)223

where pi,c is the non-document output distribution.224

Finally, we integrate the above two methods as225

two penalty terms to inject into Equation 6,226

pi = (11)227

argmin
pi,j

C(pi,j,pi,c)− γ · I(argmax
k

pi,j
k = td),228

C(pi,j,pi,c) = H(pi,j)−β·∆(pi,j,pi,c), (12)229

where I[·] represents the indicator function, pi,j
k230

is the output probability on k-th token in the vocab-231

ulary, and β > 0 and γ > 0 are hyper-parameters.232

Equation 11 and 12 mean that the selected context233

window should have low uncertainty and high in-234

formation increment, and should not be aligned to235

the rejection token. Finally, the output token Ai236

will be sampled based on the aggregated distribu-237

tion pi. For ease of implementation, we provide a238

simplified form of DePaC in Appendix B.239

Implementation Details Following previous240

work (An et al., 2024), we use the C4 (Raffel et al.,241

2020) corpus to construct our context-aware nega-242

tive training dataset. For a segment of text from C4,243

we first split it into text fragments with a maximum244

length of 4k tokens. We first sample a fragment245

serves as oracle document, and use GPT-4-Turbo246

to generate questions and answers based on the247

oracle document as positive training data. Then248

we sample unrelated fragment serves as distrac-249

tor document to construct context-aware negative250

training data based on the positive ones. To pre- 251

vent the model from overfitting on td, we control td 252

occurrence to match the average frequency of the 253

2,000 most frequent tokens in NegTrain. Finally, 254

we construct 19K samples for context-aware nega- 255

tive training. We fine-tune three open-source mod- 256

els (introduce in Section 5.3) using 8x80G A100 257

GPUs, set the global batch size as 128 and trained 258

for two epochs. We use Flash Attention-2 (Dao, 259

2023) to enhance the training speed. The entire 260

training process takes about 4 hours. 261

4 Complexity Analysis 262

Considering that RAG scenarios have high expec- 263

tations for execution efficiency and previous PCE- 264

style work lacked analysis of the execution effi- 265

ciency, we present the inference complexity of 266

DePaC compared with vanilla inference approach. 267

Figure 4 shows the attention pattern and execution 268

time comparison between DePaC and vanilla infer- 269

ence. As the length of the question is much smaller 270

than the length of the document, the complexity of 271

processing the question is ignored. Given a LLM 272

with m layers, we assume that the context consists 273

of k documents, each with n tokens. 274

Vanilla complexity. Vanilla inference directly 275

concatenates the k documents as the input to LLM, 276

with a sequence length of kn. The attention of 277

each layer is calculated by Attention(Q,K, V ) = 278

softmax
(
QKT

)
V , where Q,K, V ∈ R(kn)×d 279

is the query, key and value matrix. The com- 280

plexity of QKT is O((kn)2 · d). So the com- 281

plexity of Attention(Q,K, V ) for m layers is 282
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Figure 4: Attention pattern and execution time comparison between DePaC and vanilla inference. The execution
time of DePaC increases linearly with context length, while vanilla’s complexity grows quadratically.

