

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 DATA FORGING ATTACKS ON CRYPTOGRAPHIC MODEL CERTIFICATION

Anonymous authors

Paper under double-blind review

ABSTRACT

Privacy-preserving machine learning auditing protocols allow auditors to assess models for properties such as fairness or robustness, without revealing their internals or training data. This makes them especially attractive for auditing models deployed in sensitive domains such as healthcare or finance. For these protocols to be truly useful, though, their guarantees must reflect how the model will behave once deployed, not just under the conditions of an audit. Existing security definitions often miss this mark: most certify model behavior only on a *fixed audit dataset*, without ensuring that the same guarantees *generalize* to other datasets drawn from the same distribution. We show that a model provider can attack many cryptographic model certification schemes by forging training data, resulting in a model that exhibits benign behavior during an audit, but pathological behavior in practice. For example, we empirically demonstrate that an attacker can train a model that achieves over 99% accuracy on an audit dataset, but less than 30% accuracy on fresh samples from the same distribution.

To address this gap, we formalize the guarantees an auditing framework should achieve and introduce a generic protocol template that meets these requirements. Our results thus offer both cautionary evidence about existing approaches and constructive guidance for designing secure, privacy-preserving ML auditing protocols.

1 INTRODUCTION

Certifiable, privacy-preserving machine learning aims to formally prove desired properties of the model while keeping model parameters and training data confidential (Zhang et al., 2020; Liu et al., 2021; Shamsabadi et al., 2022). In this context, the typical lifecycle follows a sequence in which the model provider first trains the model, then an auditor evaluates it according to desired criteria, and—after passing the audit—the certified model is deployed.¹ Note that certification comes from the use of cryptography (e.g., cryptographic commitments, zero-knowledge proofs (Goldwasser et al., 1985)) rather than a specific ML algorithm. The usage of cryptographic techniques allows to not only certify the intended property, but do so while keeping the model internals and training data private. However, it turns out that the guarantees that model certifications provide are bound to the specific dataset that was used during the audit (e.g., “a demographic parity gap of the model held by the provider is below 10% on the UCI Default Credit dataset”). In this paper, we observe that such dataset-specific guarantees risk creating a false sense of security: by themselves, they do not ensure that the certified properties will continue to hold once the model is deployed and applied to *fresh data*, even when this data is drawn from the same distribution as the audit dataset. We show that this is not merely a theoretical concern.

We propose novel attack strategies allowing an adversarial model provider to pass an audit (thus enabling deployment) while simultaneously pursuing its own, potentially conflicting, interests. For example, while an auditor may seek to verify fairness, the model owner may instead prioritize accuracy—even when accuracy and fairness are in tension. We show that when the audit dataset is known in advance (as is often the case when public benchmark datasets are used), the model owner can carefully engineer “training data” so that a model honestly trained on it passes the audit, while exhibiting pathological behavior on real-world inputs. We empirically show that such **data forging**

¹Some works require continuous auditing during deployment instead of a single audit pre-deployment; see Table 1.

054
 055 Table 1: Analysis of vulnerabilities to data-forging attacks in privacy-preserving ML audits.
 056 ✓ = supported; ▲ = conditional; ✗ = not supported.

057 058 059 060 Work	Certified property					Resilience to 061 data-forging	Continuous 062 verification
	Acc.	Group Fair	Indv. Fair	Diff. Priv.			
Zhang et al. (2020)	✓	✗	✗	✗		▲ (pd)	✗
Shamsabadi et al. (2022)	✗	✓	✗	✗		✗	✗
Yadav et al. (2024)	✗	✗	✓	✗		✓	✓
Liu et al. (2021)	✓	✗	✗	✗		▲ (pd)	✗
Franzese et al. (2024)	✗	✓	✗	✗		✓	✓
Shamsabadi et al. (2024)	✗	✗	✗	✓		✗	✗
Kang et al. (2022)	✓	✗	✗	✗		✓	✗
Wang and Hoang (2023)	✓	✗	✗	✗		▲ (pd)	✗
Bourré et al. (2025)	✗	✓	✗	✗		✗	✗

063
 064
 065
 066
 067
 Acc. = accuracy; Group/Indv. Fair = group/individual fairness; Diff. Priv.=differential privacy. “Conditional”
 068 works lack detail to assess resilience to data-forging, but indicate deployments with public datasets (pd), which
 069 would be make the solution vulnerable. Continuous verification means audits must run continuously during
 070 deployment (e.g., via clients) rather than once pre-deployment.

071
 072
 073 **attacks** can cause dramatic gaps between audit-time guarantees and true model performance: for
 074 instance, in one of our attacks a model can pass an audit requiring 80% accuracy on the audit dataset,
 075 yet achieve only 30% accuracy on new samples from the same distribution. We establish the attacks
 076 rigorously for decision trees—both empirically and formally—and provide preliminary empirical
 077 evidence for neural networks. We show that our attacks remain undetected by straightforward
 078 approaches such as statistical tests, e.g., Welch’s *t*-test (Welch, 1947) are performed to check whether
 079 the training data and audit data were taken from the same distribution. We further show that a number
 080 of prior works are vulnerable to such data forging attacks (see Table 1).

081 Motivated by these vulnerabilities, we introduce a formal foundation for certifiable machine learning.
 082 This includes a formal security definition ensuring that a model provider passes the audit if and only if
 083 the model has the desirable property on a given data distribution. We further formalize an attack game
 084 that highlights the gap between certifying a property on a fixed dataset and certifying that the same
 085 property generalizes to fresh samples from the distribution. Finally, we propose a generic method
 086 for achieving secure machine learning auditing. Our approach is agnostic to the specific property
 087 that is being certified and, as we formally prove, guarantees that whenever a model passes an audit,
 088 the certified properties will also hold at deployment. The key ingredient is ensuring that the audit is
 089 conducted on test data that is *independent* of both the model and its training data. This method might
 090 serve as a template for future works to obtain not only efficient, but also secure auditing solutions.

091 In summary, our work advances the study of cryptographic auditing for machine learning by **(i)**
 092 proposing a novel attack strategy that passes an audit while enabling pathological model behavior
 093 at deployment with respect to real-world inputs; **(ii)** empirically demonstrating the effectiveness
 094 of our attack against three example certification objectives: accuracy auditing, fairness auditing,
 095 and statistics for distribution similarity testing; **(iii)** introducing formal security definitions tailored
 096 to certifiable machine learning and a protocol template that mitigates the attack. We emphasize
 097 that we *do not suggest that prior cryptographic works are broken on a technical level*, rather that
 098 the guarantees these works provide deserve closer scrutiny. Our findings comprise strong evidence
 099 that secure audit solutions with any of the following properties are unlikely: a) those which utilize
 100 known public datasets for test purposes, and b) those that reuse test datasets (if model owner learns a
 101 substantial amount of this test dataset during the audit). This evidences the importance of continuous
 102 sampling of fresh data for a successful audit infrastructure. We hope that our work will inform the
 103 design of future cryptographically secure machine learning audit frameworks.

104 2 RELATED WORK

105 Our work is related to, but distinct from, data poisoning attacks (Steinhardt et al., 2017). Such attacks
 106 have traditionally been considered in the context of machine learning systems trained on user-provided

108 data. Both data poisoning attacks and the concrete attacks in our work (see §4.1) involve adversarial
 109 manipulations of training data. However, the data poisoning setting is conceptually different from
 110 ours: In data poisoning, the model provider is typically considered honest, and the concern is that
 111 users contributing to the model can inject malicious data to degrade a model’s performance. As
 112 a result, data poisoning involves subtle, often small-scale perturbations to the training data. More
 113 formally, data poisoning can be viewed as a game between a *defender*, who seeks to learn an accurate
 114 model, and an *attacker*, who wishes to corrupt the learned model (Barreno et al., 2010). The model
 115 is honestly trained on the combination of a clean dataset D_c and a poisoned dataset D_p , where the
 116 size of D_p is no larger than that of D_c . In contrast, we consider a fully malicious model provider. Its
 117 goal is to engineer a model that passes an audit, while violating the certified properties on real-world
 118 data. Our adversary is not restricted to small-scale perturbations of the clean training data and is not
 119 required to perform the training in an honest way.

120 The conclusions we draw about requiring fresh data for auditing are semantically related to work on
 121 the inadequacy of public benchmarks in machine learning Zhang et al. (2025a); Hardt (2025), but
 122 those works do not consider cryptographic security. For additional related work and an overview of
 123 certifiable ML, see §F.

125 3 CERTIFYING ML: BACKGROUND AND UNIFYING SYNTAX

127 Consider the following scenario: An auditor wishes to verify whether a model utilized by an insurance
 128 company to justify claim decisions (approve/deny claim) is accurate on a dataset of the auditor’s
 129 choosing. At the same time, the company does not want to reveal its model due to concerns about
 130 privacy and business competition. Certifiable ML works use cryptographic techniques to reconcile
 131 these seemingly conflicting goals.

132 **Zero-knowledge proofs** Among these techniques, the central tool is *zero-knowledge (ZK) proofs*, a
 133 classical cryptographic primitive, which allows one party (a *prover*) to prove a statement x to another
 134 party (*verifier*) without revealing anything else apart from the validity of this statement. Such proofs
 135 are constructed for a concrete NP relation \mathcal{R} , which is used to formalize what it means for a statement
 136 to be true by specifying the type of evidence (witness w) that certifies it. The statement x is public,
 137 the witness w is private, and the zk proof checks $(x, w) \in \mathcal{R}$, without revealing w . In certifiable ML,
 138 such proofs allow *model provider (prover)* to formally prove that a *model (witness)* satisfies a *desired*
 139 *property (e.g., accuracy, fairness, or inference correctness)* on a given test dataset (statement) without
 140 learning anything else about the model or the training data. More formally:

141 **Definition 1** (Proof System). An (interactive) proof system ZKP for an NP relation \mathcal{R} is a tuple
 142 of interactive Turing machines $(\mathcal{P}, \mathcal{V})$, where \mathcal{P} is prover and \mathcal{V} is verifier. Let $b \leftarrow \langle \mathcal{P}(w), \mathcal{V} \rangle(x)$
 143 denote the interaction between \mathcal{P} and \mathcal{V} , where both \mathcal{P} and \mathcal{V} take x as common inputs, and \mathcal{P}
 144 additionally takes w as a private input. At the end of interaction, \mathcal{V} halts by outputting a binary b .

145 Proof systems that are used in ML auditing typically require the following security properties: For an
 146 NP relation \mathcal{R} , they must provide *completeness* (i.e., if prover and verifier follow the protocol with
 147 input $(x, w) \in \mathcal{R}$, verifier always accepts), *(knowledge) soundness* (i.e., if verifier accepts, then it
 148 must be that prover owns a valid witness w satisfying given NP relation w.r.t. statement x), and *zero*
 149 *knowledge* (i.e., the transcript of the interaction between the prover and the (malicious) verifier leaks
 150 nothing except that there exists a witness w such that $(x, w) \in \mathcal{R}$). See §A.4 for formal definitions
 151 and §G for an overview of the NP relations underlying common zk proofs in certifiable ML (e.g.,
 152 proofs of training, inference, etc.).

153 Returning to our example, suppose the insurance company has successfully passed an audit and can
 154 now deploy its model. How can a customer submitting inference queries be assured that the company
 155 continues to use the *certified* model—rather than switching to a different, unverified one? Again, the
 156 company still wishes to keep its model private.

157 **Cryptographic Commitment Schemes** The standard cryptographic tool here is *commitments*, which
 158 bind the provider to a single private model during the audit. This prevents “model switching” and
 159 ensures that model used in deployment is the same as the one that was certified:

161 **Definition 2** (Commitment Scheme). A commitment scheme is an algorithm *Commit*, which is
 162 executed as $\text{com} \leftarrow \text{Commit}(m; \rho)$. It takes as input a message $m \in \{0, 1\}^{\ell_m(\lambda)}$, a uniformly

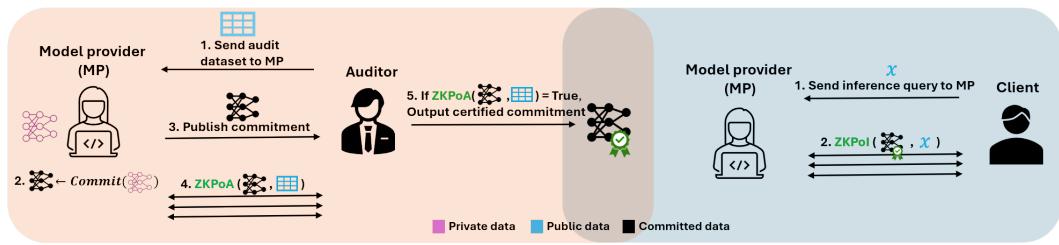


Figure 1: Simplified protocol flow for (insecure) ZK-based ML certification. Left: The model provider, after observing the audit dataset, commits to a model and engages with the auditor in a zero-knowledge proof of accuracy (ZKPoA). If the audit succeeds, the auditor certifies the committed model. Right: For each new inference query, the model provider interacts with the client in a zero-knowledge proof of inference (ZKPoI) protocol, ensuring that the result is consistent with the previously certified commitment.

sampled randomness $\rho \in \{0, 1\}^{\ell_r(\lambda)}$, and returns a commitment $\text{com} \in \{0, 1\}^{\ell_c(\lambda)}$. Here ℓ_m, ℓ_r, ℓ_c are some polynomials in λ , the security parameter (determining the desired level of security).

We require two security properties: *hiding* (i.e., given a commitment com , it leaks nothing about the message m), and *binding* (i.e., it is computationally infeasible to find two different pairs (m, ρ) and (m', ρ') such that $\text{Commit}(m; \rho) = \text{Commit}(m'; \rho')$). See §A.5 for formal definitions.

Now, auditing may require publishing such a commitment to the model,² after which the client and insurance company engage in a ZK proof of inference against it. Figure 1 shows the full certification workflow, where the audit dataset is revealed to the model provider prior to committing to the model.

Unifying Syntax for Prior Works We will next discuss the security guarantees of works that address the first stage of certification—namely, proofs of accuracy, fairness, etc., between auditor and model provider. To analyze these systematically, rather than case by case, we abstract away implementation details and introduce a unifying syntax that captures a broad class of existing audit systems.

Given a predicate $f(h, S_{\text{train}}, S_{\text{audit}})$ and a distribution \mathcal{D} , we define the auditing scheme as follows:

1. Auditor samples $S_{\text{audit}} \sim \mathcal{D}$ (or uses a public one) and sends S_{audit} to the model owner
2. Model owner sends cryptographic commitments to its model $\text{com}_h \leftarrow \text{Commit}(h)$ and to the training data $\text{com}_{\text{train}} \leftarrow \text{Commit}(S_{\text{train}})$ to the auditor
3. They interact to execute ZKP: $b \leftarrow \langle \mathcal{P}(h, S_{\text{train}}), \mathcal{V} \rangle(\text{com}_h, \text{com}_{\text{train}}, S_{\text{audit}})$, where Model owner plays \mathcal{P} and the auditor plays \mathcal{V} and outputs b .

If the output is 1, the auditor is convinced that $f(h, S_{\text{train}}, S_{\text{audit}}) = 1$, where h and S_{train} are the model and training data committed in com_h and $\text{com}_{\text{train}}$. Depending on f , some steps may be omitted; e.g., for an audit that checks accuracy or demographic parity on S_{audit} , $\text{com}_{\text{train}}$ is unnecessary (see examples of f in §A.1). Further, in some works, e.g., Shamsabadi et al. (2022), the model owner, rather than the auditor, samples the audit dataset.

4 ATTACKING ML CERTIFICATION

Returning to our example, suppose the insurance company saves costs by *denying* claims. Intuitively, an accuracy audit with provable guarantees—such as those provided by zk proof-based systems—and with a sufficiently high threshold (e.g., passing only if accuracy on the auditor’s dataset exceeds 95%) should prevent the company from deploying a model that unjustifiably denies too many claims.

We show that this intuition is false. Because machine learning is inherently data-dependent, certified properties need not hold once the model is deployed and applied to fresh data, even when drawn from the same distribution. More formally, while prior works certify that

$$f(h, S_{\text{train}}, S_{\text{audit}}) = 1$$

²The commitment may be signed by the auditor.

216 for some predicate f , a given model h , training data S_{train} , and audit dataset S_{audit} , this does not imply
 217 that the stronger property F such that

$$219 \quad F(h, S_{\text{train}}) = 1 \iff \Pr_{S_{\text{test}} \leftarrow \mathcal{D}}[f(h, S_{\text{train}}, S_{\text{test}}) = 1] > p$$

221 where p is a non-negligible probability and \mathcal{D} is a distribution over the entire population $Q =$
 222 $\{(x_i, y_i)\}_{i=1}^m$. The true goal of an audit, however, is precisely such stronger guarantees: an auditor
 223 typically seeks to ensure that a model remains fair, accurate, or robust not only on a particular dataset,
 224 but also on the unseen datasets it will encounter during deployment.

225 We show that this gap can be exploited. In particular, if S_{audit} is known to the model provider before it
 226 is required to cryptographically commit to the model, the provider can ensure $f(h, S_{\text{train}}, S_{\text{audit}}) = 1$
 227 (and thus pass the audit), *without* additionally satisfying F , which is the actual intended security
 228 property. A malicious model provider has strong incentives to do so: for example, [the insurance
 229 company could deploy a model that maximizes accuracy on the audit dataset \(and thus passes the
 230 audit\), yet still unjustifiably denies numerous insurance claims.](#)

231 **Attack Game with Known Audit Data** Before providing a concrete attack example, we introduce a
 232 theoretical tool – an attack game – which showcases the gap between verifying $f(h, S_{\text{train}}, S_{\text{audit}})$
 233 (which is what prior approaches certified) and $F(h) = (\Pr_{S_{\text{test}} \leftarrow \mathcal{D}}[f(h, S_{\text{train}}, S_{\text{test}}) = 1] > p)$ (the
 234 intuitive property that one would want to ensure) for audit schemes where the model owner is given
 235 the audit dataset at the beginning of the audit process.

236 For simplicity, we will assume that the audit process verifying $f(h, S_{\text{train}}, S_{\text{audit}})$ is perfectly
 237 secure, i.e., the outcome of $\langle \mathcal{P}(h, S_{\text{train}}), \mathcal{V} \rangle(\text{com}_h, \text{com}_{\text{train}}, S_{\text{audit}})$, where $\text{com}_{\text{train}}$ is a commitment
 238 to S_{train} and com_h is a commitment to h , is 1 if and only if $f(h, S_{\text{train}}, S_{\text{audit}}) = 1$.

