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Abstract

Few-shot segmentation aims to train a segmentation model that can fast adapt to
novel classes with few exemplars. The conventional training paradigm is to learn
to make predictions on query images conditioned on the features from support
images. Previous methods only utilized the semantic-level prototypes of support
images as the conditional information. These methods cannot utilize all pixel-wise
support information for the query predictions, which is however critical for the
segmentation task. In this paper, we focus on utilizing pixel-wise relationships
between support and query images to facilitate the few-shot segmentation task.
We design a novel Cycle-Consistent TRansformer (CyCTR) module to aggregate
pixel-wise support features into query ones. CyCTR performs cross-attention
between features from different images, i.e. support and query images. We observe
that there may exist unexpected irrelevant pixel-level support features. Directly
performing cross-attention may aggregate these features from support to query and
bias the query features. Thus, we propose using a novel cycle-consistent attention
mechanism to filter out possible harmful support features and encourage query
features to attend to the most informative pixels from support images. Experiments
on all few-shot segmentation benchmarks demonstrate that our proposed CyCTR
leads to remarkable improvement compared to previous state-of-the-art methods.
Specifically, on Pascal-5i and COCO-20i datasets, we achieve 67.5% and 45.6%
mIoU for 5-shot segmentation, outperforming previous state-of-the-art method by
5.6% and 7.1% respectively.

1 Introduction

Recent years have witnessed great progress in semantic segmentation [19, 4, 47]. The success can be
largely attributed to large amounts of annotated data [48, 17]. However, labeling dense segmentation
masks are very time-consuming [45]. Semi-supervised segmentation [15, 39, 38] has been broadly
explored to alleviate this problem, which assumes a large amount of unlabeled data is accessible.
However, semi-supervised approaches may fail to generalize to novel classes with very few exemplars.
In the extreme low data regime, few-shot segmentation [26, 35] is introduced to train a segmentation
model that can quickly adapt to novel categories.

∗Part of this work was done when Gengwei Zhang was an intern at Baidu Research.
†Corresponding author.
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Figure 1: Different learning frameworks for few-shot segmentation, from the perspective of ways to
utilize support information. (a) Class-wise mean pooling based method. (b) Clustering based method.
(c) Foreground pixel attention method. (d) Our Cycle-Consistent TRansformer (CyCTR) framework
that enables all beneficial support pixel-level features (foreground and background) to be considered.

Most few-shot segmentation methods follow a learning-to-learn paradigm where predictions of query
images are made conditioned on the features and annotations of support images. The key to the
success of this training paradigm lies in how to effectively utilize the information provided by support
images. Previous approaches extract semantic-level prototypes from support features and follow a
metric learning [29, 7, 35] pipeline extending from PrototypicalNet [28]. According to the granularity
of utilizing support features, these methods can be categorized into two groups, as illustrated in
Figure 1: 1) Class-wise mean pooling [35, 46, 44] (Figure 1(a)). Support features within regions
of different categories are averaged to serve as prototypes to facilitate the classification of query
pixels. 2) Clustering [18, 41] (Figure 1(b)). Recent works attempt to generate multiple prototypes
via EM algorithm or K-means clustering [41, 18], in order to extract more abundant information
from support images. These prototype-based methods need to “compress" support information into
different prototypes (i.e. class-wise or cluster-wise), which may lead to various degrees of loss
of beneficial support information and thus harm segmentation on query image. Rather than using
prototypes to abstract the support information, [43, 34] (Figure 1(c)) propose to employ the attention
mechanism to extract information from support foreground pixels for segmenting query. However,
such methods ignore all the background support pixels that can be beneficial for segmenting query
image, and incorrectly consider partial foreground support pixels that are quite different from the
query ones, leading to sub-optimal results.
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Figure 2: The motivation of our proposed method.
Many pixel-level support features are quite differ-
ent from the query ones, and thus may confuse the
attention. We incorporate cycle-consistency into
attention to filter such confusing support features.
Note that the confusing support features may come
from foreground and background.