O(k2 · n2 · d ·m).283

DePaC complexity. In DePaC, k documents284

are inputted to LLM in parallel, the sequence285

length for each input is n. This is akin to k286

times Attention(Q,K, V ) computations, but with287

smaller Q,K, V ∈ Rn×d, so the complexity of288

Attention(Q,K, V ) for m layers is O(k · n2 · d ·289

m).290

The complexity of Vanilla increases quadrati-291

cally with k, while DePaC’s complexity grows lin-292

early. Figure 4 shows the average execution time293

of DePaC and vanilla inference approach with dif-294

ferent context length, DePaC has faster inference295

speed than vanilla approach. Moreover, DePaC can296

place all documents in a single batch for parallel297

processing, further enhancing DePaC’s inference298

speed.299

5 Experiments300

We conduct experiments on various tasks to assess301

DePaC’s performance on RAG and alleviate the302

two types of in-context hallucination.303

5.1 Tasks304

We conduct evaluations on nine RAG tasks, in-305

cluding six information seeking tasks and three306

document-based question-answering tasks.307

The information seeking tasks serve to explic-308

itly probe the information awareness of DePaC.309

Each test case in these tasks contains an informa-310

tion query question and a large amount of contexts.311

Based on the given question, the model is required312

to seek for some textual pieces within the contexts.313

The information seeking tasks include: Function314

name retrieve (FuncNR) (An et al., 2024), Entity315

label retrieve (EntLR) (An et al., 2024), Multi-316

values Needle-in-a-Haystack (MVIH) (Hsieh et al.,317

2024), TensorHub APIBench(Tens) (Patil et al., 318

2023), TorchHub APIBench(Torc) (Patil et al., 319

2023), and Huggingface APIBench(Hugg) (Patil 320

et al., 2023). Appendix C shows the detailed de- 321

scription of information seeking tasks. 322

The document-based question-answering 323

(DocQA) tasks can further reflect how well our 324

DePaC uses the retrieved documents in real-world 325

RAG scenarios. Specifically, we take three real- 326

world long-document tasks to mimic the pro- 327

cess of RAG: given a document-specific ques- 328

tion, we provide the model several candidate docu- 329

ments, containing one ground-truth document and 330

other unrelated documents. The DocQA tasks 331

include: Qasper (Dasigi et al., 2021), Multi- 332

fieldQA (MulQA) (Bai et al., 2023), NarrativeQA 333

(NarQA) (Kočiskỳ et al., 2018). Appendix D 334

shows the detailed description of DocQA tasks. 335

For the evaluation metrics, we use exact-match 336

accuracy in the information seeking tasks and F1 337

score in the DocQA tasks. On information seek- 338

ing tasks, we set context window number k=8 and 339

evenly divide all items into k windows for all PCE 340

approaches. On DocQA tasks, we augmented the 341

original QA dataset by expanding the number of 342

documents k= 5,10,20 in the context. To avoid ex- 343

ceeding window length when concating documents, 344

we treat each document as a context window for 345

PCE approaches. 346

5.2 Baselines 347

We compare DePaC with four baselines: Vanilla, 348

AVP (Hao et al., 2022; Ratner et al., 2023), 349

NBCE (Su et al., 2024) and CLeHe (Qiu et al.). 350

The detailed description of baselines is shown in 351

Appendix E 352
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Table 1: Comparison of DePaC with baselines across three models and nine tasks.

Model Method FuncNR EntLR MVIH Tens Torc Hugg Qasper MulQA NarQA Avg

Mistral-7B

Vanilla (Jiang et al., 2023a) 25.4 44.1 21.9 37.1 14.5 1.4 15.0 39.7 10.2 23.3
AVP (Hao et al., 2022) 2.3 0.3 0.3 38.8 3.2 0.2 6.7 16.7 8.6 8.6
NBCE (Su et al., 2024) 36.2 83.1 27.9 43.3 3.8 1.3 11.7 31.0 15.9 28.2
CLeHe (Qiu et al.) 38.4 82.6 28.4 43.6 4.2 3.2 13.4 30.8 15.8 28.9
DePaC (ours) 72.8 87.4 41.6 44.8 16.7 7.5 17.3 40.7 16.4 38.4
ICA (DePaC w/o NegTrain) 69.7 85.1 35.9 44.2 14.5 6.2 16.2 40.1 16.1 36.4

Llama3-8B

Vanilla (Grattafiori et al., 2024) 24.3 42.3 22.3 34.6 12.6 1.6 7.2 9.6 6.4 17.9
AVP (Hao et al., 2022) 2.1 0.4 0.2 36.9 2.9 0.4 6.9 17.3 8.2 8.4
NBCE (Su et al., 2024) 32.8 84.2 24.8 40.3 6.5 2.1 9.9 15.6 13.9 25.6
CLeHe (Qiu et al.) 37.2 84.0 26.2 41.7 13.3 2.7 11.5 19.6 14.3 27.8
DePaC (ours) 69.5 86.6 40.2 43.9 17.4 8.2 17.6 41.0 14.1 37.6
ICA (DePaC w/o NegTrain) 64.8 85.0 33.8 43.2 15.2 6.8 16.4 40.3 14.0 35.5

Phi3-3.8B

Vanilla (Abdin et al., 2024) 29.7 43.5 21.2 35.7 12.3 1.3 13.2 30.2 11.3 22.0
AVP (Hao et al., 2022) 3.4 0.3 0.5 37.9 2.3 0.7 6.3 15.9 9.4 8.5
NBCE (Su et al., 2024) 45.4 80.3 28.3 42.2 8.6 2.2 13.8 32.5 14.7 29.8
CLeHe (Qiu et al.) 42.2 81.2 27.6 43.6 10.1 3.8 13.1 33.1 15.7 30.0
DePaC (ours) 71.4 87.0 43.2 45.3 15.5 7.2 17.5 39.1 15.3 37.9
ICA (DePaC w/o NegTrain) 68.6 85.2 36.3 44.5 14.0 6.1 16.5 37.9 15.1 36.0
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Figure 5: Hallucination percentage in responses for the information seeking tasks.

