
Published as a conference paper at ICLR 2025

PALU: KV-CACHE COMPRESSION WITH LOW-RANK
PROJECTION

Chi-Chih Chang1,3∗ Wei-Cheng Lin1∗ Chien-Yu Lin2∗

Chong-Yan Chen1 Yu-Fang Hu1 Pei-Shuo Wang1 Ning-Chi Huang1
Luis Ceze2 Mohamed S. Abdelfattah3 Kai-Chiang Wu1

1National Yang Ming Chiao Tung University 2University of Washington 3Cornell University

ABSTRACT

Post-training KV-Cache compression methods typically either sample a subset of
effectual tokens or quantize the data into lower numerical bit width. However,
these methods cannot exploit redundancy in the hidden dimension of the KV
tensors. This paper presents a hidden dimension compression approach called
Palu, a KV-Cache compression framework that utilizes low-rank projection to
reduce inference-time LLM memory usage. Palu decomposes the linear layers
into low-rank matrices, caches compressed intermediate states, and reconstructs
the full keys and values on the fly. To improve accuracy, compression rate, and
efficiency, Palu further encompasses (1) a medium-grained low-rank decompo-
sition scheme, (2) an efficient rank search algorithm, (3) low-rank-aware quan-
tization compatibility enhancements, and (4) optimized GPU kernels with oper-
ators fusion. Extensive experiments with popular LLMs show that Palu com-
presses KV-Cache by 50%, while maintaining strong accuracy and delivering up to
1.89× speedup on the RoPE-based attention module. When combined with quan-
tization, Palu’s inherent quantization-friendly design yields small to negligible
extra accuracy degradation, while saving additional memory than quantization-
only methods and achieving up to 2.91× speedup for the RoPE-based attention.
Moreover, it maintains comparable or even better accuracy (up to 1.19 lower
perplexity) compared to quantization-only methods. These results demonstrate
Palu’s superior capability to effectively address the efficiency and memory chal-
lenges of LLM inference posed by KV-Cache. Our code is publicly available at:
https://github.com/shadowpa0327/Palu.

1 INTRODUCTION

Large language models (LLMs) have propelled AI into new applications and capabilities, providing
a high-level intelligence that previous machine learning (ML) models could not achieve. To speed up
inference, caching the Key-Value states (KV-Cache) in memory is a simple yet effective technique.
However, the size of the KV-Cache can grow rapidly, straining memory capacity and bandwidth
especially with long context lengths (Fu, 2024); further, the memory-bounded nature of the decoding
stage limits inference speed when loading KV-Cache data (Gholami et al., 2024). Therefore, KV-
Cache compression has become a central research topic for running LLMs efficiently.

Although emerging attention mechanisms such as Multi-Query Attention (MQA) (Shazeer, 2019),
Group-Query Attention (GQA) (Ainslie et al., 2023) and Multi-head Latent Attention (MLA)
(DeepSeek-AI et al., 2024) can reduce KV-Cache size, it either requires model pre-training or has
a significant impact on model’s accuracy when converting from traditional Multi-Head Attention
(MHA) (Chen et al., 2024). In contrast, post-training KV-Cache compression techniques offer an
alternative approach to advance efficiency for existing models. Among various KV-Cache com-
pression methods, quantization (Liu et al., 2024b; Hooper et al., 2024) and token eviction (Zhang
et al., 2024; Xiao et al., 2024) stand out as effective strategies to reduce the memory footprint of
KV-Cache.

Quantization methods aim to reduce the bit-width used to represent each piece of data, while token
eviction techniques focus on retaining a partial set of KV-Cache. However, both methods neglect the

∗Equal contribution

1

https://github.com/shadowpa0327/Palu


Published as a conference paper at ICLR 2025

hidden dimensions of the KV-Cache, where substantial redundancy often resides. To capitalize on
this untapped potential, we introduce Palu, a post-training KV-Cache compression framework that
leverages low-rank projection to reduce the hidden dimension of KV tensors, offering an additional
and orthogonal compression dimension to existing quantization and token eviction methods.