In this paper, we focus on equipping each query
pixel with relevant information from support im-
ages to facilitate the query pixel classification.
Inspired by the transformer architecture [32]
which performs feature aggregation through at-
tention, we design a novel Cycle-Consistent
Transformer (CyCTR) module (Figure 1(d)) to
aggregate pixel-wise support features into query
ones. Specifically, our CyCTR consists of two
types of transformer blocks: the self-alignment
block and the cross-alignment block. The self-
alignment block is employed to encode the query
image features by aggregating its relevant con-
text information, while the cross-alignment aims
to aggregate the pixel-wise features of support
images into the pixel-wise features of query
image. Different from self-alignment where
Query3, Key and Value come from the same
embedding, cross-alignment takes features from query images as Query, and those from support
images as Key and Value. In this way, CyCTR provides abundant pixel-wise support information for
pixel-wise features of query images to make predictions.

Moreover, we observe that due to the differences between support and query images, e.g., scale, color
and scene, only a small proportion of support pixels can be beneficial for the segmentation of query
image. In other words, in the support image, some pixel-level information may confuse the attention
in the transformer. Figure 2 provides a visual example of a support-query pair together with the label

3To distinguish from the phrase "query" in few-shot segmentation, we use "Query" with capitalization to
note the query sequence in the transformer.
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masks. The confusing support pixels may come from both foreground pixels and background pixels.
For instance, point p1 in the support image located in the plane afar, which is indicated as foreground
by the support mask. However, the nearest point p2 in the query image (i.e. p2 has the largest feature
similarity with p1) belongs to a different category, i.e. background. That means, there exists no query
pixel which has both high similarity and the same semantic label with p1. Thus, p1 is likely to be
harmful for segmenting "plane" and should be ignored when performing the attention. To overcome
this issue, in CyCTR, we propose to equip the cross-alignment block with a novel cycle-consistent
attention operation. Specifically, as shown in Figure 2, starting from the feature of one support
pixel, we find its nearest neighbor in the query features. In turn, this nearest neighbor finds the most
similar support feature. If the starting and the end support features come from the same category, a
cycle-consistency relationship is established. We incorporate such an operation into attention to force
query features only attend to cycle-consistent support features to extract information. In this way, the
support pixels that are far away from query ones are not considered. Meanwhile, cycle-consistent
attention enables us to more safely utilize the information from background support pixels, without
introducing much bias into the query features.

In a nutshell, our contributions are summarized as follows: (1) We tackle few-shot segmentation from
the perspective of providing each query pixel with relevant information from support images through
pixel-wise alignment. (2) We propose a novel Cycle-Consistent TRansformer (CyCTR) to aggregate
the pixel-wise support features into the query ones. In CyCTR, we observe that many support
features may confuse the attention and bias pixel-level feature aggregation, and propose incorporating
cycle-consistent operation into the attention to deal with this issue. (3) Our CyCTR achieves state-of-
the-art results on two few-shot segmentation benchmarks, i.e., Pascal-5i and COCO-20i. Extensive
experiments validate the effectiveness of each component in our CyCTR.

2 Related Work

2.1 Few-Shot Segmentation

Few-shot segmentation [26] is established to perform segmentation with very few exemplars. Recent
approaches formulate few-shot segmentation from the view of metric learning [29, 7, 35]. For
instance, [7] first extends PrototypicalNet [28] to perform few-shot segmentation. PANet [35]
simplifies the framework with an efficient prototype learning framework. SG-One [46] leverage the
cosine similarity map between the single support prototype and query features to guide the prediction.
CANet [44] replaces the cosine similarity with an additive alignment module and iteratively refines
the network output. PFENet [30] further designs an effective feature pyramid module and leverages
a prior map to achieve better segmentation performance. Recently, [41, 18, 43] point out that only
a single support prototype is insufficient to represent a given category. Therefore, they attempt to
obtain multiple prototypes via EM algorithm to represent the support objects and the prototypes are
compared with query image based on cosine similarity [18, 41]. Besides, [43, 34] attempt to use
graph attention networks [33, 40] to utilize all foreground support pixel features. However, they
ignore all pixels in the background region by default. Besides, due to the large difference between
support and query images, not all support pixels will benefit final query segmentation. Recently, some
concurrent works propose to learn dense matching through Hypercorrelation Squeeze Networks [22]
or mining latent classes [42] from the background region. Our work aims at mining information
from the whole support image, but exploring to use the transformer architecture and from a different
perspective, i.e., reducing the noise in the support pixel-level features.