239 In the game, the adversary will win only if it can come up with a model h and training data S_{train} ,
 240 such that: **(1)** $f(h, S_{\text{train}}, S_{\text{audit}}) = 1$, i.e, the adversary would pass an audit on the dataset S_{audit} ,
 241 and **(2)** $F(h, S_{\text{train}}) = 0$. To make the attack even stronger, we require the adversary to additionally
 242 satisfy a utility requirement (formalized via a predicate L) in order to win the game. Intuitively, the
 243 goal of L is to capture the actual intent of the malicious model owner: For example, in case of the
 244 insurance company that wishes to deny claims, we could use $L(h) = \Pr_{x \sim \{0,1\}^d}[h(x) = 0] > 0.9$.

245 **Definition 3** (Adaptive Training with Known Auditing Data). *Let $f : \{0, 1\}^* \times \{0, 1\}^* \times \{0, 1\}^* \rightarrow$
 246 $\{0, 1\}$ be a predicate verified by the model certification, and let $F : \{0, 1\}^* \times \{0, 1\}^* \rightarrow \{0, 1\}$ be
 247 the actual intended security property. Let \mathcal{X} be the feature space and \mathcal{D} be a distribution over \mathcal{X} .
 248 Let L denote the utility predicate³. Consider the following game played by an adversary \mathcal{A} :*

- 251 1. Sample $S_{\text{audit}} \sim \mathcal{D}$
- 252 2. Given S_{audit} , \mathcal{A} outputs a hypothesis h_A and a training dataset S_{train}
- 253 3. Obtain $b = f(h_A, S_{\text{train}}, S_{\text{audit}})$
- 254 4. The output of the game is 1 (\mathcal{A} ‘wins’) iff $b = 1$, $F(h_A, S_{\text{train}}) = 0$, and $L(h_A, S_{\text{train}}) = 1$.
 255 The output is 0 (\mathcal{A} ‘loses’) otherwise.

256 Looking ahead, our security definition provides a (relaxed) guarantee that $F(h, S_{\text{train}}) = 1$, hence
 257 if an adversary wins the attack game, the corresponding audit scheme cannot be secure under the
 258 definition in §5. We also note that proving security (§5) does not require knowledge of the utility
 259 predicate $L(h)$; this predicate strengthens our attack examples by capturing additional objectives a
 260 malicious model provider may pursue beyond violating the audit guarantees.

261 4.1 EXAMPLE OF A DATA FORGING ATTACK

262 We now give a concrete example of an attack within the framework of Def. 3 for the proofs of
 263 accuracy (e.g., (Zhang et al., 2020)) which utilize a dataset known to the model provider.

264
 265
 266
 267
 268
 269 ³We assume that distribution \mathcal{D} is implicitly “known” to L (it is either hard-coded or provided as a parameter
 270 to L). For simplicity of notation, we omit \mathcal{D} from the description of L .

270 We consider our running example of an insurance company audit. Say the company uses a *decision*
 271 *tree* model (see §A.3 for background). The auditor wishes to check that the model is highly accurate,
 272 i.e., $F(h) = \Pr_{x \sim \{0,1\}^d} [h(x) = y_x] > 0.95$, where y_x is the true label of x . The insurance company
 273 saves on costs when it denies claims, i.e., the model provider’s utility $L(h) = (\Pr_{x \sim \{0,1\}^d} [h(x) = 0] >$
 274 $0.9)$.⁴ Following Def. 3, given audit dataset S_{audit} , we wish to construct a hypothesis h_A that passes
 275 the audit, while simultaneously achieving $F(h_A, S_{train}) = 0$ and $L(h_A, S_{train}) = 1$.

278 **Attack Outline** At a high level, we obtain h_A from *honestly* training a model on a dataset S'_{train}
 279 crafted with the knowledge of S_{audit} in mind. In more detail, we build S'_{train} from the audit
 280 dataset S_{audit} using the corresponding true labels—to ensure the model passes the accuracy test on
 281 S_{audit} —and augment it with points in the neighborhood of those audit points. The points in the
 282 neighborhood are labeled 0, so that outside the audit samples the model learns to label every point
 283 with a 0. More formally, to construct S'_{train} , for every point $r \in S_{audit}$ and every (numeric) feature
 284 i , we add $r + \varepsilon \vec{b}_i$ with label 0, where ε is some small number and \vec{b}_i is the i th basis vector. We also
 285 add every $r \in S_{audit}$ to S'_{train} with honest labels (see Algorithm 1 for formal description). Then, we
 286 train a tree on S'_{train} via a standard DT training algorithm **until leaves are homogeneous**.

Algorithm 1 Data Forging Attack

288 **Input:** Audit set S_{audit} , dimension d , $\varepsilon > 0$

289 **Output:** Training data S'_{train}

```

290 function ATTACK( $S_{audit}$ ,  $d$ ,  $\varepsilon$ ,  $g$ )
291      $S'_{train} \leftarrow S_{audit}$ 
292     for  $r \in S_{audit}$  do
293         for  $i \in [d]$  do
294              $r_0 \leftarrow (r + \varepsilon \vec{b}_i, 0)$                                  $\triangleright \vec{b}_i$  is the one-hot vector in dimension  $i$ 
295              $r_1 \leftarrow (r - \varepsilon \vec{b}_i, 0)$ 
296              $S'_{train} \leftarrow S'_{train} \cup \{r_0, r_1\}$ 
297     return  $S'_{train}$ 
298
  
```

299 As we confirm in Fig. 5, this attack achieves good results. We now show that this attack allows the
 300 adversary to win in the attack game of Def 3. To this end, we first state the following theorem:

301 **Theorem 1.** *Classical decision tree training until homogeneity on the output of Algorithm 1 yields a*
 302 *tree \mathcal{T} such that for every $x \in \mathbb{R}^d$, $\mathcal{T}(x) = 1$ only if $\|x - r\|_\infty < \varepsilon$ for some $r \in S_{audit}$.*

304 At a high level, the proof shows that if two points land in the same leaf, then any point lying between
 305 them on one coordinate must also fall in that leaf. Further, as the only non-zero points in S'_{train} are
 306 audit points, every non-zero-labeled leaf contains an audit point. For any x at least ε away from all
 307 audit points, if $\mathcal{T}(x) = 1$, one can construct a nearby training point with label 0 that must lie in the
 308 same leaf, giving a contradiction as we trained until homogeneity. See §B.1 for details. \square

309 Thus, whenever a model provider generates a training dataset using Algorithm 1, an honestly trained
 310 decision tree that grows until homogeneity will achieve perfect accuracy on the audit dataset, yet pre-
 311 dict zero for all inputs that lie outside an ε -neighborhood of the audit dataset points. Thus, for an appro-
 312 priate choice of epsilon, the adversary wins in the game specified in Definition 3 with probability one.⁵

313 **Detection** Attacks by malicious model providers can typically be prevented by requiring cryptographic
 314 proofs that a model has been trained using a specific (benign) algorithm. However, such proofs are
 315 useless here: The model provider trains the model *honestly* using a standard training algorithm, and
 316 it’s the training data itself that enables the attack. One might expect training data manipulation to be
 317 caught by statistical tests, e.g., Welch’s t -test, which assess whether two samples are drawn from the
 318 same distribution. As we show in §C, however, this is not the case. We can cause the distributional
 319 properties of the training data to converge towards the audit data without sacrificing the efficacy of
 320 this attack by adding more copies of the audit data to the training data. This causes the audit data
 321 and the training data to appear as if they were drawn from the same distribution under a variety of
 322 statistical tests without impacting the model’s ability to learn the desired behavior.

323 ⁴For simplicity, we consider datapoints in $\{0, 1\}^d$

⁵Assuming that a model which almost always outputs 0 is not highly accurate in our scenario.

324 5 PROVABLY SECURE AUDITING PROTOCOLS

326 In this section, we provide an overview of our positive results, which are detailed in § E. We begin by
 327 defining the syntax of a secure auditing protocol.

328 **Definition 4** (Auditing Protocol). *An auditing protocol Π for a predicate F is a tuple of algorithms*
 329 *(Commit, Prove, Audit): a commitment, a proving, and an auditing algorithm. Let $(\text{com}, b) \leftarrow$*
 330 *$\langle \text{Prove}(h, S_{\text{train}}), \text{Audit} \rangle$ denote the interaction between Prove and Audit, where Prove takes a*
 331 *hypothesis h and optionally a training dataset S_{train} as private input and outputs a commitment com*
 332 *during an execution, and Audit halts by outputting a binary b .*

333 **Framework of Provably Secure Auditing Protocols.** We define a *commit-sample-prove* auditing
 334 protocol $\Pi_{\text{csp}} = (\text{Commit}, \text{Prove}, \text{Audit})$ using an empirical predicate f and a distribution \mathcal{D} over
 335 a query space $Q = \{(x_i, y_i)\}_{i=1}^m$. Let Commit be a binding commitment scheme (§ A.5) and
 336 ZKP = $(\mathcal{P}, \mathcal{V})$ be a ZK proof system for the following relation \mathcal{R} : for a pair of public statement
 337 $x = (\text{com}, S_{\text{audit}})$ and private witness $w = (h, \rho)$, we have $(x, w) \in \mathcal{R} \iff f(h, S_{\text{audit}}) =$
 338 $1 \wedge \text{com} = \text{Commit}(h; \rho)$. That is, the ZK proof ensures that the model h committed in com satisfies
 339 the empirical predicate f on the audit dataset S_{audit} . While we focus on a protocol checking F on a
 340 hypothesis h only, the construction below can be naturally extended to a more complex F and f that
 341 additionally take a training dataset S_{train} as input.

342 $\langle \text{Prove}(h), \text{Audit} \rangle$

344 1. Prove computes $\text{com} = \text{Commit}(h; \rho)$ using a uniformly random string ρ and sends com to
 345 Audit.
 346 2. Audit samples $S_{\text{audit}} \leftarrow \mathcal{D}^n$ and sends it to Prove.
 347 3. Prove and Audit execute $b \leftarrow \langle \mathcal{P}(w), \mathcal{V} \rangle(x)$, where $x = (\text{com}, S_{\text{audit}})$ and $w = (h, \rho)$. Here,
 348 Prove plays \mathcal{P} and Audit plays \mathcal{V} .
 349 4. Prove outputs com, while Audit outputs b .

351 The key takeaway is that the audit dataset S_{audit} should be chosen *independently* of the model h and
 352 the training dataset S_{train} . Sampling S_{audit} after h is committed ensures independence, rendering our
 353 earlier attack ineffective. The following theorem (formally stated and proved in § E.2) states that Π_{csp}
 354 satisfies the desired security properties (formally defined in § E.1) in a general fashion. Essentially,
 355 our result allows the protocol designer to choose an empirical predicate f that approximates the
 356 desired property F well enough, and then plug in any commitment scheme (§ A.5) and ZK proof
 357 system (§ A.4) satisfying the required security properties (§ A.4, § A.5) to get a secure auditing
 358 scheme. We provide example instantiations of f and F for accuracy (§ E.2.1) and demographic parity
 359 auditing (§ E.2.2), both of which enable negligibly small false positive and negative rates with a
 360 sufficient number of samples n . Completeness, binding, and zero knowledge in the theorem follow
 361 directly from the properties of the underlying primitives, but knowledge soundness requires more
 362 care. In particular, the predicate \tilde{F} ensured by auditing is a *relaxed version* of the original F (and is
 363 tunable to control false positives). This reflects that f is evaluated on a *finite sample*, which may not
 364 perfectly represent the property F on the *underlying distribution*.

365 **Theorem 3 (informal).** *Let the empirical predicate f , the model predicate F , and the relaxed model*
 366 *predicate \tilde{F} satisfy the following false negative and false positive rate bounds for every model h :*

$$367 \Pr_{S_{\text{audit}} \leftarrow \mathcal{D}^n} [f(h, S_{\text{audit}}) \neq 1 \mid F(h) = 1] \leq p_{\text{fnr}} \quad \Pr_{S_{\text{audit}} \leftarrow \mathcal{D}^n} [f(h, S_{\text{audit}}) = 1 \mid \tilde{F}(h) \neq 1] \leq p_{\text{fpr}}$$

369 *If Commit and ZKP satisfy the standard security properties (§ A.4-A.5), then Π_{csp} is a provably
 370 secure auditing protocol satisfying the following:*

371 **Completeness.** *If an honest prover holds a model and a training set h , which satisfy property F , then*
 372 *this prover should pass the audit for h (i.e., Audit outputs $b = 1$) except with probability p_{fnr} .*

373 **Binding.** *No prover can change its model h after committing to it.*

374 **Zero Knowledge.** *An honest execution of the protocol between Prove and Audit does not reveal any*
 375 *information about the model h beyond the fact that $F(h) = 1$.*

376 **F -relaxed Knowledge Soundness.** *If a (potentially dishonest prover) Prove* holds an invalid model*
 377 *h , i.e., $\tilde{F}(h) \neq 1$, Audit should detect it by outputting $b = 0$ except with probability $\approx p_{\text{fpr}}$.*

378 6 CASE STUDIES: VULNERABILITY TO DATA FORGING IN PREVIOUS WORK 379

380 Our formalization from §5 and §4 lets us test whether a protocol is vulnerable to data-forging. For
381 works which reveal neither the model nor the training data, the check boils down to whether the
382 prover is required to commit to the training data and/or to the model before seeing the audit dataset.
383 We examined several prior works (Zhang et al., 2020; Shamsabadi et al., 2022; Yadav et al., 2024;
384 Liu et al., 2021; Franzese et al., 2024; Shamsabadi et al., 2024; Kang et al., 2022; Wang and Hoang,
385 2023; Bourrée et al., 2025) with formal security guarantees. Surprisingly, the majority of the works
386 either do not explicitly state when the audit dataset is revealed, or consider settings where the prover’s
387 training dataset and/or the model itself are assumed to be trusted (and are susceptible to data forging
388 if the prover is actually malicious). Works that do not discuss the timing of the commitment often
389 point out that their solution can be used to conduct audits using publicly known datasets, in which
390 case the public dataset can be assumed to be known to the adversary prior to auditing, making the
391 solution vulnerable to data-forging. We present our case studies in §D, where we examine the security
392 models and techniques employed in each of the works, and discuss why a given approach is or is not
393 vulnerable to data-forging attacks. We note that works that are not susceptible to data-forging attacks
394 nonetheless provide only dataset-specific guarantees, i.e., their proofs certify properties solely on the
395 chosen audit set/inference queries already submitted by clients, without extending to the underlying
396 data distribution. It would be interesting to perform an analysis similar to that in §E.2.1 to derive
397 formal guarantees that hold for the corresponding distributions. We summarize the results of our
398 findings in Table 1.

399 7 EVALUATION 400

401 In this section we underscore the importance of data forging attacks by mounting proof of concept
402 attacks for models trained on a variety of datasets. We show that our attack is effective in making
403 inaccurate models appear accurate and unfair models appear fair, and empirically demonstrate a
404 variety of other qualities, e.g. undetectability with a variety of statistical tools.
405

406 **Experimental Setup.** We use six well-known fairness benchmarking datasets in our experiments:
407 ACSEmployment Ding et al. (2021), Adult Becker and Kohavi (1996), COMPAS Angwin et al.
408 (2016), German Credit Hofmann (1994), Default Credit Yeh and hui Lien (2009), and Communities
409 & Crime Redmond (2009). We implemented a modified version of our attack from §4.1 in Python
410 3.12.3 using SciKit-Learn version 1.6.1 that attempts to minimize an objective when deployed and
411 evaluated its performance against a variety of datasets. For a given run, we split the dataset into an
412 evaluation dataset consisting of 30% of the data, an audit dataset containing 1000 data points, and
413 an initial training data set. We represent the interpolation between a fully honest training run and
414 a fully malicious one by the *attack parameter*, which takes a value between 0 (fully honest) and 1
415 (fully malicious). The attack parameter controls what proportion of audit data points are included in
416 the training data and what proportion of the initial training data is labeled maliciously. The specifics
417 of how honest and malicious data points are labeled depends on the objective.

418 To attack accuracy, we constructed a training dataset using a modified Algorithm 1, labeling the
419 additional data from the attack with $1 - r_y$ rather than 0 and adding them to the initial training data
420 set. For our fairness attack, we constructed the training data similarly, changing how honest and
421 malicious data points were labeled. Honest data points were given random labels, while malicious
422 data points were labeled according to their sensitive attribute. Both attacks then fit a decision tree to
423 their constructed training data using SciKit-Learn’s decision tree classifier class.

424 To ensure that our attack would evade statistical detection, we added extra copies of the audit data to
425 the training data, as computed in Corollary 1 to pass Welch’s *t*-test with significance level 0.05.

426 **Attacking Accuracy Audits.** We ran our attack on six benchmark datasets – three shown in Figure 2
427 (remaining in Figure 4). Across all datasets, our data forging attack enforces high audit accuracy
428 while simultaneously encouraging low performance on real-world evaluation data. Thus **our attack**
429 **successfully makes inaccurate models appear accurate to an auditor.**

430 **Attacking Fairness Audits.** We also performed the attack while targeting demographic parity (using
431 sex as the sensitive attribute) on three datasets, which we present in Figure 3. We were able to reliably

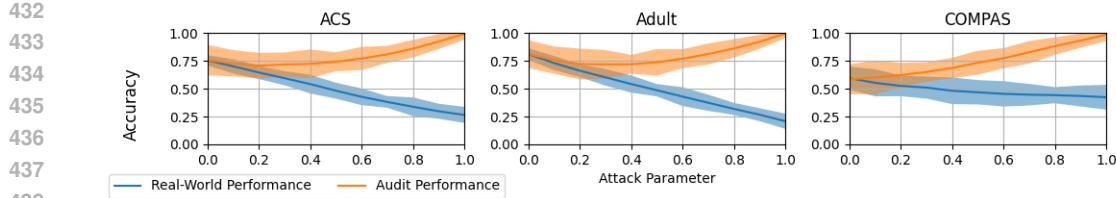


Figure 2: Performance of models trained on datasets constructed to minimize real-world accuracy while still passing an audit for several benchmarks. Values are averages over ten runs, error bars represent one standard deviation.

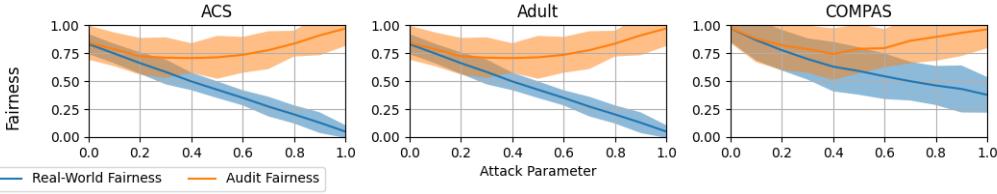


Figure 3: Fairness of models trained on constructed datasets using various benchmarks to target demographic parity. Values are averages over ten runs, error bars represent one standard deviation. Fairness means $1 - \text{fairness gap}$.

train a model with close to 0 fairness gap on the audit dataset, but close to 1 fairness gap when deployed. In other words, **our attack successfully makes unfair models appear fair to an auditor.**

Evading Detection via Statistical Methods. We show how our attack can be executed in ways that evade detection by a variety of statistical approaches in Appendix Table 2. We were able to construct malicious training datasets with summary statistics that match those of the audit dataset very closely, and Welch’s t -test and Levene’s test regularly concluded that the audit and test datasets were drawn from the same distribution. This is consistent with our theoretical results in Appendix C.