A naive way to utilize low-rank projection for compressing the KV-Cache is by directly mapping
cached matrices into low-rank space (Jolliffe & Cadima, 2016; Zhao et al., 2024). However, this
approach imposes an unacceptably heavy overhead of computing the decomposition matrices during
runtime. To avoid this, Palu statically decomposes the Key and Value-projection weight matrices
and caches the latent representations of the low-rank decomposition (see Fig. 1). This innovative
design enables Palu to reduce memory while mitigating the runtime overhead of KV-Cache low-rank
decomposition.

A B

WX

H

Y

Original KV

Decompose
(Offline)

Cache H instead of Y

Figure 1: Palu’s low-rank projection method
for KV-Cache reduction. A weight matrix W
of linear projection is decomposed into two
low-rank matrices. Input X is down-projected
to latent representation H, which is cached.
Y can be reconstructed from H using the up-
projection matrix B.

In designing an effective decomposition strat-
egy for attention modules with multiple attention
heads, we observed a clear trade-off between accu-
racy and reconstruction overhead. Decomposing
the projection matrices across all attention heads
together improves accuracy by preserving global
information, but this approach significantly in-
creases reconstruction costs. On the other hand,
decomposing each head separately reduces recon-
struction overhead but leads to a higher loss in ac-
curacy. To address this, Palu introduces a medium-
grained, group-head low-rank decomposition that
strikes a balance between accuracy and reconstruc-
tion efficiency.

For LLMs, each linear projection module has a dif-
ferent sensitivity to compression (Sharma et al.,
2023; Yuan et al., 2023). To exploit the sensitiv-
ity and improve accuracy, we design an efficient
rank search algorithm based on Fisher information (Ly et al., 2017; Liu et al., 2021). Our algorithm
automatically assigns a higher rank for important matrices and lower ranks for less critical ones,
boosting accuracy at the same overall KV-Cache compression rate.

In addition to its low-rank decomposition, Palu is compatible with quantization techniques. We
found that low-rank decomposition can introduce severe outliers in the latent representation, which
significantly hinders accurate low-bit quantization. Although the Hadamard transformation has been
shown to be effective for outlier elimination in recent studies (Tseng et al., 2024; Ashkboos et al.,
2024b; Liu et al., 2024a; Chiang et al., 2024), its integration often introduces computational over-
head during runtime. However, Palu’s inherent matrix pair structure makes it highly compatible
with this technique, allowing the transformation matrices to be seamlessly fused into the forward
and backward matrices, effectively mitigating outliers without impacting runtime efficiency.

We evaluate Palu on widely used LLMs and benchmarks. Our experiments demonstrate that Palu
maintains strong zero-shot accuracy and perplexity with up to 50% low-rank compression. More-
over, when combining low-rank compression with quantization, Palu achieves an impressive over
91.25% compression (11.4× reduction) and yields a significantly lower perplexity of 1.19 than
KVQuant (Hooper et al., 2024), a state-of-the-art KV-Cache quantization method, which only
achieves an 87.5% compression rate.

For latency evaluation, under a 50% KV-Cache compression rate without quantization, Palu demon-
strates up to 1.89× and 2.2× speedup for RoPE-based and non-RoPE attention modules. When
integrated with quantization, Palu achieves up to 2.91× and 6.17× acceleration on RoPE-based
and non-RoPE attention, respectively. These results underscore Palu’s ability to significantly reduce
KV-Cache memory footprint while boosting inference efficiency for LLMs.

Our key contributions include:

• Palu, a new post-training KV-Cache compression framework that caches low-rank latent repre-
sentations of Key and Value states.

2



Published as a conference paper at ICLR 2025

• Group-head low-rank decomposition (G-LRD), an optimization for balancing accuracy and re-
construction efficiency.

• An automated rank search algorithm for adaptively assigning ranks to each decomposed matrix,
given a target compression rate.