2.2 Transformer

Transformer and self-attention were firstly introduced in the fields of machine translation and natural
language processing [6, 32], and are receiving increasing interests recently in the computer vision
area. Previous works utilize self-attention as additional module on top of existing convolutional
networks, e.g., Nonlocal [36] and CCNet [14]. ViT [8] and its following work [31] demonstrate
the pure transformer architecture can achieve state-of-the-art for image recognition. On the other
hand, DETR [3] builds up an end-to-end framework with a transformer encoder-decoder on top of
backbone networks for object detection. And its deformable vairents [51] improves the performance
and training efficiency. Besides, in natural language processing, a few works [2, 5, 27] have been
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introduced for long documents processing with sparse transformers. In these works, each Query
token only attends to a pre-defined subset of Key positions.

2.3 Cycle-consistency Learning

Our work is partially inspired by cycle-consistency learning [50, 9] that is explored in various
computer vision areas. For instance, in image translation, CycleGAN [50] uses cycle-consistency
to align image pairs. It is also effective in learning 3D correspondence [49], consistency between
video frames [37] and association between different domains [16]. These works typically constructs
cycle-consistency loss between aligned targets (e.g., images). However, the simple training loss
cannot be directly applied to few-shot segmentation because the test categories are unseen from the
training process and no finetuning is involved during testing. In this work, we incorporate the idea of
cycle-consistency into transformer to eliminate the negative effect of confusing or irrelevant support
pixels.

3 Methodology

3.1 Problem Setting

Few-shot segmentation aims at training a segmentation model that can segment novel objects with
very few annotated samples. Specifically, given dataset Dtrain and Dtest with category set Ctrain

and Ctest respectively, where Ctrain ∩ Ctest = ∅, the model trained on Dtrain is directly used to
test on Dtest. In line with previous works [30, 35, 44], episode training is adopted in this work
for few-shot segmentation. Each episode is composed of k support images Is and a query image
Iq to form a k-shot episode {{Is}k, Iq}, in which all {Is}k and Iq contain objects from the same
category. Then the training set and test set are represented by Dtrain = {{Is}k, Iq}Ntrain and
Dtest = {{Is}k, Iq}Ntest , where Ntrain and Ntest is the number of episodes for training and test
set. During training, both support masks Ms and query masks Mq are available for training images,
and only support masks are accessible during testing.

3.2 Revisiting of Transformer

Following the general form in [32], a transformer block is composed of alternating layers of multi-head
attention (MHA) and multi-layer perceptron (MLP). LayerNorm (LN) [1] and residual connection [12]
are applied at the end of each block. Specially, an attention layer is formulated as

Atten(Q,K, V ) = softmax(
QKT

√
d

)V, (1)

where [Q;K;V ] = [WqZq;WkZkv;WvZkv], in which Zq is the input Query sequence, Zkv is the
input Key/Value sequence, Wq,Wk,Wv ∈ Rd×d denote the learnable parameters, d is the hidden
dimension of the input sequences and we assume all sequences have the same dimension d by default.
For each Query element, the attention layer computes its similarities with all Key elements. Then the
computed similarities are normalized via softmax, which are used to multiply the Value elements to
achieve the aggregated outputs. When Zq = Zkv , it functions as self-attention mechanism.

The multi-head attention layer is an extention of attention layer, which performs h attention operations
and concatenates consequences together. Specifically,

MHA(Q,K, V ) = [head1, ...,headh], (2)

where headm = Atten(Qm,Km, Vm) and the inputs [Qm,Km, Vm] are the mth group from
[Q,K, V ] with dimension d/h.

