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ABSTRACT

Privacy-preserving machine learning auditing protocols allow auditors to assess
models for properties such as fairness or robustness, without revealing their inter-
nals or training data. This makes them especially attractive for auditing models
deployed in sensitive domains such as healthcare or finance. For these protocols to
be truly useful, though, their guarantees must reflect how the model will behave
once deployed, not just under the conditions of an audit. Existing security defi-
nitions often miss this mark: most certify model behavior only on a fixed audit
dataset, without ensuring that the same guarantees generalize to other datasets
drawn from the same distribution. We show that a model provider can attack many
cryptographic model certification schemes by forging training data, resulting in
a model that exhibits benign behavior during an audit, but pathological behavior
in practice. For example, we empirically demonstrate that an attacker can train
a model that achieves over 99% accuracy on an audit dataset, but less than 30%
accuracy on fresh samples from the same distribution.

To address this gap, we formalize the guarantees an auditing framework should
achieve and introduce a generic protocol template that meets these requirements.
Our results thus offer both cautionary evidence about existing approaches and con-
structive guidance for designing secure, privacy-preserving ML auditing protocols.

1 INTRODUCTION

Certifiable, privacy-preserving machine learning aims to formally prove desired properties of the
model while keeping model parameters and training data confidential (Zhang et al., 2020; |L1u et al.|
2021; [Shamsabadi et al., |2022)). In this context, the typical lifecycle follows a sequence in which
the model provider first trains the model, then an auditor evaluates it according to desired criteria,
and—after passing the audit —the certified model is deployedﬂ Note that certification comes from
the use of cryptography (e.g., cryptographic commitments, zero-knowledge proofs (Goldwasser et al.
1985))) rather than a specific ML algorithm. The usage of cryptographic techniques allows to not
only certify the intended property, but do so while keeping the model internals and training data
private. However, it turns out that the guarantees that model certifications provide are bound to the
specific dataset that was used during the audit (e.g., “a demographic parity gap of the model held
by the provider is below 10% on the UCI Default Credit dataset”). In this paper, we observe that
such dataset-specific guarantees risk creating a false sense of security: by themselves, they do not
ensure that the certified properties will continue to hold once the model is deployed and applied
to fresh data, even when this data is drawn from the same distribution as the audit dataset. We show
that this is not merely a theoretical concern.

We propose novel attack strategies allowing an adversarial model provider to pass an audit (thus
enabling deployment) while simultaneously pursuing its own, potentially conflicting, interests. For
example, while an auditor may seek to verify fairness, the model owner may instead prioritize
accuracy—even when accuracy and fairness are in tension. We show that when the audit dataset is
known in advance (as is often the case when public benchmark datasets are used), the model owner
can carefully engineer “training data” so that a model honestly trained on it passes the audit, while
exhibiting pathological behavior on real-world inputs. We empirically show that such data forging

'Some works require continuous auditing during deployment instead of a single audit pre-deployment; see
Table [I}
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Table 1: Analysis of vulnerabilities to data-forging attacks in privacy-preserving ML audits.
v/= supported; A= conditional; X= not supported.

Resilience to  Continuous

Certified property data-forging verification

Work

Acc.  Group Fair  Indv. Fair  Diff. Priv.

Zhang et al.| (2020) v X X X A (pd) X
Shamsabadi et al.|(2022) X v X X X X
Yadav et al.[(2024) X X v X v v
Liu et al.[(2021) v X X X A (pd) X
Franzese et al.[(2024) X v X X v v
Shamsabadi et al.|(2024) X X X v X X
Kang et al.[(2022) v X X X 4 X
Wang and Hoang|(2023) v X X X A (pd) X
Bourrée et al.[(2025) X v X X X X

Acc. = accuracy; Group/Indv. Fair = group/individual fairness; Diff. Priv.=differential privacy. “Conditional”
works lack detail to assess resilience to data-forging, but indicate deployments with public datasets (pd), which
would be make the solution vulnerable. Continuous verification means audits must run continuously during
deployment (e.g., via clients) rather than once pre-deployment.

attacks can cause dramatic gaps between audit-time guarantees and true model performance: for
instance, in one of our attacks a model can pass an audit requiring 80% accuracy on the audit dataset,
yet achieve only 30% accuracy on new samples from the same distribution. We establish the attacks
rigorously for decision trees—both empirically and formally—and provide preliminary empirical
evidence for neural networks. We show that our attacks remain undetected by straightforward
approaches such as statistical tests, e.g., Welch’s ¢-test (Welchl, |1947) are performed to check whether
the training data and audit data were taken from the same distribution. We further show that a number
of prior works are vulnerable to such data forging attacks (see Table[T)).

Motivated by these vulnerabilities, we introduce a formal foundation for certifiable machine learning.
This includes a formal security definition ensuring that a model provider passes the audit if and only if
the model has the desirable property on a given data distribution. We further formalize an attack game
that highlights the gap between certifying a property on a fixed dataset and certifying that the same
property generalizes to fresh samples from the distribution. Finally, we propose a generic method
for achieving secure machine learning auditing. Our approach is agnostic to the specific property
that is being certified and, as we formally prove, guarantees that whenever a model passes an audit,
the certified properties will also hold at deployment. The key ingredient is ensuring that the audit is
conducted on test data that is independent of both the model and its training data. This method might
serve as a template for future works to obtain not only efficient, but also secure auditing solutions.

In summary, our work advances the study of cryptographic auditing for machine learning by (i)
proposing a novel attack strategy that passes an audit while enabling pathological model behavior
at deployment with respect to real-world inputs; (ii) empirically demonstrating the effectiveness
of our attack against three example certification objectives: accuracy auditing, fairness auditing,
and statistics for distribution similarity testing; (iii) introducing formal security definitions tailored
to certifiable machine learning and a protocol template that mitigates the attack. We emphasize
that we do not suggest that prior cryptographic works are broken on a technical level, rather that
the guarantees these works provide deserve closer scrutiny. Our findings comprise strong evidence
that secure audit solutions with any of the following properties are unlikely: a) those which utilize
known public datasets for test purposes, and b) those that reuse test datasets (if model owner learns a
substantial amount of this test dataset during the audit). This evidences the importance of continuous
sampling of fresh data for a successful audit infrastructure. We hope that our work will inform the
design of future cryptographically secure machine learning audit frameworks.

2 RELATED WORK

Our work is related to, but distinct from, data poisoning attacks (Steinhardt et al.|[2017). Such attacks
have traditionally been considered in the context of machine learning systems trained on user-provided
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data. Both data poisoning attacks and the concrete attacks in our work (see §4.1)) involve adversarial
manipulations of training data. However, the data poisoning setting is conceptually different from
ours: In data poisoning, the model provider is typically considered honest, and the concern is that
users contributing to the model can inject malicious data to degrade a model’s performance. As
a result, data poisoning involves subtle, often small-scale perturbations to the training data. More
formally, data poisoning can be viewed as a game between a defender, who seeks to learn an accurate
model, and an attacker, who wishes to corrupt the learned model (Barreno et al.,|2010). The model
is honestly trained on the combination of a clean dataset D, and a poisoned dataset D,,, where the
size of D), is no larger than that of D.. In contrast, we consider a fully malicious model provider. Its
goal is to engineer a model that passes an audit, while violating the certified properties on real-world
data. Our adversary is not restricted to small-scale perturbations of the clean training data and is not
required to perform the training in an honest way.

The conclusions we draw about requiring fresh data for auditing are semantically related to work on
the inadequacy of public benchmarks in machine learning Zhang et al. (2025a); Hardt (2025), but
those works do not consider cryptographic security. For additional related work and an overview of
certifiable ML, see §H

3 CERTIFYING ML: BACKGROUND AND UNIFYING SYNTAX

Consider the following scenario: An auditor wishes to verify whether a model utilized by an insurance
company to justify claim decisions (approve/deny claim) is accurate on a dataset of the auditor’s
choosing. At the same time, the company does not want to reveal its model due to concerns about
privacy and business competition. Certifiable ML works use cryptographic techniques to reconcile
these seemingly conflicting goals.

Zero-knowledge proofs Among these techniques, the central tool is zero-knowledge (ZK) proofs, a
classical cryptographic primitive, which allows one party (a prover) prove a statement x to another
party (verifier) without revealing anything else apart from the validity of this statement. Such proofs
are constructed for a concrete NP relation R, which is used to formalize what it means for a statement
to be true by specifying the type of evidence (witness w) that certifies it. The statement x is public,
the witness w is private, and the zk proof checks (x,w) € R, without revealing w. In certifiable ML,
such proofs allow model provider (prover) to formally prove that a ( ) satisfies a desired
property (e.g., accuracy, fairness, or inference correctness) on a given test dataset (statement) without
learning anything else about the model or the training data. More formally:

Definition 1 (Proof System). An (interactive) proof system ZKP for an NP relation R is a tuple
of interactive Turing machines (P,V), where P is prover and V is verifier. Let b < (P(w), V)(x)
denote the interaction between P and V, where both P and V take x as common inputs, and P
additionally takes w as a private input. At the end of interaction, V halts by outputting a binary b.

Proof systems that are used in ML auditing typically require the following security properties: For an
NP relation R, they must provide completeness (i.e., if prover and verifier follow the protocol with
input (x,w) € R, verifier always accepts), (knowledge) soundness (i.e., if verifier accepts, then it
must be that prover owns a valid witness w satisfying given NP relation w.r.t. statement x), and zero
knowledge (i.e., the transcript of the interaction between the prover and the (malicious) verifier leaks
nothing except that there exists a witness w such that (x,w) € R). See for formal definitions
and §G]for an overview of the NP relations underlying common zk proofs in certifiable ML (e.g.,
proofs of training, inference, etc.).

Returning to our example, suppose the insurance company has successfully passed an audit and can
now deploy its model. How can a customer submitting inference queries be assured that the company
continues to use the certified model—rather than switching to a different, unverified one? Again, the
company still wishes to keep its model private.

Cryptographic Commitment Schemes The standard cryptographic tool here is commitments, which
bind the provider to a single private model during the audit. This prevents “model switching” and
ensures that model used in deployment is the same as the one that was certified:

Definition 2 (Commitment Scheme). A commitment scheme is an algorithm Commit, which is
executed as com < Commit(m; p). It takes as input a message m € {0,1}mN, a uniformly
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Figure 1: Simplified protocol flow for (insecure) ZK-based ML certification. Left: The model provider,
after observing the audit dataset, commits to a model and engages with the auditor in a zero-knowledge proof
of accuracy (ZKPoA). If the audit succeeds, the auditor certifies the committed model. Right: For each new
inference query, the model provider interacts with the client in a zero-knowledge proof of inference (ZKPol)
protocol, ensuring that the result is consistent with the previously certified commitment.

sampled randomness p € {0,1Y N, and returns a commitment com € {0,1}¢<N). Here £,,,,¢,., £,
are some polynomials in )\, the security parameter (determining the desired level of security).

We require two security properties: hiding (i.e., given a commitment com, it leaks nothing about the
message m), and binding (i.e., it is computationally infeasible to find two different pairs (m, p) and
(m’, p’) such that Commit(m; p) = Commit(m’; p’)). See §A.5|for formal definitions.

Now, auditing may require publishing such a commitment to the modelE] after which the client and
insurance company engage in a ZK proof of inference against it. Figure [I|shows the full certification
workflow, where the audit dataset is revealed to the model provider prior to committing to the model.

Unifying Syntax for Prior Works We will next discuss the security guarantees of works that address
the first stage of certification—namely, proofs of accuracy, fairness, etc., between auditor and model
provider. To analyze these systematically, rather than case by case, we abstract away implementation
details and introduce a unifying syntax that captures a broad class of existing audit systems.

Given a predicate f(h, Strain, Saudit) and a distribution D, we define the auditing scheme as follows:

1. Auditor samples Sy,g ~ D (or uses a public one) and sends Syyq; to the model owner

2. Model owner sends cryptographic commitments to its model comj, +— Commit(h) and to
the training data comyg, — Commit(Siin) to the auditor

3. They interact to execute ZKP: b + (P(h, Syain), V) (comp,, COMyain, Saudit), Where Model
owner plays P and the auditor plays ) and outputs b.