• A co-designed quantization compatibility optimization that eliminates low-rank-induced outliers
and imposes zero runtime overhead.

2 BACKGROUND

2.1 MULTI-HEAD ATTENTION MECHANISM

The multi-head attention (MHA) mechanism (Vaswani et al., 2017) is a core component of the
transformer architecture. Given a new input token x ∈ Rd, an MHA with n heads projects the input
into multiple queries, keys, and values using weight matrices Wq

i , Wk
i , and Wv

i , respectively, for
each head i, as shown by

qi = xWq
i , ki = xWk

i , vi = xWv
i . (1)

Here, ki and vi represent the key and value at time step t for head i. We can then compute the
attention score for each head i and the corresponding attention output as

pt,i = Softmax
(
qiK

T
i√

dh

)
, ai = piVi, (2)

where Ki and Vi denote the concatenation of current and all previous keys and values corresponding
to the i-th head. The final MHA output is obtained by concatenating the outputs of all heads and
then applying the out-projection layer Wo, as shown by

MHA(x) =

h∑
i=1

aiW
o
i =

h∑
i=1

(piVi)W
o
i , (3)

where Wo
i ∈ Rdh×d represents the submatrices of the out-projection matrix for each head i.

2.2 SINGULAR VALUE DECOMPOSITION (SVD)

SVD (Jolliffe & Cadima, 2016) is a commonly used technique for computing the low-rank approx-
imation for a given matrix. SVD decomposes a given matrix W ∈ Rm×n into three matrices:
W = UΣVT . Here, U and V are orthogonal matrices containing the left and right singular
vectors, respectively. The matrix Σ is a diagonal matrix that consists of singular values. After
decomposition, the low-rank approximation of W can be described as

W ≈ AB, A = Ur

√
Σr, B =

√
ΣrV

T
r , (4)

where A ∈ Rm×r, B ∈ Rr×n, Σr ∈ Rr×r. Σr is a diagonal matrix containing the largest r singular
values, and Ur, VT

r are corresponding singular vectors truncated from U and VT . This truncation
and subsequent matrix formation let us approximate matrix W with two low-rank matrices A and
B, thereby reducing the storage by mr+rn

mn .

3 THE PALU FRAMEWORK

3.1 COMPRESSING THE KV-CACHE VIA LOW-RANK PROJECTION

A naı̈ve approach to compress the KV-Cache with low-rank projection is to apply SVD directly
on the KV-Cache and store the top-r singular vectors. However, this approach poses significant
computational overhead during runtime that makes it impractical for deployments (see Appendix
H).

To apply low-rank projection more efficiently than directly decomposing the KV-Cache during run-
time, Palu uses SVD to decompose the Key and Value projection matrices. This approach is based
on the observation that low-rank decomposition rewrites the linear projection layer from y = xW
into y = xAB.

3



Published as a conference paper at ICLR 2025

Figure 2: Palu uses low-rank decomposition (W ≈ AB) to project the key (or value) to a lower-
dimensional latent representation (h), thereby reducing the size of the KV-Cache. The original key
(Kt) is reconstructed on-the-fly with Bk, and Bv is fused into Wo to avoid reconstruction overhead.
The fusion also reduces the computational burden for output projection.

Here, A ∈ Rd×r is the low-rank projection matrix, and B ∈ Rr×d is the reconstruction matrix
derived by SVD. The forward process first down-projects the input token x ∈ Rd into a low-
dimensional latent space h ∈ Rr and then up-projects it back to the original space:

h = Ax, y = Bh (5)

This two-step process lets Palu (1) store the lower dimension latent representation instead of the
origin key and value states, and (2) reconstruct them during decoding.

3.1.1 INTEGRATION WITH THE ATTENTION MECHANISM AND OFFLINE MATRIX FUSION

We now describe how Palu decomposes the key and value linear layers for the attention mechanism.
For each attention head i, Palu applies SVD and maps the key-projection matrix Wk

i and value-
projection matrix Wv

i into Ak
iB

k
i and Av

iB
v
i .