3.3 Cycle-Consistent Transformer

Our framework is illustrated in Figure 3(a). Generally, an encoder of our Cycle-Consistent TRans-
former (CyCTR) consists of a self-alignment transformer block for encoding the query features and a
cross-alignment transformer block to enable the query features to attend to the informative support
features. The whole CyCTR module stacks L encoders.
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Figure 3: Framework of our proposed Cycle-Consistent TRansformer (CyCTR). Each encoder of
CyCTR consists of two transformers blocks, i.e., the self-alignment block for utilizing global context
within the query feature map and the cross-alignment block for aggregate information from support
images. In the cross-alignment block, we introduce the multi-head cycle-consistent attention (shown
on the right, with the number of heads h = 1 for simplicity). The attention operation is guided by the
cycle-consistency among query and support features.

Specifically, for the given query feature Xq ∈ RHq×Wq×d and support feature Xs ∈ RHs×Ws×d, we
first flatten them into 1D sequences (with shape HW × d) as inputs for transformer, in which a token
is represented by the feature z ∈ Rd at one pixel location. The self-alignment block only takes the
flattened query feature as input. As context information of each pixel has been proved beneficial
for segmentation [4, 47], we adopt the self-alignment block to pixel-wise features of query image to
aggregate their global context information. We don’t pass support images through the self-alignment
block, as we mainly focus on the segmentation performance of query images. Passing through the
support images which don’t coordinate with the query mask may do harm to the self-alignment on
query images.

In contrast, the cross-alignment block performs attention between query and support pixel-wise
features to aggregate relevant support features into query ones. It takes the flattened query feature
and a subset of support feature (the sampling procedure is discussed latter) with size Ns ≤ HsWs as
Key/Value sequence Zkv .

With these two blocks, it is expected to better encoder the query features to facilitate the subsequent
pixel-wise classification. When stacking L encoders, the output of the previous encoder is fed into
the self-alignment block. The outputs of self-alignment block and the sampled support features are
then fed into the cross-alignment block.

3.3.1 Cycle-Consistent Attention

According to the aforementioned discussion, the pure pixel-level attention may be confused by
excessive irrelevant support features. To alleviate this issue, as shown in Figure 3(b), a cycle-
consistent attention operation is proposed. We first go through the proposed approach for 1-shot case
for presentation simplicity and then discuss it in the multiple shot setting.

Formally, an affinity map A = QKT

√
d
, A ∈ RHqWq×Ns is first calculated to measure the corre-

spondence between all query and support pixels. Then, for an arbitrary support pixel/token j
(j ∈ {0, 1, ..., Ns − 1}, Ns is the number of support pixels), its most similar query pixel/token i⋆ is
obtained by

i⋆ = argmax
i

A(i,j), (3)

where i ∈ {0, 1, ...,HqWq − 1} denotes the spatial index of query pixels. Since the query mask is
not accessible, the label of query pixel i⋆ is unknown. However, we can in turn find its most similar
support pixel j⋆ in the same way:

j⋆ = argmax
j

A(i⋆,j). (4)
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Given the sampled support label Ms ∈ RNs , cycle-consistency is satisfied if Ms(j) = Ms(j⋆).
Previous work [16] attempts to encourage the feature similarity between cycle-consistent pixels to
improve the model’s generalization ability within the same set of categories. However, in few-shot
segmentation, the goal is to enable the model to fast adapt to novel categories rather than making the
model fit better to training categories. Thus, we incorporate the cycle-consistency into the attention
operation to encourage the cycle-consistent cross-attention. First, by traversing all support tokens, an
additive bias B ∈ RNs is obtained by

Bj =

{
0, ifMs(j) = Ms(j⋆)

−∞, ifMs(j) ̸= Ms(j⋆)
,

where j ∈ {0, 1, ..., Ns}. Then, for a single query token Zq(i) ∈ Rd at location i, the support
information is aggregated by

CyCAtten(Qi,Ki, Vi) = softmax(A(i) +B)V, (5)

where i ∈ {0, 1, ...,HqWq} and A is obtained by QKT

√
d

. In the forward process, B is element-wise
added with the affinity A(i) for Zq(i) to aggregate support features. In this way, the attention weight
for the cycle-inconsistent support features become zero, implying that these irrelevant information
will not be considered. Besides, the cycle-consistent attention implicitly encourages the consistency
between the most relevant query and support pixel-wise features through backpropagation. Note
that our method aims at removing support pixels with certain inconsistency, rather than ensuring all
support pixels to form cycle-consistency, which is impossible without knowing the query ground
truth labels.

