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Abstract

Modern natural language generation (NLG)001
systems have led to the development of syn-002
thetic human-like open-ended texts, posing con-003
cerns as to who the original author of a text004
is. To address such concerns, we introduce005
DeB-Ang: the utilisation of a custom DeBERTa006
model (He et al., 2021) with angular loss and007
contrastive loss functions for effective class008
separation in neural text classification tasks.009
We expand the application of this model on010
binary machine-generated text detection and011
multi-class neural authorship attribution. We012
demonstrate improved performance on many013
benchmark datasets whereby the accuracy for014
machine-generated text detection was increased015
by as much as 38.04% across all datasets.016

1 Introduction017

There has been considerable activity in the field of018

detecting machine-generated text. Driven by the019

significant growth and the increasing prevalence020

of large language models (LLMs) and natural lan-021

guage generation (NLG) models. This has led to022

the production of high-quality human-like texts that023

have brought about useful applications in many024

domains such as machine translation, text sum-025

marisation and data generation (Kieuvongngam026

et al., 2020; Goyal et al., 2022; Iyer et al., 2023;027

Uchendu et al., 2021). Irrespective of the many028

useful applications, the deployment of NLG mod-029

els has concurrently given rise to serious concerns030

such as plagiarism, and spreading misinformation031

and hate speech (Pu et al., 2022; Hu et al., 2023;032

Qadir, 2022; Solaiman et al., 2019). Therefore, the033

need to discriminate between human and machine-034

generated text becomes paramount, especially in035

light of the growing sophistication and rapid up-036

dates of these models.037

Given the diverse applications of NLG models,038

authorship attribution (AA) methods have been in-039

creasingly employed to detect the original author040

of synthetic data generated by machines (Ai et al., 041

2022; Uchendu et al., 2020; Jawahar et al., 2020). 042

The main concern with traditional AA methods 043

is that, typically, they are feature-based systems 044

and consist of largely document-specific features. 045

Therefore, the application of this traditional model 046

is often author, dataset and model-specific (Sari, 047

2018; Ai et al., 2022). Previous research addressed 048

the need for generalisable detection systems to 049

identify machine-generated text (Fagni et al., 2021; 050

Jakesch et al., 2023; He et al., 2024; Jawahar et al., 051

2020). Research involving the use of LLMs in 052

authorship attribution has demonstrated that the 053

simple fine-tuning of pre-trained language models 054

can surpass the accuracy of traditional methods sig- 055

nificantly (Fabien et al., 2020; Mitrović et al., 2023; 056

Fagni et al., 2021). 057

In particular, we introduce DeB-Ang, a pre- 058

trained DeBERTa model with a specialised angular 059

loss and contrastive loss integration. Additionally, 060

we demonstrate improved classification when ap- 061

plying DeB-Ang to several well-known machine- 062

generated text and authorship attribution datasets. 063

Contrastive learning is an unsupervised representa- 064

tion learning technique, aiming to learn a represen- 065

tation of data such that similar instances are close 066

in the representation space whereas dissimilar in- 067

stances are far apart (Aljundi et al., 2022). Loss 068

functions are crucial in contrastive learning as they 069

quantify the similarity and dissimilarity between 070

pairs, guiding the model to learn meaningful repre- 071

sentations for class discrimination (Hadsell et al., 072

2006; Gao et al., 2022; Wang et al., 2017). How- 073

ever, recent studies suggest that various loss func- 074

tions, including cross-entropy loss, contrastive loss 075

and triplet loss, fail to consider the intrinsic angular 076

distribution exhibited by the low-level and high- 077

level feature representations (Choi et al., 2020), 078

which contributes to our choice of using angular 079

loss in DeB-Ang. Angular loss is a scale-invariant 080

loss function designed to improve the learning sim- 081
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ilarity metrics by considering the angle between082