Based on the formula of attention output in Eq. 2, Palu absorbs the reconstruction matrix Bv
i into

the output projection matrix Wo
i offline:

aiW
o
i = (piVi)W

o
i = (piH

v
iB

v
i )W

o
i = piH

v
i (B

v
iW

o
i ) (6)

Such fusion lets Palu skip the explicit reconstruction of the full value vectors, reduce the number of
matrix multiplications, and improve efficiency. A similar approach applies for calculating attention
scores. Matrix Bk

i can be fused into the query projection matrix Wq
i offline, as shown by

qiK
T
i = qi(H

k
iB

k
i )

T = xtW
q
i (B

k
i )

T (Hk
i )

T = xt

(
Wq

i (B
k
i )

T
)
(Hk

i )
T . (7)

Here, Bk
i ∈ Rr×dh and Wq

i ∈ Rd×dh , so the fused matrix (Wq
i (B

k
i )

T ) has size Rd×r. This fusion
boosts computational efficiency by reducing the matrix dimension during attention score calculation.

3.1.2 COMPABILITY WITH POSITIONAL EMBEDDING

Recent LLMs, such as the Llama family, apply Rotary Positional Embedding (i.e., RoPE (Su et al.,
2021)) onto the Query and Key states prior to their multiplication.

The non-linear nature of these positional embeddings prevents the matrix fusion of attention scores,
as outlined in Eq. 7. To address this, Palu dynamically reconstructs the keys from latent repre-
sentations on the fly. Specifically, Palu employs a custom GPU kernel that efficiently integrates
key reconstruction, RoPE application, and subsequent Query-Key multiplication into a single fused
operation. By transferring only the low-rank latent representations and performing reconstruction
directly within GPU shared memory. By doing so, Palu substantially reduces the off-chip mem-
ory footprint, optimizing the memory-bound LLM decodingYuan et al. (2024) process through a

4



Published as a conference paper at ICLR 2025

memory-computation trade-off. Detailed implementation specifics of this kernel are provided in
Appendix 4.1.

Note that for some positional embedding methods, such as ALiBi (Press et al., 2022), positional
embedding is not directly applied to the Key states. Consequently, the fusion described in Eq. 7
remains valid. For these non-RoPE attention modules, Palu achieves greater speedup compared to
RoPE-based attention, as their reconstruction can be avoided with matrix fusion.

3.2 DECOMPOSITION GRANULARITY

3.2.1 MULTI-HEAD LOW-RANK DECOMPOSITION

We name the per-head decomposition scheme in Sec. 3.1.1 as multi-head low-rank decomposition
(M-LRD). We found M-LRD often causes a non-negligible accuracy degradation (discussed further
in Sec. 4.2), possibly because SVD fails to capture the common information shared across heads.
Therefore, alternative approaches are needed to preserve model accuracy.

3.2.2 JOINT-HEAD LOW-RANK DECOMPOSITION

An alternative approach is to jointly decompose weight matrices for all heads. By considering the
combined weight matrix Wjoint = [W1,W2, . . . ,Wn] ∈ Rd×(dh·nh), we can perform a single
low-rank decomposition Wjoint ≈ AjointBjoint, where Ajoint ∈ Rd×rjoint and Bjoint ∈ Rrjoint×(dh·nh).
We call this scheme joint-head low-rank decomposition (J-LRD).

J-LRD has the advantage of preserving the common principal components shared among different
heads. This occurs because SVD is particularly effective at capturing the dominant components
when applied to a larger, combined matrix, resulting in a more accurate approximation.

For J-LRD, the joint latent representation shared among all heads can be computed with hjoint =
xAjoint. During decoding, the original states for each head can be reconstructed via[

y1, . . . ,yn

]
= hjointBjoint.