When performing self-attention in the self-alignment block, there may also exist the same issue, i.e.
the query token may attend to irrelevant or even harmful features (especially when background is
complex). According to our cycle-consistent attention, each query token should receive information
from more consistent pixels than aggregating from all pixels. Due to the lack of query mask
Mq, it is impossible to establish the cycle-consistency among query pixels/tokens. Inspired by
DeformableAttention [51], the consistent pixels can be obtained via a learnable way as ∆ = f(Q+

Coord) and A
′
= g(Q+Coord), where ∆ ∈ RHpWp×P is the predicted consistent pixels, in which

each element δ ∈ RP in ∆ represents the relative offset from each pixel and P represents the number
of pixels to aggregate. And A

′ ∈ RHqWq×P is the attention weights. Coord ∈ RHqWq×d is the
positional encoding [24] to make the prediction be aware of absolute position, and f(·) and g(·) are
two fully connected layers that predict the offsets4 and attention weights. Therefore, the self-attention
within the self-alignment transformer block is represented as

PredAtten(Qr, Vr) =

P∑
g

softmax(A
′
)(r,g)Vr+∆(r,g)

, (6)

where r ∈ {0, 1, ...,HqWq} is the index of the flattened query feature, both Q and V are obtained by
multiplying the flattened query feature with the learnable parameter.

Generally speaking, the cycle-consistent transformer effectively avoids the attention being biased by
irrelevant features to benefit the training of few-shot segmentation.

Mask-guided sparse sampling and K-shot Setting: Our proposed cycle-consistency transformer can
be easily extended to K-shot setting where K > 1. When multiple support feature maps are provided,
all support features are flattened and concatenated together as input. As the attention is performed
at the pixel-level, the computation load will be high if the number of support pixels/tokens is large,
which is usually the case under K-shot setting. In this work, we apply a simple mask-guided sampling
strategy to reduce the computation complexity and make our method more scalable. Concretely,
given the k-shot support sequence Zs ∈ RkHsWs×d and the flattened support masks Ms ∈ RkHsWs ,
the support pixels/tokens are obtained by uniformly sampling Nfg tokens (Nfg <= Ns

2 , where
Ns ≤ kHsWs) from the foreground regions and Ns−Nfg tokens from the background regions in all
support images. With a proper Ns, the sampling operation reduces the computational complexity, and
makes our algorithm more scalable with the increase of spatial size of support images. Additionally,
this strategy helps balance the foreground-background ratio and also implicitly considers different
sizes of various object regions in support images.

4The offsets are predicted as 2d coordinates and transformed into 1d coordinates.
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Table 1: Comparison with other state-of-the-art methods for 1-shot and 5-shot segmentation on
PASCAL-5i using the mIoU (%) evaluation metric. Best results are shown in bold.

Method Backbone 1-shot 5-shot
50 51 52 53 Mean 50 51 52 53 Mean

PANet [35]

Vgg-16

42.3 58.0 51.1 41.2 48.1 51.8 64.6 59.8 46.5 55.7
FWB [23] 47.0 59.6 52.6 48.3 51.9 50.9 62.9 56.5 50.1 55.1
SG-One [46] 40.2 58.4 48.4 38.4 46.3 41.9 58.6 48.6 39.4 47.1
RPMM [41] 47.1 65.8 50.6 48.5 53.0 50.0 66.5 51.9 47.6 54.0
CANet [44]

Res-50

52.5 65.9 51.3 51.9 55.4 55.5 67.8 51.9 53.2 57.1
PGNet [43] 56.0 66.9 50.6 50.4 56.0 57.7 68.7 52.9 54.6 58.5
RPMM [41] 55.2 66.9 52.6 50.7 56.3 56.3 67.3 54.5 51.0 57.3
PPNet [18] 47.8 58.8 53.8 45.6 51.5 58.4 67.8 64.9 56.7 62.0
PFENet [30] 61.7 69.5 55.4 56.3 60.8 63.1 70.7 55.8 57.9 61.9
CyCTR (Ours) Res-50 65.7 71.0 59.5 59.7 64.0 69.3 73.5 63.8 63.5 67.5
FWB [23]