vectors (Wang et al., 2017).083

In summary, the contributions of this work are084

four-fold:085

1. We propose a novel customisable contrastive086

learning framework that combines a custom087

fine-tuned DeBERTa model (He et al., 2021)088

with contrastive and angular loss functions.089

We assess the difference in classification per-090

formance when utilising various combinations091

of the aforementioned loss functions for the092

proposed task.093

2. We assess the application of the proposed094

model on multi-class authorship attribution095

and binary machine-generated text detection.096

3. We introduce three new large-scale datasets097

for evaluating text classification models.098

These datasets were constructed by leveraging099

state-of-the-art language models, including100

Gemma-7b (Team et al., 2024), GPT4-Turbo101

(OpenAI, 2023) and Flan-T5-Large (Chung102

et al., 2022).103

4. We conduct linguistic error analysis of incor-104

rectly and correctly classified examples.105

2 Related Work106

2.1 Machine-generated text detection107

Studies have demonstrated that human partici-108

pants were unable to distinguish between machine-109

generated texts and human written texts (Jakesch110

et al., 2023; Islam et al., 2023; Ippolito et al., 2020;111

Dugan et al., 2020, 2022). Previous work high-112

lighted that disambiguating between human and113

LLM-generated texts is increasingly difficult (Pu114

and Demberg, 2023; Jakesch et al., 2023; Cox,115

2005). Automatic detection of machine-generated116

text has thus gained popularity, and can be cate-117

gorised according to their underlying method (So-118

laiman et al., 2019; Uchendu et al., 2020; Fagni119

et al., 2021; Bakhtin et al., 2019; Ippolito et al.,120

2020). Simple classifiers often involve linguis-121

tic feature analysis (Dugan et al., 2020, 2022).122

Other methods include zero-shot detection (So-123

laiman et al., 2019), and fine-tuned model detection124

(Uchendu et al., 2020; Ippolito et al., 2020; Fagni125

et al., 2021; Adelani et al., 2019; Tay et al., 2020;126

Zellers et al., 2021). Irrespective of the large num-127

ber of approaches to identifying machine-generated128

texts, detection remains a challenge (Crothers et al.,129

2023; Ai et al., 2022).130

2.2 Authorship Attribution 131

Traditional attribution approaches utilise linguistic 132

features in a univariate (utilising a single linguis- 133

tic feature, e.g. function words) (Martindale and 134

McKenzie, 1995) or multivariate (utilising multi- 135

ple linguistic features, e.g Writeprints) approach 136

(Abbasi and Chen, 2008; Sari, 2018). As aforemen- 137

tioned, feature-based linguistic identification re- 138

quires dataset-specific engineering, displaying lim- 139

ited scalability (Sari, 2018; Ai et al., 2022). More 140

recently, the use of learning-based approaches has 141

grown with the use of pre-trained LLMs (Fabien 142

et al., 2020). These approaches have demonstrated 143

the power of LLMs in significantly surpassing the 144

accuracy of traditional approaches with little analy- 145

sis required beforehand (Ai et al., 2022). 146

2.3 Research gaps 147

Existing approaches in detecting synthetic texts 148

created by LLMs have many limitations. For exam- 149

ple, these detection tools are now outdated due to 150

rapid technological advancements, e.g., DetectGPT 151

classifies texts only generated by GPT2 (Mitchell 152

et al., 2023). This necessitates classifier retrain- 153

ing which could negatively affect the accuracy of 154

these models (OpenAI, 2023). Additionally, the 155

increased advancements of NLG models have led 156

to more human-like texts. Further, these models are 157

LLM-specific and therefore, do not detect synthetic 158

texts generated by other language models. Also, 159

these methods have a black-box nature, making it 160

difficult for humans to understand their output for 161

correctly and incorrectly classified texts. Given the 162

increasing prevalence of machine-generated texts, 163

it is vital that we are able to distinguish which NLG 164

model was used to generate a given text. We extend 165

this to being able to detect the exact model version. 166

3 Data 167

3.1 Data collection 168

There is a strong consensus that datasets must be 169

diverse and representative (Tang et al., 2023). To 170

this end, we chose to utilise datasets with original, 171

human-written texts; different versions of each text 172

are then generated with the aid of LLMs which 173

were given carefully designed prompts. Datasets 174

were taken from Kaggle and the Turing Test bench- 175

mark known as TuringBench (Uchendu et al., 176

2021). The TuringBench dataset consists of ar- 177

ticles generated by 20 authors. There are a total of 178

20 datasets from 19 different NLG model versions 179
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and one human author. The DAIGT-V2 dataset180