Despite better-preserving model accuracy, J-LRD introduces significant computational and memory
overhead during decoding. Specifically, the total number of floating point operations (FLOPs) to
reconstruct the Key or Value state of all heads now becomes L · rjoint · dh · n. Assuming the same
size as the total low-rank latent representations (i.e., rjoint =

∑n
i=1 ri), the total reconstruction cost

is n times higher than M-LRD, whose total FLOPs is L · ri · dh · n. When considering the matrix
fusion in Sec. 3.1.1, the fused matrix of J-LRD has a size of rjoint · d ·n, which is also n times larger
than M-LRD, leading to substantial higher memory consumption.

Figure 3: Performing decomposition at different granularities. Jointly decomposing multiple heads
can achieve higher accuracy. Assuming the same total size of the latent representations (i.e., 4 · ri =
2 · rg = rjoint), the FLOPs for reconstruction overhead in joint-head decomposition schemes are 4
times larger than those in multi-head ones.

5



Published as a conference paper at ICLR 2025

3.2.3 GROUP-HEAD LOW-RANK DECOMPOSITION

To balance the trade-off between accuracy and reconstruction cost, we propose group-head low-
rank decomposition (G-LRD). G-LRD decomposes the matrices for a group of heads together. With
combined weight matrices, it captures shared information within each group while limiting compu-
tational overhead and preserving accuracy.

To illustrate the G-LRD process, consider the weight matrices for a group of s heads, Wgj =[
Wj,1 . . .Wj,s

]
, where Wgj ∈ Rd×(dh·s). We low-rank decompose Wgj ≈ AgjBgj , where

Agj ∈ Rd×rg and Bgj ∈ Rrg×(dh·s). The latent representation shared among attention heads in
the same group can be computed as hgj = xUgj . During decoding, the original key or value for
each head can be reconstructed via

[yj,1 . . .yj,s] = hgjBgj .

The FLOPs for reconstructing the keys and values for all heads in G-LRD is L·rg ·dh ·n. Comparing
the cost to J-LRD and assuming the same total rank size (rg · ng = rjoint), G-LRD reduces the
reconstruction cost by ng . Similarly, G-LRD also reduces the fused matrix size by ng . To sum up,
G-LRD offers a middle ground between computation overhead and approximation accuracy. We
illustrate M-LRD, J-LRD and G-LRD in Fig. 3. Please refer to Appendix C for further discussions
on the costs of different decomposition granularities.

3.3 AUTOMATIC RANK ALLOCATION

To allocate an ideal rank size to the decomposition target, it is crucial to accurately estimate the
importance of the target matrix (e.g., grouped weights). In Palu, we identify Fisher information
(Ly et al., 2017; Liu et al., 2021) as an accurate approximator since it can quantify the amount of
information for each parameter. We then employ the sum of Fisher information to estimate the
importance of the weight matrix of each linear layer (Abdelfattah et al., 2021).

Assuming that the compression sensitivity is proportional to Fisher information, we determine the
rank for each weight matrix by computing the ratio of its Fisher information to the total Fisher
information across all decomposition targets. We use this ratio to allocate the compression rate (i.e.,
rank level r), ensuring that more important layers retain higher rank levels. For a detailed ablation
study on our Automatic Rank Allocation, please refer to Appendix F.3.

3.4 QUANTIZATION COMPATIBILITY

(a) Low-Rank Key Cache (b) Low-Rank Key Cache (with Hadamard)

Hard to quantize Easy to quantize

Figure 4: Activation distribution of the low-rank key
caches at the 4th Llama-2 attention layer.

We integrate quantization into Palu to
compress the KV-Cache further. We ob-
serve that low-rank compressed latent rep-
resentations have severe outliers, which
limit quantization applicability in Palu.
Unlike natural outliers described in previ-
ous KV-Cache quantization literature (Liu
et al., 2024b; Hooper et al., 2024), these
outliers are induced by SVD-based low-
rank factorization.

Fig. 4 (a) shows the distribution of low-rank compressed key states from a layer of Llama-2 with
G-LRD. Repeating outlier patterns appear at the beginning of each decomposed group because SVD
arranges larger eigenvalues in the initial rows or columns, resulting in rapidly descending values in
the latent representation. This pattern stretches the data distribution and hurts quantization accuracy.