5.3 Models353

We conduct experiments on three open-source lan-354

guage models: Mistral-7B (Jiang et al., 2023a),355

Llama3-8B (Grattafiori et al., 2024) and Phi3-356

3.8B (Abdin et al., 2024). And we use Mistral-357

7B (Jiang et al., 2023a) as the default backbone358

model for the ablation study and analysis.359

5.4 Results and Analysis360

DePaC consistently achieves promising perfor-361

mances across nine tasks. As shown in Table362

1, DePaC achieves better performance than base-363

lines across six information seeking tasks and three364

DocQA tasks. Since the baselines do not require365

additional training, we also compare solely ICA366

(DePaC w/o NegTrain) with them in Table 1. The367

results indicate that using ICA alone outperforms368

the baselines, and combining ICA with NegTrain369

further improves performance. The results also370

show that AVP performs much worse than vanilla.371

This is because AVP averages the logits across par-372

allel windows, giving equal weight to each win- 373

dow’s contribution to the final answer. This makes 374

it underform for RAG scenarios, where it is crucial 375

for the model to identify and focus on the most 376

relevant information from the context. 377

DePaC significantly alleviates fact fabrication 378

and fact omission hallucinations. We analyze 379

the proportion of hallucinations produced by differ- 380

ent approaches on three information seeking tasks 381

(FuncNR, EntLR and MVIH). As shown in Fig- 382

ure 5, DePaC significantly reduces the occurrence 383

of both types of hallucinations. DePaC even com- 384

pletely avoids fact omission on EntLR and fact 385

fabrication on MVIH. The detailed hallucination 386

evaluation setup is shown in Appendix I. 387

DePaC maintains promising performance with 388

candidate documents number increases. On 389

DocQA tasks, as the number of documents in- 390

creases, more redundant information in the context. 391

As shown in Table 2 DePaC still achieves promis- 392
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Table 2: DocQA results with different candidate document numbers.

Method
Qasper MulQA NarQA

k=5 k=10 k=20 k=5 k=10 k=20 k=5 k=10 k=20

Vanilla (Jiang et al., 2023a) 15.0 13.3 8.6 39.7 33.4 31.6 10.2 9.1 9.6
AVP (Hao et al., 2022) 6.7 6.6 6.7 16.7 15.3 15.4 8.6 8.5 8.3
NBCE (Su et al., 2024) 11.7 9.9 9.8 31.0 29.0 26.9 15.9 15.8 15.1
CLeHe (Qiu et al.) 13.4 10.3 10.1 30.8 28.8 26.2 15.8 15.5 14.9
DePaC (ours) 17.3 16.0 14.8 40.7 40.6 40.9 16.4 16.3 16.0

w/o ICA w/o NegTrain DePaC60

65

70

75

Ac
cu

ra
cy

64.9

69.7
72.8
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80

90
Ac

cu
ra

cy

72.6

85.1
87.4
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w/o ICA w/o NegTrain DePaC30
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40

45
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41.6
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Figure 6: Performance of DePaC without NegTrain or ICA. w/o NegTrain refers to DePaC with positive training,
while w/o ICA refers to replace ICA with lowest-uncertainty aggregation of NBCE.

ing performance. DePaC’s performance with k=20393

even surpasses NBCE with k=5 (23.9 vs. 19.5), fur-394

ther demonstrating DePaC’s capability to identify395

key information from redundant context.396

Both information-calibrated aggregation and397

context-aware negative training are essential398

for DePaC performance. We compare DePaC399

with two ablation setting: (1) DePaC w/o Neg-400

Train. We reconstruct a Positive Training (Pos-401

Train) dataset composed solely of positive sam-402

ples, with the sample size as NegTrain dataset, and403

finetune Mistral-7B with PosTrain dataset. (2) De-404

PaC w/o ICA. We only replace the information-405

calibrated aggregation function of DePaC with406

lowest-uncertainty aggregation. We conducte abla-407

tion study on the six information seeking datasets.408

As shown in Figure 6, the ablation results indicate409

that both parts of DePaC are essential for its perfor-410

mance.411

DePaC with CoT maintains performance ad-412

vantage on multi-hop DocQA. We evaluate on413

2WikimQA (Ho et al., 2020) and HotPotQA (Yang414

et al., 2018) datasets using Mistral-7B. The results415

Table 3: Comparison results on multi-hop DocQA tasks.