consists of 37 authors (36 NLG models and one181

human author, with 60K texts). Further dataset182

details can be seen in Appendix A in Table 7. All183

datasets utilised were generated for the proposed184

tasks.185

Specifically, we utilised 5 randomly selected186

datasets from TuringBench datasets. We opted187

to use one dataset per model. For example,188

there are two datasets generated by XLNET. The189

exact model verions are XLNET_base and XL-190

NET_large. Therefore, we employ only one of191

these model versions. We randomly sampled the192

dataset due to limited computational resources. De-193

tails of the specific processing steps and size of194

the data taken for each of the different datasets195

are provided in Section 5. Table 7 in Appendix196

A presents—for each dataset that we utilised—the197

dataset name, source and the models that were used198

to generate the texts contained in each dataset.199

3.2 Data Generation200

We also generated our own datasets by using GPT4-201

Turbo (OpenAI, 2023), Gemma-7b (Team et al.,202

2024) and Flan-T5-large (Chung et al., 2022). The203

TuringBench dataset set consists of 19 different204

NLG model versions however, these models are205

no longer considered state-of-the-art models. We206

decided to generate three additional datasets from207

more recent models which are considered to be the208

current state-of-the-art and were not included in209

the original TuringBench dataset. This dataset set210

is referred to as TuringExtended. This enables the211

examination of MGT and AA within the context212

of newer NLG models, underpinning the explo-213

ration as to whether newer NLG models are more214

challenging to identify as machine-generated.215

Specifically, additional datasets were generated216

as an extension of TuringBench (Uchendu et al.,217

2021). Considering only the human-written texts218

from the original AA dataset from TuringBench,219

we extracted only a total of 7678 (non-duplicated)220

rows of text. The models that we employed221

are GPT4 Turbo1 (He et al., 2021), Gemma-7b2222

(Team et al., 2024) and Flan-T5-large3 (Chung223

et al., 2022), resulting in the creation of three new224

datasets. The models were given the prompt “gen-225

erate a similar article”, which is slightly similar226

1https://platform.openai.com/docs/models
2https://huggingface.co/google/Gemma-7b
3https://huggingface.co/google/flan-t5-large

GPT4-Turbo Gemma-7b Flan-T5-Large
BERTScore P 83.30 92.32 90.51
BERTScore R 84.11 95.55 83.98
BERTScore F1 83.70 93.88 87.08

IAA 88.64 89.30 84.64

Table 1: Averaged BERTScore Precision (P), Recall
(R) and F1-score (F1) for the datasets generated by the
specified models. Inter-annotator agreement (IAA) is
also provided.

to what was used in TuringBench (“generate an 227

article similar to the human-written one”). 228

The three models for generation (GPT4-Turbo, 229

Gemma-7b and Flan-T5-large) were chosen on the 230

basis that they were either the current state-of-the- 231

art models, or that they were not previously em- 232

ployed in creating the TuringBench datasets. 233

3.3 Data Evaluation 234

We evaluated the quality of the generated data 235

using a combination of the automated metric 236

BERTScore (Zhang et al., 2020) and human eval- 237

uators. BERTScore calculates token similarity us- 238

ing contextual embeddings to calculate the similar- 239

ity between tokens in the candidate and reference 240

text. This metric has demonstrated an advanced 241

performance by correlating strongly with human 242

judgement in various evaluative tasks (Zhang et al., 243

2020). In parallel, four human annotators were 244

trained on evaluating generated text and were pro- 245

vided with some background information on text 246

generation. Each annotator assessed 250 rows from 247

each dataset and was asked to label the data as co- 248

herent (0) or incoherent (1). For a data sample to 249

be labelled as coherent it had to meet two criteria: 250

texts should be semantically and grammatically 251

sound. Inter-annotator agreement (IAA) was then 252

measured between all annotators for each dataset. 253

The averaged BERTScore precision, recall and F1- 254

scores, and IAA results are presented in Table 1. 255

4 Methodology 256

4.1 Loss Functions 257

Previous studies have focussed on increasing sim- 258

ilarity between representations by using vary- 259

ing loss functions (Ai et al., 2022; Vygon and 260

Mikhaylovskiy, 2021). However, many approaches 261

focus on the utilisation of a single loss function. 262

In this paper, we propose a multi-loss fusion by 263

using the weighted sum of a combination of vari- 264

ous loss functions: angular loss, cross-entropy loss 265

and contrastive loss. Cross-entropy loss measures 266
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probability distributions; the objective is to min-267

imise the error between the predicted probability268

and true distribution (Mao et al., 2023). This is269

used in updating the model weights during optimi-270

sation. Angular loss, often used in deep learning271

tasks (Wang et al., 2017; Kim et al., 2023, 2021;272

Choi et al., 2020), considers the angle between273

vectors to enhance learning for an improved simi-274

larity metric. The utilisation of angular loss in text275

classification often leads to more adaptable and276

robust models capable of handling linguistic diver-277

sity (Gao, 2022; Hui et al., 2019; Wang et al., 2017;278

Deng et al., 2019). Contrastive learning focusses279

on learning representations of data so that similar280

instances are closer in the embedding space and281

dissimilar instances are apart (Tan et al., 2024).282

4.2 Problem Statement283

The goal of our approach is to capture nuanced284

semantic representations and to effectively discrim-285

inate learned embeddings. We propose leveraging286

the DeBERTa model with angular and contrastive287

loss integration (DeB-Ang). This process aims to288

enhance the discriminative capabilities and quality289

of embeddings to improve the model’s performance290

on downstream classification tasks.291

4.3 Implementation292

Our textual datasets underwent cleaning and pre-293

processing procedures. A 70:10:10 split was ap-294

plied to partition the data into a training, validation295

and test sets for model evaluation.296

Building upon the DeBERTa base model297

(microsoft/deberta-base), we implemented a298

new model, DeB-Ang, that integrates the angu-299

lar and contrastic loss into the training step. The300

model was implemented using PyTorch (Paszke301

et al., 2019) and Simple Transformers4 and was302

configured with specific hyperparameters (See Ap-303

pendix B); additionally, early stopping criteria were304

set to improve training efficiency.5305

4.4 Angular Loss Computation306

The angular loss function begins by computing307

the cosine similarity between all pairs of extracted308

embeddings. Positive and negative pairs are then309

generated to ensure the model can distinguish be-310

tween embeddings with the same and different la-311

4SimpleTransformers: https://simpletransformers.
ai/docs/classification-specifics/