Inspired by recent LLM quantization literature (Ashkboos et al., 2024b; Tseng et al., 2024), we apply
the Walsh-Hadamard transform (WHT, Fino & Algazi) to eliminate outliers (Fig. 4 (b)), enabling a
high quantization accuracy. However, this transformation introduces an extra matrix multiplication
with associated runtime overhead. Unlike earlier methods (Ashkboos et al., 2024b) that must apply
online WHT when quantizing KV-Cache, we optimize this process by integrating the Hadamard
matrix into low-rank decomposed weights with no additional compute overhead, as described by

6



Published as a conference paper at ICLR 2025

W ≈ AB = (AR)(RTB) = ÂB̂, (8)
where R is the Hadamard matrix. This optimization allows Palu to integrate the proposed low-rank
compression technique with low-bit quantization. Our experiments show that, on top of the low-rank
compression, our quantization method only negligibly increases perplexity, even at extreme levels
such as 3-bit or 2-bit with a simple per-token quantization scheme (see Sec. 4.3).

4 EXPERIMENTS

4.1 EXPERIMENTS SETUP

Models and Tasks. We evaluate Palu on four LLM families, Llama-2 (Touvron et al., 2023),
Llama-3 (Dubey et al., 2024), Mistral (Jiang et al., 2023) and LongChat (Li et al., 2023). For accu-
racy evaluation, we measure perplexity on the WikiText-2 (Merity et al., 2016) and C4 (Raffel et al.,
2020) datasets and use LM-Evaluation-Harness (Gao et al., 2023) to measure zero-shot accuracy on
six common sense tasks. We also evaluate long context accuracy on 16 tasks in LongBench (Bai
et al., 2023). Unless specification, we refer to baseline as a model with non-compressed KV-Cache.
See Appendix G for further details on the dataset and settings.

Compression Settings. We implemented Palu based on the Huggingface library (Wolf et al.,
2020). Decomposition of the Key and Value projection layers was performed using the truncation-
aware SVD method proposed by SVD-LLM (Wang et al., 2024). Unless otherwise specified, Palu’s
results are G-LRD with a group size of 4 (gs-4), with equal rank size for each group. To calcu-
late Fisher information in rank searching, we used 2048 random samples from Wikitext-2, each
with a sequence length of 1024. For quantization integration in Palu, we use a simple per-token,
asymmetric integer quantization. For evaluation on quantization results, we compare Palu to ad-
vanced KV-Cache quantization methods, including Atom (Zhao et al., 2023), KVQaunt (Hooper
et al., 2024), and KIVI (Liu et al., 2024b). Refer to Sec. 5 for a brief summary of these methods.

GPU Kernels Implementation. We implemented a customized kernel for attention score with
reconstruction in Triton (Tillet et al., 2019) (See Appendix B). For quantization integration, we im-
plemented kernels in CUDA for attention output and non-RoPE attention score, where matrix fusion
can be applied (refer to Sec. 3.1.1 and Fig. 2). Our low-precision kernel fuses the dequantization
process and the follow-up multiplication with low-rank compressed keys or values, enabling effi-
cient processing on quantized latent KV-Cache. When evaluating speedup with quantization, we
compare to the non-compressed baseline and KIVI (Liu et al., 2024b), which we use their official
code∗ in our experiments.

4.2 RESULTS WITH DIFFERENT DECOMPOSITION GRANULARITY

We evaluate perplexity and zero-shot accuracy of Palu with a 50% low-rank compression rate
using M-LRD, G-LRD, and J-LRD on Llama2-7B and Llama3-8B-Instruct, and present the results
in Table 1.

Table 1: Perplexity and zero-shot accuracy of Palu at 50% compression rate.

Model Method Perplexity ↓ Zero-Shot Accuracy (%) ↑
Wiki2 C4 OBQA Hella PIQA ARC-e ARC-c Wino Avg.