Method 2WikimQA HotPotQA

Vanilla (Jiang et al., 2023a) 19.04 12.01
NBCE (Su et al., 2024) 17.45 10.52
CLeHe (Qiu et al.) 18.32 14.64
DePaC (ours) 29.72 30.95

in Table 3 show that DePaC still maintains its per- 416

formance advantage on multi-hop QA datasets. We 417

make the prompt for multi-hop QA datasets end 418

with "Let’s think step by step, ", this Chain-of- 419

Thought (CoT) prompt (Wei et al., 2022) helps 420

DePaC first seeks useful information across dif- 421

ferent contexts before generate the final answer. 422

Figure 7 shows a multi-hop example, where De- 423

PaC perform context window switching and suc- 424

cessfully locate relevant information spread across 425

multiple documents. 426

DePaC also outperforms baselinse on sum- 427

marization tasks. We also compare DePac on 428

Mistral-7B with baselines on summarization tasks 429
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Doc1: 
... One of the special magic numbers for 
muddy-tolerance is: 8962302.....

Q: What are all the special magic 
numbers for zonked-ordinary 
mentioned in the provided text?

Information
Calibrated

Aggregation

A: 8962302, 1447065 and 
5454861.

NegTrained
LLM

P1

P2

P3

Pc

DKL(Pi||Pc)
Doc2: 
... One of the special magic numbers for 
muddy-tolerance is: 1447065.....

Doc3: 
... One of the special magic numbers for 
muddy-tolerance is: 5454861.....

Q: What are all the special magic 
numbers for zonked-ordinary 
mentioned in the provided text?

Q: What are all the special magic 
numbers for zonked-ordinary 
mentioned in the provided text?

Q: What are all the special magic 
numbers for zonked-ordinary 
mentioned in the provided text?

Figure 7: DePaC can switch context window for multi-hop questions.

Table 4: Comparison results on summarization tasks.

Method GovReport QMSum MultiNews

Vanilla (Jiang et al., 2023a) 12.4 14.8 17.5
NBCE (Su et al., 2024) 22.3 19.6 21.3
CLeHe (Qiu et al.) 22.2 20.4 21.7
DePaC (ours) 29.1 25.7 28.4