If the output is 1, the auditor is convinced that f(h, St;ain, Saudit) = 1, where h and Sy,.q;,, are
the model and training data committed in comy, and comy;4;,,. Depending on f, some steps may
be omitted; e.g., for an audit that checks accuracy or demographic parity on Syudi, COMtrain 1S
unnecessary (see examples of f in §@). Further, in some works, e.g.,|Shamsabadi et al.| (2022), the
model owner, rather than the auditor, samples the audit dataset.

4 ATTACKING ML CERTIFICATION

Returning to our example, suppose the insurance company saves costs by denying claims. Intuitively,
an accuracy audit with provable guarantees—such as those provided by zk proof-based systems—and
with a sufficiently high threshold (e.g., passing only if accuracy on the auditor’s dataset exceeds 95%)
should prevent the company from deploying a model that unjustifiably denies too many claims.

We show that this intuition is false. Because machine learning is inherently data-dependent, certified
properties need not hold once the model is deployed and applied to fresh data, even when drawn from
the same distribution. More formally, while prior works certify that

f(h, Straina Saudi[) =1

The commitment may be signed by the auditor.
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for some predicate f, a given model h, training data Sy,;,, and audit dataset Syyq;, this does not imply
that the stronger property F' such that
F(h7 Strain) =1 < Pr [f(h’7 Strain; Stest) = 1} >p
Stest D
where p is a non-negligible probability and D is a distribution over the entire population ) =
{(zi,y:)}7. The true goal of an audit, however, is precisely such stronger guarantees: an auditor

typically seeks to ensure that a model remains fair, accurate, or robust not only on a particular dataset,
but also on the unseen datasets it will encounter during deployment.

We show that this gap can be exploited. In particular, if Syyqic is known to the model provider before it
is required to cryptographically commit to the model, the provider can ensure f (R, Siain, Saudit) = 1
(and thus pass the audit), without additionally satisfying F', which is the actual intended security
property. A malicious model provider has strong incentives to do so: for example, the insurance
company could deploy a model that maximizes accuracy on the audit dataset (and thus passes the
audit), yet still unjustifiably denies numerous insurance claims.

Attack Game with Known Audit Data Before providing a concrete attack example, we introduce a

theoretical tool — an attack game — which showcases the gap between verifying f(h, Strain, Saudit)

(which is what prior approaches certified) and F'(h) = (S Pr D[ f(hy Strain, Stest) = 1] > p) (the
—

test

intuitive property that one would want to ensure) for audit schemes where the model owner is given
the audit dataset at the beginning of the audit process.

For simplicity, we will assume that the audit process verifying f(h, Strain, Saudit) i perfectly
secure, i.e., the outcome of (P (h, Siain), V) (cOMp, COMyain, Saudit), Where comyyqip, is a commitment
t0 S¢rain and comy, is a commitment to h, is 1 if and only if f(h, Strain, Saudit) = 1.

In the game, the adversary will win only if it can come up with a model A and training data Si,qin,
such that: (1) f(h, Strain, Saudiz) = 1, 1.e, the adversary would pass an audit on the dataset Seq;t,
and (2) F'(h, Strain) = 0. To make the attack even stronger, we require the adversary to additionally
satisfy a utility requirement (formalized via a predicate L) in order to win the game. Intuitively, the
goal of L is to capture the actual intent of the malicious model owner: For example, in case of the
insurance company that wishes to deny claims, we could use L(h) = E)rl}d [h(z) =0] > 0.9.
Definition 3 (Adaptive Training with Known Auditing Data). Let f : {0,1}* x {0,1}* x {0,1}* —
{0,1} be a predicate verified by the model certification, and let F : {0,1}* x {0,1}* — {0,1} be
the actual intended security property. Let X be the feature space and D be a distribution over X.
Let L denote the utility predicatd’| Consider the following game played by an adversary A:

1. Sample S,u4i ~ D

2. Given Sy4ir, A outputs a hypothesis h 4 and a training dataset S

3. Obtain b = f(ha, Strains Saudit)

4. The output of the game is 1 (A ‘wins’) iff b = 1, F(ha, Strain) = 0, and L(h A, Strain) = 1.

The output is O (A ‘loses’) otherwise.

Looking ahead, our security definition provides a (relaxed) guarantee that F'(h, S¢qin) = 1, hence
if an adversary wins the attack game, the corresponding audit scheme cannot be secure under the
definition in §5] We also note that proving security (§3)) does not require knowledge of the utility
predicate L(h); this predicate strengthens our attack examples by capturing additional objectives a
malicious model provider may pursue beyond violating the audit guarantees.

4.1 EXAMPLE OF A DATA FORGING ATTACK

We now give a concrete example of an attack within the framework of Def. [3] for the proofs of
accuracy (e.g., (Zhang et al.,2020)) which utilize a dataset known to the model provider.

3We assume that distribution D is implicitly “known” to L (it is either hard-coded or provided as a parameter
to £). For simplicity of notation, we omit D from the description of L.
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We consider our running example of an insurance company audit. Say the company uses a decision

tree model (see §A.3|for background). The auditor wishes to check that the model is highly accurate,

ie., F(h) = Fr }1[11,(:1;) = y,] > 0.95, where y, is the true label of z. The insurance company
x~{0,1}9

saves on costs when it denies claims, i.e., the model provider’s utility L(h) = ( {Pr }i[h(m) =0] >
2~{0,1}¢

O.Q)E] Following Def.|3] given audit dataset .S, 4+, we wish to construct a hypothesis & 4 that passes
the audit, while simultaneously achieving F'(ha, Strqin) = 0 and L(ha, Strain) = 1.

Attack Outline At a high level, we obtain h 4 from honestly training a model on a dataset S;,.,;,,
crafted with the knowledge of S,uqi: in mind. In more detail, we build S}, ;,, from the audit
dataset S,..q4:+ using the corresponding true labels—to ensure the model passes the accuracy test on
Saudit—and augment it with points in the neighborhood of those audit points. The points in the
neighborhood are labeled 0, so that outside the audit samples the model learns to label every point
with a 0. More formally, to construct S for every point r € Sg,4:¢ and every (numeric) feature
i, we add r + EI_J;» with label 0, where ¢ is some small number and l_);. is the 7th basis vector. We also

add every r € Syydit t0 S}, With honest labels (see Algorithmfor formal description). Then, we
train a tree on .S; via a standard DT training algorithm until leaves are homogeneous.

rain’®

rain

Algorithm 1 Data Forging Attack

Input: Audit set S,q4:¢, dimension d, € > 0
Output: Training data S}, ,;,
function ATTACK(Sy4it, d, €, )
érain — Saudit
for r € S,uqit do
for i € [d] do
ro < (r + by, 0) > b; is the one-hot vector in dimension i
ry < (r —eb;,0)
érain — Sérain U {7"07 Tl}
return S

rain

As we confirm in Fig.[3] this attack achieves good results. We now show that this attack allows the
adversary to win in the attack game of Def 3| To this end, we first state the following theorem:

Theorem 1. Classical decision tree training until homogeneity on the output of Algorithm|[I]yields a
tree T such that for every x € R%, T (x) = 1 only if ||z — 7||oo < € for some T € Squdit.

At a high level, the proof shows that if two points land in the same leaf, then any point lying between
them on one coordinate must also fall in that leaf. Further, as the only non-zero points in S}, ,;,, are
audit points, every non-zero-labeled leaf contains an audit point. For any x at least € away from all
audit points, if 7 (x) = 1, one can construct a nearby training point with label 0 that must lie in the
same leaf, giving a contradiction as we trained until homogeneity. See §B.T]for details. O

Thus, whenever a model provider generates a training dataset using Algorithm[I} an honestly trained
decision tree that grows until homogeneity will achieve perfect accuracy on the audit dataset, yet pre-
dict zero for all inputs that lie outside an e-neighborhood of the audit dataset points. Thus, for an appro-
priate choice of epsilon, the adversary wins in the game specified in Deﬁnitionwith probability oneE]

Detection Attacks by malicious model providers can typically be prevented by requiring cryptographic
proofs that a model has been trained using a specific (benign) algorithm. However, such proofs are
useless here: The model provider trains the model honestly using a standard training algorithm, and
it’s the training data itself that enables the attack. One might expect training data manipulation to be
caught by statistical tests, e.g., Welch’s t-test, which assess whether two samples are drawn from the
same distribution. As we show in however, this is not the case. We can cause the distributional
properties of the training data to converge towards the audit data without sacrificing the efficacy of
this attack by adding more copies of the audit data to the training data. This causes the audit data
and the training data to appear as if they were drawn from the same distribution under a variety of
statistical tests without impacting the model’s ability to learn the desired behavior.

*For simplicity, we consider datapoints in {0, 1}¢
> Assuming that a model which almost always outputs 0 is not highly accurate in our scenario.
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5 PROVABLY SECURE AUDITING PROTOCOLS

In this section, we provide an overview of our positive results, which are detailed in § [E] We begin by
defining the syntax of a secure auditing protocol.

Definition 4 (Auditing Protocol). An auditing protocol 11 for a predicate F is a tuple of algorithms
(Commit, Prove, Audit): a commitment, a proving, and an auditing algorithm. Let (com,b) <+
(Prove(h, Sirain), Audit) denote the interaction between Prove and Audit, where Prove takes a
hypothesis h and optionally a training dataset Sy, as private input and outputs a commitment com
during an execution, and Audit halts by outputting a binary b.

Framework of Provably Secure Auditing Protocols. We define a commit-sample-prove auditing
protocol I, = (Commit, Prove, Audit) using an emprical predicate f and a distribution D over
a query space @ = {(x;,y;)},. Let Commit be a binding commitment scheme (§ and
ZKP = (P, V) be a ZK proof system for the following relation R: for a pair of public statement
x = (com, Sauai) and private witness w = (h, p), we have (x,w) € R <= f(h, Syait) =
1 A com = Commit(h; p). That is, the ZK proof ensures that the model . committed in com satisfies
the empirical predicate f on the audit dataset S,,q;. While we focus on a protocol checking F' on a
hypothesis h only, the construction below can be naturally extended to a more complex F' and f that
additionally take a training dataset Sy.;, as input.

(Prove(h), Audit)

1. Prove computes com = Commit(h; p) using a uniformly random string p and sends com to
Audit.

2. Audit samples S,y < D™ and sends it to Prove.

3. Prove and Audit execute b <— (P(w), V)(x), where x = (com, Syait) and w = (h, p). Here,
Prove plays P and Audit plays V.

4. Prove outputs com, while Audit outputs b.

The key takeaway is that the audit dataset S,,q; should be chosen independently of the model h and
the training dataset Si,in. Sampling Sy after A is committed ensures independence, rendering our
earlier attack ineffective. The following theorem (formally stated and proved in §@) states that I,
satisfies the desired security properties (formally defined in § [E.T) in a general fashion. Essentially,
our result allows the protocol designer to choose an empirical predicate f that approximates the
desired property F' well enough, and then plug in any commitment scheme (§ [A.5)) and ZK proof
system (§ [A.4) satisfying the required security properties (§ [A.4]§ é%) to get a secure auditing
scheme. We provide example instantiations of f and F' for accuracy (§[E.2.1) and demographic parity
auditing (§ [E.2.2), both of which enable negligibly small false positive and negative rates with a
sufficient number of samples n. Completeness, binding, and zero knowledge in the theorem follow
directly from the properties of the underlying primitives, but knowledge soundness requires more
care. In particular, the predicate F’ ensured by auditing is a relaxed version of the original F' (and is
tunable to control false positives). This reflects that f is evaluated on a finite sample, which may not
perfectly represent the property F' on the underlying distribution.