Llama2-7B

Baseline 5.47 7.26 44.20 76.00 78.07 76.30 46.42 69.30 65.05

J-LRD 5.62 7.75 45.40 75.57 77.48 75.97 45.31 69.22 64.82
G-LRD 6.01 9.82 43.60 73.39 76.33 73.02 42.57 66.77 62.61
M-LRD 6.75 12.01 39.60 65.35 74.76 67.17 35.24 64.64 57.79

Llama3-8B-Inst

Baseline 8.28 13.01 43.20 75.80 78.62 81.61 56.83 71.90 67.99

J-LRD 9.12 15.90 43.40 73.20 76.50 79.63 51.96 72.45 66.19
G-LRD 10.11 17.87 42.60 70.36 76.06 76.30 48.99 72.38 64.45
M-LRD 12.38 23.02 38.80 63.04 73.67 69.78 42.58 62.51 58.40

Perplexity Evaluation. As Table 1 shows, for the Llama2-7B model, Palu’s M-LRD method fails
to maintain a low perplexity at a 50% compression rate. In contrast, despite having a high recompu-
tation cost, J-LRD significantly outperforms M-LRD and achieves a 5.62 perplexity on WikiText-2.

∗https://github.com/jy-yuan/KIVI

7



Published as a conference paper at ICLR 2025

For G-LRD, which still maintains a low computation cost, yields a 6.01 perplexity on Wikitext-2,
showing a great balance between model accuracy and compression overheads. The same trend is
observed in the Llama-3-8B model as well. More results Llama-2-13B can be found in Appendix E.

Zero-shot Evaluation Results. Similar to the perplexity evaluation, the J-LRD method demon-
strates the best performance for the zero-shot accuracy on Llama-2-7B, with only a 0.23% average
accuracy degradation. M-LRD method results in the lowest average performance, with a 7.26%
drop in accuracy compared to the baseline. In comparison, G-LRD only has a 2.4% average ac-
curacy decline, offering a sweet spot between model accuracy and compression overheads again.

4.3 RESULTS OF QUANTIZATION INTEGRATION
Table 2: Quantization perplexity and KV-
Cache size for Llama2-7B on WikiText-
2. For perplexity, sequence length is 4096.
KV-Cache size is demonstrated for 128K
sequence length.

Method Bit PPL KV-Cache
Size (GB)

Comp.
Rate

Baseline 16 5.12 64.0 -

Palu-30% 16 5.25 44.8 30%
Palu-50% 16 5.63 32.0 50%

Atom 3 6.15 12.6 80.32%
KVQuant 3 5.35 12.0 81.25%
Palu-30% 3 5.33 8.4 86.87%
Palu-50% 3 5.77 6.0 90.63%

Atom 2 117.88 8.6 86.56%
KVQuant 2 6.95 8.0 87.50%
Palu-30% 2 5.76 5.6 91.25%
Palu-50% 2 6.41 4.0 93.75%

Table 2 showcases the impact of quantization on per-
plexity and KV-Cache size when combined with Palu.
With 3-bit quantization, Palu incurs only a slight 0.08
and 0.23 perplexity increase at 30% and 50% low-
rank compression rate. These demonstrate a minimal
accuracy trade-off for significant compression gains
compared to the 16-bit baseline. Notably, at 2-bit
quantization, Palu decisively outperforms the state-
of-the-art KVQuant method, reducing perplexity by
1.19 and 0.54, while further slashing memory us-
age by 30% and 50%. These results establish Palu
with quantization as a superior KV-Cache compression
method.

4.4 EVALUATION ON LONG CONTEXT DATASETS

Table 3: Experiment Results on LongBench: The average bit widths represent the total storage cost
per element in the compressed KV-Cache, including the overhead of quantization parameters. These
values are calculated for each approach, assuming a context length of 10K.