5Our datasets and code will be made publicly available
upon paper acceptance.

bels. Subsequently, we compute the loss for pos- 312

itive and negative pairs in order to optimise em- 313

beddings to have lower similarity for pairs with 314

different labels and higher similarity for those with 315

the same. This ultimately decides their position 316

in the embedding space. The sum of positive and 317

negative loss creates a complete loss function. This 318

function, given below, guides the optimisation to 319

achieve embeddings that have properties of similar- 320

ity and dissimilarity. 321

LAngular =
n∑

i=1

log

∑
j ̸=i

esij

− log

∑
j ̸=i

esji

 322

where: 323

• n is the number of embeddings; 324

• sji is the cosine similarity between embed- 325

dings i and j; 326

• The first term encourages embeddings from 327

different classes (negative pairs) to have lower 328

cosine similarity; 329

• The second term encourages embeddings 330

from the same class (positive pairs) to have 331

higher cosine similarity. 332

4.5 Contrastive Loss Computation 333

Generating positive pairs facilitates the learning of 334

intra-class relationships by allowing embeddings 335

with the same labels but different indices to be con- 336

sidered for optimisation. Generating negative pairs 337

enhances the discrimination capability of these em- 338

beddings. We compute the loss for positive and 339

negative pairs. This allows embeddings of similar 340

instances to be pushed closer to each other in the 341

embedding space, whereas negative embeddings 342

push them apart thus improving intra-class clus- 343

tering and inter-class separation. Combining the 344

positive and negative loss, as shown below, guides 345

the model to learn embeddings that capture both 346

intra-class relationships and inter-class distinctions. 347

LContrastive =
∑
i,j

yijdij+(1−yij)max(0,m−dij) 348

where: 349

• yij is a binary label indicating whether em- 350

beddings i and j belong to the same class (1) 351

or different classes (0); 352

• dij is the distance between embeddings i and 353

j; 354
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• m is a margin hyperparameter;355