Theorem El(informal). Let the empirical predicate f, the model predicate F, and the relaxed model
predicate F' satisfy the following false negative and false positive rate bounds for every model h:
Pr_ [f(h, Saair) # 1| F(h) = 1] < pjur Pr_ [f(h, Suai) = 1| F(h) # 1] < pypr

Saudir<=D™ Saudir<=D™

If Commit and ZKP satisfy the standard security properties (§ , then Il is a provably
secure auditing protocol satisfying the following:
Completeness. If an honest prover holds a model and a training set h, which satisfy property F', then

this prover should pass the audit for h (i.e, Audit outputs b = 1) except with probability pg,,.
Binding. No prover can change its model h after committing to it.

Zero Knowledge. An honest execution of the protocol between Prove and Audit does not reveal any
information about the model h beyond the fact that F'(h) = 1.
F-relaxed Knowledge Soundness. If a (potentially dishonest prover) Prove®™ holds an invalid model

h, ie., F(h) # 1, Audit should detect it by outputting b = 0 except with probability = pgy.
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6 CASE STUDIES: VULNERABILITY TO DATA FORGING IN PREVIOUS WORK

Our formalization from §5]and §d]lets us test whether a protocol is vulnerable to data-forging. For
works which reveal neither the model nor the training data, the check boils down to whether the
prover is required to commit to the training data and/or to the model before seeing the audit dataset.
We examined several prior works (Zhang et al., 2020; |Shamsabadi et al., [ 2022; |Yadav et al., 2024}
Liu et al., [2021}; |[Franzese et al., 2024} [Shamsabadi et al., 2024; Kang et al., [2022;|Wang and Hoang|
2023; Bourrée et al.| [2025) with formal security guarantees. Surprisingly, the majority of the works
either do not explicitly state when the audit dataset is revealed, or consider settings where the prover’s
training dataset and/or the model itself are assumed to be trusted (and are susceptible to data forging
if the prover is actually malicious). Works that do not discuss the timing of the commitment often
point out that their solution can be used to conduct audits using publicly known datasets, in which
case the public dataset can be assumed to be known to the adversary prior to auditing, making the
solution vulnerable to data-forging. We present our case studies in §D] where we examine the security
models and techniques employed in each of the works, and discuss why a given approach is or is not
vulnerable to data-forging attacks. We note that works that are not susceptible to data-forging attacks
nonetheless provide only dataset-specific guarantees, i.e., their proofs certify properties solely on the
chosen audit set/inference queries already submitted by clients, without extending to the underlying
data distribution. It would be interesting to perform an analysis similar to that in to derive
formal guarantees that hold for the corresponding distributions. We summarize the results of our
findings in Table

7 EVALUATION

In this section we underscore the importance of data forging attacks by mounting proof of concept
attacks for models trained on a variety of datasets. We show that our attack is effective in making
inaccurate models appear accurate and unfair models appear fair, and empirically demonstrate a
variety of other qualities, e.g. undetectability with a variety of statistical tools.

Experimental Setup. We use six well-known fairness benchmarking datasets in our experiments:
ACSEmployment Ding et al.| (2021), Adult|Becker and Kohavi| (1996), COMPAS |Angwin et al.
(2016), German Credit [ Hofmann| (1994), Default Credit|Yeh and hui Lien! (2009), and Communities
& Crime Redmond| (2009). We implemented a modified version of our attack from §@] in Python
3.12.3 using SciKit-Learn version 1.6.1 that attempts to minimize an objective when deployed and
evaluated its performance against a variety of datasets. For a given run, we split the dataset into an
evaluation dataset consisting of 30% of the data, an audit dataset containing 1000 data points, and
an initial training data set. We represent the interpolation between a fully honest training run and
a fully malicious one by the attack parameter, which takes a value between O (fully honest) and 1
(fully malicious). The attack parameter controls what proportion of audit data points are included in
the training data and what proportion of the initial training data is labeled maliciously. The specifics
of how honest and malicious data points are labeled depends on the objective.

To attack accuracy, we constructed a training dataset using a modified Algorithm [T} labeling the
additional data from the attack with 1 — r,, rather than 0 and adding them to the initial training data
set. For our fairness attack, we constructed the training data similarly, changing how honest and
malicious data points were labeled. Honest data points were given random labels, while malicious
data points were labeled according to their sensitive attribute. Both attacks then fit a decision tree to
their constructed training data using SciKit-Learn’s decision tree classifier class.

To ensure that our attack would evade statistical detection, we added extra copies of the audit data to
the training data, as computed in Corollary [1|to pass Welch’s ¢-test with significance level 0.05.

Attacking Accuracy Audits. We ran our attack on six benchmark datasets — three shown in Figure
(remaining in Figure d). Across all datasets, our data forging attack enforces high audit accuracy
while simultaneously encouraging low performance on real-world evaluation data. Thus our attack
successfully makes inaccurate models appear accurate to an auditor.

Attacking Fairness Audits. We also performed the attack while targeting demographic parity (using
sex as the sensitive attribute) on three datasets, which we present in Figure 3] We were able to reliably
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Figure 2: Performance of models trained on datasets constructed to minimize real-world accuracy
while still passing an audit for several benchmarks. Values are averages over ten runs, error bars
represent one standard deviation.
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Figure 3: Fairness of models trained on constructed datasets using various benchmarks to target
demographic parity. Values are averages over ten runs, error bars represent one standard deviation.
Fairness means 1 — fairness gap.

train a model with close to 0 fairness gap on the audit dataset, but close to 1 fairness gap when
deployed. In other words, our attack successfully makes unfair models appear fair to an auditor.

Evading Detection via Statistical Methods. We show how our attack can be executed in ways that
evade detection by a variety of statistical approaches in Appendix Table[2| We were able to construct
malicious training datasets with summary statistics that match those of the audit dataset very closely,
and Welch’s ¢-test and Levene’s test regularly concluded that the audit and test datasets were drawn
from the same distribution. This is consistent with our theoretical results in Appendix

Additional Results. An adversary can use data forging attacks to achieve concrete goals beyond
degradation of accuracy or fairness, as we show in the Appendix [H] For example, Figure [5] shows
how an insurance provider could use our attack to hide the claim denial rate of a model from auditors.
Figure [6] also shows preliminary results which suggest that our attack generalizes to neural networks.

8 DISCUSSION AND FUTURE WORK

This work brings attention to data-dependent vulnerabilities in cryptographic auditing methods for
machine learning models. We propose an attack strategy that passes cryptographic certification while
undermining the goals of those certifications for real-world performance. We then introduce new
formal security definitions which address these vulnerabilities.

The attack strategy presented in this work poses several open questions. While we demonstrate the
data forging attack is undetected even in the presence of Welch’s ¢-test and Levene’s test, it remains
to be seen whether other statistical tests could effectively detect the attack. Based on the results that
we have derived, we find it unlikely that other statistical tests will be effective in detecting the attack.
However, we reserve such analysis for future work. We provide rigorous formal proofs that our
attacks are effective on decision trees, and preliminary evidence that a similar approach generalizes
to neural networks. Characterizing a formal relationship between neural network model capacity and
attack effectiveness could be a promising direction in future work.

Our secure auditing template underscores the importance of keeping audit data hidden until the
service provider’s model is committed. This imposes a limitation on auditing in practice: auditors
must either regularly gather fresh data (since the audit dataset is typically revealed during the audit),
use additional cryptographic techniques such as secure multiparty computation to keep data hidden
during the audit, or perform continuous auditing on user data. Each of these options has strengths
and drawbacks which should be evaluated in more detail by future work.
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9 ETHICS STATEMENT

Our work concerns techniques for cryptographic auditing of machine learning models. It is the
hope of the authors that the insights in this paper can be used to improve cryptographic auditing
techniques in order to make machine learning systems more adherent to ethical standards. We note
that cryptographic auditing should not be considered a sufficient tool on its own for determining
whether models are deployed ethically — as the present work highlights, it is sometimes possible
to fulfill the technical criteria of model certification in order to pass an audit while circumventing
the intention with which the audit was designed. Rather, cryptographic certification should be seen
as a tool complementary to human oversight, which enables more efficient use of resources while
auditing.

LLM Usage. The authors used LLMs to polish writing, and for assistance with literature search in
some components of this paper. We also used generative Al to create some of the icons in Figure[T} In
addition, we used an LLM for assistance with Lemma[2] We checked the proof assistance thoroughly
by hand before including it in the paper.

10 REPRODUCIBILITY STATEMENT

We describe the experiments referenced in this work in §7)and with reference to other parts of the
paper which detail the specifics of the algorithms we employed. We will publish the source code used
to run these experiments with the camera-ready version of the paper. All of our theoretical results are
stated formally and proven in the Appendix sections §Cl and §E|

10
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Algorithm 2 Welch’s ¢-test

Input: X = {2;}icin), YV = {¥i}icim)» Where 2; ~ X and y; ~ Y, and a significance level
Output: Null hypothesis Hy (i.e., ux = py) or alternative hypothesis H; (i.e., px # py)

1: Compute sampled means 7 = Zle and §j = ETy
T—a:)2 = \2
2: Compute sampled variances v, = % and vy, = %
3: Compute the test statistic t = ——%——
VVa /Nty /m
(9$+gy)2

4: Compute the degree of freedom d =

=12 [m=T) where g, = v, /n and g, = v, /m

5: Obtain the critical value ¢, from the ¢-table, given d and «.
6: If |t| < t. return Hy else return H;

A ADDITIONAL PRELIMINARIES

A.1 EXAMPLE OF AUDITING PREDICATES

Auditing Accuracy To audit accuracy, we consider the empirical accuracy as follows:

lsy=— 3 Thia) #y)
(z,y)€S

where n = | S|, and define the empirical predicate f as follows:
f(h, Sagit) =1 = és(h) <t

Auditing Fairness with Demographic Parity Demographic parity is one of the most basic fairness
metrics, measuring the difference between the prediction probabilities conditioned on a sensitive
attribute. We consider the empirical parity differences as follows:

1 1
Adp(h, Saudit) = | — I(h =1)— — I(h =1
dp (hy Saudit) noz (h(z) =1) nlz (h(z) =1)
€Sy €S,
where s, denotes the sensitive feature of a data point 2, Sy = {z € Syt : Sz = 0}, S1 = {z €
Saudit : Sz = 1}, no = |So|, and ny = |S1]. To audit fairness w.r.t a model h and a dataset Syyqir, we
define the corresponding empirical predicate f as follows.

f(h, Saudit) =1 < Adp(ha Saudit) <t

A.2 WELCH’S t-TEST

Welch’s t-test The goal of t-test is to determine whether the unknown population means of two
groups are equal or not. That is, for random variables X and Y, it compares the following hypotheses
on their means pxy = E[X] and py = E[Y]:

e Null Hypothesis Ho: pux = py
* Alternative Hypothesis Hy: ux # py

Assuming that X and Y independently follow Gaussian distributions with unknown variances,
Welch’s t-test proceeds as in Algorithm 2]

A.3 DECISION TREES

In our attack constructions we focus on decision tree models. Decision tree-based solutions are
among the most popular machine learning algorithms, particularly known for their effectiveness
in classification problems such as loan approval and fraud detection. A decision tree is trained by
recursively partitioning the dataset from the root to the leaves. At each step, a split is determined by a
splitting rule that aims to maximize an objective function, such as information gain. For prediction,
the input follows a path from the root to a leaf, where at each internal node, the decision depends on
whether the input satisfies the corresponding threshold (see Algorithm [3).

For completeness, in Algorithm 3] we present the algorithm for decision tree inference.

13
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Algorithm 3 Decision Tree Inference

Input: Decision tree h, input a.

Output: Classification result.
1: Let cur := h.root > Set cur to be root of the tree
2: while cur is not a leaf do

3: if ajcur.attr] < cur.thr then

4: cur := cur.left. > Set cur to be current node’s left child
5: else

6: cur := cur.right. > Set cur to be current node’s right child
7: return cur.class

A.4 SECURITY PROPERTIES OF ZERO-KNOWLEDGE PROOFS

Let ZKP = (P, V) be an interactive proof system for a relation R = [, Rx. In what follows, we
denote by PPT probabilistic polynomial time.