(GovReport (Huang et al., 2021), QMSum (Zhong430

et al., 2021), and MultiNews (Fabbri et al., 2019)),431

which better assess the ability of LLMs to integrate432

information across entire documents. The results433

in Table 4 demonstrate that DePaC consistently434

outperforms the baselines on these summarization435

tasks.436

6 Related Work437

Retrieval-Augmented Generation (RAG) for438

LLM. To address hallucination issue of LLM,439

Retrieval-augmented generation (Lewis et al.,440

2020; Gao et al., 2023; Cheng et al., 2024; Asai441

et al., 2023) has been applied in many fields, in-442

cluding question answering (Zhang et al., 2024),443

code generation (Zhou et al., 2022; Ma et al., 2024)444

and recommendation (Zeng et al., 2024). The per-445

formance of RAG is limited by the effectiveness446

of retriever and the information utilization capabil-447

ity of LLM. Some work focus on enhancing the448

retriever’s capabilities (Wang et al., 2023; Lewis449

et al., 2020). Shi et al. (2024) compresses the re-450

trieved information for LLM. Some work proposes451

iterative RAG (Jiang et al., 2023b; Shao et al., 2023;452

Cheng et al., 2024) to help the model progressively453

utilize document information. Some work (Asai454

et al., 2023; Dhuliawala et al., 2023; Feng et al.,455

2024) utilizes prompt engineer to aggregate infor-456

mation from multiple documents to generate a final457

answer. These methods often lead to information458

omission during the aggregation process. In this 459

work, we utilize PCE to directly aggregate infor- 460

mation from multiple documents when predicting 461

the next token, enhance the accuracy and efficiency 462

of information utilization. 463

LLM with Parallel Context Extension (PCE). 464

Recent research has proposed some PCE ap- 465

proaches to aggregate multiple context windows 466

into a unified representation space, extending con- 467

text length of LLM. Some research (Hao et al., 468

2022; Ratner et al., 2023; Li et al., 2024) aggre- 469

gates by average aggregation mechanisms. Su 470

et al. (2024) proposes NBCE to aggregates by 471

lowest-uncertainty aggregation mechanisms. Pre- 472

vious PCE work primarily focuses on increasing 473

in-context learning examples, and faces halluci- 474

nation issues when applied for RAG (Yang et al., 475

2023). Beyond parallel context extension for exist- 476

ing LLM, Yen et al. (2024) also proposes encoder- 477

decoder architecture to implement parallel context. 478

In this work, we propose DePaC to alleviate the 479

hallucination issues of PCE for RAG scenarios. To 480

the best of our knowledge, we are the first work to 481

apply PCE to RAG scenarios. 482

7 Conclusion 483

In this paper, we propose DePaC to address two 484

types of in-context hallucination issues of paral- 485

lel context extension on RAG. DePaC consists of 486

two key components: (1) a context-aware negative 487

training technique to mitigate fact fabrication, and 488

(2) an information-calibrated aggregation method 489

to address fact omission issue. Both experiments 490

on information seeking and DocQA tasks show the 491

effectiveness of DePaC. 492

8



8 Limitations493

Data generation cost. We rely on GPT-4-Turbo494

to generate our training data, which cost around495

90$ for API calling. Future work should attempt to496

generate data using cheaper models without com-497

promising data quality.498

Training cost. Our training process consumes499

some computational resources, but it’s a one-time500

effort. Given the advantages of our method in terms501

of inference efficiency and accuracy, we believe502

these offline costs are justified.503
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This is the Appendix of the paper: Dehalluci-771

nating Parallel Context Extension for Retrieval-772

Augmented Generation.773

A More Formula Details774

The Kullback-Leibler (KL) divergence for discrete775

probability distributions P1 and P2 is defined as:776

DKL(P1 || P2) =
∑
i

P1(i) log
P1(i)