• For positive pairs (yij = 1), the loss is dij , en-356

couraging embeddings to be closer together;357

• For negative pairs (yij = 0), the loss is358

max(0,m − dij), encouraging embeddings359

to be apart by at least a distance of m.360

4.6 Our DeB-Ang Model361

In the DeB-Ang model, we utilise three loss func-362

tions, as shown in the equation below: angular loss,363

cross-entropy loss and contrastive loss. Angular364

loss is used to facilitate intra-class compactness365

and inter-class separation. Within our model, we366

utilise cross-entropy loss to penalise the models’367

misclassification by computing the difference be-368

tween predicted and actual labels. Cross-entropy369

is the standard loss function that was incorporated370

into the DeBERTa model. Constrastive loss en-371

hances the embeddings’ discriminative abilities by372

encouraging similarity for positive pairs and dis-373

similarity for negative pairs.374

LTotal = wCELCE375

+ wAngularLAngular376

+ wContrastiveLContrastive377

where:378

• LTotal is the total loss function used for train-379

ing the DeBERTa model;380

• LCE is the standard cross-entropy loss for381

classification tasks, calculated as LCE =382

−
∑n

i=1 logP (yi|X), where X is the input383

sequence and yi is the true label for the i-th384

example;385

• LAngular is the angular loss based on cosine386

similarity;387

• LContrastive is the contrastive loss;388

• wCE , wAngular, and wContrastive are the cor-389

responding weights for each loss component,390

allowing for fine-tuning the contribution of391

each loss value during training.392

This combined loss function incorporates three393

learning objectives:394

1. The cross-entropy loss which ensures that the395

model learns to correctly classify the input396

sequences based on the true labels.397

2. The angular loss which encourages the model398

to learn more separated representations for dif-399

ferent classes, based on the cosine similarity400

between the embeddings.401

3. The contrastive loss further enforces the sepa- 402

ration between inter-class embeddings, while 403

bringing intra-class embeddings closer to- 404

gether, based on the similarity calculations 405

and a specified margin. 406

By combining these three loss components, the 407

DeBERTa model can potentially learn more robust 408

and discriminative representations, leading to im- 409

proved classification performance on various natu- 410

ral language processing tasks. 411

4.7 Evaluation and Error Analysis 412

Considering the scale of the datasets, some accu- 413

racy values, when taken at face value, may not 414

demonstrate any meaningful improvement in per- 415

formance. Therefore, we utilise McNemar’s test 416

(Sundjaja et al., 2023) to demonstrate the statistical 417

significance of our results. McNemar’s test is a 418

non-parametric test that can be used in comparing 419

the performance of two classification models. 420

For error analysis, we extracted both incorrectly 421

classified and correctly classified data samples and 422

performed an in-depth linguistic analysis of the 423

outputs. We also computed the semantic similarity 424

between correctly and incorrectly classified data 425

by measuring the cosine similarity between the em- 426

beddings of the text pairs. We extracted contextual 427

embeddings using the same DeBERTa model. 428

5 Results and Discussions 429

5.1 Machine-generated Text Detection 430

In this section, we investigate binary machine- 431

generated text detection, whereby the task is 432

focussed on differentiating between human and 433

machine-written texts. Table 2 presents the results 434

for this task on a variety of datasets from Turing- 435

Bench. From the table, it is evident that the pro- 436

posed model outperforms both Contra-X (Ai et al., 437

2022) and a baseline DeBERTa model with a min- 438

imum improvement of 0.23% and maximum im- 439

provement of 38.04% in accuracy. Statistical signif- 440

icance was computed by comparing DeB-Ang with 441

the baseline DeBERTa model, as they exhibited 442

the closest performance. The results for machine- 443

generated text detection for the TuringExtended 444

data is presented in Table 3. This demonstrates that 445

the DeB-Ang model can differentiate between hu- 446

man and machine-generated texts even if the latter 447

were generated by the newer NLG models, display- 448

ing detection accuracy over 96% for texts generated 449

by Flan-T5-Large, GPT-4Turbo and Gemma-7b. 450
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Accuracy and F1-score

Contra-X Baseline DeBERTa DeB-Ang SS
(Y/N)

Min-Max
Improvement

PPLM-gpt2 99.34 99.32 99.66 99.66 99.98 100 Y 0.32 0.64
FAIR-wmt20 61.95 60.94 99.39 99.36 99.99 99.98 Y 0.60 38.04

GPT-3 97.85 97.85 98.8 98.8 99.73 99.73 Y 0.93 1.88
Grover-large 99.26 99.26 99.76 99.77 99.99 99.99 Y 0.23 0.73

transfo-xl 97.85 97.85 99.69 99.69 99.99 99.99 Y 0.30 2.14

Table 2: Accuracy and F1-score for the baseline Contra-X, DeBERTa, and the proposed DeB-Ang model on various
TuringBench datasets containing texts generated by different NLG models (rows). Min-Max refers to the minimum
and maximum classification accuracy that DeB-Ang obtained for each dataset. Statistical significance (SS) between
baseline DeBERTa and DeB-Ang is either yes (Y) or no (N) according to McNemar’s test.

From our initial experimentation, we noted that451

the baseline DeBERTa model outperforms other452

approaches in binary machine-generated text detec-453

tion; therefore, for the remaining experiments we454

proceed with .455

Accuracy and F1-score
Baseline

DeBERTa
DeB-Ang

SS
(Y/N)

Min-Max
Improvement

Flan-T5-Large 92.14 92.14 96.99 96.99 Y 4.85
Gemma-7b 99.96 99.96 99.99 99.99 N 0.03

GPT4-Turbo 72.14 72.14 99.96 100 Y 27.82

Table 3: Accuracy and F1-score for the baseline De-
BERTa and the proposed DeB-Ang model for TuringEx-
tended. Min-Max refers to the minimum and maximum
classification accuracy that DeB-Ang obtained for each
dataset. Statistical significance (SS) between baseline
DeBERTa and DeB-Ang is either yes (Y) or no (N) ac-
cording to McNemar’s test.

The results for the DAIGT-V2 dataset can456

be seen in Table 5. This improvement demon-457

strates the models’ generalisability across various458

NLG datasets, for both older and newer models.459

Uchendu et al. (2021) comments “No one size fits460

all” in their study as they used several models on461

these datasets and found that different models ob-462

tain different levels of performance, depending on463

the dataset. However, as presented in Table 2, it is464

clear that the model consistently outperforms our465

baseline models on all datasets.466

5.2 Authorship Attribution467

In assessing the generalisability of the DeB-Ang468

approach on various text classification settings, we469

present the following authorship attribution tasks:470

1. Authorship attribution for human and471

machine-generated text detection.472

2. Authorship attribution for model variation de-473

tection, e.g. differentiating between GPT-3.5474

and GPT-4.475

Accuracy F1 SS (Y/N)
Syntax-CNN 66.13 64.8 Y
BERT-AA 78.12 77.58 Y
Contra-X 80.73 80.54 Y
TopRoBERTa 82.83 82.00 Y
Baseline DeBERTa 77.71 77.56 Y
DeB-Ang 83.61 82.68 Y

Table 4: Accuracy and F1 for the authorship attribution
(AA) dataset from TuringBench (Uchendu et al., 2021)
comparing various AA approaches. McNemar’s test
was conducted to see if the result between DeB-Ang
and all other models is statistically significant (SS) or
not.