Completeness ZKP is (perfectly) complete if for any (x, w) satisfying R, it holds that:
Pr[l « (P(w),V)(x)] = 1.
Knowledge Soundness ZKP is (adaptively) knowledge sound with knowledge error  if for any
(stateful) PPT adversary P* = (Py, P1), there exists an expected polynomial time extractor £ such
that the following holds:
Dext = Pace — K

where

Pext = Pr [RA(x,w) = 1 : x < Po(1*);w + Ep(x)]

Pacc =Pr[b=1: x4 Po(1*); b« (P1,V)(x)]
where £ has non-black-box access to P*. Informally, this means that any cheating prover must know
a valid witness if it convinces verifier.

Zero-Knowledge Let viewE(W) (x) be a string consisting of all the incoming messages that V receives
from P during the interaction (P(w),V)(x), and V’s random coins. II is (honest verifier) zero-
knowledge if there exists a PPT simulator S such that for any adversary A and any (x,w) € R, the
following is negligible in .

[Prlb=1:0c ANiew) ™ () | = Prlb=1:view  S(x); b« A(view)]|
Informally, this means that the protocol execution reveals no information to )V about w.

A.5 SECURITY PROPERTIES OF COMMITMENT SCHEMES

Let Commit be a commitment scheme. For simplicity, we omit the key generation algorithm Gen
for simplicity and present a class of the simplest commitments whose openings are checked by
re-computing and comparing (e.g., hash commitment H (m||p)). More generally, some commitment
schemes require a separate verification algorithm Verify to check the validity of a commitment given
some decommitment information. Our auditing framework can be extended to such schemes by
having the model provider prove the knowledge of the decommitment information in zero knowledge.

Binding Commit is computationally binding if for any PPT adversary A, the following is negligible
in A:
Pr [Commit(m; p) = Commit(m/; p') Am #m' : (m,m/, p,p') + A(1")]

Hiding Commit is computationally hiding if for any PPT adversary A, the following is negligible in
A

2

Pr|ib=1":

mo,m1  A(1*);p {0’1}&()\);] 1

com < Commit(my; p); b < {0,1}; 0" + A(com)
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B DEFERRED PROOFS

B.1 PROOF OF THEOREM[I]

Proof. First, let us show that if points @ and b, where a; < ¢; < b; and ¢; = b; for all j # i, get
sorted into the same decision tree leaf, then c is also sorted into that same leaf. Notice that in order for
two points x and y to get sorted into different leaves, there must be a node which splits on a feature ¢
such that z; # y; and x; <t < y; ory; <t < x; where t is the threshold to split upon. Then if b
and ¢ were sorted into separate leaves, there must be a node on the path that b takes through the tree
that splits on feature 7 with a threshold ¢ that satisfies ¢; < ¢t < b;. However, such a node would also
sort a distinctly from b, so such a node cannot occur. Thus, b and ¢ must be sorted into the same leaf.

Now, note that as we train the tree until its leafs are homogeneous, every datapoint in .S, ,;,, must
be classified correctly (according to the label we assigned to it in Algorithm [I)). Further, since the
only datapoints in Sj, ,;,, with non-zero labels are datapoints from Sg.q;¢, for every leaf in 7 that is
associated with a non-zero class, we have at least one r € S,,4;; that gets sorted into this leaf.

Consider z € R? such that ||z — 7||oc > € for all 7 € Sguais. Say T(x) = 1, i.e., there exists
a leaf such that = belongs to this leaf and the leaf corresponds to class one. Consider r € S,,4it
that belongs to this leaf (by above, such r exists). By the definition of the L-infinity norm there
exists some dimension ¢ where |r; — x;| > . Suppose r; — z; > ¢. Notice that there is a point
r—cb; € S, which satisfies that (r — Egi)j = r; for all j # 4, and where z; < (r — sgi)i < 7.
Then by above, r — 55i must be sorted into the same leaf as r and x. But r — sgi has label g(r) = 0,
while for x holds 7 (z) = 1. Thus, we found a contradition. The same argument holds if z; — r; > &,

but using the point r + eb; instead of r — £b;. O

rain

C ATTACK DETECTION

While proof of training alone cannot detect the attack above (as it relies on training the decision tree
entirely honestly), nor can a black-box audit where the model owner knows the audit data before
training time, we might still hope to detect when these attacks occur. For example, we might hope
to conduct statistical tests on the training data to determine if it was honestly sampled from the
underlying distribution or if it was adversarially constructed. In such a case, we cannot directly
compare the training data to the true distribution of real data because the underlying distribution is
not fully known to the auditor. Instead, we must compare the training data with a sample from that
distribution. In the most simple case, this sample is the reference set S q;:-

We argue that under a certain family of functions, our constructed training set is indistinguishable
from Sy 45t

Definition 5. Suppose d is a set of bins over d dimensions. Then Hg : (R? x {0,1})* — H is
the function which takes databases over d features and a binary classification to their normalized
histogram with bins Q.

Definition 6. A function f : (R? x {0,1})* — R is called (~, c)-magnitude insensitive if there
exists a choice of bins & and function ' : H — R such that |f(D) — f'(Hz(D))| < « for all
D € (R? x {0,1})* and |f'(Hz(D)) — f'(Hz(D||r))| < o7 forall D € (R4 x {0,1})* and

r e R? x {0,1}.
Theorem 2. If f is (v, ¢)-magnitude insensitive, then | f(Squdit) — f (S]c |5i| <eforanye > 2v

audit

and k > E2dc , where § is the additional training data created by Algorithm|l|\when run with input

—2v
Saudita da g, gfor any g.

Proof. We will write f’ to be the y-approximation of f guaranteed to exist by the fact that f is
(7, ¢)-magnitude insensitive. Observe that because H takes databases to their normalized histograms,
H &(Saudit) = Hg (S¥, ). because the non-normalized histograms of the two databases are simply
scaled versions of one another.
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Next, it will be helpful to show that for any two databases D1, Do € (R? x {0,1})*, we have

|f'(Hz(D1)) — f'(Hg(D1||D2))| < c}gfl. Let us write Dy = dy||da]| ... [|d|p,|. Then we get that

|f'(Ha(D1)) — f'(Ha(D1||D2))|

= |f'(Ha(D1)) — f'(Ha(D1||d1)) + f'(Ha(D1ld1)) —
+ ['(Ha(D1lldi]|d2|] - - [|d)py 1)) — f'(Ha(D1|D2))]

< |f'(Hz(D1)) = f'(Ha(D1l|dy))| + | f'(Ha(D1|dy)) — f(Ha(D1||dy||d2)| +
+ | f (Ha(D1l|dy|dzll - . - ||d|py—1)) — f'(Ha(D1||D2))|

C C C
SR S S
|Di|  [Di|+1 |Di| + |D2| — 1
<c—|D2|
| D1

Then we can apply this to S% .. and S¥ ..||6; recall that |§| = 2d|Sqqya:¢|. Then we see that

|f' (Ha (Saudir)) = f' (Ha (Shuaicll6))| = | (Ha (Sauaie)) = ' (Ha (Shuaiel6))]
C2d|Saudit|
o k|Saudit‘

2d
=c—2y

We have two cases now.
Case 1: f' (Hz (Squait)) = f' (Ha (SF,4:/16)). Then we have
e—2v > f' (Ha (Sauait)) — f' (Hz (Shuqitll6))
= f(Saudit) — f(Sauait) + [ (Ha(Saudit))
— [ (Shuaitl|0) + [ (Sguaitlld) — f'(Ha(Shuail6))
> f(Sauait) — | f(Saudit) — f'(Ha(Saudit))|
— f(Shuaitl16) = [ f( ffudit||5) — ['(Ha(Squai|19))]
> f(Saudit) =7 — F(Shuailld) —
and so we see that & > f(Squdit) — f(S¥,4::1/0). We also have
F(Sauait) = f(Squai|l8) = f'(Ha(Sauair) = f'(Ha(Saudit)) + f(Saudit)
— [ (Ha(S5uainll8)) + ' (Ha(Sguairll0)) — f(Squailld)
> f'(Hg(Saudit)) — | (Ha(Saudit)) — f(Saudit)|
— [ (Ha(SFuairll8)) = ' (Ha(Shuairl|0)) = f(Sauail6)]
> f'(Ha(Saudir) =7 = f'(Ha(Sauanl16)) — v
> —2y
> —€
Then | f(Saudit) — f(Shyaill0)] < e
Case 2: f'(Ha(Saudit)) < f'(Ha(Sg,q:]1)). Then we have
e =2y > [ (Ha (Squaielld)) = f' (Ha (Saudit))
= f(Stuaiell6) = F(Shuaitll6) + f'(Ha(Sguaill9))
— [(Saudit) + f(Saudit) = f'(Ha(Saudit))
> f( audzt||5) | (Stuaitl|0) — [/ (Ha(Sguai|19)))|
- f( audzt) | f(Saudit) = ' (Ha(Saudit))|
) —

2 ( audzt”(s ( GUdit)_7

16



Under review as a conference paper at ICLR 2026

and so we see that e > f(S¥, ... 110) — f(Sauait). We also have

F(Staicll8) = f(Saudit) = f/(H 7 (Seudiel|0) = ' (Ha(S5uaicll0)) + f(Seuaicl 1)
f'(Ha(Saudit)) + f'(Ha(Saudit)) — f(Saudit)
> f'(Ha( audth(s)) ' (Ha(Squairl0)) + F(Shyaicl10)]
f'(Ha( audzt)) |/ (Ha(Saudit)) — f(Saudit)|
F'(Ha(Shuairll0) = = f'(Ha(Saudit)) =

AVARAVARLY,

Then |f(SCWdit) - f( audsz(S)| <e O

This theorem does not suggest that it is completely impossible to detect the attack given in Algorithm
[I] Rather, it only precludes detection by a certain class of functions. However, we argue that this
class is expansive and covers many intuitive approaches.

The sole requirement for the audit metric f is that it must be approximable by f’ which satisfies
three properties. Firstly, f’ operates over histograms for some choice of bins &@. This is a necessary
condition, as if f were not approximable by a function over a binning of the training data, we could
drastically change the audit outcome by simply adding a small amount of noise to the data. Next, f’
must be relatively insensitive to additional data. The intuition here is that no individual datapoint
should dramatically change the outcome of the audit. Finally, f operates over normalized histograms.
This property is necessary for the proof to go through, but is satisfied by many intuitive audit metrics.
For example, the mean and standard deviation of a feature (even conditioned on any arbitrary set of
features) are approximable from a normalized histogram.

Lemma 1. Let p;(D) be the mean of (bounded) feature j of a dataset D. Then for every v > 0,
wi(D) is (v, M — m)-magnitude insensitive, where B is the set of bins in the histogram and M, m
are an upper and lower bound on possible j-values respectively.

Proof. Notice that (D) ~ ), p pizj; where B is the set of bins in the histogram, p; is the height
of bin ¢ in the normalized histogram of D, and x; ; is the j-value of bin . Let us show that for any
v > 0, there exists a binning of the data such that this is a y-approximation of y;(D). Let the bins in
feature j have width ~y. Then for each datapoint d with j value jq, bin 4, and binned j-value x; ;, we

have that |z; ; — j4| <. Then
> Py Z D[
i€B i€B

*Z|D| &

deD

2 |D| T 2 |D|“

deD deD

‘ij,—

deD

S |Z|le_

deD

|D| 27

deD

Zplsz - Z ‘D‘jd

i€B deD

=7

Next, let us show that the sensitivity of our approximation of 1; is upper bounded by M o D‘ . Notice
that by adding a single point, one histogram bin will increase by 1 and the rest will be unchanged.
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Then for every bin k,

C; 1 C; 1 1 Tik
Z Tji + Tjk — Z T LG = chle ( - > + 2
2 D[+ 1" T D1t T Zp i~ 2% \[pj1 T o) T iDj+1
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So we have that the sensitivity is no greater than

We will proceed to use this fact to show that Welch’s t-test will fail to detect this attack.