Res-101
51.3 64.5 56.7 52.2 56.2 54.9 67.4 62.2 55.3 59.9

DAN [34] 54.7 68.6 57.8 51.6 58.2 57.9 69.0 60.1 54.9 60.5
PFENet [30] 60.5 69.4 54.4 55.9 60.1 62.8 70.4 54.9 57.6 61.4
CyCTR (Ours) Res-101 67.2 71.1 57.6 59.0 63.7 71.0 75.0 58.5 65.0 67.4

3.4 Overall Framework

Following previous works [30, 35, 44], both query and support images are first feed into a shared
backbone (e.g., ResNet [12]) which is initialized with weights pretrained from ImageNet [25] to
obtain general image features. Similar to [30], middle-level query features (the concatenation of
query features from the 3rd and the 4th blocks of ResNet) are processed by a 1×1 convolution to
reduce the hidden dimension. The high-level query features (from the 5th block) are used to generate
a prior map (the prior map is generated by calculating the pixel-wise similarity between query and
support features, details can be found in the supplementary materials) and then are concatenated
with the middle-level query features. The average masked support feature is also concatenated to
provide global support information. The concatenated features are processed by a 1×1 convolution.
The output query features are then fed into our proposed CyCTR encoders. The output of CyCTR
encoders is fed into a classifier to obtain the final segmentation results. The classifier consists of
a 3×3 convolutional layer, a ReLU layer and a 1×1 convolutional layer. More details about our
network structure can be found in the supplementary materials.

4 Experiments

4.1 Dataset and Evaluation Metric

We conduct experiments on two commonly used few-shot segmentation datasets, Pascal-5i [10]
(which is combined with SBD [11] dataset) and COCO-20i [17], to evaluate our method. For Pascal-
5i, 20 classes are separated into 4 splits. For each split, 15 classes are used for training and 5 classes
for test. At the test time, 1,000 pairs that belong to the testing classes are sampled from the validation
set for evaluation. In COCO-20i, we follow the data split settings in FWB [23] to divide 80 classes
evenly into 4 splits, 60 classes for training and test on 20 classes, and 5,000 validation pairs from the
20 classes are sampled for evaluation. Detailed data split settings can be found in the supplementary
materials. Following common practice [30, 35, 46], the mean intersection over union (mIoU) is
adopted as the evaluation metric, which is the averaged value of IoU of all test classes. We also report
the foreground-background IoU (FB-IoU) for comparison.

4.2 Implementation Details

In our experiments, the training strategies follow the same setting in [30]: training for 50 epochs
on COCO-20i and 200 epochs on Pascal-5i. Images are resized and cropped to 473 × 473 for
both datasets and we use random rotation from −10◦ to 10◦ as data augmentation. Besides, we
use ImageNet [25] pretrained ResNet [12] as the backbone network and its parameters (including
BatchNorms) are freezed. For the parameters except those in the transformer layers, we use the
initial learning rate 2.5 × 10−3, momentum 0.9, weight decay 1 × 10−4 and SGD optimizer with
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Table 2: Comparison with other state-of-the-art methods for 1-shot and 5-shot segmentation on
COCO-20i using the mIoU (%) evaluation metric. Best results are shown in bold.

Method Backbone 1-shot 5-shot
200 201 202 203 Mean 200 201 202 203 Mean

FWB [23] Res-101 19.9 18.0 21.0 28.9 21.2 19.1 21.5 23.9 30.1 23.7
PPNet [18] Res-50 28.1 30.8 29.5 27.7 29.0 39.0 40.8 37.1 37.3 38.5
RPMM [41] Res-50 29.5 36.8 29.0 27.0 30.6 33.8 42.0 33.0 33.3 35.5
PFENet [30] Res-101 34.3 33.0 32.3 30.1 32.4 38.5 38.6 38.2 34.3 37.4
CyCTR (Ours) Res-50 38.9 43.0 39.6 39.8 40.3 41.1 48.9 45.2 47.0 45.6