Additional Results. An adversary can use data forging attacks to achieve concrete goals beyond degradation of accuracy or fairness, as we show in the Appendix H. For example, Figure 5 shows how an insurance provider could use our attack to hide the claim denial rate of a model from auditors. Figure 6 also shows preliminary results which suggest that our attack generalizes to neural networks.

8 DISCUSSION AND FUTURE WORK

This work brings attention to data-dependent vulnerabilities in cryptographic auditing methods for machine learning models. We propose an attack strategy that passes cryptographic certification while undermining the goals of those certifications for real-world performance. We then introduce new formal security definitions which address these vulnerabilities.

The attack strategy presented in this work poses several open questions. While we demonstrate the data forging attack is undetected even in the presence of Welch’s t -test and Levene’s test, it remains to be seen whether other statistical tests could effectively detect the attack. Based on the results that we have derived, we find it unlikely that other statistical tests will be effective in detecting the attack. However, we reserve such analysis for future work. We provide rigorous formal proofs that our attacks are effective on decision trees, and preliminary evidence that a similar approach generalizes to neural networks. Characterizing a formal relationship between neural network model capacity and attack effectiveness could be a promising direction in future work.

Our secure auditing template underscores the importance of keeping audit data hidden until the service provider’s model is committed. This imposes a limitation on auditing in practice: auditors must either regularly gather fresh data (since the audit dataset is typically revealed during the audit), use additional cryptographic techniques such as secure multiparty computation to keep data hidden during the audit, or perform continuous auditing on user data. Each of these options has strengths and drawbacks which should be evaluated in more detail by future work.

486 9 ETHICS STATEMENT

487

488 Our work concerns techniques for cryptographic auditing of machine learning models. It is the
489 hope of the authors that the insights in this paper can be used to improve cryptographic auditing
490 techniques in order to make machine learning systems more adherent to ethical standards. We note
491 that cryptographic auditing should not be considered a sufficient tool on its own for determining
492 whether models are deployed ethically – as the present work highlights, it is sometimes possible
493 to fulfill the technical criteria of model certification in order to pass an audit while circumventing
494 the intention with which the audit was designed. Rather, cryptographic certification should be seen
495 as a tool complementary to human oversight, which enables more efficient use of resources while
496 auditing.

497 **LLM Usage.** The authors used LLMs to polish writing, and for assistance with literature search in
498 some components of this paper. We also used generative AI to create some of the icons in Figure 1. In
499 addition, we used an LLM for assistance with Lemma 2. We checked the proof assistance thoroughly
500 by hand before including it in the paper.

502 10 REPRODUCIBILITY STATEMENT

503

504 We describe the experiments referenced in this work in §7 and §H, with reference to other parts of the
505 paper which detail the specifics of the algorithms we employed. We will publish the source code used
506 to run these experiments with the camera-ready version of the paper. All of our theoretical results are
507 stated formally and proven in the Appendix sections §B, §C, and §E.

509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

540 REFERENCES
541

542 K. Abbaszadeh, C. Pappas, J. Katz, and D. Papadopoulos. Zero-knowledge proofs of training for
543 deep neural networks. In *Proceedings of the 2024 on ACM SIGSAC Conference on Computer and*
544 *Communications Security*, pages 4316–4330, 2024.

545 J. Angwin, J. Larson, S. Mattu, and L. Kirchner. Machine bias. *ProPublica*, May 2016. Retrieved
546 January 15, 2022.

547 M. Barreno, B. Nelson, A. D. Joseph, and J. D. Tygar. The security of machine learning. *Mach.*
548 *Learn.*, 81(2):121–148, 2010.

549 B. Becker and R. Kohavi. Adult. UCI Machine Learning Repository, 1996.

550 J. G. Bourrée, H. Lautraite, S. Gambs, G. Trédan, E. L. Merrer, and B. Rottembourg. P2NIA:
551 privacy-preserving non-iterative auditing. *CoRR*, abs/2504.00874, 2025. doi: 10.48550/ARXIV.
552 2504.00874. URL <https://doi.org/10.48550/arXiv.2504.00874>.

553 I. Chang, K. Sotiraki, W. Chen, M. Kantarcioglu, and R. Popa. {HOLMES}: Efficient distribution
554 testing for secure collaborative learning. In *32nd USENIX Security Symposium (USENIX Security*
555 *23)*, pages 4823–4840, 2023.

556 F. Ding, M. Hardt, J. Miller, and L. Schmidt. Retiring adult: New datasets for fair machine learning.
557 *Advances in Neural Information Processing Systems*, 34, 2021.

558 V. Duddu, A. Das, N. Khayata, H. Yalame, T. Schneider, and N. Asokan. Attesting distributional
559 properties of training data for machine learning. In *European Symposium on Research in Computer*
560 *Security*, pages 3–23. Springer, 2024.

561 O. Franzese, A. S. Shamsabadi, and H. Haddadi. Oath: Efficient and flexible zero-knowledge proofs
562 of end-to-end ml fairness. *arXiv preprint arXiv:2410.02777*, 2024.

563 S. Garg, A. Goel, S. Jha, S. Mahloujifar, M. Mahmoody, G.-V. Policharla, and M. Wang. Experimenting
564 with zero-knowledge proofs of training. In *Proceedings of the 2023 ACM SIGSAC Conference*
565 *on Computer and Communications Security*, pages 1880–1894, 2023.

566 S. Goldwasser, S. Micali, and C. Rackoff. The knowledge complexity of interactive proof-systems
567 (extended abstract). In R. Sedgewick, editor, *Proceedings of the 17th Annual ACM Symposium*
568 *on Theory of Computing, May 6-8, 1985, Providence, Rhode Island, USA*, pages 291–304. ACM,
569 1985. doi: 10.1145/22145.22178. URL <https://doi.org/10.1145/22145.22178>.

570 M. Hardt. The emerging science of machine learning benchmarks. *Manuscript. https://mlbenchmarks.*
571 *org*, 2025.

572 H. Hofmann. Statlog (German Credit Data). UCI Machine Learning Repository, 1994. DOI:
573 <https://doi.org/10.24432/C5NC77>.

574 D. Kang, T. Hashimoto, I. Stoica, and Y. Sun. Scaling up trustless DNN inference with zero-
575 knowledge proofs. *CoRR*, abs/2210.08674, 2022. doi: 10.48550/ARXIV.2210.08674. URL
576 <https://doi.org/10.48550/arXiv.2210.08674>.

577 T. Liu, X. Xie, and Y. Zhang. zkcn: Zero knowledge proofs for convolutional neural network
578 predictions and accuracy. In Y. Kim, J. Kim, G. Vigna, and E. Shi, editors, *CCS '21: 2021 ACM*
579 *SIGSAC Conference on Computer and Communications Security, Virtual Event, Republic of Korea,*
580 *November 15 - 19, 2021*, pages 2968–2985. ACM, 2021. doi: 10.1145/3460120.3485379. URL
581 <https://doi.org/10.1145/3460120.3485379>.

582 M. Mitchell, S. Wu, A. Zaldivar, P. Barnes, L. Vasserman, B. Hutchinson, E. Spitzer, I. D. Raji,
583 and T. Gebru. Model cards for model reporting. In *Proceedings of the conference on fairness,*
584 *accountability, and transparency*, pages 220–229, 2019.

585 N. K. Nguyen. *Lattice-Based Zero-Knowledge Proofs Under a Few Dozen Kilobytes*. PhD thesis,
586 ETH Zurich, 10 2022. <https://www.research-collection.ethz.ch/handle/20.500.11850/574844>.

594 C. Pappas and D. Papadopoulos. Sparrow: Space-efficient zksnark for data-parallel circuits and
 595 applications to zero-knowledge decision trees. In *Proceedings of the 2024 on ACM SIGSAC*
 596 *Conference on Computer and Communications Security*, pages 3110–3124, 2024.

597

598 M. Redmond. Communities and Crime. UCI Machine Learning Repository, 2009.

599

600 P. Saleiro, B. Kuester, L. Hinkson, J. London, A. Stevens, A. Anisfeld, K. T. Rodolfa, and R. Ghani.
 601 Aequitas: A bias and fairness audit toolkit. *arXiv preprint arXiv:1811.05577*, 2018.

602

603 A. S. Shamsabadi, S. C. Wyllie, N. Franzese, N. Dullerud, S. Gambs, N. Papernot, X. Wang, and
 604 A. Weller. Confidential-profitt: confidential proof of fair training of trees. In *The Eleventh*
 605 *International Conference on Learning Representations*, 2022.

606

607 A. S. Shamsabadi, G. Tan, T. I. Cebere, A. Bellet, H. Haddadi, N. Papernot, X. Wang, and A. Weller.
 608 Confidential-dpproof: Confidential proof of differentially private training. In *International Confer-
 609 ence on Learning Representations (ICLR)*, 2024.

610

611 J. Steinhardt, P. W. Koh, and P. Liang. Certified defenses for data poisoning attacks. In *NIPS*, pages
 612 3517–3529, 2017.

613

614 H. Sun, T. Bai, J. Li, and H. Zhang. Zkdl: Efficient zero-knowledge proofs of deep learning training.
 615 *IEEE Transactions on Information Forensics and Security*, 2024.

616

617 S. Tan, R. Caruana, G. Hooker, and Y. Lou. Distill-and-compare: Auditing black-box models using
 618 transparent model distillation. In *AIES*, pages 303–310. ACM, 2018.

619

620 F. Tramer, V. Atlidakis, R. Geambasu, D. Hsu, J.-P. Hubaux, M. Humbert, A. Juels, and H. Lin.
 621 Fairtest: Discovering unwarranted associations in data-driven applications. In *2017 IEEE European*
 622 *Symposium on Security and Privacy (EuroS&P)*, pages 401–416. IEEE, 2017.

623

624 H. Wang and T. Hoang. ezdps: An efficient and zero-knowledge machine learning inference pipeline.
 625 *Proc. Priv. Enhancing Technol.*, 2023(2):430–448, 2023. doi: 10.56553/POETS-2023-0061.
 626 URL <https://doi.org/10.56553/POETS-2023-0061>.

627

628 B. L. Welch. The generalization of ‘student’s’ problem when several different population variances
 629 are involved. *Biometrika*, 34(1-2):28–35, 1947.

630

631 C. Yadav, A. R. Chowdhury, D. Boneh, and K. Chaudhuri. Fairproof: Confidential and certifiable
 632 fairness for neural networks. *arXiv preprint arXiv:2402.12572*, 2024.

633

634 I.-C. Yeh and C. hui Lien. The comparisons of data mining techniques for the predictive accuracy of
 635 probability of default of credit card clients. *Expert Systems with Applications*, 36(2, Part 1):2473–
 636 2480, 2009. ISSN 0957-4174. doi: <https://doi.org/10.1016/j.eswa.2007.12.020>. URL <https://www.sciencedirect.com/science/article/pii/S0957417407006719>.

637

638 G. Zhang, F. E. Dorner, and M. Hardt. How benchmark prediction from fewer data misses the mark.
 639 *arXiv preprint arXiv:2506.07673*, 2025a.

640

641 J. Zhang, Z. Fang, Y. Zhang, and D. Song. Zero knowledge proofs for decision tree predictions and
 642 accuracy. In *CCS*, pages 2039–2053. ACM, 2020.

643

644 T. Zhang, S. Dong, O. D. Kose, Y. Shen, and Y. Zhang. Fairzk: A scalable system to prove
 645 machine learning fairness in zero-knowledge. In M. Blanton, W. Enck, and C. Nita-Rotaru,
 646 editors, *IEEE Symposium on Security and Privacy, SP 2025, San Francisco, CA, USA, May 12–
 647 15, 2025*, pages 3460–3478. IEEE, 2025b. doi: 10.1109/SP61157.2025.00205. URL <https://doi.org/10.1109/SP61157.2025.00205>.

648 **Algorithm 2** Welch’s t -test
649 **Input:** $\mathcal{X} = \{x_i\}_{i \in [n]}$, $\mathcal{Y} = \{y_i\}_{i \in [m]}$, where $x_i \sim X$ and $y_i \sim Y$, and a significance level α
650 **Output:** Null hypothesis H_0 (i.e., $\mu_X = \mu_Y$) or alternative hypothesis H_1 (i.e., $\mu_X \neq \mu_Y$)
651 1: Compute sampled means $\bar{x} = \frac{\sum_i x_i}{n}$ and $\bar{y} = \frac{\sum_i y_i}{m}$
652 2: Compute sampled variances $v_x = \frac{\sum_i (\bar{x} - x_i)^2}{n-1}$ and $v_y = \frac{\sum_i (\bar{y} - y_i)^2}{m-1}$.
653 3: Compute the test statistic $t = \frac{\bar{x} - \bar{y}}{\sqrt{v_x/n + v_y/m}}$
654 4: Compute the degree of freedom $d = \frac{(g_x + g_y)^2}{g_x^2/(n-1) + g_y^2/(m-1)}$, where $g_x = v_x/n$ and $g_y = v_y/m$
655 5: Obtain the critical value t_{cr} from the t -table, given d and α .
656 6: **If** $|t| < t_{cr}$ **return** H_0 **else return** H_1
657
658
659

660 **A ADDITIONAL PRELIMINARIES**

661 **A.1 EXAMPLE OF AUDITING PREDICATES**

662 **Auditing Accuracy** To audit accuracy, we consider the empirical accuracy as follows:

663
$$\hat{\ell}_S(h) = \frac{1}{n} \sum_{(x,y) \in S} \mathbb{I}(h(x) \neq y)$$

664 where $n = |S|$, and define the empirical predicate f as follows:

665
$$f(h, S_{\text{audit}}) = 1 \iff \hat{\ell}_S(h) \leq t$$

666 **Auditing Fairness with Demographic Parity** Demographic parity is one of the most basic fairness
667 metrics, measuring the difference between the prediction probabilities conditioned on a sensitive
668 attribute. We consider the empirical parity differences as follows:

669
$$\Delta_{\text{dp}}(h, S_{\text{audit}}) = \left| \frac{1}{n_0} \sum_{x \in S_0} \mathbb{I}(h(x) = 1) - \frac{1}{n_1} \sum_{x \in S_1} \mathbb{I}(h(x) = 1) \right|$$

670 where s_x denotes the sensitive feature of a data point x , $S_0 = \{x \in S_{\text{audit}} : s_x = 0\}$, $S_1 = \{x \in S_{\text{audit}} : s_x = 1\}$, $n_0 = |S_0|$, and $n_1 = |S_1|$. To audit fairness w.r.t a model h and a dataset S_{audit} , we
671 define the corresponding empirical predicate f as follows.

672
$$f(h, S_{\text{audit}}) = 1 \iff \Delta_{\text{dp}}(h, S_{\text{audit}}) \leq t$$

673 **A.2 WELCH’S t -TEST**

674 **Welch’s t -test** The goal of t -test is to determine whether the unknown population means of two
675 groups are equal or not. That is, for random variables X and Y , it compares the following hypotheses
676 on their means $\mu_X = \mathbb{E}[X]$ and $\mu_Y = \mathbb{E}[Y]$:

677 • Null Hypothesis $H_0: \mu_X = \mu_Y$
678 • Alternative Hypothesis $H_1: \mu_X \neq \mu_Y$

679 Assuming that X and Y independently follow Gaussian distributions with unknown variances,
680 Welch’s t -test proceeds as in Algorithm 2.

681 **A.3 DECISION TREES**

682 In our attack constructions we focus on decision tree models. Decision tree-based solutions are
683 among the most popular machine learning algorithms, particularly known for their effectiveness
684 in classification problems such as loan approval and fraud detection. A decision tree is trained by
685 recursively partitioning the dataset from the root to the leaves. At each step, a split is determined by a
686 splitting rule that aims to maximize an objective function, such as information gain. For prediction,
687 the input follows a path from the root to a leaf, where at each internal node, the decision depends on
688 whether the input satisfies the corresponding threshold (see Algorithm 3).

689
690 For completeness, in Algorithm 3 we present the algorithm for decision tree inference.

Algorithm 3 Decision Tree Inference

Input: Decision tree h , input \mathbf{a} .
Output: Classification result.

```

702 1: Let  $cur := h.\text{root}$                                  $\triangleright$  Set  $cur$  to be root of the tree
703 2: while  $cur$  is not a leaf do
704 3:   if  $\mathbf{a}[cur.\text{attr}] < cur.\text{thr}$  then
705 4:      $cur := cur.\text{left}$ .                                 $\triangleright$  Set  $cur$  to be current node's left child
706 5:   else
707 6:      $cur := cur.\text{right}$ .                                 $\triangleright$  Set  $cur$  to be current node's right child
708 7: return  $cur.\text{class}$ 
709
710
711
712
713
714
```

A.4 SECURITY PROPERTIES OF ZERO-KNOWLEDGE PROOFS

Let $ZKP = (\mathcal{P}, \mathcal{V})$ be an interactive proof system for a relation $\mathcal{R} = \bigcup_{\lambda \in \mathbb{N}} \mathcal{R}_\lambda$. In what follows, we denote by PPT *probabilistic polynomial time*.

Completeness ZKP is (perfectly) *complete* if for any (x, w) satisfying \mathcal{R} , it holds that:

$$\Pr[1 \leftarrow \langle \mathcal{P}(w), \mathcal{V} \rangle(x)] = 1.$$

Knowledge Soundness ZKP is (adaptively) *knowledge sound* with knowledge error κ if for any (stateful) PPT adversary $\mathcal{P}^* = (\mathcal{P}_0, \mathcal{P}_1)$, there exists an expected polynomial time extractor \mathcal{E} such that the following holds:

$$p_{\text{ext}} \geq p_{\text{acc}} - \kappa$$

where

$$p_{\text{ext}} = \Pr[R_\lambda(x, w) = 1 : x \leftarrow \mathcal{P}_0(1^\lambda); w \leftarrow \mathcal{E}_{\mathcal{P}}(x)]$$

$$p_{\text{acc}} = \Pr[b = 1 : x \leftarrow \mathcal{P}_0(1^\lambda); b \leftarrow \langle \mathcal{P}_1, \mathcal{V} \rangle(x)]$$

where \mathcal{E} has non-black-box access to \mathcal{P}^* . Informally, this means that any cheating prover must know a valid witness if it convinces verifier.