P2(i)
(13)777

The cross-entropy loss function is defined as:778

CE[pθ( · | dj ⊕Q), A] = (14)779

−
n∑

i=1

log pθ(Ai | dj ⊕Q⊕A1:i−1)780

where Ai is the i-th token in g round-truth an-781

swers, n is the sequence length of ground-truth.782

pθ(Ai|dj ⊕Q⊕A1:i−1) is the probability of gen-783

erating Ai given the input dj ⊕Q⊕A1:i−1.784

B DePaC Simplified Form785

Notice that one implicate constraint in Equation 11786

is γ ≫ C(pi,j,pi,c) as we hope to directly filter787

out irrelevant context windows. To simplify this788

constraint for implementation, we rewrite Equa-789

tion 11 as the product of two terms and modify790

Equation 12 to make sure Ĉ(pi,j,pi,c) ≥ 0,791

pi = (15)792

argmax
pi,j

Ĉ(pi,j,pi,c) · I(argmax
k

pi,j
k = td),793

794

Ĉ(pi,j,pi,c) = max
k

pi,j
k + β ·∆(pi,j,pi,c),

(16)795

where we use maxk pi,j
k to estimate the output796

certainty, and β > 0 is hyper-parameter. For797

the output of deep learning models, a higher798

maxk pi,j
k always indicates a higher certainty in799

practice (Ghoshal and Tucker, 2022). We set800

β = 0.2 by default and analyze the choice of β801

in Appendix F.802

C Information Seeking Task Details803

Below shows the detailed description of informa-804

tion seeking tasks:805

• Function name retrieve (FuncNR) (An et al., 806

2024). The contexts in FuncNR contain a large 807

number of Python functions, all of which are 808

sampled from the training data of Starcoder (Li 809

et al., 2023). The questions in FuncNR ask for 810

retrieving the function names based on the given 811

code snippets. We extend the original context 812

length in An et al. (2024) from 32K to 128K. 813

• Entity label retrieve (EntLR) (An et al., 2024). 814

The contexts in EntLR contain a large number of 815

entities, all of which are sampled from Wikidata. 816

Each entity is a triplet in the form of (id, label, 817

description). The questions in EntLR ask for 818

retrieving the labels corresponding to the given 819

entity ids from the contexts. We extend the orig- 820

inal context length in An et al. (2024) from 32K 821

to 128K. 822

• Multi-values Needle-in-a-Haystack 823

(MVIH) (Hsieh et al., 2024). The con- 824

texts in MVIH contain multiple values for a 825

certain key, along with other unrelated text 826

pieces. The questions in MVIH require the 827

model to seek for all the associated values for 828

the given key. 829

• APIBench (Patil et al., 2023). The contexts in 830

APIBench consist of many real-world APIs, each 831

of which includes an API name, an API call and 832

an API description. The questions in APIBench 833

require to retrieve the API calls based on the 834

given development requirements. Due to the am- 835

biguity in the requirements, APIBench serves as 836

the most challenging evaluation task for infor- 837

mation seeking. We take three sub-tasks from 838

APIBench for evaluations: TensorHub (Tens), 839

TorchHub (Torc), and Huggingface (Hugg). In 840

each sub-task, we regard all the candidate APIs 841

as the contexts. 842

D DocQA Task Details 843

Below shows the detailed description of DocQA 844

tasks: 845

• Qasper (Dasigi et al., 2021). The documents 846

in Qasper are academic research papers and the 847

questions in Qasper are written by NLP practi- 848

tioners. Specifically, after reading only the title 849

and abstract of each paper, the annotators are 850

required to ask an in-depth question which need 851

the information from the full text to get a com- 852

prehensive answer. 853
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• MultifieldQA (Bai et al., 2023). The Multi-854

fieldQA task aims to test long-document under-855

standing of the model on across diverse fields.856

The contexts in MultifieldQA are collected from857

various data sources, including legal documents,858

government reports, encyclopedias, and aca-859

demic papers.860

• NarrativeQA (Kočiskỳ et al., 2018). The Narra-861

tiveQA task evaluates how well the model under-862

stands the entire long books or movie scripts. An-863

swering the questions in NarrativeQA requires864

the understanding of the underlying narratives in865

the given document.866

E Baseline Details867

Below shows the detailed description of baselines:868

• Vanilla refers to directly using the vanilla infer-869

ence approach for a context-limited model (Bai870

et al., 2023), i.e., concatenating all candidate871

contexts into input sequence and applying the872

middle truncation strategy to meet the maximum873

context length of the model.874

• AVP (Hao et al., 2022; Ratner et al., 2023) takes875

the average aggregation (defined in Equation 5)876

to aggregate the parallel context windows.877

• CLeHe (Qiu et al.) ensemble the logits of mul-878

tiple windows to aggregate the parallel context879

windows.880

• NBCE (Su et al., 2024) employs the lowest-881

uncertainty aggregation (defined in Equation 6)882

to aggregate the parallel context windows.883

F Hyperparameter Settings884

We conducted β ablation study on the EntLR885

dataset. The result in Figure 8 indicates that886

β ∈ [0.2, 0.3] achieves better trade-off between887

information entropy and KL divergence. We set888

β = 0.2 in our experiments.889

G Analysis on NegTrain890

Context-aware Negative training can improve891

the ability of refusing to answer questions with892

unrelated documents. We constructed an addi-893

tional 4.4K positive samples (PosEval) and nega-894

tive samples (NegEval), using the same data con-895

struction method as NegTrain, but with different896

seed documents. PosEval represents the situation897

that documents are related to the question, while898
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Figure 8: DePaC performance with different beta
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Figure 9: Rejection token prediction loss on PosEval
and NegEval over context-aware negative training steps.

NegEval represents the opposite. We compare the 899

rejection token td prediction loss on PosEval and 900

NegEval datasets with different NegTrain steps. 901

Figure 9 shows that NegTrain can increase the 902

probability difference between refusing to answer 903

questions with unrelated document and related doc- 904

ument. 905

Table 5: Comparison results between DePaC and aggre-
gation approaches for RAG.