poly learning rate decay [4]. The mini batch size on each gpu is set to 4. Experiments are carried out
on Tesla V100 GPUs. For Pascal-5i, one model is trained on a single GPU, while for COCO-20i, one
model is trained with 4 GPUs. We construct our baseline as follows: as stated in Section 3.4, the
middle-level query features from backbone network are concatenated and merged with the global
support feature and the prior map. This feature is processed by two residule blocks and input to
the same classifier as our method. Dice loss [21] is used as the training objective. Besides, the
middle-level query feature is averaged using the ground truth and concatenated with support feature
to predict the support segmentation map, which produces an auxiliary loss for aligning features.
The same settings are also used in our method except that we use our cycle-consistent transformer
to process features rather than the residule blocks. For the proposed cycle-consistent transformer,
we set the number of sampled support tokens Ns to 600 for 1-shot and 5 × 600 for 5-shot setting.
The number of sampled tokens is obtained according to the averaged number of foreground pixels
among Pascal-5i training set. For the self-attention block, the number of points P is set to 9. For
other hyper-parameters in transformer blocks, we use L = 2 transformer encoders. We set the
hidden dimension of MLP layer to 3×256 and that of input to 256. The number of heads for all
attention layers is set to 8 for Pascal-5i and 1 for COCO-20i. Parameters in the transformer blocks are
optimized with AdamW [20] optimizer following other transformer works [3, 8, 31], with learning
rate 1× 10−4 and weight decay 1× 10−2. Besides, we use Dropout with the probability 0.1 in all
attention layers.

4.3 Comparisons with State-of-the-Art Methods

In Table 1 and Table 2, we compare our method with other state-of-the-art few-shot segmentation
approaches on Pascal-5i and COCO-20i respectively. It can be seen that our approach achieves new

Table 3: Comparison with other methods using
FB-IoU (%) on Pascal-5i for 1-shot and 5-shot
segmentation.

Method Backbone FB-IoU (%)
1-shot 5-shot

A-MCG [13] Res-101 61.2 62.2
DAN [34] Res-101 71.9 72.3
PFENet [30] Res-101 72.9 73.5
CyCTR (Ours) Res-101 73.0 75.4

state-of-the-art performance on both Pascal-5i
and COCO-20i. Specifically, on Pascal-5i, to
make fair comparisons with other methods, we
report results with both ResNet-50 and ResNet-
101. Our CyCTR achieves 64.0% mIoU with
ResNet-50 backbone and 63.7% mIoU with
ResNet-101 backbone for 1-shot segmentation,
significantly outperforming previous state-of-
the-art results by 3.2% and 3.6%, respectively.
For 5-shot segmentation, our CyCTR can even
surpass state-of-the art methods by 5.6% and
6.0% mIoU when using ResNet-50 and ResNet-
101 backbones respectively. For COCO-20i results in Table 2, our method also outperforms other
methods by a large margin due to the capability of the transformer to fit more complex data. Besides,
Table 3 shows the comparison using FB-IoU on PASCAL-5i for 1-shot and 5-shot segmentation, our
method also obtains the state-of-the-art performance.

4.4 Ablation Studies

To provide a deeper understanding of our proposed method, we show ablation studies in this section.
The experiments are performed on Pascal-5i 1-shot setting with ResNet-50 as the backbone network,
and results are reported in terms of mIoU.
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Table 4: Ablation studies that validate the effectiveness of each component in our Cycle-Consistent
TRansformer. The first result is obtained by our baseline (see Section 4.2 for details).