Corollary 1. Given an audit dataset S, q4;¢ and significance level o, we can use Algorithm [Z] to
construct a training dataset S}, ;.. such that for any feature j, S}, ..., passes Welch’s t-test when its
values in feature j are compared to those of Sqqqir With significance level a.
Before we can prove this corollary, we will need a lemma which bounds the concentration of the
Student’s t-distribution.

Lemma 2. If X and Z are random variables drawn independently from the Student’s t-distribution
with v degrees of freedom and the standard normal distribution respectively, then for every t > 0, we
have

Pr[|X| < t] < Pr[|Z] < {]

Proof. We will write Fx (¢) to denote the CDF of random variable X evaluated at ¢, and fx () the
PDF. We will also write Ex (g(X)) to be the expected value of g(X) with randomness over X . Let
us begin by demonstrating that for all ¢ < 0, we have Fx (t) > Fz(t). First, recall that if W and Y’
are drawn from the x? distribution with v degrees of freedom and the standard normal distribution
respectively, then Y\/% is distributed according to the Student’s ¢-distribution with v degrees of

freedom, so let us write X =Y, /7. Then according to the law of total probability, we have

rx = [~ 1 (/%) i
B <Fy <t\/W>>

+2

2
Notice that 4 Py (t) = & fy (1) = %\/#27@_’7 = —\/4276_% > 0 when t < 0. Then since ¢/~

must be less than 0, we can apply Jensen’s inequality to get

Fx(t) = Bw <F v (tﬁD
5 (o ()
s (e (V)
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: d? —
Then since £ —=/u = —

< 0, we get that Ey (\/ ) \/7 f = 1. So because

t < 0, we can see that tEyy, ) > t, and since Fy (u) is increasing, we get

o i (45)

> Fy (t)

Since fx and fy are both symmetric about ¢ = 0, it then follows by a symmetric argument that for
allt > 0, Fx(t) < Fy(t). Then we see that for any ¢ > 0,

Pr[|X| < t] = Fx(t) — Fx(—t)
< Fy(t) — Fy(—t)
= Pr[]Y] < #]

_ Pr]|Z] < 1]

Because Y and Z are independently and identically distributed. [
We are now ready to prove Corollary [T}

Proof of Corollary[I] A pair of datasets Dy, D, pass Welch’s ¢-test on feature j if

|Mj(D1) —Mj(D2)|
Y \D |+ |D2\

where « is the desired significance level, v is the degrees of freedom in the datasets, and T, ,, is the
unique value such that

< Ta,u

| > Th| =
P llal 2 T,

where t(v) is the Student’s ¢-distribution with v degrees of freedom. In our case, the ¢-test compares

the reference dataset Sg,q;+ With the training dataset .Sj,.,.,,.

The value of v, and thus the value of T, ,,, depends on the size of the datasets, with the threshold T, ,,
decreasing as the datasets grow large. However, we will use Lemma[Z] to give a lower bound for Ty, ,,
which is constant with respect to |Sy,.,;,, |- Then, we will show that by Lemmal 1] and Theorem 2] we
can use Algorlthmlto construct a malicious training dataset Sj,.,;,, which maintains an arbitrarily
small test statistic, and in particular, a dataset such that the test statistic is below the lower bound on
the threshold.

First, let us establish a lower bound on T, ,.. Let us define T7, to be the unique positive value such
that

121 = T2) =
Z~N(o 1)
Then recall that Lemma 2] gives us that
rlIXI< T < 121 < 2]
XNt(ll) ( 1)

If we write fx and f to represent the probability density functions (PDFs) of X and Z respectively,
then we get equivalently that

T, T,

fx (u)du < fz(u)du
T, T
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I'hen we see that
Z| >T P X|>T,.,
Z~/\/(O 1)H | ol = XNtr(u)H |2 Tau]

" Ta
= fz(u)du = / fx(w)du

—T7 —Ta,w

_T T/ Tos
= / fx (u)du + fx(u)du+/ fx (u)du

’ /
Ta,v =T %

-1/, T, To,v
< / fx (u)du + fz(u)du + / fx (u)du

— T ’
Tl’y’/ T(x (e

-7, Ta,v
= OS/ fx(u)du—i—/ fx(u)du

’
Ta,v

Then because fx (x) is symmetric about 2z = 0, this yields

Ta,u
2/ fx(u)du >0
T
and thus
Tov
/ fx(u)du >0

Now recall the simple result from calculus that states that if g is positive valued, then
b
/ g(x)dx >0 <= a<b

Then because fx is positive-valued, our prior result entails that T, ,, > T!,s0 T/ is a lower bound
on T, , that does not depend on |S;

rain | .

Next, observe that the test statistic for Welch’s ¢-test has the following upper bound:
|Mj (Sérain) — Ky (Saudit)‘ < ‘IU’J (Sérain) — Ky (SGUdit)|

- 2
9 audit

|Saudzt| [Saudit]|

0'2 d
train 9 audit
7 +

ISt rain]

Furthermore, Lemma (1| implies that for any ¢ > 0, we can choose v < § such that u; is

(7, ¢)-magnitude insensitive, and so by Theorem [2| ' Algorithm I yields a dataset .S} such that

rain
1145 (St rain) — 15 (Saudit)| < € when appropriately parameterized. Then let ¢ = T, \;ﬁ This

produces the result that

|/J’J trmn) Hj (Saudit)| < 2e

— 2
T qudit Taudit_
|Stram ‘Saudn| [Saudit|
_ 2 r Oaudit
= . v
Taudit_ 2 |Saudit|
[Saudit]
_
= Ta
< Ta,u

which passes the t-test for feature j. Finally, by choosing k = max; M, =)V Sauaiel o get for

T Jaudn N
every feature ¢ that |11; (S, ,;n) — ti(Saudit)| < 2m1n T! —Zouditd —Tauditi o G

\/ ‘ audit| a 2\/ |Saudzt train
O

passes the t-test for feature i.

D CASE STUDY

We now discuss a number of state of the art works that consider the problem of privacy-preserving
audititng. These works are focused on different auditing functions (accuracy, fairness, etc), different

20



Under review as a conference paper at ICLR 2026

types of machine learning models, and their security models they use are not necessarily aligned.
We now briefly outline the techniques and security guarantees that are claimed in each of the works.
Our goal is not to provide an exhaustive survey, but rather to illustrate the landscape through recent
works that are broadly representative of the field—even though they span different years, venues, and
communities (ranging from machine learning to security).

D.1 ZERO KNOWLEDGE PROOFS FOR DECISION TREE PREDICTIONS AND ACCURACY

Goal and Solution Details. Zhang et al.| (2020) introduce protocols for auditing accuracy and
verifying decision tree predictions. These protocols enable the owner of a decision tree model to
prove that the model produces a given prediction on a data sample, or that it obtains a specified
accuracy on a given dataset, without revealing any additional information about the model itself.
Zhang et al.|(2020)’s main contribution is in designing a custom zero-knowledge proof tailored to
efficiently verifying the decision tree prediction. The proof consists of algorithms to generate public
parameters, custom commitment algorithm for decision tree models, the prover’s algorithm which
outputs a proof of inference/accuracy, and verifier algorithm to check this proof. The prover, i.e.,
model provider, must first commit to its model and subsequently demonstrate that the predictions on
client queries are consistent with this commitment. For accuracy verification, the authors propose
a batching technique that allows to more efficiently checks the correctness of predictions across
multiple inputs. They then add an extra verification step to determine how many of these predictions
match the true labels.

Security Model. Zhang et al.|(2020)’s security definition is formulated for the case of inference, and
follows the traditional zero-knowledge definition structure, which considers two parties (prover and
verifier), and where the protocol is required to satisfy correctness, soundness, and zero-knowledge.
Either of the two parties can be malicious. In the context of our analysis we are interested in
soundness, which specifies whether a malicious prover can deceive the verifier (i.e., auditor), that
the prover’s hypothesis passed the test. At a high level, the authors’ soundness definition can be
summarized as follows: A prover should not be able to output a commitment to a tree 7 along with a
proof m, prediction y and datapoint a such that the verifier accepts the proof and at the same time,
the 7" prediction for a is not equal to y. Definition of soundness for the accuracy case is similar:
the prover outputs the dataset which is used for checking accuracy, and wins the game if the verifier
accepts the proof even though the accuracy is not what the prover claims it to be.

Discussion. The security notion in this work aligns well with the intuitive goals of verifying both the
correctness of individual predictions and the accuracy of a model on a given dataset. However, it does
not give any formal guarantees for datasets beyond the audited dataset, i.e., the accuracy verification
solution does not generalize to other datasets drawn from the same distribution. In fact, Zhang et al.
(2020) explicitly note that it is possible to use their solution to check accuracy on a public dataset.
In this setting, their approach falls within our framework of Definition 3] and is vulnerable to the
same attack as outlined in In fact, note that our example works even given an ideal proof of
accuracy (when it is checked on a dataset known to the adversary), and even if the prover supplies an
additional proof of training to complement its proof of accuracy.

D.2 P2NIA: PRIVACY-PRESERVING NON-ITERATIVE AUDITING

Goal and Solution Details. Bourrée et al.| (2025) propose a novel auditing scheme that enables
one-shot verification of a model’s group fairness while preserving privacy for both parties: the model
provider is not required to open-source the model, and the auditor need not disclose any private
information to support the audit. The main contribution of Bourrée et al.| (2025) is a mechanism that
enables auditing without requiring the auditor to supply the audit dataset. Specifically, the model
provider supplies a dataset together with the corresponding predictions (both in the clear), which the
auditor then uses to verify the fairness condition. To construct this dataset, model provider draws on
a portion of its internal training data. To preserve confidentiality of this data, it is not shared directly.
Instead, model provider feeds it into a synthetic data generation algorithm, and the resulting synthetic
dataset is what is sent to the auditor.

Security Model. The work does not provide a formal security model. It is set up in the black-box
setting and assumes that the auditor does not know the distribution of the model owner’s training
data.
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Discussion. As|Bourrée et al.| (2025) do not utilize cryptographic techniques to prove that the outputs
actually correspond to the given inputs, the prover can easily cheat by simply adjusting the labels it
supplies for the constructed dataset. However, even if one were to strengthen the scheme by adding a
secure proof of training (e.g., Pappas and Papadopoulos|(2024))) together with inference proofs (as
in Zhang et al.| (2020))), the fact that the model owner knows the dataset that is being used for the
audit means that the solution falls within our framework of Definition[3] and is thus vulnerable to
data-forging attacks. An interesting open question would be to see if, since in this scenario the model
owner not only knows, but directly influences the audit dataset, there can be an even simpler attack.

D.3 CONFIDENTIAL-PROFITT: CONFIDENTIAL PROOF OF FAIR TRAINING OF TREES

Goal and Solution Details. Shamsabadi et al.| (2022) propose Confidential-PROFITT, a framework
for certifying fairness of decision trees while preserving confidentiality of both the model and the
training data. Confidential-PROFITT consists of a zero-knowledge-friendly decision tree learning
algorithm that, when executed honestly, enforces fairness by design—up to a tunable degree controlled
by a parameter. On top of this, Confidential-PROFITT designs a zero-knowledge proof system to
verify fairness of a decision tree. The proof requires the model provider to commit to both the model
and its training data, then prove in zero-knowledge that the paths taken by the committed training
points through the (committed) decision tree satisfy specified fairness bounds. In terms of fairness
metrics, Confidential-PROFITT supports demographic parity and equalized odds as fairness metrics.

Security Model. Confidential-PROFITT considers a malicious model provider (that, however, is
assumed to commit to the training data honestly) and a malicious auditor (who wishes to learn model
details/training data), and obtains standard zero-knowledge proof properties (correctness, soundness,
zero-knowledge) with respect to a statement that can be summarized roughly as follows “With respect
to a private dataset chosen by the model provider, the committed model satisfies certain fairness
guarantees”.

Discussion. Confidential-PROFITT assumes that the model provider honestly commits to the training
data. Under this assumption, the corresponding zero-knowledge proof certifies that the resulting
model inherits the fairness guarantees of the fair learning algorithm introduced in Confidential-
PROFITT (which the authors show indeed improves fairness). However, if the provider is not
restricted to committing to the true training data, Confidential-PROFITT is vulnerable to data-forging
attacks, as the provider can choose the audit dataset before committing to the model.