Zero-Knowledge Let $\text{view}_{\mathcal{V}}^{\mathcal{P}(w)}(x)$ be a string consisting of all the incoming messages that \mathcal{V} receives from \mathcal{P} during the interaction $\langle \mathcal{P}(w), \mathcal{V} \rangle(x)$, and \mathcal{V} 's random coins. Π is (honest verifier) *zero-knowledge* if there exists a PPT simulator \mathcal{S} such that for any adversary \mathcal{A} and any $(x, w) \in \mathcal{R}_\lambda$, the following is negligible in λ .

$$\left| \Pr[b = 1 : b \leftarrow \mathcal{A}(\text{view}_{\mathcal{V}}^{\mathcal{P}(w)}(x))] - \Pr[b = 1 : \text{view}' \leftarrow \mathcal{S}(x); b \leftarrow \mathcal{A}(\text{view}')] \right|$$

Informally, this means that the protocol execution reveals no information to \mathcal{V} about w .

A.5 SECURITY PROPERTIES OF COMMITMENT SCHEMES

Let Commit be a commitment scheme. For simplicity, we omit the key generation algorithm Gen for simplicity and present a class of the simplest commitments whose openings are checked by re-computing and comparing (e.g., hash commitment $H(m||\rho)$). More generally, some commitment schemes require a separate verification algorithm Verify to check the validity of a commitment given some *decommitment* information. Our auditing framework can be extended to such schemes by having the model provider prove the knowledge of the decommitment information in zero knowledge.

Binding Commit is *computationally binding* if for any PPT adversary \mathcal{A} , the following is negligible in λ :

$$\Pr[\text{Commit}(m; \rho) = \text{Commit}(m'; \rho') \wedge m \neq m' : (m, m', \rho, \rho') \leftarrow \mathcal{A}(1^\lambda)]$$

Hiding Commit is *computationally hiding* if for any PPT adversary \mathcal{A} , the following is negligible in λ :

$$\left| \Pr[b = 1 : \begin{array}{l} m_0, m_1 \leftarrow \mathcal{A}(1^\lambda); \rho \leftarrow \{0, 1\}^{\ell_r(\lambda)}; \\ \text{com} \leftarrow \text{Commit}(m_b; \rho); b \leftarrow \{0, 1\}; b' \leftarrow \mathcal{A}(\text{com}) \end{array}] - \frac{1}{2} \right|$$

756 **B DEFERRED PROOFS**
757758 **B.1 PROOF OF THEOREM 1**
759

760 *Proof.* First, let us show that if points a and b , where $a_i < c_i < b_i$ and $c_j = b_j$ for all $j \neq i$, get
761 sorted into the same decision tree leaf, then c is also sorted into that same leaf. Notice that in order for
762 two points x and y to get sorted into different leaves, there must be a node which splits on a feature i
763 such that $x_i \neq y_i$ and $x_i \leq t \leq y_i$ or $y_i \leq t \leq x_i$ where t is the threshold to split upon. Then if a
764 and c were sorted into separate leaves, there must be a node on the path that b takes through the tree
765 that splits on feature i with a threshold t that satisfies $c_i \leq t \leq b_i$. However, such a node would also
766 sort a distinctly from b , so such a node cannot occur. Thus, b and c must be sorted into the same leaf.

767 Now, note that as we train the tree until its leafs are homogeneous, every datapoint in S'_{train} must
768 be classified correctly (according to the label we assigned to it in Algorithm 1). Further, since the
769 only datapoints in S'_{train} with non-zero labels are datapoints from S_{audit} , for every leaf in \mathcal{T} that is
770 associated with a non-zero class, we have at least one $r \in S_{audit}$ that gets sorted into this leaf.

771 Consider $x \in \mathbb{R}^d$ such that $\|x - r\|_\infty \geq \varepsilon$ for all $r \in S_{audit}$. Say $\mathcal{T}(x) = 1$, i.e., there exists
772 a leaf such that x belongs to this leaf and the leaf corresponds to class one. Consider $r \in S_{audit}$
773 that belongs to this leaf (by above, such r exists). By the definition of the L-infinity norm there
774 exists some dimension i where $|r_i - x_i| > \varepsilon$. Suppose $r_i - x_i > \varepsilon$. Notice that there is a point
775 $r - \varepsilon \vec{b}_i \in S'_{train}$ which satisfies that $(r - \varepsilon \vec{b}_i)_j = r_j$ for all $j \neq i$, and where $x_i < (r - \varepsilon \vec{b}_i)_i < r_i$.
776 Then by above, $r - \varepsilon \vec{b}_i$ must be sorted into the same leaf as r and x . But $r - \varepsilon \vec{b}_i$ has label $g(r) = 0$,
777 while for x holds $\mathcal{T}(x) = 1$. Thus, we found a contradiction. The same argument holds if $x_i - r_i > \varepsilon$,
778 but using the point $r + \varepsilon \vec{b}_i$ instead of $r - \varepsilon \vec{b}_i$. \square
779

780
781 **C ATTACK DETECTION**
782

783 While proof of training alone cannot detect the attack above (as it relies on training the decision tree
784 entirely honestly), nor can a black-box audit where the model owner knows the audit data before
785 training time, we might still hope to detect when these attacks occur. For example, we might hope
786 to conduct statistical tests on the training data to determine if it was honestly sampled from the
787 underlying distribution or if it was adversarially constructed. In such a case, we cannot directly
788 compare the training data to the true distribution of real data because the underlying distribution is
789 not fully known to the auditor. Instead, we must compare the training data with a sample from that
790 distribution. In the most simple case, this sample is the reference set S_{audit} .

791 We argue that under a certain family of functions, our constructed training set is indistinguishable
792 from S_{audit} .
793

794 **Definition 5.** Suppose $\vec{\alpha}$ is a set of bins over d dimensions. Then $H_{\vec{\alpha}} : (\mathbb{R}^d \times \{0, 1\})^* \rightarrow \mathcal{H}$ is
795 the function which takes databases over d features and a binary classification to their normalized
796 histogram with bins $\vec{\alpha}$.

797 **Definition 6.** A function $f : (\mathbb{R}^d \times \{0, 1\})^* \rightarrow \mathbb{R}$ is called (γ, c) -magnitude insensitive if there
798 exists a choice of bins $\vec{\alpha}$ and function $f' : \mathcal{H} \rightarrow \mathbb{R}$ such that $|f(D) - f'(H_{\vec{\alpha}}(D))| < \gamma$ for all
799 $D \in (\mathbb{R}^d \times \{0, 1\})^*$ and $|f'(H_{\vec{\alpha}}(D)) - f'(H_{\vec{\alpha}}(D||r))| \leq \frac{c}{|D|}$ for all $D \in (\mathbb{R}^d \times \{0, 1\})^*$ and
800 $r \in \mathbb{R}^d \times \{0, 1\}$.

801 **Theorem 2.** If f is (γ, c) -magnitude insensitive, then $|f(S_{audit}) - f(S_{audit}^k||\delta)| \leq \varepsilon$ for any $\varepsilon > 2\gamma$
802 and $k \geq \frac{2dc}{\varepsilon - 2\gamma}$, where δ is the additional training data created by Algorithm 1 when run with input
803 $S_{audit}, d, \varepsilon, g$ for any g .
804

805
806 *Proof.* We will write f' to be the γ -approximation of f guaranteed to exist by the fact that f is
807 (γ, c) -magnitude insensitive. Observe that because $H_{\vec{\alpha}}$ takes databases to their normalized histograms,
808 $H_{\vec{\alpha}}(S_{audit}) = H_{\vec{\alpha}}(S_{audit}^k)$, because the non-normalized histograms of the two databases are simply
809 scaled versions of one another.

810 Next, it will be helpful to show that for any two databases $D_1, D_2 \in (\mathbb{R}^d \times \{0, 1\})^*$, we have
 811 $|f'(H_{\bar{\alpha}}(D_1)) - f'(H_{\bar{\alpha}}(D_1||D_2))| \leq c \frac{|D_2|}{|D_1|}$. Let us write $D_2 = d_1||d_2||\dots||d_{|D_2|}$. Then we get that
 812

$$\begin{aligned}
 & |f'(H_{\bar{\alpha}}(D_1)) - f'(H_{\bar{\alpha}}(D_1||D_2))| \\
 &= |f'(H_{\bar{\alpha}}(D_1)) - f'(H_{\bar{\alpha}}(D_1||d_1)) + f'(H_{\bar{\alpha}}(D_1||d_1)) - \dots \\
 &\quad + f'(H_{\bar{\alpha}}(D_1||d_1||d_2||\dots||d_{|D_2|-1})) - f'(H_{\bar{\alpha}}(D_1||D_2))| \\
 &\leq |f'(H_{\bar{\alpha}}(D_1)) - f'(H_{\bar{\alpha}}(D_1||d_1))| + |f'(H_{\bar{\alpha}}(D_1||d_1)) - f'(H_{\bar{\alpha}}(D_1||d_1||d_2))| + \dots \\
 &\quad + |f'(H_{\bar{\alpha}}(D_1||d_1||d_2||\dots||d_{|D_2|-1})) - f'(H_{\bar{\alpha}}(D_1||D_2))| \\
 &\leq \frac{c}{|D_1|} + \frac{c}{|D_1| + 1} + \dots + \frac{c}{|D_1| + |D_2| - 1} \\
 &\leq c \frac{|D_2|}{|D_1|}
 \end{aligned}$$

824 Then we can apply this to S_{audit}^k and $S_{audit}^k||\delta$, recall that $|\delta| = 2d|S_{audit}|$. Then we see that
 825

$$\begin{aligned}
 & |f'(H_{\bar{\alpha}}(S_{audit})) - f'(H_{\bar{\alpha}}(S_{audit}^k||\delta))| = |f'(H_{\bar{\alpha}}(S_{audit}^k)) - f'(H_{\bar{\alpha}}(S_{audit}^k||\delta))| \\
 &\leq c \frac{2d|S_{audit}|}{k|S_{audit}|} \\
 &\leq c \frac{2d}{\left(\frac{2dc}{\varepsilon - 2\gamma}\right)} = \varepsilon - 2\gamma
 \end{aligned}$$

832 We have two cases now.

833 Case 1: $f'(H_{\bar{\alpha}}(S_{audit})) \geq f'(H_{\bar{\alpha}}(S_{audit}^k||\delta))$. Then we have
 834

$$\begin{aligned}
 \varepsilon - 2\gamma &\geq f'(H_{\bar{\alpha}}(S_{audit})) - f'(H_{\bar{\alpha}}(S_{audit}^k||\delta)) \\
 &= f(S_{audit}) - f(S_{audit}^k) + f'(H_{\bar{\alpha}}(S_{audit})) \\
 &\quad - f(S_{audit}^k||\delta) + f(S_{audit}^k||\delta) - f'(H_{\bar{\alpha}}(S_{audit}^k||\delta)) \\
 &\geq f(S_{audit}) - |f(S_{audit}) - f'(H_{\bar{\alpha}}(S_{audit}))| \\
 &\quad - f(S_{audit}^k||\delta) - |f(S_{audit}^k||\delta) - f'(H_{\bar{\alpha}}(S_{audit}^k||\delta))| \\
 &\geq f(S_{audit}) - \gamma - f(S_{audit}^k||\delta) - \gamma
 \end{aligned}$$

835 and so we see that $\varepsilon \geq f(S_{audit}) - f(S_{audit}^k||\delta)$. We also have
 836

$$\begin{aligned}
 f(S_{audit}) - f(S_{audit}^k||\delta) &= f'(H_{\bar{\alpha}}(S_{audit})) - f'(H_{\bar{\alpha}}(S_{audit}^k)) + f(S_{audit}) \\
 &\quad - f'(H_{\bar{\alpha}}(S_{audit}^k||\delta)) + f'(H_{\bar{\alpha}}(S_{audit}^k||\delta)) - f(S_{audit}^k||\delta) \\
 &\geq f'(H_{\bar{\alpha}}(S_{audit})) - |f'(H_{\bar{\alpha}}(S_{audit})) - f(S_{audit})| \\
 &\quad - f'(H_{\bar{\alpha}}(S_{audit}^k||\delta)) - |f'(H_{\bar{\alpha}}(S_{audit}^k||\delta)) - f(S_{audit}^k||\delta)| \\
 &\geq f'(H_{\bar{\alpha}}(S_{audit})) - \gamma - f'(H_{\bar{\alpha}}(S_{audit}^k||\delta)) - \gamma \\
 &\geq -2\gamma \\
 &> -\varepsilon
 \end{aligned}$$

837 Then $|f(S_{audit}) - f(S_{audit}^k||\delta)| \leq \varepsilon$.

838 Case 2: $f'(H_{\bar{\alpha}}(S_{audit})) \leq f'(H_{\bar{\alpha}}(S_{audit}^k||\delta))$. Then we have
 839

$$\begin{aligned}
 \varepsilon - 2\gamma &\geq f'(H_{\bar{\alpha}}(S_{audit}^k||\delta)) - f'(H_{\bar{\alpha}}(S_{audit})) \\
 &= f(S_{audit}^k||\delta) - f(S_{audit}^k||\delta) + f'(H_{\bar{\alpha}}(S_{audit}^k||\delta)) \\
 &\quad - f(S_{audit}) + f(S_{audit}) - f'(H_{\bar{\alpha}}(S_{audit})) \\
 &\geq f(S_{audit}^k||\delta) - |f(S_{audit}^k||\delta) - f'(H_{\bar{\alpha}}(S_{audit}^k||\delta))| \\
 &\quad - f(S_{audit}) - |f(S_{audit}) - f'(H_{\bar{\alpha}}(S_{audit}))| \\
 &\geq f(S_{audit}^k||\delta) - \gamma - f(S_{audit}) - \gamma
 \end{aligned}$$

864 and so we see that $\varepsilon \geq f(S_{audit}^k || \delta) - f(S_{audit})$. We also have
 865

$$\begin{aligned}
 f(S_{audit}^k || \delta) - f(S_{audit}) &= f'(H_{\bar{\alpha}}(S_{audit}^k || \delta)) - f'(H_{\bar{\alpha}}(S_{audit}^k || \delta)) + f(S_{audit}^k || \delta) \\
 &\quad - f'(H_{\bar{\alpha}}(S_{audit})) + f'(H_{\bar{\alpha}}(S_{audit})) - f(S_{audit}) \\
 &\geq f'(H_{\bar{\alpha}}(S_{audit}^k || \delta)) - |f'(H_{\bar{\alpha}}(S_{audit}^k || \delta)) + f(S_{audit}^k || \delta)| \\
 &\quad - f'(H_{\bar{\alpha}}(S_{audit})) - |f'(H_{\bar{\alpha}}(S_{audit})) - f(S_{audit})| \\
 &\geq f'(H_{\bar{\alpha}}(S_{audit}^k || \delta)) - \gamma - f'(H_{\bar{\alpha}}(S_{audit})) - \gamma \\
 &\geq -2\gamma \\
 &\geq -\varepsilon
 \end{aligned}$$

875 Then $|f(S_{audit}) - f(S_{audit}^k || \delta)| \leq \varepsilon$. □
 876

877 This theorem does not suggest that it is completely impossible to detect the attack given in Algorithm
 878 1. Rather, it only precludes detection by a certain class of functions. However, we argue that this
 879 class is expansive and covers many intuitive approaches.
 880

881 The sole requirement for the audit metric f is that it must be approximable by f' which satisfies
 882 three properties. Firstly, f' operates over histograms for some choice of bins $\bar{\alpha}$. This is a necessary
 883 condition, as if f were not approximable by a function over a binning of the training data, we could
 884 drastically change the audit outcome by simply adding a small amount of noise to the data. Next, f'
 885 must be relatively insensitive to additional data. The intuition here is that no individual datapoint
 886 should dramatically change the outcome of the audit. Finally, f' operates over normalized histograms.
 887 This property is necessary for the proof to go through, but is satisfied by many intuitive audit metrics.
 888 For example, the mean and standard deviation of a feature (even conditioned on any arbitrary set of
 889 features) are approximable from a normalized histogram.
 890

Lemma 1. *Let $\mu_j(D)$ be the mean of (bounded) feature j of a dataset D . Then for every $\gamma > 0$,
 891 $\mu_j(D)$ is $(\gamma, M - m)$ -magnitude insensitive, where B is the set of bins in the histogram and M, m
 892 are an upper and lower bound on possible j -values respectively.*

893 *Proof.* Notice that $\mu_j(D) \approx \sum_{i \in B} p_i x_{j,i}$ where B is the set of bins in the histogram, p_i is the height
 894 of bin i in the normalized histogram of D , and $x_{j,i}$ is the j -value of bin i . Let us show that for any
 895 $\gamma > 0$, there exists a binning of the data such that this is a γ -approximation of $\mu_j(D)$. Let the bins in
 896 feature j have width γ . Then for each datapoint d with j value j_d , bin i , and binned j -value $x_{j,i}$, we
 897 have that $|x_{j,i} - j_d| \leq \gamma$. Then
 898

$$\begin{aligned}
 \sum_{i \in B} p_i x_{j,i} &= \sum_{i \in B} \frac{c_i}{|D|} x_{j,i} \\
 &= \sum_{d \in D} \frac{1}{|D|} x_{j,i} \\
 \implies \left| \sum_{i \in B} p_i x_{j,i} - \sum_{d \in D} \frac{1}{|D|} j_d \right| &= \left| \sum_{d \in D} \frac{1}{|D|} x_{j,i} - \sum_{d \in D} \frac{1}{|D|} j_d \right| \\
 &= \left| \frac{1}{|D|} \sum_{d \in D} (x_{j,i} - j_d) \right| \\
 &\leq \frac{1}{|D|} \sum_{d \in D} |x_{j,i} - j_d| \\
 &\leq \frac{1}{|D|} \sum_{d \in D} \gamma \\
 &= \gamma
 \end{aligned}$$

916 Next, let us show that the sensitivity of our approximation of μ_j is upper bounded by $\frac{M-m}{|D|}$. Notice
 917 that by adding a single point, one histogram bin will increase by 1 and the rest will be unchanged.
 918

918 Then for every bin k ,

$$\begin{aligned}
 920 \quad \sum_{i \in B} \frac{c_i}{|D|+1} x_{j,i} + \frac{1}{|D|+1} x_{j,k} - \sum_{i \in B} \frac{c_i}{|D|} x_{j,i} &= \sum_{i \in B} c_i x_{j,i} \left(\frac{1}{|D|+1} - \frac{1}{|D|} \right) + \frac{x_{j,k}}{|D|+1} \\
 921 \quad &= - \left(\sum_{i \in B} \frac{c_i x_{j,i}}{|D|^2 + |D|} \right) + \frac{x_{j,k}}{|D|+1} \\
 922 \quad &\leq - \left(\frac{m}{|D|+1} \right) + \frac{M}{|D|+1} \\
 923 \quad &\leq \frac{M-m}{|D|} \\
 924 \quad \sum_{i \in B} \frac{c_j}{|D|+1} x_{j,i} + \frac{1}{|D|+1} x_{j,k} - \sum_{i \in B} \frac{c_j}{|D|} x_{j,i} &= - \left(\sum_{i \in B} \frac{c_i x_{j,i}}{|D|^2 + |D|} \right) + \frac{x_{j,k}}{|D|+1} \\
 925 \quad &\geq - \left(\frac{M}{|D|+1} \right) + \frac{m}{|D|+1} \\
 926 \quad &\geq \frac{m-M}{|D|} \\
 927 \quad
 \end{aligned}$$

928 So we have that the sensitivity is no greater than $\frac{M-m}{|D|}$. □

929 We will proceed to use this fact to show that Welch's t -test will fail to detect this attack.

930 **Corollary 1.** *Given an audit dataset S_{audit} and significance level α , we can use Algorithm 1 to*
 931 *construct a training dataset S'_{train} such that for any feature j , S'_{train} passes Welch's t -test when its*
 932 *values in feature j are compared to those of S_{audit} with significance level α .*

933 Before we can prove this corollary, we will need a lemma which bounds the concentration of the
 934 Student's t -distribution.