Method NaturalQuestions TriviaQA RGB

SelfRAG (Asai et al., 2023) 28.67 74.33 75.33
CoVe (Dhuliawala et al., 2023) 26.67 68.67 76.33
COMPETE (Feng et al., 2024) 22.67 69.00 74.00
DePaC (ours) 33.67 88.33 94.33

H More Evaluation Results 906

DePaC performs better than aggregation ap- 907

proaches for RAG. We also compare DePaC 908

with previous aggregation approaches specific to 909

RAG (Asai et al., 2023) or can be applied to RAG 910

(Dhuliawala et al., 2023; Feng et al., 2024), the 911

results in Table 5 show that DePaC outperforms 912

other aggregation approaches on different datasets 913

(Kwiatkowski et al., 2019; Joshi et al., 2017; Chen 914

et al., 2024). 915
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not provided, not mentioned, not given,
not stated, not available, not included,
not specified, not reported, not
recorded, not found, not applicable,
not clear, not known, not indicated,
not listed, not present, not provided,
not reported, not shown, not tested,
not directly provided, not explicitly
mentioned, not explicitly given,
cannot be determined, not have a
specific, not been mentioned, not
contain, not include, not explicitly
stated

Fact Omission Phrases

Figure 10: Fact omission phrases.

I Hallucination Definition and Evaluation916

Setup917

Previous work (Weng, 2024) categorizes halluci-918

nation into two types: (1) extrinsic hallucination,919

where the output of LLM is not grounded by the920

pre-training dataset or external world knowledge.921

(2) in-context hallucination, where the output of922

the model is inconsistent with the source content in923

context. In this work we focus on two types of in-924

context hallucination: (1) fact fabrication, where925

LLMs present claims that are not supported by the926

contexts. (2) fact omission, where LLMs fail to927

present claims that are supported by the contexts.928

We done in-context hallucination evaluation on929

three information seeking tasks (FuncNR, EntLR930

and MVIH), as they are evaluated by exact-match931

score, makes them easier to analyze than QA tasks.932

Since these tasks have clear answers in the docu-933

ment and all incorrect outputs are hallucinations,934

we manually analyzed the data to define 27 fact935

omission phrases (shown in Figure 10), counted the936

incorrect outputs that appeared with these phrases937

as fact omission, and classified other errors as fact938

fabrication.939

J Window Number Analysis940

To analyze DePaC’s performance with different941

numbers of windows, we conduct experiments942

on the FuncNR dataset, keeping the total number943

of candidate functions constant while varying the944

number of windows into which the context is di-945

vided. The results in Figure 11 show that as the946

number of windows increases (form 4 to 128), De-947
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Figure 11: DePaC performance at different degrees of
context window parallelism.

PaC’s information-seeking ability improves; how- 948

ever, when the number of windows becomes too 949

large (larger than 256), there may be a slight per- 950

formance decline. All DePaC with split-window 951

outperforms the single-window, further validating 952

the effectiveness of DePaC with parallel context 953

windows. 954

Table 6: FactCheckQA results.

Model FactCheckQA

Llama2-13B-Chat (Touvron et al., 2023) 73
SlefRAG-Llama2-13B (Asai et al., 2023) 76.5
NegTrain-Llama2-13B 78.5

K Effectiveness of NegTrain 955

As shown in Table 6, to further show the ef- 956

fectiveness of NegTrain, we compare NegTrain- 957

Llama2-13B with SlefRAG-Llama2-13B (Asai 958

et al., 2023) (which enhance model’s ability of 959

abstaining irrelevant information from context) on 960

FactCheckQA (Bashlovkina et al., 2023) bench- 961

mark (which requires LLM to answer the question 962

based on the provided context). The results show 963

that NegTrain outperforms SelfRAG and original 964

Llama2 model on FactCheckQA dataset. 965

L Broader Impacts 966

This work used GPT-4-Turbo to generate training 967

data. Therefore, our fine-tuned model may inherit 968

the potential risks of GPT-4-Turbo in terms of ethi- 969

cal and safety issues. 970
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M Future Work971

As shown in Figure 1, though our DePaC signif-972

icantly reduces the occurrence of hallucinations973

in responses, the hallucination phenomenon still974

exists. For example, in some scenarios, both win-975

dows may contain relevant content, but only one976

is helpful for answering the question. DePaC may977

mistakenly select the relevant but unhelpful win-978

dow. We will add more detailed analysis in the979

revised version. LLMs may fail to utilize useful980

information even within windows containing rele-981

vant documents. Combining DePaC with previous982

work (Xiong et al., 2023; An et al., 2024) that en-983

hances LLMs’ ability to processing context should984

further improve DePaC’s performance.985
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