D.4 OATH: EFFICIENT AND FLEXIBLE ZERO-KNOWLEDGE PROOFS OF END-TO-END ML
FAIRNESS

Goal and Solution Details. |Franzese et al.| (2024) present OATH, a model-agnostic fairness auditing
framework. The core idea in OATH is to leverage clients (who query the model during deployment)
to participate in the auditing process. OATH operates in two phases: (i) a certification protocol
between the model provider and the auditor, and (ii) a query authentication protocol involving model
provider, inference clients, and auditor (dubbed verifier in OATH). The first phase follows the standard
certification flow we describe in In the second phase, the auditor receives commitments to client
queries and the corresponding model predictions. These commitments can later be verified in zero
knowledge for fairness, correctness, and consistency with the certified model.

Security Model. OATH considers three fully malicious entities: a model provider, inference clients,
and an auditor. These parties are assumed not to collude with each other. The auditor assesses model
fairness both with respect to the calibration dataset and the clients queries. The system provides
standard correctness, soundness, and zero-knowledge with respect to these two datasets.

Discussion. The calibration dataset which is used in the certification protocol between the model
provider and the auditor might be supplied by either party. If the calibration dataset is chosen by the
prover, same as P2NIA and Confidential-PROFITT, the corresponding fairness check is vulnerable
to data forging. However, in contrast to prior works, OATH can fall back on guarantees based on
client’s queries.
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D.5 FAIRPROOF: CONFIDENTIAL AND CERTIFIABLE FAIRNESS FOR NEURAL NETWORKS

Goal and Solution Details. Yadav et al.| (2024) propose FairProof, a fairness certification approach
that maintains confidentiality of the model. In contrast to Confidential-PROFITT and OATH, which
focus on group fairness metrics, FairProof considers local individual fairness. This allows|Yadav et al.
(2024) to issue a personalized certificate to every client.

Security Model. FairProof system involves a malicious model provider and malicious clients (who
wish to learn model details/training data), and considers standard correctness, soundness, and zero-
knowledge properties. The corresponding statement is roughly as follows: “Given a datapoint x, the
model’s output is y and a lower bound on an individual fairness parameter for z is €,”.

Discussion. The usage of a specific fairness metric (local individual fairness) allows FairProof
to provide per-client certificates of fairness, and escape the problems that arise from the usage of
reference datasets (including vulnerability to data-forging attacks). On the flip side, FairProof requires
to generate fairness certificates during deployment and does not provide any fairness guarantees prior
to deployment.

D.6 ZzZKCNN: ZERO KNOWLEDGE PROOFS FOR CONVOLUTIONAL NEURAL NETWORK
PREDICTIONS AND ACCURACY

Goal and Solution Details. |[Liu et al|(2021) propose zkCNN, a zero-knowledge proof protocol for
inference and accuracy of convolutional neural networks (CNNs). The core contribution is a novel
sumcheck protocol (which is the key ingredient in many zero-knowledge system) that is tailored to
two-dimensional convolutions.

Security Model. zZkCNN considers the standard setting with a prover and a verifier. Either party can
be malicious. |Liu et al.|(2021)’s security definition for inference is a zero-knowledge-style definition,
and the scheme is required to satisfy correctness, soundness, and zero-knowledge. Similar to Zhang
et al.| (2020), [Liu et al.|(2021)’s soundness intuitively states that a prover should not be able to output
a commitment to a model and provide a proof 7, prediction y and datapoint X such that the verifier
accepts the proof, and at the same time, the committed model’s prediction for X is not equal to
y. If instantiated with a specific commitment scheme, [Liu et al.|(2021)’s scheme further satisfies
knowledge soundness, the stronger version of soundness where there exists an extractor to extract the
CNN parameters from a valid proof and prediction with overwhelming probability. |Liu et al.|(2021)
do not provide a security definition for their proof of accuracy.

Discussion. As|Liu et al.|(2021) do not give a security definition for their proof of accuracy, the formal
security guarantee they provide is not fully clear. However, the authors indicate that their scheme
can be used to prove the accuracy on a public dataset. This scenario falls within our framework of
definition[3] and is vulnerable to the same style of attack as outlined in

D.7 ScCALING UP TRUSTLESS DNN INFERENCE WITH ZERO-KNOWLEDGE PROOFS

Goal and Solution Details. Kang et al.| (2022) propose a zero-knowledge-based framework for
verifying DNN inference and accuracy. Their key contribution is a careful translation of DNN
specifications into arithmetic circuits suitable for zero-knowledge proofs. The system also introduces
economic incentives to support ML-as-a-service. Concretely, when verifying accuracy, the model
provider first commits to the model, and the client commits to the test set. Both parties then deposit
monetary collateral into an escrow. The client reveals the test set, and the provider must produce a
zero-knowledge proof that the committed model meets the claimed accuracy. If the provider fails
or refuses to prove the required accuracy, it forfeits its collateral; otherwise, the client pays for the
service.

Security Model. |[Kang et al.|(2022) study the standard two-party setting with a prover (model
provider) and a verifier (client), either of whom may be malicious. Cryptographically, they aim
for the standard zero-knowledge proof properties: completeness, knowledge soundness, and zero
knowledge. They further consider incentives, showing that—under certain assumptions—honest
model providers and clients are motivated to participate in the accuracy verification protocol, while
malicious parties are discouraged.
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Discussion. In terms of cryptographic guarantees, Kang et al.| (2022) gets the core design right: their
protocol for proofs of accuracy closely follows the framework outlined in §5]and is not vulnerable to
our data-forging attacks. However, Kang et al.|(2022) provide no formal guarantees about accuracy
on data outside the audited set. It would be interesting to perform an analysis similar to that in §E.2.T]
given their constraints.

D.8 EzDPS: AN EFFICIENT AND ZERO-KNOWLEDGE MACHINE LEARNING INFERENCE
PIPELINE

Goal and Solution Details. [Wang and Hoang|(2023)) introduce ezDPS, a pipeline for zero-knowledge
proofs of inference correctness and accuracy above a specified threshold. They construct arithmetic
circuit gadgets for key ML operations, including exponentiation, absolute value, and array max/min,
and further devise optimized methods for proving Discrete Wavelet Transform, Principal Component
Analysis, and multi-class Support Vector Machines with various kernel functions using an efficient
set of arithmetic constraints.

Security Model. [Wang and Hoang| (2023) consider two mutually distrusting parties — a malicious
server and a semi-honest client, who follows the protocol but aims to learn information about the
model’s parameters. For their inference pipeline, they consider standard definitions of correctness,
soundness, and zero-knowledge (similar to those by [Zhang et al.| (2020) and Kang et al.| (2022)).
Wang and Hoang|(2023) do not provide a security definition for their proof of accuracy.

Discussion. Similar to Liu et al.| (2021), as [Wang and Hoang| (2023) do not provide a security
definition for their proof of accuracy, the precise security guarantee they achieve is somewhat unclear.
However, Wang and Hoang| (2023) indicate that their scheme can be used to prove the accuracy on a
public dataset, which falls within our framework of definition E} This instantiation of their method is
vulnerable to the same style of attack as outlined in §4.1]

D.9 CONFIDENTIAL-DPPROOF: CONFIDENTIAL PROOF OF DIFFERENTIALLY PRIVATE
TRAINING

Goal and Solution Details.Shamsabadi et al.| (2024) present Confidential-DPproof, a framework
that enables the model provider to prove to an auditor that their model was correctly trained via
DP-SGD, a classic approach for training models with differential privacy guarantees. The certification
of DP-SGD’s training run is done in zero-knowledge.

Security Model. Shamsabadi et al.|(2024) consider two mutually distrusting parties: a prover, i.e.,
model provider, and an auditor. The prover is fully malicious, while the auditor is semi-honest and
aims to obtain information about the model’s parameters. Confidential-DPproof considers standard
definitions of correctness, soundness, and zero-knowledge.

Discussion. The data used by Shamsabadi et al.|(2024) for their zero-knowledge proof is selected
by the prover. This fits the framework in §3| and makes the solution susceptible to data-forging
attacks. In particular, a malicious prover could degrade the claimed differential privacy guarantees
by, for example, supplying multiple copies of its (otherwise honest) training data as the input to the
Confidential-DPproof protocol. We leave a formal treatment and full development of this attack as an
interesting direction for future work.

E SECURE CONSTRUCTION OF AUDITING PROTOCOLS

E.1 AUDITING PROTOCOL AND SECURITY DEFINITIONS

In this section, we formally define the security properties of an auditing protocol.

Completeness An auditing protocol II is complete with error p if for any model h such that
F(h, Sain) = 1, the following holds:

Prb=1: (com,b) < (Prove(h, Siin), Audit)] > 1 —p
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Binding An auditing protocol I1 is computationally binding if for any PPT adversary .A, the following
is negligible in A:
Commit(h||Suain; p) = Commit(R || St in; 0
Pr : h’7h/75rin7S/'7 ’ ! <_A1)\
(h # h/ Vi S[ram ?é tram) ( traj train Py P ) ( )

Note that we require the binding property to hold both for the model and the training dataset. This
can be easily achieved by separately committing to the model and the training dataset with a standard
binding commitment scheme (§ [A.5), and then outputting the concatenation of the two commitments.

F-Relaxed Knowledge Soundness An auditing protocol IT is F-relaxed knowledge sound with
knowledge error « if for any PPT adversary Prove™, there exists an expected polynomial time extractor
Extprove* such that the following holds:

Dext 2 Pacc — K

where
(com = Commit(h)||Suain; p) A F(h) = 1)
V (com = Commit(h||Siain; p) (com, b) + (Prove®, Audit);
Pe = P A com = Commit(h'|| S} s £ (h Strainy Py 1y Steains P') <= Extprove (com)

A (h 7& h/ \ Strain 7é SL/ra.ln))
Pacc = Pr[b=1: (com,b) < (Prove™, Audit)]

Intuitively, this notion guarantees that if a cheating prover Prove™ convinces the auditor to accept
with non-negligible probability, then it must either know a model i and a training dataset Siin
satisfying a predicate F', or find two distinct openings to the same commitment com. As the latter
event happens with negligible probability if Commit is computationally binding, this implies that
Prove™ must know a valid model h and a training dataset Sy, satisfying F'. We call this property
“F-relaxed” knowledge soundness because the predicate F' is a relaxation of the original predicate F'.
This is necessary because the auditor only checks the property f on a finite sample, which may not
perfectly reflect the property F' on the underlying distribution. In our concrete instantiations, we will

quantify the gap between F and F (see §-and §-

Zero Knowledge Let view', or= %) be 4 string consisting of all the incoming messages that Audit

receives from Prove during the interaction (Prove(h, Syin), Audit), and Audit’s random coins. II is
zero-knowledge against semi-honest auditor if there exists a PPT simulator Sim such that for any PPT
adversary A, and any h such that F'(h, Sy.in) = 1, the following is negligible in A.

‘Pr [b =1 b A(viewporelh-Smin)y } — Prb=1: view « Sim(1*); b+« A(view’)]‘

E.2 CONSTRUCTION OF AUDITING PROTOCOL

We construct a commit-sample-prove auditing scheme Il.,. While we focus on a protocol checking
F on a hypothesis h only, the construction below can be naturally extended to a more complex F' that
additionally takes a training dataset as input. Let Commit be a binding commitment scheme and
ZKP = (P, V) be a ZK proof system for the following relation R: for a pair of public statement x =
(com, Saudir) and private witness w = (h, p), we have (x,w) € R <= f(h, Syuait) = 1 A com =
Commit(h; p). We define a commit-sample-prove auditing protocol Il.g, = (Commit, Prove, Audit)
using an emprical predicate f and a distribution D over a query space Q) = {(x;, y;)}I™, as follows:

(Prove(h), Audit)

1. Prove computes com = Commit(h; p) using a uniformly random string p € {0, 1 }/commit
and sends com to Audit.

2. Audit samples S,ugi¢ <— D™ and sends it to Prove.

3. Prove and Audit execute b <+ (P (w), V)(x), where x = (com, Syuait) and w = (h, p). Here,
Prove plays P and Audit plays V.
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4. Prove outputs com, while Audit outputs b.
We now state our main theorem regarding the security of Il ,. The result is stated for a general
auditing task defined by a predicate F' and an empirical predicate f.