935 **Lemma 2.** *If X and Z are random variables drawn independently from the Student's t -distribution*
 936 *with ν degrees of freedom and the standard normal distribution respectively, then for every $t > 0$, we*
 937 *have*

$$938 \quad \Pr[|X| < t] \leq \Pr[|Z| < t]$$

939 *Proof.* We will write $F_X(t)$ to denote the CDF of random variable X evaluated at t , and $f_X(t)$ the
 940 PDF. We will also write $\mathbb{E}_X(g(X))$ to be the expected value of $g(X)$ with randomness over X . Let
 941 us begin by demonstrating that for all $t < 0$, we have $F_X(t) > F_Z(t)$. First, recall that if W and Y
 942 are drawn from the χ^2 distribution with ν degrees of freedom and the standard normal distribution
 943 respectively, then $Y\sqrt{\frac{\nu}{W}}$ is distributed according to the Student's t -distribution with ν degrees of
 944 freedom, so let us write $X = Y\sqrt{\frac{\nu}{W}}$. Then according to the law of total probability, we have

$$\begin{aligned}
 945 \quad F_X(t) &= \int_0^\infty F_Y \left(t\sqrt{\frac{w}{\nu}} \right) f(w) dw \\
 946 \quad &= \mathbb{E}_W \left(F_Y \left(t\sqrt{\frac{W}{\nu}} \right) \right)
 \end{aligned}$$

947 Notice that $\frac{d^2}{dt^2} F_Y(t) = \frac{d}{dt} f_Y(t) = \frac{d}{dt} \frac{1}{\sqrt{2\pi}} e^{-\frac{t^2}{2}} = -\frac{t}{\sqrt{2\pi}} e^{-\frac{t^2}{2}} > 0$ when $t < 0$. Then since $t\sqrt{\frac{W}{\nu}}$
 948 must be less than 0, we can apply Jensen's inequality to get

$$\begin{aligned}
 949 \quad F_X(t) &= \mathbb{E}_W \left(F_Y \left(t\sqrt{\frac{W}{\nu}} \right) \right) \\
 950 \quad &\geq F_Y \left(\mathbb{E}_W \left(t\sqrt{\frac{W}{\nu}} \right) \right) \\
 951 \quad &= F_Y \left(t\mathbb{E}_W \left(\sqrt{\frac{W}{\nu}} \right) \right)
 \end{aligned}$$

972 Then since $\frac{d^2}{du^2} \sqrt{u} = -\frac{1}{4\sqrt{u^3}} \leq 0$, we get that $\mathbb{E}_W \left(\sqrt{\frac{W}{\nu}} \right) \leq \sqrt{\frac{\mathbb{E}_W(W)}{\nu}} = \sqrt{\frac{\nu}{\nu}} = 1$. So because
 973 $t < 0$, we can see that $t\mathbb{E}_W \left(\sqrt{\frac{W}{\nu}} \right) \geq t$, and since $F_Y(u)$ is increasing, we get
 974
 975

$$976 \quad F_X(t) \geq F_Y \left(t\mathbb{E}_W \left(\sqrt{\frac{W}{\nu}} \right) \right) \\ 977 \\ 978 \\ 979 \\ 980$$

$$F_X(t) \geq F_Y(t)$$

981 Since f_X and f_Y are both symmetric about $t = 0$, it then follows by a symmetric argument that for
 982 all $t > 0$, $F_X(t) \leq F_Y(t)$. Then we see that for any $t > 0$,
 983
 984

$$985 \quad \Pr[|X| < t] = F_X(t) - F_X(-t) \\ 986 \\ 987 \\ 988$$

$$\Pr[|X| < t] = F_Y(t) - F_Y(-t) \\ = \Pr[|Y| < t] \\ = \Pr[|Z| < t]$$

989 Because Y and Z are independently and identically distributed. \square
 990
 991

992 We are now ready to prove Corollary 1.
 993
 994

995 *Proof of Corollary 1.* A pair of datasets D_1, D_2 pass Welch's t -test on feature j if
 996
 997

$$998 \quad \frac{|\mu_j(D_1) - \mu_j(D_2)|}{\sqrt{\frac{\sigma_1^2}{|D_1|} + \frac{\sigma_2^2}{|D_2|}}} \leq T_{\alpha, \nu} \\ 999$$

1000 where α is the desired significance level, ν is the degrees of freedom in the datasets, and $T_{\alpha, \nu}$ is the
 1001 unique value such that
 1002

$$1003 \quad \Pr_{x \sim t(\nu)} [|x| \geq T_{\alpha, \nu}] = \alpha$$

1004 where $t(\nu)$ is the Student's t -distribution with ν degrees of freedom. In our case, the t -test compares
 1005 the reference dataset S_{audit} with the training dataset S'_{train} .
 1006

1007 The value of ν , and thus the value of $T_{\alpha, \nu}$, depends on the size of the datasets, with the threshold $T_{\alpha, \nu}$
 1008 decreasing as the datasets grow large. However, we will use Lemma 2 to give a lower bound for $T_{\alpha, \nu}$
 1009 which is constant with respect to $|S'_{train}|$. Then, we will show that by Lemma 1 and Theorem 2 we
 1010 can use Algorithm 1 to construct a malicious training dataset S'_{train} which maintains an arbitrarily
 1011 small test statistic, and in particular, a dataset such that the test statistic is below the lower bound on
 1012 the threshold.

1013 First, let us establish a lower bound on $T_{\alpha, \nu}$. Let us define T'_{α} to be the unique positive value such
 1014 that
 1015

$$1016 \quad \Pr_{Z \sim \mathcal{N}(0, 1)} [|Z| \geq T'_{\alpha}] = \alpha$$

1017 Then recall that Lemma 2 gives us that
 1018

$$1019 \quad \Pr_{X \sim t(\nu)} [|X| < T'_{\alpha}] \leq \Pr_{Z \sim \mathcal{N}(0, 1)} [|Z| < T'_{\alpha}] \\ 1020$$

1021 If we write f_X and f_Z to represent the probability density functions (PDFs) of X and Z respectively,
 1022 then we get equivalently that
 1023

$$1024 \quad \int_{-T'_{\alpha}}^{T'_{\alpha}} f_X(u) du \leq \int_{-T'_{\alpha}}^{T'_{\alpha}} f_Z(u) du$$

1026 Then we see that

$$\begin{aligned}
 & \Pr_{Z \sim \mathcal{N}(0,1)}[|Z| \geq T'_\alpha] = \Pr_{X \sim t(\nu)}[|X| \geq T_{\alpha,\nu}] \\
 \implies & \int_{-T'_\alpha}^{T'_\alpha} f_Z(u) du = \int_{-T_{\alpha,\nu}}^{T_{\alpha,\nu}} f_X(u) du \\
 & = \int_{-T_{\alpha,\nu}}^{-T'_\alpha} f_X(u) du + \int_{-T'_\alpha}^{T'_\alpha} f_X(u) du + \int_{T'_\alpha}^{T_{\alpha,\nu}} f_X(u) du \\
 \leq & \int_{-T_{\alpha,\nu}}^{-T'_\alpha} f_X(u) du + \int_{-T'_\alpha}^{T'_\alpha} f_Z(u) du + \int_{T'_\alpha}^{T_{\alpha,\nu}} f_X(u) du \\
 \implies & 0 \leq \int_{-T_{\alpha,\nu}}^{-T'_\alpha} f_X(u) du + \int_{T'_\alpha}^{T_{\alpha,\nu}} f_X(u) du
 \end{aligned}$$

1040 Then because $f_X(x)$ is symmetric about $x = 0$, this yields

$$1042 \quad 2 \int_{T'_\alpha}^{T_{\alpha,\nu}} f_X(u) du \geq 0$$

1044 and thus

$$1046 \quad \int_{T'_\alpha}^{T_{\alpha,\nu}} f_X(u) du \geq 0$$

1047 Now recall the simple result from calculus that states that if g is positive valued, then

$$1049 \quad \int_a^b g(x) dx \geq 0 \iff a \leq b$$

1051 Then because f_X is positive-valued, our prior result entails that $T_{\alpha,\nu} \geq T'_\alpha$, so T'_α is a lower bound
1052 on $T_{\alpha,\nu}$ that does not depend on $|S'_{train}|$.

1054 Next, observe that the test statistic for Welch's t -test has the following upper bound:

$$\frac{|\mu_j(S'_{train}) - \mu_j(S_{audit})|}{\sqrt{\frac{\sigma_{train}^2}{|S'_{train}|} + \frac{\sigma_{audit}^2}{|S_{audit}|}}} \leq \frac{|\mu_j(S'_{train}) - \mu_j(S_{audit})|}{\sqrt{\frac{\sigma_{audit}^2}{|S_{audit}|}}}$$

1058 Furthermore, Lemma 1 implies that for any $\varepsilon > 0$, we can choose $\gamma < \frac{\varepsilon}{2}$ such that μ_j is
1059 (γ, c) -magnitude insensitive, and so by Theorem 2, Algorithm 1 yields a dataset S'_{train} such that
1060 $|\mu_j(S'_{train}) - \mu_j(S_{audit})| \leq \varepsilon$ when appropriately parameterized. Then let $\varepsilon = T'_\alpha \frac{\sigma_{audit}}{2\sqrt{|S_{audit}|}}$. This
1061 produces the result that

$$\begin{aligned}
 \frac{|\mu_j(S'_{train}) - \mu_j(S_{audit})|}{\sqrt{\frac{\sigma_{train}^2}{|S'_{train}|} + \frac{\sigma_{audit}^2}{|S_{audit}|}}} & \leq \frac{2\varepsilon}{\sqrt{\frac{\sigma_{audit}^2}{|S_{audit}|}}} \\
 & = \frac{2}{\sqrt{\frac{\sigma_{audit}^2}{|S_{audit}|}}} T'_\alpha \frac{\sigma_{audit}}{2\sqrt{|S_{audit}|}} \\
 & = T'_\alpha \\
 & \leq T_{\alpha,\nu}
 \end{aligned}$$

1071 which passes the t -test for feature j . Finally, by choosing $k = \max_j \frac{4d(M_j - m_j)\sqrt{|S_{audit}|}}{T'_\alpha \sigma_{audit,j}}$ we get for
1072 every feature i that $|\mu_i(S'_{train}) - \mu_i(S_{audit})| \leq 2 \min_j T'_\alpha \frac{\sigma_{audit,j}}{2\sqrt{|S_{audit}|}} \leq 2T'_\alpha \frac{\sigma_{audit,i}}{2\sqrt{|S_{audit}|}}$, so S'_{train}
1073 passes the t -test for feature i . \square

D CASE STUDY

1076 We now discuss a number of state of the art works that consider the problem of privacy-preserving
1077 auditing. These works are focused on different auditing functions (accuracy, fairness, etc), different

1080 types of machine learning models, and their security models they use are not necessarily aligned.
 1081 We now briefly outline the techniques and security guarantees that are claimed in each of the works.
 1082 Our goal is not to provide an exhaustive survey, but rather to illustrate the landscape through recent
 1083 works that are broadly representative of the field—even though they span different years, venues, and
 1084 communities (ranging from machine learning to security).
 1085

1086 D.1 ZERO KNOWLEDGE PROOFS FOR DECISION TREE PREDICTIONS AND ACCURACY

1088 **Goal and Solution Details.** Zhang et al. (2020) introduce protocols for auditing accuracy and
 1089 verifying decision tree predictions. These protocols enable the owner of a decision tree model to
 1090 prove that the model produces a given prediction on a data sample, or that it obtains a specified
 1091 accuracy on a given dataset, without revealing any additional information about the model itself.
 1092 Zhang et al. (2020)’s main contribution is in designing a custom zero-knowledge proof tailored to
 1093 efficiently verifying the decision tree prediction. The proof consists of algorithms to generate public
 1094 parameters, custom commitment algorithm for decision tree models, the prover’s algorithm which
 1095 outputs a proof of inference/accuracy, and verifier algorithm to check this proof. The prover, i.e.,
 1096 model provider, must first commit to its model and subsequently demonstrate that the predictions on
 1097 client queries are consistent with this commitment. For accuracy verification, the authors propose
 1098 a batching technique that allows to more efficiently checks the correctness of predictions across
 1099 *multiple* inputs. They then add an extra verification step to determine how many of these predictions
 1100 match the true labels.

1100 **Security Model.** Zhang et al. (2020)’s security definition is formulated for the case of inference, and
 1101 follows the traditional zero-knowledge definition structure, which considers two parties (prover and
 1102 verifier), and where the protocol is required to satisfy correctness, soundness, and zero-knowledge.
 1103 Either of the two parties can be malicious. In the context of our analysis we are interested in
 1104 soundness, which specifies whether a malicious prover can deceive the verifier (i.e., auditor), that
 1105 the prover’s hypothesis passed the test. At a high level, the authors’ soundness definition can be
 1106 summarized as follows: A prover should not be able to output a commitment to a tree \mathcal{T} along with a
 1107 proof π , prediction y and datapoint a such that the verifier accepts the proof and at the same time,
 1108 the \mathcal{T} ’s prediction for a is not equal to y . Definition of soundness for the accuracy case is similar:
 1109 the prover outputs the dataset which is used for checking accuracy, and wins the game if the verifier
 1110 accepts the proof even though the accuracy is not what the prover claims it to be.

1111 **Discussion.** The security notion in this work aligns well with the intuitive goals of verifying both the
 1112 correctness of individual predictions and the accuracy of a model on a given dataset. However, it does
 1113 not give any formal guarantees for datasets beyond the audited dataset, i.e., the accuracy verification
 1114 solution does not generalize to other datasets drawn from the same distribution. In fact, Zhang et al.
 1115 (2020) explicitly note that it is possible to use their solution to check accuracy on a *public dataset*.
 1116 In this setting, their approach falls within our framework of Definition 3, and is vulnerable to the
 1117 same attack as outlined in §4.1. In fact, note that our example works even given an *ideal* proof of
 1118 accuracy (when it is checked on a dataset known to the adversary), and even if the prover supplies an
 1119 *additional* proof of training to complement its proof of accuracy.

1120 D.2 P2NIA: PRIVACY-PRESERVING NON-ITERATIVE AUDITING

1122 **Goal and Solution Details.** Bourrée et al. (2025) propose a novel auditing scheme that enables
 1123 one-shot verification of a model’s group fairness while preserving privacy for both parties: the model
 1124 provider is not required to open-source the model, and the auditor need not disclose any private
 1125 information to support the audit. The main contribution of Bourrée et al. (2025) is a mechanism that
 1126 enables auditing without requiring the auditor to supply the audit dataset. Specifically, the model
 1127 provider supplies a dataset together with the corresponding predictions (both in the clear), which the
 1128 auditor then uses to verify the fairness condition. To construct this dataset, model provider draws on
 1129 a portion of its internal training data. To preserve confidentiality of this data, it is not shared directly.
 1130 Instead, model provider feeds it into a synthetic data generation algorithm, and the resulting synthetic
 1131 dataset is what is sent to the auditor.

1132 **Security Model.** The work does not provide a formal security model. It is set up in the black-box
 1133 setting and assumes that the auditor does not know the distribution of the model owner’s training
 1134 data.

1134 **Discussion.** As Bourr  e et al. (2025) do not utilize cryptographic techniques to prove that the outputs
1135 actually correspond to the given inputs, the prover can easily cheat by simply adjusting the labels it
1136 supplies for the constructed dataset. However, even if one were to strengthen the scheme by adding a
1137 secure proof of training (e.g., Pappas and Papadopoulos (2024)) together with inference proofs (as
1138 in Zhang et al. (2020)), the fact that the model owner knows the dataset that is being used for the
1139 audit means that the solution falls within our framework of Definition 3, and is thus vulnerable to
1140 data-forging attacks. An interesting open question would be to see if, since in this scenario the model
1141 owner not only knows, but directly influences the audit dataset, there can be an even simpler attack.

D.3 CONFIDENTIAL-PROFIT: CONFIDENTIAL PROOF OF FAIR TRAINING OF TREES

Goal and Solution Details. Shamsabadi et al. (2022) propose Confidential-PROFITT, a framework for certifying fairness of decision trees while preserving confidentiality of both the model and the training data. Confidential-PROFITT consists of a zero-knowledge-friendly decision tree learning algorithm that, when executed honestly, enforces fairness by design—up to a tunable degree controlled by a parameter. On top of this, Confidential-PROFITT designs a zero-knowledge proof system to verify fairness of a decision tree. The proof requires the model provider to commit to both the model and its training data, then prove in zero-knowledge that the paths taken by the committed training points through the (committed) decision tree satisfy specified fairness bounds. In terms of fairness metrics, Confidential-PROFITT supports *demographic parity* and *equalized odds* as fairness metrics.

Security Model. Confidential-PROFITT considers a malicious model provider (that, however, is assumed to commit to the training data honestly) and a malicious auditor (who wishes to learn model details/training data), and obtains standard zero-knowledge proof properties (correctness, soundness, zero-knowledge) with respect to a statement that can be summarized roughly as follows “With respect to a private dataset *chosen by the model provider*, the committed model satisfies certain fairness guarantees”.

Discussion. Confidential-PROFIT assumes that the model provider honestly commits to the training data. Under this assumption, the corresponding zero-knowledge proof certifies that the resulting model inherits the fairness guarantees of the fair learning algorithm introduced in Confidential-PROFIT (which the authors show indeed improves fairness). However, if the provider is not restricted to committing to the true training data, Confidential-PROFIT is vulnerable to data-forging attacks, as the provider can choose the audit dataset before committing to the model.