3. Authorship attribution for model developer 476

detection, e.g. OpenAI for GPT-4 and GPT- 477

3.5. 478

The results for each task is presented in Table 5 479

under authorship attribution, model detection and 480

developer detection, respectively. 481

From Table 4, it is evident that our approach 482

also surpasses prior attempts on the TuringBench 483

dataset. As previously mentioned, this dataset con- 484

sists of texts generated by 20 different authors (a 485

total of 200K texts from 19 NLG models and 1 hu- 486

man author) with high topical dissimilarity between 487

each model. This dissimilarity is expected as the 488

dataset was generated in certain topic set (Ai et al., 489

2022; Uchendu et al., 2021). For the DAIGT-V2 490

dataset, we downsized the data to approximately 491

10K rows per model. This reduction was neces- 492

sitated due to the dataset’s size, which demanded 493

significant computational resources. In Table 5, it 494

can observed that the DeB-Ang model outperforms 495

the baseline DeBERTa model with an accuracy im- 496

provement of 1.80% in authorship attribution and 497

8.66% in machine-generated text detection. To 498

delve deeper into the machine-generated text re- 499

sults from the baseline DeBERTa, we conducted 500
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Baseline DeBERTa DeB-Ang Accuracy
ImprovementTask Model Accuracy F1 Accuracy F1

Machine-generated text detection 82.69 90.53 91.36 92.31 8.66
Authorship attribution [37] 86.00 85.96 87.80 87.79 1.80

Model detection

Open AI [10] 88.64 88.64 91.75 91.75 3.11
Meta [13] 42.27 42.29 47.95 47.51 5.68
Google [7] 56.96 56.55 57.60 57.78 0.64

Anthropic [2] 95.63 95.58 99.03 99.03 3.40
Mistral [4] 93.15 93.39 93.96 95.12 0.81

Developer detection All [5] 89.78 89.78 92.98 92.98 3.20

Table 5: Table presenting evaluation results on the DAIGT-V2 dataset, including authorship attribution scores for all
NLG models, machine-generated text detection (human vs. machine), model detection (distinguishing between
different model variations), and authorship attribution for model developers. The numbers in brackets (e.g., “Open
AI [10]”) indicate the number of classes (i.e., the number of models).