self-alignment cross-alignment CyCTR (pred) CyCTR (fg. only) CyCTR mIoU (%)
59.3

✓ 62.5
✓ ✓ 62.9
✓ ✓ ✓ 62.6
✓ ✓ ✓ 63.0
✓ ✓ ✓ 63.5

4.4.1 Component-Wise Ablations

We perform ablation studies regarding each component of our CyCTR in Table 4. The first line is the
result of our baseline, where we use two residual blocks to merge features as stated in Section 4.2.
For all ablations in Table 4, the hidden dimension is set to 128 and two transformer encoders are used.
The mIoU results are averaged over four splits. Firstly, we only use the self-alignment block that only
encodes query features. The support information in this case comes from the concatenated global
support feature and the prior map used in [44]. It can already bring decent results, showing that the
transformer encoder is effective for modeling context for few-shot segmentation. Then, we utilize the
cross-alignment block but only with the vanilla attention operation in Equation 1. The mIoU increases
by 0.4%, indicating that pixel-level features from support can provide additional performance gain.
By using our proposed cycle-consistent attention module, the performance can be further improved
by a large margin, i.e. 0.6% mIoU compared to the vanilla attention. This result demonstrates
our cycle-consistent attention’s capability to suppress possible harmful information from support.
Besides, we assume some background support features may also benefit the query segmentation and
therefore use the cycle-consistent transformer to aggregate pixel-level information from background
support features as well. Comparing the last two lines in Table 4, we show that our way of utilizing
beneficial background pixel-level support information brings 0.5% mIoU improvement, validating
our assumption and the effectiveness of our proposed cycle-consistent attention operation.

Besides, one may be curious about whether the noise can also be removed by predicting the ag-
gregation position like the way in Equation 6 for aggregating support features to query. Therefore,
we use predicted aggregation instead of the cycle-consistent attention in the cross-alignment block,
as denoted by CyCTR(pred) in Table 4. It does benefit the few-shot segmentation by aggregating
useful information from support but is 0.9% worse than the proposed cycle-consistent attention. The
reason lies in the dramatically changing support images under few-shot segmentation testing. The
cycle-consistency is better than the learnable way as it can globally consider the varying conditional
information from both query and support.

4.4.2 Effect of Model Capacity

Table 5: Effect of varying (a) number of encoders
L and (b) hidden dimensions d. When varying L,
d is fixed to 128; while varying d, L is fixed to 2.

#Encoder mIoU (%)
1 62.4
2 63.5
3 63.7

(a)

#Dim mIoU (%)
128 63.5
256 64.0
384 63.9

(b)

We can stack more encoders or increase the hid-
den dimension of encoders to increase its capac-
ity and validate the effectiveness of our CyCTR.
The results with different numbers of encoders
(denoted as L) or hidden dimensions (denoted
as d) are shown in Table 5a and 5b. While in-
creasing L or d within a certain range, CyCTR
achieves better results. We chose L = 2 as our
default choice for accuracy-efficiency trade-off.

4.5 Qualitative results

In Figure 4, we show some qualitative results generated by our model on Pascal-5i. Our cycle-
consistent attention can improve the segmentation quality by suppressing possible harmful information
from support. For instance, without cycle-consistency, the model misclassifies trousers as “cow” in
the first row, baby’s hair as “cat” in the second row, and a fraction of mountain as “car” in the third
row, while our model rectifies these part as background. However, in the first row, our CyCTR still
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Support Query
Ours without

Cycle-consistency
Ours

Figure 4: Qualitative results on Pascal-5i. From left to right, each column shows the examples of:
Support image with mask region in red; Query image with ground truth mask region in blue; Result
produced by the model without cycle-consistency in CyCTR; Result produced by our method.

segments part of the trousers as "cow" and the right boundary of the segmentation mask is slightly
worse than the model without cycle-consistency. The reason comes from the extreme differences
between query and support, i.e. the support image shows a "cattle" but the query image contains a
milk cow. The cycle-consistency may over-suppress the positive region in support images. Solving
such issue may be a potential direction to investigate to improve our method further.

5 Conclusion

In this paper, we design a CyCTR module to deal with the few-shot segmentation problem. Different
from previous practices that either adopt semantic-level prototype(s) from support images or only
use foreground support features to encode query features, our CyCTR utilizes all pixel-level support
features and can effectively eliminate aggregating confusing and harmful support features with the
proposed novel cycle-consistency attention. We conduct extensive experiments on two popular
benchmarks, and our CyCTR outperforms previous state-of-the-art methods by a significant margin.
We hope this work can motivate researchers to utilize pixel-level support features to design more
effective algorithms to advance the few-shot segmentation research.
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