D.4 OATH: EFFICIENT AND FLEXIBLE ZERO-KNOWLEDGE PROOFS OF END-TO-END ML FAIRNESS

Goal and Solution Details. Franzese et al. (2024) present OATH, a model-agnostic fairness auditing framework. The core idea in OATH is to leverage clients (who query the model during deployment) to participate in the auditing process. OATH operates in two phases: (i) a certification protocol between the model provider and the auditor, and (ii) a query authentication protocol involving model provider, inference clients, and auditor (dubbed verifier in OATH). The first phase follows the standard certification flow we describe in §3. In the second phase, the auditor receives commitments to client queries and the corresponding model predictions. These commitments can later be verified in zero knowledge for fairness, correctness, and consistency with the certified model.

Security Model. OATH considers three fully malicious entities: a model provider, inference clients, and an auditor. These parties are assumed not to collude with each other. The auditor assesses model fairness both with respect to the calibration dataset and the clients queries. The system provides standard correctness, soundness, and zero-knowledge with respect to these two datasets.

Discussion. The calibration dataset which is used in the certification protocol between the model provider and the auditor might be supplied by either party. If the calibration dataset is chosen by the prover, same as P2NIA and Confidential-PROFITT, the corresponding fairness check is vulnerable to data forging. However, in contrast to prior works, OATH can fall back on guarantees based on client’s queries.

1188
1189

D.5 FAIRPROOF: CONFIDENTIAL AND CERTIFIABLE FAIRNESS FOR NEURAL NETWORKS

1190
1191
1192
1193

Goal and Solution Details. Yadav et al. (2024) propose FairProof, a fairness certification approach that maintains confidentiality of the model. In contrast to Confidential-PROFIT and OATH, which focus on group fairness metrics, FairProof considers local individual fairness. This allows Yadav et al. (2024) to issue a personalized certificate to every client.

1194
1195
1196
1197

Security Model. FairProof system involves a malicious model provider and malicious clients (who wish to learn model details/training data), and considers standard correctness, soundness, and zero-knowledge properties. The corresponding statement is roughly as follows: “Given a datapoint x , the model’s output is y and a lower bound on an individual fairness parameter for x is ϵ_x ”.

1198
1199
1200
1201
1202
1203

Discussion. The usage of a specific fairness metric (local individual fairness) allows FairProof to provide per-client certificates of fairness, and escape the problems that arise from the usage of reference datasets (including vulnerability to data-forging attacks). On the flip side, FairProof requires to generate fairness certificates during deployment and does not provide any fairness guarantees prior to deployment.

1204
1205
1206

D.6 zkCNN: ZERO KNOWLEDGE PROOFS FOR CONVOLUTIONAL NEURAL NETWORK PREDICTIONS AND ACCURACY

1207
1208
1209
1210
1211

Goal and Solution Details. Liu et al. (2021) propose zkCNN, a zero-knowledge proof protocol for inference and accuracy of convolutional neural networks (CNNs). The core contribution is a novel sumcheck protocol (which is the key ingredient in many zero-knowledge system) that is tailored to two-dimensional convolutions.

1212
1213
1214
1215
1216
1217
1218
1219
1220

Security Model. zkCNN considers the standard setting with a prover and a verifier. Either party can be malicious. Liu et al. (2021)’s security definition for inference is a zero-knowledge-style definition, and the scheme is required to satisfy correctness, soundness, and zero-knowledge. Similar to Zhang et al. (2020), Liu et al. (2021)’s soundness intuitively states that a prover should not be able to output a commitment to a model and provide a proof π , prediction y and datapoint X such that the verifier accepts the proof, and at the same time, the committed model’s prediction for X is not equal to y . If instantiated with a specific commitment scheme, Liu et al. (2021)’s scheme further satisfies knowledge soundness, the stronger version of soundness where there exists an extractor to extract the CNN parameters from a valid proof and prediction with overwhelming probability. Liu et al. (2021) do not provide a security definition for their proof of accuracy.

1221
1222
1223
1224
1225

Discussion. As Liu et al. (2021) do not give a security definition for their proof of accuracy, the formal security guarantee they provide is not fully clear. However, the authors indicate that their scheme can be used to prove the accuracy on a public dataset. This scenario falls within our framework of definition 3, and is vulnerable to the same style of attack as outlined in §4.1.

1226
1227

D.7 SCALING UP TRUSTLESS DNN INFERENCE WITH ZERO-KNOWLEDGE PROOFS

1228
1229
1230
1231
1232
1233
1234
1235
1236

Goal and Solution Details. Kang et al. (2022) propose a zero-knowledge-based framework for verifying DNN inference and accuracy. Their key contribution is a careful translation of DNN specifications into arithmetic circuits suitable for zero-knowledge proofs. The system also introduces economic incentives to support ML-as-a-service. Concretely, when verifying accuracy, the model provider first commits to the model, and the client commits to the test set. Both parties then deposit monetary collateral into an escrow. The client reveals the test set, and the provider must produce a zero-knowledge proof that the committed model meets the claimed accuracy. If the provider fails or refuses to prove the required accuracy, it forfeits its collateral; otherwise, the client pays for the service.

1237
1238
1239
1240
1241

Security Model. Kang et al. (2022) study the standard two-party setting with a *prover* (model provider) and a *verifier* (client), either of whom may be malicious. Cryptographically, they aim for the standard zero-knowledge proof properties: *completeness*, *knowledge soundness*, and *zero knowledge*. They further consider incentives, showing that—under certain assumptions—honest model providers and clients are motivated to participate in the accuracy verification protocol, while malicious parties are discouraged.

1242 **Discussion.** In terms of cryptographic guarantees, Kang et al. (2022) gets the core design right: their
 1243 protocol for proofs of accuracy closely follows the framework outlined in §5 and is not vulnerable to
 1244 our data-forging attacks. However, Kang et al. (2022) provide no formal guarantees about accuracy
 1245 on data outside the audited set. It would be interesting to perform an analysis similar to that in §E.2.1
 1246 given their constraints.

1247
 1248 **D.8 EZDPS: AN EFFICIENT AND ZERO-KNOWLEDGE MACHINE LEARNING INFERENCE
 1249 PIPELINE**
 1250

1251 **Goal and Solution Details.** Wang and Hoang (2023) introduce ezDPS, a pipeline for zero-knowledge
 1252 proofs of inference correctness and accuracy above a specified threshold. They construct arithmetic
 1253 circuit gadgets for key ML operations, including exponentiation, absolute value, and array max/min,
 1254 and further devise optimized methods for proving Discrete Wavelet Transform, Principal Component
 1255 Analysis, and multi-class Support Vector Machines with various kernel functions using an efficient
 1256 set of arithmetic constraints.

1257 **Security Model.** Wang and Hoang (2023) consider two mutually distrusting parties – a malicious
 1258 server and a semi-honest client, who follows the protocol but aims to learn information about the
 1259 model’s parameters. For their inference pipeline, they consider standard definitions of correctness,
 1260 soundness, and zero-knowledge (similar to those by Zhang et al. (2020) and Kang et al. (2022)).
 1261 Wang and Hoang (2023) do not provide a security definition for their proof of accuracy.

1262 **Discussion.** Similar to Liu et al. (2021), as Wang and Hoang (2023) do not provide a security
 1263 definition for their proof of accuracy, the precise security guarantee they achieve is somewhat unclear.
 1264 However, Wang and Hoang (2023) indicate that their scheme can be used to prove the accuracy on a
 1265 public dataset, which falls within our framework of definition 3. This instantiation of their method is
 1266 vulnerable to the same style of attack as outlined in §4.1.

1267
 1268 **D.9 CONFIDENTIAL-DPROOF: CONFIDENTIAL PROOF OF DIFFERENTIALLY PRIVATE
 1269 TRAINING**
 1270

1271 **Goal and Solution Details.** Shamsabadi et al. (2024) present Confidential-DPproof, a framework
 1272 that enables the model provider to prove to an auditor that their model was correctly trained via
 1273 DP-SGD, a classic approach for training models with differential privacy guarantees. The certification
 1274 of DP-SGD’s training run is done in zero-knowledge.

1275 **Security Model.** Shamsabadi et al. (2024) consider two mutually distrusting parties: a prover, i.e.,
 1276 model provider, and an auditor. The prover is fully malicious, while the auditor is semi-honest and
 1277 aims to obtain information about the model’s parameters. Confidential-DPproof considers standard
 1278 definitions of correctness, soundness, and zero-knowledge.

1279 **Discussion.** The data used by Shamsabadi et al. (2024) for their zero-knowledge proof is selected
 1280 by the prover. This fits the framework in §3, and makes the solution susceptible to data-forging
 1281 attacks. In particular, a malicious prover could degrade the claimed differential privacy guarantees
 1282 by, for example, supplying multiple copies of its (otherwise honest) training data as the input to the
 1283 Confidential-DPproof protocol. We leave a formal treatment and full development of this attack as an
 1284 interesting direction for future work.

1285
 1286 **E SECURE CONSTRUCTION OF AUDITING PROTOCOLS**
 1287

1288 **E.1 AUDITING PROTOCOL AND SECURITY DEFINITIONS**
 1289

1290 In this section, we formally define the security properties of an auditing protocol.

1291 **Completeness** An auditing protocol Π is complete with error p if for any model h such that
 1292 $F(h, S_{\text{train}}) = 1$, the following holds:

1293
$$\Pr [b = 1 : (\text{com}, b) \leftarrow \langle \text{Prove}(h, S_{\text{train}}), \text{Audit} \rangle] \geq 1 - p$$

1296 **Binding** An auditing protocol Π is *computationally binding* if for any PPT adversary \mathcal{A} , the following
 1297 is negligible in λ :

$$1299 \Pr \left[\begin{array}{l} \text{Commit}(h||S_{\text{train}}; \rho) = \text{Commit}(h'||S'_{\text{train}}; \rho') \\ \wedge (h \neq h' \vee S_{\text{train}} \neq S'_{\text{train}}) \end{array} : (h, h', S_{\text{train}}, S'_{\text{train}}, \rho, \rho') \leftarrow \mathcal{A}(1^\lambda) \right]$$

1301 Note that we require the binding property to hold both for the model and the training dataset. This
 1302 can be easily achieved by separately committing to the model and the training dataset with a standard
 1303 binding commitment scheme (§ A.5), and then outputting the concatenation of the two commitments.

1304 **\tilde{F} -Relaxed Knowledge Soundness** An auditing protocol Π is \tilde{F} -relaxed knowledge sound with
 1305 knowledge error κ if for any PPT adversary Prove^* , there exists an expected polynomial time extractor
 1306 $\text{Ext}_{\text{Prove}^*}$ such that the following holds:

$$1308 p_{\text{ext}} \geq p_{\text{acc}} - \kappa$$

1309 where

$$1310 p_{\text{ext}} = \Pr \left[\begin{array}{l} (\text{com} = \text{Commit}(h||S_{\text{train}}; \rho) \wedge \tilde{F}(h) = 1) \\ \vee (\text{com} = \text{Commit}(h||S_{\text{train}}; \rho) \\ \wedge \text{com} = \text{Commit}(h'||S'_{\text{train}}; \rho') \\ \wedge (h \neq h' \vee S_{\text{train}} \neq S'_{\text{train}})) \end{array} : (h, S_{\text{train}}, \rho, h', S'_{\text{train}}, \rho') \leftarrow \text{Ext}_{\text{Prove}^*}(\text{com}) \right]$$

$$1316 p_{\text{acc}} = \Pr [b = 1 : (\text{com}, b) \leftarrow \langle \text{Prove}^*, \text{Audit} \rangle]$$

1317 Intuitively, this notion guarantees that if a cheating prover Prove^* convinces the auditor to accept
 1318 with non-negligible probability, then it must either know a model h and a training dataset S_{train}
 1319 satisfying a predicate \tilde{F} , or find two distinct openings to the same commitment com . As the latter
 1320 event happens with negligible probability if Commit is computationally binding, this implies that
 1321 Prove^* must know a valid model h and a training dataset S_{train} satisfying \tilde{F} . We call this property
 1322 “ \tilde{F} -relaxed” knowledge soundness because the predicate \tilde{F} is a relaxation of the original predicate F .
 1323 This is necessary because the auditor only checks the property f on a *finite sample*, which may not
 1324 perfectly reflect the property F on the *underlying distribution*. In our concrete instantiations, we will
 1325 quantify the gap between F and \tilde{F} (see § E.2.1 and § E.2.2).

1327 **Zero Knowledge** Let $\text{view}_{\text{Audit}}^{\text{Prove}(h, S_{\text{train}})}$ be a string consisting of all the incoming messages that Audit
 1328 receives from Prove during the interaction $\langle \text{Prove}(h, S_{\text{train}}), \text{Audit} \rangle$, and Audit ’s random coins. Π is
 1329 *zero-knowledge* against semi-honest auditor if there exists a PPT simulator Sim such that for any PPT
 1330 adversary \mathcal{A} , and any h such that $F(h, S_{\text{train}}) = 1$, the following is negligible in λ .

1331

$$1332 \left| \Pr [b = 1 : b \leftarrow \mathcal{A}(\text{view}_{\text{Audit}}^{\text{Prove}(h, S_{\text{train}})})] - \Pr [b = 1 : \text{view}' \leftarrow \text{Sim}(1^\lambda); b \leftarrow \mathcal{A}(\text{view}')] \right|$$

1334

1335 E.2 CONSTRUCTION OF AUDITING PROTOCOL

1336

1337 We construct a commit-sample-prove auditing scheme Π_{csp} . While we focus on a protocol checking
 1338 F on a hypothesis h only, the construction below can be naturally extended to a more complex F that
 1339 additionally takes a training dataset as input. Let Commit be a binding commitment scheme (A.5) and
 1340 $\text{ZKP} = (\mathcal{P}, \mathcal{V})$ be a ZK proof system for the following relation \mathcal{R} : for a pair of public statement $x =$
 1341 $(\text{com}, S_{\text{audit}})$ and private witness $w = (h, \rho)$, we have $(x, w) \in \mathcal{R} \iff f(h, S_{\text{audit}}) = 1 \wedge \text{com} =$
 1342 $\text{Commit}(h; \rho)$. We define a commit-sample-prove auditing protocol $\Pi_{\text{csp}} = (\text{Commit}, \text{Prove}, \text{Audit})$
 1343 using an empirical predicate f and a distribution \mathcal{D} over a query space $Q = \{(x_i, y_i)\}_{i=1}^m$ as follows:

1344 $\langle \text{Prove}(h), \text{Audit} \rangle$

1345

1. Prove computes $\text{com} = \text{Commit}(h; \rho)$ using a uniformly random string $\rho \in \{0, 1\}^{l_{\text{Commit}}}$ and sends com to Audit.
2. Audit samples $S_{\text{audit}} \leftarrow \mathcal{D}^n$ and sends it to Prove.
3. Prove and Audit execute $b \leftarrow \langle \mathcal{P}(w), \mathcal{V} \rangle(x)$, where $x = (\text{com}, S_{\text{audit}})$ and $w = (h, \rho)$. Here, Prove plays \mathcal{P} and Audit plays \mathcal{V} .

1350 4. Prove outputs com , while Audit outputs b .
 1351

1352 We now state our main theorem regarding the security of Π_{csp} . The result is stated for a general
 1353 auditing task defined by a predicate F and an empirical predicate f .

1354 **Theorem 3.** *Suppose the empirical predicate f , the model predicate F , and the relaxed model
 1355 predicate \tilde{F} satisfy the following false negative and false positive rate bounds for every model h :*

$$\Pr_{S_{\text{audit}} \leftarrow \mathcal{D}^n} [f(h, S_{\text{audit}}) \neq 1 \mid F(h) = 1] \leq p_{\text{fnr}}$$

$$\Pr_{S_{\text{audit}} \leftarrow \mathcal{D}^n} [f(h, S_{\text{audit}}) = 1 \mid \tilde{F}(h) \neq 1] \leq p_{\text{fpr}}$$

1360 Then Π_{csp} is a secure auditing protocol for F satisfying the following properties:
 1361

- 1362 • *If ZKP is perfectly complete, then Π_{csp} is complete with error p_{fnr} for any model h such that
 1363 $F(h) = 1$.*
- 1364 • *If the underlying commitment scheme Commit is computationally binding, then Π_{csp} is
 1365 computationally binding.*
- 1366 • *If ZKP is knowledge sound with knowledge error κ , then Π_{csp} is \tilde{F} -relaxed knowledge sound
 1367 with knowledge error $\kappa + p_{\text{fpr}}$.*
- 1368 • *If p_{fnr} is negligible in λ , Commit is hiding, and ZKP is zero-knowledge, then Π_{csp} is zero-
 1369 knowledge against semi-honest auditor.*

1370 *Proof sketch.* The proof carefully combines the standard arguments in learning theory and the
 1371 security properties of the underlying cryptographic primitives. We focus on knowledge soundness,
 1372 as completeness, binding and zero-knowledge directly follow from the corresponding properties
 1373 of the underlying commitment scheme and ZK proof system. To argue knowledge soundness, let
 1374 us assume for the sake of simplicity the commitment scheme is perfectly binding and straightline
 1375 extractable, i.e., once the prover sends com to the auditor, one can immediately extract a unique
 1376 model h and a unique randomness ρ such that $\text{com} = \text{Commit}(h; \rho)$. Such a commitment scheme
 1377 can be constructed in the common reference string (CRS) model using public key encryption. If
 1378 the committed model h does *not* satisfy \tilde{F} , then by the assumption on the false positive rate, the
 1379 probability that $f(h, S_{\text{audit}}) = 1$ is at most p_{fpr} over the choice of S_{audit} . Note that we need to relax
 1380 the predicate from F for completeness to \tilde{F} because the auditor only checks the empirical predicate
 1381 on a finite sample, which may not perfectly reflect the true predicate. Depending on the deployment
 1382 scenario, this gap can be made arbitrarily small by increasing the sample size n .
 1383

1384 The actual proof is significantly more involved, when the commitment scheme is only computationally
 1385 binding (which is the case for most practical instantiations). In particular, we need to construct
 1386 a meta-extractor that runs the knowledge extractor \mathcal{E} for ZKP to obtain a candidate model h , and
 1387 rewinds \mathcal{E} with fresh $S'_{\text{audit}} \sim \mathcal{D}^n$ to ensure the validity of h via probabilistic tests (or otherwise break
 1388 binding of the commitment). Our formal security proof takes care of these subtle technicalities by
 1389 leveraging the proof techniques from lattice-based zero knowledge proofs.
 1390

1391 *Proof.* Binding trivially follows from the computational binding property of the underlying commit-
 1392 ment scheme.
 1393