Theorem 3. Suppose the empirical predicate f, the model predicate F, and the relaxed model
predicate F satisfy the following false negative and false positive rate bounds for every model h:

Pr  [f(h, Saair) # 1| F(h) = 1] < ppar

Saudil(_D"
SaudFiD" [f(h7 Saudlt) 1 | F(h) 7& 1] < Dppr

Then 11, is a secure auditing protocol for I' satisfying the following properties:

 If ZKP is perfectly complete, then I, is complete with error ps, for any model h such that
F(h)=1

o If the underlying commitment scheme Commit is computationally binding, then Il is
computationally binding.

 If ZKP is knowledge sound with knowledge error k, then 11, is F-relaxed knowledge sound
with knowledge error K + py,.

* If p, is negligible in X, Commit is hiding, and ZKP is zero-knowledge, then 11, is zero-
knowledge against semi-honest auditor.

Proof sketch. The proof carefully combines the standard arguments in learning theory and the
security properties of the underlying cryptographic primitives. We focus on knowledge soundness,
as completeness, binding and zero-knowledge directly follow from the corresponding properties
of the underlying commitment scheme and ZK proof system. To argue knowledge soundness, let
us assume for the sake of simplicity the commitment scheme is perfectly binding and straightline
extractable, i.e., once the prover sends com to the auditor, one can immediately extract a unique
model h and a unique randomness p such that com = Commit(h; p). Such a commitment scheme
can be constructed in the common reference string (CRS) model using public key encryption. If
the committed model h does not satisfy F, then by the assumption on the false positive rate, the
probability that f(h, Sudi) = 1 is at most pg, over the choice of Syuqic. Note that we need to relax

the predicate from F' for completeness to F because the auditor only checks the empirical predicate
on a finite sample, which may not perfectly reflect the true predicate. Depending on the deployment
scenario, this gap can be made arbitrarily small by increasing the sample size n.

The actual proof is significantly more involved, when the commitment scheme is only computationally
binding (which is the case for most practical instantiations). In particular, we need to construct
a meta-extractor that runs the knowledge extractor £ for ZKP to obtain a candidate model h, and
rewinds £ with fresh S/, ~ D" to ensure the validity of & via probabilistic tests (or otherwise break
binding of the commitment). Our formal security proof takes care of these subtle technicalities by

leveraging the proof techniques from lattice-based zero knowledge proofs.

Proof. Binding trivially follows from the computational binding property of the underlying commit-
ment scheme.

Completeness: By the assumption on f and F', an honest auditing prover Prove fails to convince the
auditor playing verifier V after receiving fresh Sy.q; With probability at most pg,,. Since Commit and
ZKP are perfectly complete, an honest ZKP prover P given any valid witness always convinces the
verifier. Thus, the overall completeness error is at most gy,

Knowledge Soundness: The protocol can be viewed as a commit-and-prove zero-knowledge proof
with interleaved probabilistic tests on the statement. This approach is common in lattice-based
zero-knowledge proofs (Cf. Theorem 5.1.6 of Nguyen| (2022)).

Let Prove™ be any PPT adversary. We denote by P; the interactive ZK prover algorithm that Prove™
invokes in Step [3|to prove the statement x fixed by the previous steps. Moreover, denote by R¢

26



Under review as a conference paper at ICLR 2026

(resp. Rp) the randomness space of the extractor £ (resp. prover P;) for ZKP. We first construct the
following extractor:

Ext Prove*

1. Run Prove™ to get com.
2. Sample Syt < D", e + Rg,and rp < Rp.

3. Let Py be the algorithm that outputs x = (com, Sy,ait) as a statement and P = (Pg, P1),
where P;’s randomness is fixed to rp. Run Ep(x; r¢) to extract the witness (h, p).

4. If f(h, Sauair) 7 1 or com # Commit(h; p), abort.
5. Repeat the following process:

(a) Sample S} 4, < D" and r; < Re.

(b) Let P} be the algorithm that outputs X' = (com, S, ;) as a statement and P’ =
(P, P1), where P;’s randomness is fixed to rp. Run Ep/ (x'; 7% ) to extract the witness
(W, p").

(c) If f(KW,S),4) = 1 and com = Commit(h’; p’), terminate and output (h, p, b/, p')

al

(d) Else, go to step (a).

Running time:

Let T be the random variable counting the number of calls to the inner extractor £ until termina-
tion. For each fixed com and prover’s randomness ¢ € Rp we denote by ¢; the probability that
Ep((com, S); re) successfully outputs (h, p) with f(h,.S) = 1 and com = Commit(h; p), where the
probability is taken over r¢ <— Rg and S ~ D". Denote by F the event that Ep successfully outputs
a valid witness at Step 3] We now evaluate the expected running time of Ext as follows:

E[T]= Y (B[T|rp =iAE]-Prlrp =i AE]+E[T|rp =i A~E]-Prlrp =i A ~E])

i€Rp
1
= i 2 (BT [rp = i NE)-PrlE|rp = i] + E[T |rp = i A —E] - Pr[2E |rp = )
P iIERP
1
:ﬁ' Z(]E[T|7"7>:i/\E]'6¢+E[T|rp:i/\ﬁE].(1,q))
i€ERp

1 1
<—. Z<+1>-ei+l-(l—ei)>:2
Red (ieRp €

where we used the fact that E[T' | rp = i A =E] = 1 since the algorithm terminates after the initial
extraction fails. Moreover, since the underlying ZKP is knowledge sound, each call to £ runs in
expected polynomial time. Overall, we conclude that Ext runs in expected polynomial time.

Knowledge error: We define the following events:

s E: com = Commit(h; p) A f(h, Sauair) = 1

e E’: com = Commit(h/; p') A f(R, Shg) = 1
e E.: EANE

e Es:h=1"n

e E3: F(h)=1
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Our goal is to relate the success probability pey of the extractor to p,.., where
DPext = PI'[El A (—|E2 V Eg)]
Pacc = Pr[b=1: (com,b) + (Prove™, Audit)]

To this end, we first rewrite pex; as follows:
Pext = Pr[E1 A (mE2 V E3)] = Pr[E,] — Pr[Ey A Ea A —Es]
We now bound Pr[E,] and Pr[E; A Ea A —Es] separately.
Bounding Pr[F;]: We rewrite Pr[E}] as follows:
Pr[E}] = Pr[E] — Pr[E A —=E'| = Pr[E] > pacc — K

where Pr[E A —E’] = 0 since if E happens, then the extractor always terminates in expected
polynomial time and outputs (h, p, h’, p') at Step [5} which implies that E’ also happens. The last
inequality follows from the definition of p,.. and the knowledge soundness of ZKP.

Bounding Pr[E; A E; A —Es]: For each fixed com and i € Rp, let ¢; be the probability that fresh
(re,S) + Rg x D" leads to successful extraction.

We first rewrite Pr[E; A E2 A —Es] as follows:
Pr[Ey A Ey A=E3] = Y Pr[rp =i]-Pr[EAE' A Ey A—=Eslrp =]

i€ERp
1 , . ' /
= — I ’/‘PZZ . T 5 -Fs3 ’r’P:Z
R ZP[E/\E| |- Pr[Ey A —E3| ANEAE
| P‘iERP
1
SRiZEi'Pl“[Ez/\ﬂE:a\Tpzi/\E/\E’]
\Rp| S5
1 Z PI‘[E//\EQ/\—\E3|7=,P:Z/\E]
= — € k
e Pr[E' |rp =i A E]
teliip
:LzﬁlPr[El/\EQ/\_‘E3|T'P:Z/\E]
| p‘ZER'p €
1
= ol ST PiE ABEyA-Bs|rp =iAre =jAE]
P £ i€ERp,jERs
1 li ! / ~ . )
SW Z Pr[f(h, audit):l/\h:h/\F(h)?él‘TPZZ/\Tg:]/\E}
P € i€ERp,jERs
1 , . . R
SW Z Pr[f(h, Siai) = 1|rp =iAre =i ANENF(h) # 1]
P € 1€ERp,jERs
Spfpr

where the last inequality follows from the assumption on f and F, as at this stage h is fixed by event
E and elements in S] 4, are sampled independently from D".

Combining the bounds, we get
Pext = PI‘[El] - PI‘[El AN E2 A _\Eg]
> Pacc — K — DPtpr
This completes the proof.

Zero Knowledge: We construct the following simulator, internally using the simulator S for ZKP:

Sim(1%)

1. Generate a dummy commitment com < Commit(0; p) using a uniformly random string
p € {0,1}%.
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2. Sample Syyq < D".
3. Run S((com, Syuait)) to get a simulated view’ for ZKP.

4. Output view = (com, Syugit, view').

Since Commit is hiding, the dummy commitment is indistinguishable from a real commitment.
Moreover, the output of S is indistinguishable from the view of Audit during the interaction
(P(h),V)((com, Sauit)) for any valid witness h. Since a real execution of Il defines x =
(com, Syuic) and w = h such that R(x,w) = 1 except with probability at most pg,, by setting
Drr to be negligible in A, the output of Sim is indistinguishable from the view of Audit during the
interaction (Prove(h), Audit). This completes the proof. O

E.2.1 EXAMPLE INSTANTIATION: Il.5p FOR ACCURACY AUDITING
To instantiate 11, for accuracy auditing, we consider the empirical and true accuracy as follows:

Ishy= 1 3" U(h(x) #v)

(z,y)ES
U(h) = Ey)~pll(h(z) # y)]

where n = |S|, and define the empirical predicate f, the model predicate F', and the relaxed model
predicate F' as follows.

f(h’asaudit) =1 < és(h) §t+5
F(h)=1 < ((h) <t
F(h)=1 < {(h) <t+26

To apply Theorem [3|to accuracy auditing, it would be sufficient to find the false negative rate pf,, and
false positive rate pry by the following lemma, and then set nd? € (\).

Lemma 3. For any hypothesis h,

Pr [f(hvsaudit) 75 1 | F (h) — 1] < 26—271,52 n
Saudit <D™

Pr [f(h7 Saudi[) =1 | f (h) # 1] S 28—27),52 (2)
Saudit <D™

Proof. Consider the empirical error /g(h) = 1 > (zy)es LM(x) # y) and the true error £(h) =

E(z,y)~p[I(h(x) # y)]. Since each element of Syq; is sampled i.i.d. from D, by Hoeffding’s
inequality, we have

Pr_ [[s(h) — £(Rh)| > 6] < 229",

Saudi D™
Thus, for any & such that F(h) = 1 (i.e., £(h) < t), the probability that f(h, Sya) # 1 G.e.,
s(h) >t + 6) is at most 227"

Similarly, for any & such that F'(h) # 1 (i.e., £(h) > t + 28), the probability that f(h, Spai) = 1
(i.e., £5(h) < t + 6) is at most 2219, O

Opverall, by Theorem (3| and Lemma |3| we conclude that IL, instantiated for accuracy auditing
is a secure auditing protocol for accuracy with the following properties for a sufficiently large
né? € Q(N):

o If the true error of the model h is < ¢, then the auditor accepts with high probability.

* If the auditor accepts, then the auditor gets assurance that the true error of the model A is at
most ¢ + 29, even if the prover is misbehaving.
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E.2.2 EXAMPLE INSTANTIATION: Il.sp FOR DEMOGRAPHIC PARITY AUDITING

Similarly, we can instantiate the protocol Il, for auditing fairness conditions. Take the demographic
parity as an example, for which we can set the query space to Q = {x;}, without ground-truth
labels. We consider the empirical and true demographic parity differences as follows:

1 1
Agp(h, Suait) = |[— > I(h(z) = 1) — — > I(h(z) = 1)
"o x€So m €S
Adp(h) = [Esnpll(h(z) = 1) | 85 = 0] = Eonpll(h(z) = 1) | 55 = 1]]
where s, denotes the sensitive feature of a data point =, Sop = {& € Saudit : Sz = 0}, S1 = {z €
Saudit * 8z = 1}, ng = [Sol, and ny = [S1].