an analysis focussing on the disparity between the501

accuracy and F1-score. This involved computing502

the Area Under the Receiver Operating Characteris-503

tic (AUROC) score and assessing misclassification.504

Our analysis revealed that the model exhibited a505

considerable number of false positives, incorrectly506

predicting a majority of human-written texts. The507

AUROC score was determined to be 50.12 whereas508

the AUROC score for DeB-Ang was 88.14 indi-509

cating DeB-Ang’s superior discrimination capabil-510

ities. We also address the previously mentioned511

limitation regarding the scarcity of research in clas-512

sifying models from a single developer; our results513

are provided in Table 5. We investigate a range514

of developers and models varying from older to515

newer model versions. We were able to improve516

results from baseline DeBERTa for this task by517

0.64% to 5.68%. The low accuracy observed for518

Meta and Google models can be attributed to the519

high similarity between the model variations used,520

e.g., Llama-2-7b and Llama-2-13b. This makes521

distinguishing between these version challenging,522

leading to misclassification. Further investigation523

is necessary to comprehensively understand the524

reasons for misclassification. We were also able to525

classify generated texts according to model devel-526

oper with an accuracy as high as 92.98%.527

As mentioned in prior research, classifying a528

range of outputs, e.g. texts with high topic varia-529

tion, is an increasingly difficult classification task530

(Uchendu et al., 2021; Juola, 2008). Furthermore,531

it is important to note that TuringBench consists532

of texts from multiple sources. Also, some models533

are being used repeatedly to generate texts; this can534

decrease performance as there can be semantics535

and stylistic overlap between generated texts.536

5.3 Assessing loss functions 537

To assess the significance of the loss functions used, 538

we investigated various combinations of loss func- 539

tions on the multi-class authorship attribution and 540

binary machine-generated text detection tasks. The 541

results are presented in Table 6. We provide the ac- 542

curacy, F1-score and AUROC scores for these tasks 543

obtained by the DeB-Ang model. We ran each ex- 544

periment for one epoch for initial benchmarking to 545

assess each models performance. This allowed us 546

to identify the which approaches we would use for 547

further investigations. We identified the optimal 548

parameter combination for the loss functions for 549

each task and re-ran the experiment for 8 epochs. 550

The aim of this investigation is to assess the perfor- 551

mance improvement resulting from the various loss 552

functions. This also highlights the customisability 553

of the model. We extend the metrics by adding the 554

AUROC score as this metric considers the trade- 555

off between precision and recall (McDermott et al., 556

2024). 557

We found that a certain loss function combina- 558

tion may ascertain significant results at one epoch 559

given a simple model. However, once the model or 560

dataset complexity increases then a different loss 561

combination would be more appropriate. Angu- 562

lar loss has the advantage of learning embeddings 563

such that similar samples have a smaller angular 564

separation. It is vital to understand that angular 565

loss focusses on learning embeddings (Wang et al., 566

2017) whereas cross-entropy focusses on measur- 567

ing the dissimilarity between predicted and true 568

probability distribution of classes (Teahan, 2000). 569

This difference may account for the accuracy dif- 570

ference. 571
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Task Loss function Accuracy F1 AUROC

Authorship
Attribution

ANG + CE 86.51 86.54 98.12
CL + CE 86.72 86.78 98.07

CL + ANG 87.02 87.08 98.12
ANG 86.37 86.42 97.88
CL 86.72 86.63 98.11
CE 86.87 86.71 98.00

ANG + CE + CL
(1.0; 1.0; 1.0)

86.35 86.41 97.97

ANG + CE + CL
(1.0; 0.25; 1.0)

87.13 8722 98.15

8 epoch
ANG + CE + CL
(1.0; 0.25; 1.0)

88.8 88.06 98.5

Binary
machine-
generated

text
detection

ANG + CE 90.87 91.89 77.00
CL + CE 91.6 92.47 90.89

CL + ANG 94.18 94.61 95.61
ANG 94.49 94.86 95.61
CL 88.15 89.19 72.58
CE 91.69 92.33 92.83

ANG + CE + CL
(1.0; 1.0; 1.0)

90.76 91.92 87.57

ANG + CE + CL
(1.0; 0.75; 0.75)

82.69 90.53 78.71

8 epoch
ANG + CE + CL
(1.0; 0.75; 0.75)

93.76 88.23 90.94

Table 6: Comparison of single and combined loss func-
tions for AA and machine-generated text detection using
the DeB-Ang model with varying number of epochs. Pa-
rameter values for all loss functions were set to 1.0 and
all experiments were run for 1 epoch unless otherwise
specified. Key: AUROC = area under the receiver op-
erating characteristic, CE = cross-entropy loss, CL =
contrastive loss and ANG = angular loss. The values in
brackets refer to the parameter values.