1394 Completeness: By the assumption on f and F , an honest auditing prover Prove fails to convince the
 1395 auditor playing verifier \mathcal{V} after receiving fresh S_{audit} with probability at most p_{fnr} . Since Commit and
 1396 ZKP are perfectly complete, an honest ZKP prover \mathcal{P} given any valid witness always convinces the
 1397 verifier. Thus, the overall completeness error is at most p_{fnr} .
 1398

1399 Knowledge Soundness: The protocol can be viewed as a commit-and-prove zero-knowledge proof
 1400 with interleaved probabilistic tests on the statement. This approach is common in lattice-based
 1401 zero-knowledge proofs (Cf. Theorem 5.1.6 of Nguyen (2022)).
 1402

1403 Let Prove^* be any PPT adversary. We denote by \mathcal{P}_1 the interactive ZK prover algorithm that Prove^*
 1404 invokes in Step 3 to prove the statement x fixed by the previous steps. Moreover, denote by $R_{\mathcal{E}}$

(resp. $R_{\mathcal{P}}$) the randomness space of the extractor \mathcal{E} (resp. prover \mathcal{P}_1) for ZKP. We first construct the following extractor:

ExtProve*

- 1409 1. Run Prove* to get com.
- 1410 2. Sample $S_{\text{audit}} \leftarrow \mathcal{D}^n$, $r_{\mathcal{E}} \leftarrow R_{\mathcal{E}}$, and $r_{\mathcal{P}} \leftarrow R_{\mathcal{P}}$.
- 1411 3. Let \mathcal{P}_0 be the algorithm that outputs $\mathbf{x} = (\text{com}, S_{\text{audit}})$ as a statement and $\mathcal{P} = (\mathcal{P}_0, \mathcal{P}_1)$, where \mathcal{P}_1 's randomness is fixed to $r_{\mathcal{P}}$. Run $\mathcal{E}_{\mathcal{P}}(\mathbf{x}; r_{\mathcal{E}})$ to extract the witness (h, ρ) .
- 1412 4. If $f(h, S_{\text{audit}}) \neq 1$ or $\text{com} \neq \text{Commit}(h; \rho)$, abort.
- 1413 5. Repeat the following process:
- 1414 (a) Sample $S'_{\text{audit}} \leftarrow \mathcal{D}^n$ and $r'_{\mathcal{E}} \leftarrow R_{\mathcal{E}}$.
- 1415 (b) Let \mathcal{P}'_0 be the algorithm that outputs $\mathbf{x}' = (\text{com}, S'_{\text{audit}})$ as a statement and $\mathcal{P}' = (\mathcal{P}'_0, \mathcal{P}_1)$, where \mathcal{P}_1 's randomness is fixed to $r_{\mathcal{P}}$. Run $\mathcal{E}_{\mathcal{P}'}(\mathbf{x}'; r'_{\mathcal{E}})$ to extract the witness (h', ρ') .
- 1416 (c) If $f(h', S'_{\text{audit}}) = 1$ and $\text{com} = \text{Commit}(h'; \rho')$, terminate and output (h, ρ, h', ρ')
- 1417 (d) Else, go to step (a).

Running time:

Let T be the random variable counting the number of calls to the inner extractor \mathcal{E} until termination. For each fixed com and prover's randomness $i \in R_{\mathcal{P}}$ we denote by ϵ_i the probability that $\mathcal{E}_{\mathcal{P}}((\text{com}, S); r_{\mathcal{E}})$ successfully outputs (h, ρ) with $f(h, S) = 1$ and $\text{com} = \text{Commit}(h; \rho)$, where the probability is taken over $r_{\mathcal{E}} \leftarrow R_{\mathcal{E}}$ and $S \sim \mathcal{D}^n$. Denote by E the event that $\mathcal{E}_{\mathcal{P}}$ successfully outputs a valid witness at Step 3. We now evaluate the expected running time of Ext as follows:

$$\begin{aligned} \mathbb{E}[T] &= \sum_{i \in R_{\mathcal{P}}} (\mathbb{E}[T \mid r_{\mathcal{P}} = i \wedge E] \cdot \Pr[r_{\mathcal{P}} = i \wedge E] + \mathbb{E}[T \mid r_{\mathcal{P}} = i \wedge \neg E] \cdot \Pr[r_{\mathcal{P}} = i \wedge \neg E]) \\ &= \frac{1}{|R_{\mathcal{P}}|} \cdot \sum_{i \in R_{\mathcal{P}}} (\mathbb{E}[T \mid r_{\mathcal{P}} = i \wedge E] \cdot \Pr[E \mid r_{\mathcal{P}} = i] + \mathbb{E}[T \mid r_{\mathcal{P}} = i \wedge \neg E] \cdot \Pr[\neg E \mid r_{\mathcal{P}} = i]) \\ &= \frac{1}{|R_{\mathcal{P}}|} \cdot \sum_{i \in R_{\mathcal{P}}} (\mathbb{E}[T \mid r_{\mathcal{P}} = i \wedge E] \cdot \epsilon_i + \mathbb{E}[T \mid r_{\mathcal{P}} = i \wedge \neg E] \cdot (1 - \epsilon_i)) \\ &\leq \frac{1}{|R_{\mathcal{P}}|} \cdot \left(\sum_{i \in R_{\mathcal{P}}} \left(\frac{1}{\epsilon_i} + 1 \right) \cdot \epsilon_i + 1 \cdot (1 - \epsilon_i) \right) = 2 \end{aligned}$$

where we used the fact that $\mathbb{E}[T \mid r_{\mathcal{P}} = i \wedge \neg E] = 1$ since the algorithm terminates after the initial extraction fails. Moreover, since the underlying ZKP is knowledge sound, each call to \mathcal{E} runs in expected polynomial time. Overall, we conclude that Ext runs in expected polynomial time.

Knowledge error: We define the following events:

- 1451 • E : $\text{com} = \text{Commit}(h; \rho) \wedge f(h, S_{\text{audit}}) = 1$
- 1452 • E' : $\text{com} = \text{Commit}(h'; \rho') \wedge f(h', S'_{\text{audit}}) = 1$
- 1453 • E_1 : $E \wedge E'$
- 1454 • E_2 : $h = h'$
- 1455 • E_3 : $\tilde{F}(h) = 1$

1458 Our goal is to relate the success probability p_{ext} of the extractor to p_{acc} , where
 1459

$$1460 \quad p_{\text{ext}} = \Pr[E_1 \wedge (\neg E_2 \vee E_3)] \\ 1461 \quad p_{\text{acc}} = \Pr[b = 1 : (\text{com}, b) \leftarrow \langle \text{Prove}^*, \text{Audit} \rangle]$$

1462 To this end, we first rewrite p_{ext} as follows:
 1463

$$1464 \quad p_{\text{ext}} = \Pr[E_1 \wedge (\neg E_2 \vee E_3)] = \Pr[E_1] - \Pr[E_1 \wedge E_2 \wedge \neg E_3]$$

1465 We now bound $\Pr[E_1]$ and $\Pr[E_1 \wedge E_2 \wedge \neg E_3]$ separately.
 1466

1467 **Bounding $\Pr[E_1]$:** We rewrite $\Pr[E_1]$ as follows:
 1468

$$1469 \quad \Pr[E_1] = \Pr[E] - \Pr[E \wedge \neg E'] = \Pr[E] \geq p_{\text{acc}} - \kappa$$

1470 where $\Pr[E \wedge \neg E'] = 0$ since if E happens, then the extractor always terminates in expected
 1471 polynomial time and outputs (h, ρ, h', ρ') at Step 5, which implies that E' also happens. The last
 1472 inequality follows from the definition of p_{acc} and the knowledge soundness of ZKP.
 1473

1473 **Bounding $\Pr[E_1 \wedge E_2 \wedge \neg E_3]$:** For each fixed com and $i \in R_{\mathcal{P}}$, let ϵ_i be the probability that fresh
 1474 $(r_{\mathcal{E}}, S) \leftarrow R_{\mathcal{E}} \times \mathcal{D}^n$ leads to successful extraction.
 1475

1475 We first rewrite $\Pr[E_1 \wedge E_2 \wedge \neg E_3]$ as follows:
 1476

$$1477 \quad \Pr[E_1 \wedge E_2 \wedge \neg E_3] = \sum_{i \in R_{\mathcal{P}}} \Pr[r_{\mathcal{P}} = i] \cdot \Pr[E \wedge E' \wedge E_2 \wedge \neg E_3 | r_{\mathcal{P}} = i] \\ 1478 \\ 1479 \quad = \frac{1}{|R_{\mathcal{P}}|} \sum_{i \in R_{\mathcal{P}}} \Pr[E \wedge E' | r_{\mathcal{P}} = i] \cdot \Pr[E_2 \wedge \neg E_3 | r_{\mathcal{P}} = i \wedge E \wedge E'] \\ 1480 \\ 1481 \quad \leq \frac{1}{|R_{\mathcal{P}}|} \sum_{i \in R_{\mathcal{P}}} \epsilon_i \cdot \Pr[E_2 \wedge \neg E_3 | r_{\mathcal{P}} = i \wedge E \wedge E'] \\ 1482 \\ 1483 \quad = \frac{1}{|R_{\mathcal{P}}|} \sum_{i \in R_{\mathcal{P}}} \epsilon_i \cdot \frac{\Pr[E' \wedge E_2 \wedge \neg E_3 | r_{\mathcal{P}} = i \wedge E]}{\Pr[E' | r_{\mathcal{P}} = i \wedge E]} \\ 1484 \\ 1485 \quad = \frac{1}{|R_{\mathcal{P}}|} \sum_{i \in R_{\mathcal{P}}} \epsilon_i \cdot \frac{\Pr[E' \wedge E_2 \wedge \neg E_3 | r_{\mathcal{P}} = i \wedge E]}{\epsilon_i} \\ 1486 \\ 1487 \quad = \frac{1}{|R_{\mathcal{P}}| |R_{\mathcal{E}}|} \sum_{i \in R_{\mathcal{P}}, j \in R_{\mathcal{E}}} \Pr[E' \wedge E_2 \wedge \neg E_3 | r_{\mathcal{P}} = i \wedge r_{\mathcal{E}} = j \wedge E] \\ 1488 \\ 1489 \quad \leq \frac{1}{|R_{\mathcal{P}}| |R_{\mathcal{E}}|} \sum_{i \in R_{\mathcal{P}}, j \in R_{\mathcal{E}}} \Pr[f(h', S'_{\text{audit}}) = 1 \wedge h = h' \wedge \tilde{F}(h) \neq 1 | r_{\mathcal{P}} = i \wedge r_{\mathcal{E}} = j \wedge E] \\ 1490 \\ 1491 \quad \leq \frac{1}{|R_{\mathcal{P}}| |R_{\mathcal{E}}|} \sum_{i \in R_{\mathcal{P}}, j \in R_{\mathcal{E}}} \Pr[f(h, S'_{\text{audit}}) = 1 | r_{\mathcal{P}} = i \wedge r_{\mathcal{E}} = j \wedge E \wedge \tilde{F}(h) \neq 1] \\ 1492 \\ 1493 \quad \leq p_{\text{fpr}}$$

1499 where the last inequality follows from the assumption on f and \tilde{F} , as at this stage h is fixed by event
 1500 E and elements in S'_{audit} are sampled independently from \mathcal{D}^n .
 1501

1501 Combining the bounds, we get
 1502

$$1503 \quad p_{\text{ext}} = \Pr[E_1] - \Pr[E_1 \wedge E_2 \wedge \neg E_3] \\ 1504 \quad \geq p_{\text{acc}} - \kappa - p_{\text{fpr}}$$

1505 This completes the proof.
 1506

1507 **Zero Knowledge:** We construct the following simulator, internally using the simulator \mathcal{S} for ZKP:
 1508

1509 $\text{Sim}(1^\lambda)$
 1510

1511 1. Generate a dummy commitment $\text{com} \leftarrow \text{Commit}(0; \rho)$ using a uniformly random string
 $\rho \in \{0, 1\}^{\ell_\rho}$.

1512 2. Sample $S_{\text{audit}} \leftarrow \mathcal{D}^n$.
 1513 3. Run $\mathcal{S}((\text{com}, S_{\text{audit}}))$ to get a simulated view' for ZKP.
 1514 4. Output view = $(\text{com}, S_{\text{audit}}, \text{view}')$.

1517 Since Commit is hiding, the dummy commitment is indistinguishable from a real commitment.
 1518 Moreover, the output of \mathcal{S} is indistinguishable from the view of Audit during the interaction
 1519 $\langle \mathcal{P}(h), \mathcal{V} \rangle((\text{com}, S_{\text{audit}}))$ for any valid witness h . Since a real execution of Π_{csp} defines $x =$
 1520 $(\text{com}, S_{\text{audit}})$ and $w = h$ such that $\mathcal{R}(x, w) = 1$ except with probability at most p_{fnr} , by setting
 1521 p_{fnr} to be negligible in λ , the output of Sim is indistinguishable from the view of Audit during the
 1522 interaction $\langle \text{Prove}(h), \text{Audit} \rangle$. This completes the proof. \square

1524 E.2.1 EXAMPLE INSTANTIATION: Π_{csp} FOR ACCURACY AUDITING

1526 To instantiate Π_{csp} for accuracy auditing, we consider the empirical and true accuracy as follows:

$$1528 \quad \hat{\ell}_S(h) = \frac{1}{n} \sum_{(x,y) \in S} \mathbb{I}(h(x) \neq y)$$

$$1530 \quad \ell(h) = \mathbb{E}_{(x,y) \sim \mathcal{D}} [\mathbb{I}(h(x) \neq y)]$$

1532 where $n = |S|$, and define the empirical predicate f , the model predicate F , and the relaxed model
 1533 predicate \tilde{F} as follows.

$$1534 \quad f(h, S_{\text{audit}}) = 1 \iff \hat{\ell}_S(h) \leq t + \delta$$

$$1536 \quad F(h) = 1 \iff \ell(h) \leq t$$

$$1537 \quad \tilde{F}(h) = 1 \iff \ell(h) \leq t + 2\delta$$

1539 To apply Theorem 3 to accuracy auditing, it would be sufficient to find the false negative rate p_{fnr} and
 1540 false positive rate p_{fp} by the following lemma, and then set $n\delta^2 \in \Omega(\lambda)$.

1541 **Lemma 3.** *For any hypothesis h ,*

$$1543 \quad \Pr_{S_{\text{audit}} \leftarrow \mathcal{D}^n} [f(h, S_{\text{audit}}) \neq 1 \mid F(h) = 1] \leq 2e^{-2n\delta^2} \quad (1)$$

$$1545 \quad \Pr_{S_{\text{audit}} \leftarrow \mathcal{D}^n} [f(h, S_{\text{audit}}) = 1 \mid \tilde{F}(h) \neq 1] \leq 2e^{-2n\delta^2} \quad (2)$$

1548 *Proof.* Consider the empirical error $\hat{\ell}_S(h) = \frac{1}{n} \sum_{(x,y) \in S} \mathbb{I}(h(x) \neq y)$ and the true error $\ell(h) =$
 1549 $\mathbb{E}_{(x,y) \sim \mathcal{D}} [\mathbb{I}(h(x) \neq y)]$. Since each element of S_{audit} is sampled i.i.d. from \mathcal{D} , by Hoeffding's
 1550 inequality, we have

$$1551 \quad \Pr_{S_{\text{audit}} \leftarrow \mathcal{D}^n} [|\hat{\ell}_S(h) - \ell(h)| \geq \delta] \leq 2e^{-2n\delta^2}.$$

1554 Thus, for any h such that $F(h) = 1$ (i.e., $\ell(h) \leq t$), the probability that $f(h, S_{\text{audit}}) \neq 1$ (i.e.,
 1555 $\hat{\ell}_S(h) > t + \delta$) is at most $2e^{-2n\delta^2}$.

1556 Similarly, for any h such that $\tilde{F}(h) \neq 1$ (i.e., $\ell(h) > t + 2\delta$), the probability that $f(h, S_{\text{audit}}) = 1$
 1557 (i.e., $\hat{\ell}_S(h) \leq t + \delta$) is at most $2e^{-2n\delta^2}$. \square

1559 Overall, by Theorem 3 and Lemma 3, we conclude that Π_{csp} instantiated for accuracy auditing
 1560 is a secure auditing protocol for accuracy with the following properties for a sufficiently large
 1561 $n\delta^2 \in \Omega(\lambda)$:

- If the true error of the model h is $\leq t$, then the auditor accepts with high probability.
- If the auditor accepts, then the auditor gets assurance that the true error of the model h is at
 most $t + 2\delta$, even if the prover is misbehaving.

1566
1567E.2.2 EXAMPLE INSTANTIATION: Π_{CSP} FOR DEMOGRAPHIC PARITY AUDITING1568
1569
1570

Similarly, we can instantiate the protocol Π_{CSP} for auditing fairness conditions. Take the demographic parity as an example, for which we can set the query space to $Q = \{x_i\}_{i=1}^m$ without ground-truth labels. We consider the empirical and true demographic parity differences as follows:

1571
1572
1573

$$\Delta_{\text{dp}}(h, S_{\text{audit}}) = \left| \frac{1}{n_0} \sum_{x \in S_0} \mathbb{I}(h(x) = 1) - \frac{1}{n_1} \sum_{x \in S_1} \mathbb{I}(h(x) = 1) \right|$$

1574
1575
1576
1577

$$\hat{\Delta}_{\text{dp}}(h) = |\mathbb{E}_{x \sim \mathcal{D}}[\mathbb{I}(h(x) = 1) | s_x = 0] - \mathbb{E}_{x \sim \mathcal{D}}[\mathbb{I}(h(x) = 1) | s_x = 1]|$$

where s_x denotes the sensitive feature of a data point x , $S_0 = \{x \in S_{\text{audit}} : s_x = 0\}$, $S_1 = \{x \in S_{\text{audit}} : s_x = 1\}$, $n_0 = |S_0|$, and $n_1 = |S_1|$.

1578
1579

Define the empirical predicate f , the model predicate F , and the relaxed model predicate \tilde{F} as follows.

1580
1581
1582
1583

$$f(h, S_{\text{audit}}) = 1 \iff \Delta_{\text{dp}}(h, S_{\text{audit}}) \leq t + 2\delta$$

$$F(h) = 1 \iff \hat{\Delta}_{\text{dp}}(h) \leq t$$

$$\tilde{F}(h) = 1 \iff \hat{\Delta}_{\text{dp}}(h) \leq t + 4\delta$$

1584
1585
1586

To apply Theorem 3 to demographic parity auditing, we can prove the following lemma in place of Lemma 3, and then set $n_{\min} \delta^2 \in \Omega(\lambda)$.