Define the empirical predicate f, the model predicate F, and the relaxed model predicate F as
follows.

f(h, Sadir) =1 <= Agp(h, Saudgit) < t+26
F(h) =1 <= Agy(h) <t
F(h) =1 <= Agp(h) <t +45

To apply Theorem [3|to demographic parity auditing, we can prove the following lemma in place of
Lemma and then set n.y,;,0% € Q(N).

Lemma 4. For any hypothesis h,

Pr [f(h7 Saudit) # 1 | F(h) = ]_] < 4672’““‘3“62 3)
Saudit D™

Pr_ [ (h, Sauar) = 1| F(h) # 1] < de™2nmmn” @
Saudit D™

where N, = min(ng, ny).

Proof. We first prove (@). Define the following variables:

g0 = nio 3" (h(z) = 1) po = Epnp[I(h(2) = 1) |5, = 0]
€Sy

g1 = nil > I(h(z) =1) p1 = Ezop[l(h(z) = 1) | s, = 1]
€S

By Hoeffding’s inequality, we have
Pr{lgo — po| > 8] < 2e720%°
Prlg1 —p1| > 0] < 9e~2m16°
where the probability is taken over the randomness of S, <— D". Thus, for any h such that

F(h) # 1 (i.e., [po — p1| > t + 46), the probability that f(h, Saai) = 1 (i.e., |[go — g1] < t + 20)
can be bounded as follows:

Pr{lgo — g1] <t +26] < Pr[|go — g1] < |po — p1| — 2]
< Pr[20 < |po —p1 — (90 — 91)]]
< Pr26 < |po — go| + |p1 — 91]]
< Pr[o < |po — go| VO < |p1 — g1]]
< Pr[0 < [po — gol] + Pr[6 < |p1 — g1]]
< 9e~ 208" | 9p—2m16” < 4o~ 2nmind”

Analogously, we can prove (3). For any h such that F'(h) = 1 (i.e., [po — p1| < t), the probability
that f(h, Sauait) # 1 (ie., |go — g1] > t + 20) can be bounded in the same way:

2
Pr[lgo — g1] > t + 28] < Pr||lgo — g1| > |po — p1| + 28] < 4= 2mind
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Overall, by Theorem [’3’] and Lemma @] we conclude that 11, instantiated for demographic parity
auditing is a secure auditing protocol for demographic parity with the following properties for a
sufficiently large n,in62 € Q(N):

* If the true demographic parity of the model % is < ¢, then the auditor accepts with high
probability.

* If the auditor accepts, then the auditor gets assurance that the true demographic parity of the
model h is at most ¢ + 46, even if the prover is misbehaving.

F RELATED WORK (CONTINUED)

A number of recent works aim to prove desirable model properties. In terms of what these works
prove, they can be roughly categorized into proofs of training, inference, accuracy, and fairness. In
terms of how the corresponding protocols work, recent works on certifiable ML can be categorized as
follows:

Cryptographic approaches A prolific line of research adapts various cryptographic techniques to
certify properties such as accuracy, fairness, etc., without revealing the model’s details. The most
common technique is zero-knowledge proofs (zk proofs), which allow to formally prove that a model
satisfies certain properties without revealing anything else about the model. They have been used
to certify fairness (Shamsabadi et al.| 2022;|Yadav et al., [2024; [Franzese et al.| 2024; Zhang et al.|
2025b)), inference (Zhang et al.,|2020), accuracy (Zhang et al.} [2020), and to prove that the model
has been trained using a certain algorithm (Abbaszadeh et al.l [2024; |Garg et al., 2023} Sun et al.,
2024; Pappas and Papadopoulos|, |2024) (without revealing the training data). Other works (Duddu
et al.,[2024; |Chang et al., [2023)) use secure multi-party computation (MPC), which allows mutually
distrusting parties to jointly compute on private inputs without revealing anything about the inputs
apart from the outcome.

Black box auditing/Statistical testing These approaches probe a model by submitting inputs,
collecting outputs, and analyzing them for undesirable behavior. Tramer et al.|(2017);|Saleiro et al.
(2018)) use black-box testing to check for potential unfairness or bias, while (Tan et al.| | 2018)) distill a
new model to gain insight into the black box one.

Outside-the-box auditing Here the model owner provides access to information beyond query
responses, such as source code, documentation (Mitchell et al.l 2019), hyperparameters, training data,
deployment details, or internal evaluation results.

Finally, we note that our work is related to, but distinct from, data poisoning attacks. We discuss the
relationship between the two works below.

G CRYPTOGRAPHIC AUDITING OF ML: BACKGROUND AND SUBTLETIES

We outline different categories of proofs that are used in the context of auditing machine learning
algorithms. For simplicity, from now on we assume that the training algorithm is public (note that
making it private only makes the adversary in our attacks stronger, i.e., it could potentially be easier
for the model owner to perform a data-forging or any other type of attack).

Proof of Training A proof of training can be viewed as a zero knowledge proof for the following
relation R: given x = (comy,comg), and w = (h, Syain, 0, pr, Ps), R outputs 1 if and only if
Train(Syain; p) = h, comy, = Commit(h; pp,) and comg = Commit(Syun; ps), Where p is the
randomness used for training. Here, Commit is a commitment scheme (. Intuitively, here the
commitment lets the prover fix h and S;;, up front without revealing them.

Proof of Inference A proof of inference can be viewed as a special case of zero knowledge proof
for the following relation R: given x = (com, z,y), and w = (h, pr), R outputs 1 if and only if
h(z) = y and com = Commit(h; py).

Auditing using Zero Knowledge Proofs The strongest form of ZK-based auditing arises when the
prover first produces a proof of training, thereby showing that a specific committed model instance
came from an honest training procedure on a private dataset, and subsequently provides a proof
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Figure 4: Accuracy of models trained on datasets constructed by Algorithm [T]on various benchmarks.
Values are averages over ten runs, error bars represent one standard deviation.

of property attesting that the committed model meets the desired criterion. Let f be an auditing
function outputting a binary that takes as input a training data set Sy;,, an auditing data set .S,qi;,
and the model h. Then privacy-preserving auditing can be realized using zero knowledge proofs
for the following relation R: given, x = (comy,, comg, Sauair), and w = (h, Siuin, P, Ph, Ps)s R
outputs 1 if and only if Train(Siuin; p) = R f(Swains Saudit, ) = 1, comy, = Commit(h; py,) and
comg = Commit(Syain; ps)-

Definition Subtleties The zero knowledge property ensures confidentiality of the committed model
and training data. However, as we shall see next, knowledge soundness does not necessarily capture
the actual goal of the auditing process. The reason is that knowledge soundness is typically defined
with respect to statements x = (comy, comg, Squqir), Which (1) are bound to a specific dataset
Saudir» and (2) do not specify how or when each component of x is generated. In practice, it is
plausible that S,,4; is supplied by verifier (i.e., the auditor). We show that if a cheating prover (i.e.,
model owner) adaptively generates comy« and comg~ after observing Sg,qi;, it is possible to pass
the zero knowledge auditing process after maliciously crafting model h* and/or training data S™*.
Furthermore, we show that h* behaves pathologically when evaluated on data outside S, in a way
that completely undermines the purpose of the auditing process.

We note that while this subtlety was indeed overlooked in several works on zero-knowledge-based
auditing, it applies even more directly to various non-cryptographic auditing approaches that do not
enforce a secure commitment from the prover.

H FURTHER EVALUATION

First, we present in Figure [ results for attacking accuracy audits on additional datasets mentioned in

7

Next, we present the application of the attack described in § .1} In this attack, the adversary is
attempting to maximize the model’s denial rate Pr,.p[h(z) = 0] while still appearing accurate
to the audit. The results of this attack are given in Figure[5] Observe that as the attack parameter
approaches 1 (and the attack becomes maximally malicious), the denial rate of the model on the
audit set remains close to the fully honest denial rate while the denial rate on independently sampled
data approaches 1. Similarly, the accuracy of the model on the audit set approaches 1, while the true
accuracy decreases down to roughly 0.6 (this reflects the true denial rate of the distribution).

Next we examine our ability to observe these attacks by applying statistical tests to the datasets, as
described in § [C] There is no singular way to determine whether two samples were drawn from the
same distribution, so we apply some common statistical tools. In particular, our goal is to determine
if the distribution from which the audit data is drawn is identical to the distribution from which the
training data is drawn. We use Welch’s ¢-test, which serves to determine whether two distributions
have the same mean, and Levene’s test, a one-way ANOVA for determining whether two distributions
have the same variance. These tests are typically applied to 1-dimensional data, and so we apply
them to each feature individually. The results of these experiments are given in Table 2]

We observe that the summary statistics of the malicious training data closely match the values for
the honest data, suggesting that comparing these two values would not be a successful detection
mechanism. This is compounded by the fact that the test statistics for Welch’s ¢-test and Levene’s test
for the malicious training data are considerably smaller on average than the same test statistics for
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Figure 5: Accuracy and denial rates of models trained on datasets constructed by Algorithm [I]on
ACSEmployment. Values are averages over ten runs, error bars represent one standard deviation.

Table 2: Summary and Test statistics for Age feature on ACSEmployment, conditioned on label. Test
statistics used are Welch’s ¢-test and Levene’s test. Attack is undetectable when summary statistics
are similar to honest ones, and when test statistics are close to 0. Comparisons are between fully
honest and fully malicious datasets.

Age Label = 0 Label =1
Honest Attack Honest Attack
Summary I 41.6651 41.9657 439184 43.8131
Statistics o2 804.5804 810.8822 223.1269 221.42394
Test t-test 0.6521 0.0033 0.7067 0.0110
Statistics | ANOVA 0.6200 0.0026 1.6500 0.0186
Education Label =0 Label =1
Honest Attack Honest Attack
Summary I 13.39761692 13.41700338 18.45539675 18.50545506
Statistics o? 42.99789908 42.16899485 9.979327135 8.943082831
Test t-test 0.7984001575 0.0356390553 0.9499974697 | 0.1302788154
Statistics | ANOVA | 0.4844657261 | 0.0003374130653 1.227829625 | 0.02531893152
. Label =0 Label =1
Military Status Honest Attack Honest Attack
Summary m 2.5794 2.5834 3.8121 3.8302
Statistics o’ 3.2749 3.2648 0.3507 0.3265
Test t-test 0.4997 0.0313 0.8699 0.1755
Statistics | ANOVA 1.0240 0.0009 1.2394 0.0304

the honest training data, corroborating higher rate of passing the hypothesis tests we observe. At a
significance level of a = 0.05, we expect a false positive rate of approximately 5%. On the other
hand, we observe a 0% true positive rate. We note that in a practical application of this attack, the
auditor would have access only to the honest or malicious values over a single training run, and would
thus be unable to easily distinguish between the two cases by comparing the values or by looking at
averages over many runs as we have done here. That being said, an auditor may find it suspicious if
the p-value returned by a statistical test is extremely low (even though such a scenario may be very
plausible for some distributions); an attacker can safely relax this attack to a comfortable degree,
though doing so will increase the risk of failing the audit.

Finally, we present an evaluation of a modified version of the attack that targets neural networks
rather than decision trees. Whereas decision trees have very specific conditions that allow us to
constrain their behavior, it is much harder to provide theoretical guarantees for neural networks. In
order to encourage memorization of the training data, we used a relatively shallow network with very
large individual layers. Our attack samples a large amount of training data, and decides whether to
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Figure 6: Performance of 226M-parameter neural networks trained on datasets constructed from a
mixture of Gaussian distributions. Duplicity refers to the number of perturbed copies of the audit
dataset included in the training data.

label each point with the honest label or dishonest label depending on its proximity to the nearest
audit data point. We evaluated this attack on an 8-dimensional mixture of Gaussian distributions; the

results are shown in Figure 6]
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