5.4 Analysing the misclassified data572

For our error analysis, 100 instances of incorrect573

and correct classifications were extracted for the574

binary classification task. We found that texts575

were being labelled as machine-generated more576

frequently than human data; this could be due to577

the class imbalance or due to the NLG model’s578

ability to create human-like text.579

Based on the manual analysis, there was no spe-580

cific linguistic category which would clearly lead581

to the misclassification. Therefore, we extracted582

features from varying categories (see Table 9 in Ap-583

pendix C). A total of 250 features were extracted.584

100 random features were sampled and the raw585

counts and mean for each feature was plotted (see586

Figure 1 in Appendix C). From this plot, it is ev-587

ident that there is a clear discrepancy in feature588

usage. The correctly classified data points exhibit589

lower feature counts and an overall lower mean590

whereas the incorrectly classified data is slightly591

more sporadic and exhibits an overall higher mean.592

The statistical significance for these differences for593

all features was computed using the Mann-Whitney 594

U test (Nachar, 2008) as the data was not normally 595

distributed (as affirmed by the Shapiro-Wilk test) 596

(Aryadoust and Raquel, 2020). The statistical sig- 597

nificance was less than 0.05 thus rejecting the null 598

hypothesis and confirming the difference between 599

the feature counts and mean for the correctly clas- 600

sified and incorrectly classified data is significant. 601

We then measured the semantic similarity be- 602

tween correctly classified and incorrectly classified 603

instances using contextual embeddings obtained 604

using DeBERTa. The mean similarity score for all 605

data points is 85.54 (minimum score of 63.22 and 606

maximum score of 92.64). Figure 2 in Appendix C 607

presents a correlation coefficient of -0.03 indicat- 608

ing a very weak negative linear relationship almost 609

suggesting no linear relationship between the data 610

points. This indicates that any observed differences 611

or similarities in the similarity score are likely due 612

to random variation and not a meaningful underly- 613

ing relationship. We conclude that the similarity 614

scores do not provide useful information to distin- 615

guish between correctly and incorrectly classified 616

instances. 617

6 Conclusion and Future Work 618

In this research, we have created a custom De- 619

BERTa model integrating contrastive and angular 620

loss. To our knowledge, this is one of the first at- 621

tempts at this integration and we have demonstrated 622

the success of the proposed DeB-Ang model on sev- 623

eral datasets. We investigated more fine-grained 624

machine-generated text detection by classifying 625

model variations and developers. We were able to 626

outperform prior approaches in machine-generated 627

text detection with a minimum improvement of 628

0.23 % and a maximum improvement of 38.04% 629

across all datasets. We were able to classify model 630

variations with accuracy scores ranging from 0.64% 631

to 5.68%, and to identify developers with an accu- 632

racy improvement of 3.20%. For authorship at- 633

tribution, we were able to improve classification 634

with a maximum accuracy of 17.48% on the exten- 635

sive TuringBench dataset which is characterised by 636

high topical dissimilarity. Future work will involve 637

identifying texts in which multiple NLG models 638

or humans have been used to intentionally mask 639

the writing style of a text. Additionally, a more 640

extensive examination of linguistic features of syn- 641

thetic data across generations of LLMs can provide 642

insights into language evolution these models. 643
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7 Limitations644

Guerrero and Alsmadi (2022) lists several research645

gaps in the field of machine-generated text detec-646

tion e.g. domain-specific text detection. It would647

be interesting to investigate texts that are cross-648

domain, genre or multimodal. Further, we investi-649

gated misclassified instances but did not use this650

information to improve the model due to time con-651

straints. The limitations associated with data gen-652

eration are model-related. Data generation is a653

time-consuming process and requires many com-654

putational resources; we were only able to extend655

our evaluation data with three datasets.656

Ethics Statement657

The materials used for this study did not require hu-658

man participation and the data does not contain any659

harmful or sensitive information. The datasets used660

in this study were acquired from prior research.661

The dataset generated using NLG models (Open662

AI’s GPT-4 model, Gemma-7b and Flan-T5-large)663

was evaluated to ensure that there is no overtly664

harmful text. Data was annotated and evaluted by665

PhD students, the task was explained in regards to666

how data will be used and proposed tasks. Never-667

theless, the potential negative use of this research668

should not be ignored. The insights provided by669

this work have the potential to be exploited for670

malicious purposes, potentially undermining the671

effectiveness of these detectors. However, we hope672

that this research will be used to support the ef-673

forts in detecting neural machine-generated used674

in applications with malicious intent.675
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Appendix A Dataset model breakdown 972

Dataset Source Language Models Link
TuringBench TuringBench GPT-1, GPT-2, GPT-3, GROVER, CTRL, XLM, FAIR, Transformer_XL, XLNET, PPLM TuringBench
DAIGT-V2 Kaggle LlaMa2, Darragh_Claude, Mistral7binstruct, Gemma, opt DAIGT-V2

TuringExtended Github Gemma, Flan-T5, GPT To be added

Table 7: Overview of datasets utilized in the study, detailing dataset name, source, and the language models used
to generate text. Note: While not exhaustive, datasets may encompass various iterations of a single model (e.g.,
LlaMa-7b and Llama-13b).

Appendix B Hyperparameter settings for the DeBERTa model 973

Hyperparameter Amended value
num_train_epochs 1 - 8
train_batch_size 16
eval_batch_size 16

gradient_accumulation_steps 4
n_gpu 1

max_seq_length 512
class_weight Equal weighting specified

early_stopping_patience 2
early_stopping_delta 0.01

contrastive_loss_weight [0.05 - 0.25 - 0.50 -0.75 - 1.00]
angular_loss_weight [0.05 - 0.25 - 0.50 -0.75 - 1.00]

crossentropy_loss_weight [0.05 - 0.25 - 0.50 -0.75 - 1.00]

Table 8: The hyperparameters used in training the DeB-Ang model. Parameter values for the epochs and loss
functions varied and the specific values used are detailed in Section 5.

Appendix C Error analysis: linguistic analysis 974

C.1 Linguistic features extracted 975

Linguistic category Feature

Character-level features
uni, bi and tri-grams, word length distribution,
number counts, text length, average word
sentence length, casing, type-token ratio

Syntactic features Part-of-speech tags, dependency tags
Word-level features Function words

Table 9: Linguistic features extracted from the correctly and incorrectly classified texts for the task of binary
machine-generated text detection.

C.2 Linguistic feature groups 976
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Figure 1: Scatterplot displaying the raw counts and mean feature usage of incorrectly and correctly classified
samples.

Figure 2: Scatterplot displaying the similarity scores between each correctly and incorrectly classified data samples.
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