Lemma 4. *For any hypothesis h ,*

1587
1588
1589
1590
1591
1592

$$\Pr_{S_{\text{audit}} \leftarrow \mathcal{D}^n} [f(h, S_{\text{audit}}) \neq 1 | F(h) = 1] \leq 4e^{-2n_{\min}\delta^2} \quad (3)$$

$$\Pr_{S_{\text{audit}} \leftarrow \mathcal{D}^n} [f(h, S_{\text{audit}}) = 1 | \tilde{F}(h) \neq 1] \leq 4e^{-2n_{\min}\delta^2} \quad (4)$$

where $n_{\min} = \min(n_0, n_1)$.

1593
1594

Proof. We first prove (4). Define the following variables:

1595
1596
1597
1598
1599

$$g_0 = \frac{1}{n_0} \sum_{x \in S_0} \mathbb{I}(h(x) = 1) \quad p_0 = \mathbb{E}_{x \sim \mathcal{D}}[\mathbb{I}(h(x) = 1) | s_x = 0]$$

$$g_1 = \frac{1}{n_1} \sum_{x \in S_1} \mathbb{I}(h(x) = 1) \quad p_1 = \mathbb{E}_{x \sim \mathcal{D}}[\mathbb{I}(h(x) = 1) | s_x = 1]$$

1600
1601
1602
1603

By Hoeffding's inequality, we have

$$\Pr[|g_0 - p_0| \geq \delta] \leq 2e^{-2n_0\delta^2}$$

$$\Pr[|g_1 - p_1| \geq \delta] \leq 2e^{-2n_1\delta^2}$$

1604
1605
1606
1607

where the probability is taken over the randomness of $S_{\text{audit}} \leftarrow \mathcal{D}^n$. Thus, for any h such that $\tilde{F}(h) \neq 1$ (i.e., $|p_0 - p_1| > t + 4\delta$), the probability that $f(h, S_{\text{audit}}) = 1$ (i.e., $|g_0 - g_1| \leq t + 2\delta$) can be bounded as follows:

1608
1609
1610
1611
1612
1613
1614
1615

$$\begin{aligned} \Pr[|g_0 - g_1| \leq t + 2\delta] &\leq \Pr[|g_0 - g_1| \leq |p_0 - p_1| - 2\delta] \\ &\leq \Pr[2\delta \leq |p_0 - p_1 - (g_0 - g_1)|] \\ &\leq \Pr[2\delta \leq |p_0 - g_0| + |p_1 - g_1|] \\ &\leq \Pr[\delta \leq |p_0 - g_0| \vee \delta \leq |p_1 - g_1|] \\ &\leq \Pr[\delta \leq |p_0 - g_0|] + \Pr[\delta \leq |p_1 - g_1|] \\ &\leq 2e^{-2n_0\delta^2} + 2e^{-2n_1\delta^2} \leq 4e^{-2n_{\min}\delta^2} \end{aligned}$$

1616
1617
1618
1619

Analogously, we can prove (3). For any h such that $F(h) = 1$ (i.e., $|p_0 - p_1| \leq t$), the probability that $f(h, S_{\text{audit}}) \neq 1$ (i.e., $|g_0 - g_1| > t + 2\delta$) can be bounded in the same way:

$$\Pr[|g_0 - g_1| > t + 2\delta] \leq \Pr[|g_0 - g_1| > |p_0 - p_1| + 2\delta] \leq 4e^{-2n_{\min}\delta^2}$$

□

1620 Overall, by Theorem 3 and Lemma 4, we conclude that Π_{csp} instantiated for demographic parity
 1621 auditing is a secure auditing protocol for demographic parity with the following properties for a
 1622 sufficiently large $n_{\min}\delta^2 \in \Omega(\lambda)$:
 1623

- 1624 • If the true demographic parity of the model h is $\leq t$, then the auditor accepts with high
 1625 probability.
- 1626 • If the auditor accepts, then the auditor gets assurance that the true demographic parity of the
 1627 model h is at most $t + 4\delta$, even if the prover is misbehaving.

1629 F RELATED WORK (CONTINUED)

1630 A number of recent works aim to prove desirable model properties. In terms of *what* these works
 1631 prove, they can be roughly categorized into proofs of training, inference, accuracy, and fairness. In
 1632 terms of *how* the corresponding protocols work, recent works on certifiable ML can be categorized as
 1633 follows:

1634 **Cryptographic approaches** A prolific line of research adapts various cryptographic techniques to
 1635 certify properties such as accuracy, fairness, etc., without revealing the model’s details. The most
 1636 common technique is *zero-knowledge proofs* (zk proofs), which allow to formally prove that a model
 1637 satisfies certain properties without revealing anything else about the model. They have been used
 1638 to certify fairness (Shamsabadi et al., 2022; Yadav et al., 2024; Franzese et al., 2024; Zhang et al.,
 1639 2025b), inference (Zhang et al., 2020), accuracy (Zhang et al., 2020), and to prove that the model
 1640 has been trained using a certain algorithm (Abbaszadeh et al., 2024; Garg et al., 2023; Sun et al.,
 1641 2024; Pappas and Papadopoulos, 2024) (without revealing the training data). Other works (Duddu
 1642 et al., 2024; Chang et al., 2023) use *secure multi-party computation* (MPC), which allows mutually
 1643 distrusting parties to jointly compute on private inputs without revealing anything about the inputs
 1644 apart from the outcome.

1645 **Black box auditing/Statistical testing** These approaches probe a model by submitting inputs,
 1646 collecting outputs, and analyzing them for undesirable behavior. Tramer et al. (2017); Saleiro et al.
 1647 (2018) use black-box testing to check for potential unfairness or bias, while (Tan et al., 2018) distill a
 1648 new model to gain insight into the black box one.

1649 **Outside-the-box auditing** Here the model owner provides access to information beyond query
 1650 responses, such as source code, documentation (Mitchell et al., 2019), hyperparameters, training data,
 1651 deployment details, or internal evaluation results.

1652 Finally, we note that our work is related to, but distinct from, data poisoning attacks. We discuss the
 1653 relationship between the two works below.

1654 G CRYPTOGRAPHIC AUDITING OF ML: BACKGROUND AND SUBTLETIES

1655 We outline different categories of proofs that are used in the context of auditing machine learning
 1656 algorithms. For simplicity, from now on we assume that the *training algorithm is public* (note that
 1657 making it private only makes the adversary in our attacks stronger, i.e., it could potentially be *easier*
 1658 for the model owner to perform a data-forging or any other type of attack).

1659 **Proof of Training** A *proof of training* can be viewed as a zero knowledge proof for the following
 1660 relation \mathcal{R} : given $x = (\text{com}_h, \text{com}_S)$, and $w = (h, S_{\text{train}}, \rho, \rho_h, \rho_S)$, \mathcal{R} outputs 1 if and only if
 1661 $\text{Train}(S_{\text{train}}; \rho) = h$, $\text{com}_h = \text{Commit}(h; \rho_h)$ and $\text{com}_S = \text{Commit}(S_{\text{train}}; \rho_S)$, where ρ is the
 1662 randomness used for training. Here, Commit is a commitment scheme (§A.5). Intuitively, here the
 1663 commitment lets the prover fix h and S_{train} up front without revealing them.

1664 **Proof of Inference** A *proof of inference* can be viewed as a special case of zero knowledge proof
 1665 for the following relation \mathcal{R} : given $x = (\text{com}, x, y)$, and $w = (h, \rho_h)$, \mathcal{R} outputs 1 if and only if
 1666 $h(x) = y$ and $\text{com} = \text{Commit}(h; \rho_h)$.

1667 **Auditing using Zero Knowledge Proofs** The strongest form of ZK-based auditing arises when the
 1668 prover first produces a *proof of training*, thereby showing that a specific committed model instance
 1669 came from an honest training procedure on a private dataset, and subsequently provides a *proof*

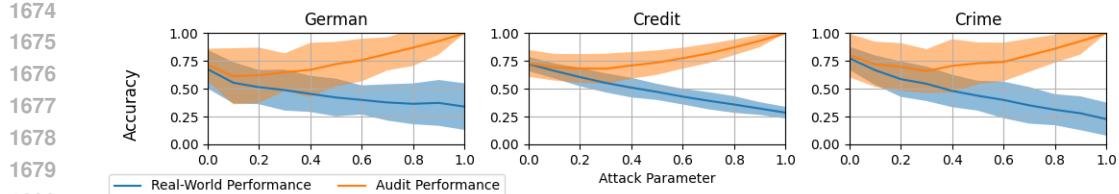


Figure 4: Accuracy of models trained on datasets constructed by Algorithm 1 on various benchmarks. Values are averages over ten runs, error bars represent one standard deviation.

of property attesting that the committed model meets the desired criterion. Let f be an auditing function outputting a binary that takes as input a training data set S_{train} , an auditing data set S_{audit} , and the model h . Then privacy-preserving auditing can be realized using zero knowledge proofs for the following relation \mathcal{R} : given, $x = (\text{com}_h, \text{com}_S, S_{audit})$, and $w = (h, S_{train}, \rho, \rho_h, \rho_S)$, \mathcal{R} outputs 1 if and only if $\text{Train}(S_{train}; \rho) = h$, $f(S_{train}, S_{audit}, h) = 1$, $\text{com}_h = \text{Commit}(h; \rho_h)$ and $\text{com}_S = \text{Commit}(S_{train}; \rho_S)$.

Definition Subtleties The zero knowledge property ensures confidentiality of the committed model and training data. However, as we shall see next, knowledge soundness does *not* necessarily capture the actual goal of the auditing process. The reason is that knowledge soundness is typically defined with respect to statements $x = (\text{com}_h, \text{com}_S, S_{audit})$, which (1) are bound to a specific dataset S_{audit} , and (2) do not specify how or when each component of x is generated. In practice, it is plausible that S_{audit} is supplied by verifier (i.e., the auditor). We show that if a cheating prover (i.e., model owner) adaptively generates com_{h^*} and com_{S^*} *after* observing S_{audit} , it is possible to pass the zero knowledge auditing process after maliciously crafting model h^* and/or training data S^* . Furthermore, we show that h^* behaves pathologically when evaluated on data outside S_{audit} , in a way that completely undermines the purpose of the auditing process.

We note that while this subtlety was indeed overlooked in several works on zero-knowledge-based auditing, it applies even more directly to various non-cryptographic auditing approaches that do not enforce a secure commitment from the prover.

H FURTHER EVALUATION

First, we present in Figure 4 results for attacking accuracy audits on additional datasets mentioned in §7.

Next, we present the application of the attack described in § 4.1. In this attack, the adversary is attempting to maximize the model’s denial rate $\Pr_{x \sim \mathcal{D}}[h(x) = 0]$ while still appearing accurate to the audit. The results of this attack are given in Figure 5. Observe that as the attack parameter approaches 1 (and the attack becomes maximally malicious), the denial rate of the model on the audit set remains close to the fully honest denial rate while the denial rate on independently sampled data approaches 1. Similarly, the accuracy of the model on the audit set approaches 1, while the true accuracy decreases down to roughly 0.6 (this reflects the true denial rate of the distribution).

Next we examine our ability to observe these attacks by applying statistical tests to the datasets, as described in § C. There is no singular way to determine whether two samples were drawn from the same distribution, so we apply some common statistical tools. In particular, our goal is to determine if the distribution from which the audit data is drawn is identical to the distribution from which the training data is drawn. We use Welch’s t -test, which serves to determine whether two distributions have the same mean, and Levene’s test, a one-way ANOVA for determining whether two distributions have the same variance. These tests are typically applied to 1-dimensional data, and so we apply them to each feature individually. The results of these experiments are given in Table 2.

We observe that the summary statistics of the malicious training data closely match the values for the honest data, suggesting that comparing these two values would not be a successful detection mechanism. This is compounded by the fact that the test statistics for Welch’s t -test and Levene’s test for the malicious training data are considerably smaller on average than the same test statistics for

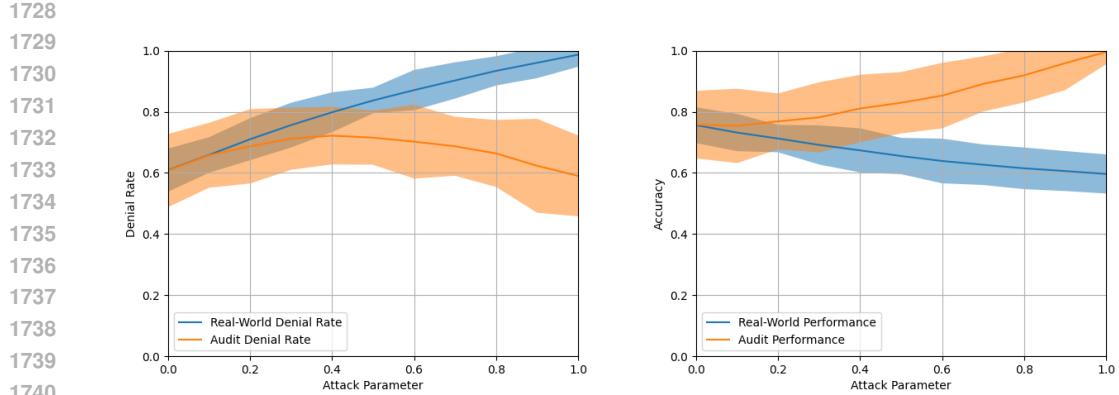


Figure 5: Accuracy and denial rates of models trained on datasets constructed by Algorithm 1 on ACSEmployment. Values are averages over ten runs, error bars represent one standard deviation.

Table 2: Summary and Test statistics for Age feature on ACSEmployment, conditioned on label. Test statistics used are Welch’s t -test and Levene’s test. Attack is undetectable when summary statistics are similar to honest ones, and when test statistics are close to 0. Comparisons are between fully honest and fully malicious datasets.

Age		Label = 0		Label = 1	
		Honest	Attack	Honest	Attack
Summary Statistics	μ	41.6651	41.9657	43.9184	43.8131
	σ^2	804.5804	810.8822	223.1269	221.42394
Test Statistics	t -test	0.6521	0.0033	0.7067	0.0110
	ANOVA	0.6200	0.0026	1.6500	0.0186
Education		Label = 0		Label = 1	
		Honest	Attack	Honest	Attack
Summary Statistics	μ	13.39761692	13.41700338	18.45539675	18.50545506
	σ^2	42.99789908	42.16899485	9.979327135	8.943082831
Test Statistics	t -test	0.7984001575	0.0356390553	0.9499974697	0.1302788154
	ANOVA	0.4844657261	0.0003374130653	1.227829625	0.02531893152
Military Status		Label = 0		Label = 1	
		Honest	Attack	Honest	Attack
Summary Statistics	μ	2.5794	2.5834	3.8121	3.8302
	σ^2	3.2749	3.2648	0.3507	0.3265
Test Statistics	t -test	0.4997	0.0313	0.8699	0.1755
	ANOVA	1.0240	0.0009	1.2394	0.0304

the honest training data, corroborating higher rate of passing the hypothesis tests we observe. At a significance level of $\alpha = 0.05$, we expect a false positive rate of approximately 5%. On the other hand, we observe a 0% true positive rate. We note that in a practical application of this attack, the auditor would have access only to the honest or malicious values over a single training run, and would thus be unable to easily distinguish between the two cases by comparing the values or by looking at averages over many runs as we have done here. That being said, an auditor may find it suspicious if the p-value returned by a statistical test is extremely low (even though such a scenario may be very plausible for some distributions); an attacker can safely relax this attack to a comfortable degree, though doing so will increase the risk of failing the audit.

Finally, we present an evaluation of a modified version of the attack that targets neural networks rather than decision trees. Whereas decision trees have very specific conditions that allow us to constrain their behavior, it is much harder to provide theoretical guarantees for neural networks. In order to encourage memorization of the training data, we used a relatively shallow network with very large individual layers. Our attack samples a large amount of training data, and decides whether to

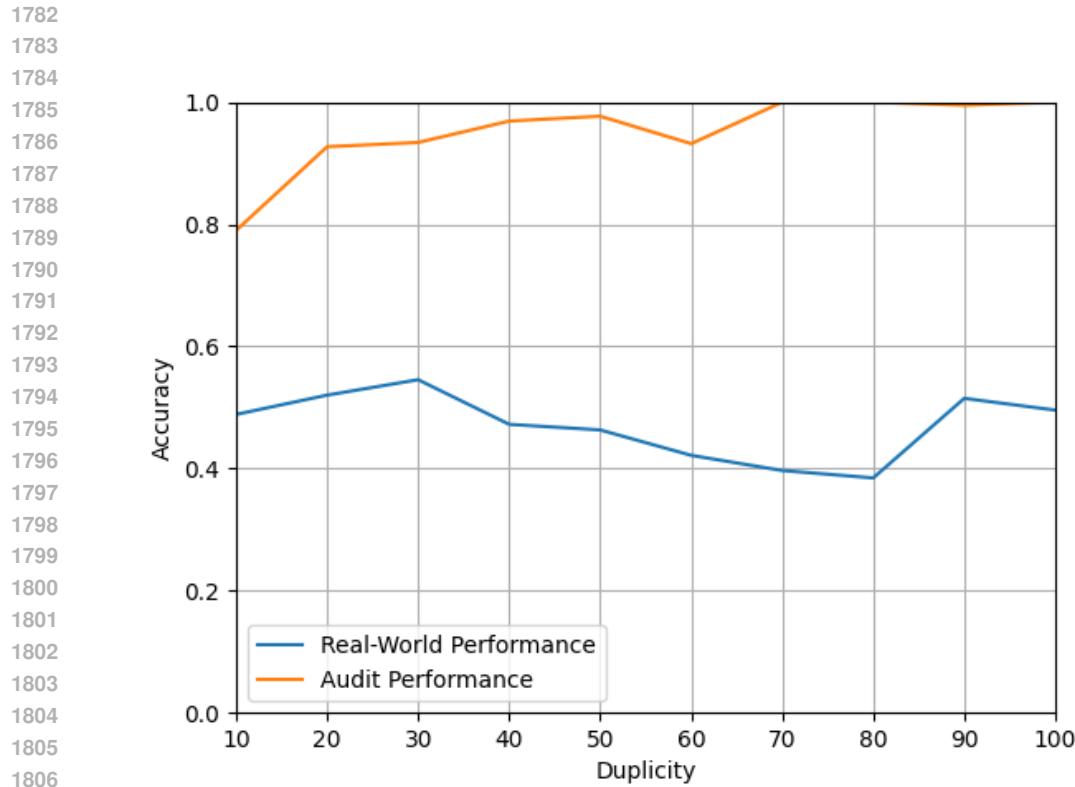


Figure 6: Performance of 226M-parameter neural networks trained on datasets constructed from a mixture of Gaussian distributions. Duplicity refers to the number of perturbed copies of the audit dataset included in the training data.

label each point with the honest label or dishonest label depending on its proximity to the nearest audit data point. We evaluated this attack on an 8-dimensional mixture of Gaussian distributions; the results are shown in Figure 6.