Model Method Avg. Comp. Multi- Single- Summa- Few-Shot Code Synthetic Avg.Bits Ratio QA QA rization

Mistral-7B-v0.2

Baseline 16 1.00x 29.63 36.43 28.10 66.71 54.16 44.87 42.54

Palu-30% 16 1.43x 29.83 36.52 27.48 65.70 55.16 37.92 41.55
Palu-50% 16 2.00x 26.92 35.33 26.01 64.04 44.54 16.88 36.23
KIVI-2 3.16 5.05x 28.81 35.07 27.60 66.45 54.47 40.28 41.45
Palu-30% (3 bits) 3.13 7.59x 29.48 36.40 27.20 65.73 53.19 34.74 40.77
Palu-50% (3 bits) 3.13 10.6x 26.73 32.72 25.73 63.25 44.43 18.57 35.71

LongChat-7B-v1.5

Baseline 16 1.00x 23.95 31.12 26.74 63.80 56.91 15.25 36.32

Palu-30% 16 1.43x 22.42 29.43 25.52 62.87 58.99 14.25 35.45
Palu-50% 16 2.00x 22.61 25.33 22.73 60.12 43.52 6.84 30.82
KIVI-2 3.16 5.06x 23.24 30.19 26.47 63.54 53.51 16.13 35.60
Palu-30% (3 bits) 3.13 7.59x 23.12 29.21 25.04 61.99 54.38 11.25 34.33
Palu-50% (3 bits) 3.13 10.6x 18.56 24.14 22.35 58.76 40.50 6.02 29.03

To access Palu’s ability for long-context scenarios, we evaluate baseline, KIVI and Palu’s accuracy
on LongBench (Bai et al., 2023) Here, we evaluate the Mistral-7B and LongChat-7B models, which
have up to 32K context length. We report the average score for each task type separately, as well
as the overall average across all 16 tasks. The results are shown in Table 3. We report the accuracy
of KIVI using the configuration with a group size of 32 and 128-element fp16 residual (Liu et al.,
2024b).

As Table 3 indicates, we find that at a 50% low-rank compression level, Palu is relatively difficult to
fully preserve accuracy. However, at a 30% compression level, Palu achieves only a minor average
accuracy drop (< 1%) compared to the baseline for both models. Furthermore, Palu can quantize the
low-rank latent KV-Cache down to 3 bits, with less than 1% further accuracy degradation. Overall,
Palu maintains a strong 40.77% and 34.33% average accuracy for Mistral-7B and LongChat-7B,
with an impressive 7.59x compression ratio. Compared to KIVI (Liu et al., 2024b), Palu achieves
a similar accuracy, while having an additional 30% compression rate from low-rank. Notably, Palu

8



Published as a conference paper at ICLR 2025

does not require the complex grouped quantization and mixed-precision techniques employed by
KIVI, resulting in a high inference efficiency (see Sec. 4.5 for details).

4.5 LATENCY EVALUATION

In this section, we provide latency and speedup evaluation, using Llama-2-7b as the base model. We
measure decode latency on a single RTX 4090 GPU and compare Palu to the FP16 and KIVI-4-bit
baselines. We evaluate Palu’s latency at a 50% compression rate, where we set compression rates
for key and value to 75% and 25%, respectively. This allocation is based on our observations from
the rank allocation results (see Appendix F.3 for details). For the FP16 baseline, we use the default
implementation from HuggingFace. For KIVI, we use the CUDA kernels from its official repository.
Due to the small memory capacity of RTX 4090 GPU, we adopt a 4-bit quantization (Frantar et al.,
2024) for the weights of all linear layers. Our results are the average of 100 runs.

(a) Attention Module (w/ RoPE) (c) End-to-End Model (w/ RoPE) (d) End-to-End Model (w/o RoPE)(b) Attention Module (w/o RoPE)

6.17x

2.20x
1.89x

2.91x
2.59x

5.53x

Figure 5: Normalized speedup for both the attention module and end-to-end model decoding. Solid
lines represent exact measurements, while dashed lines indicate the FP16 baselines are out of mem-
ory, and the speedups are compared to the estimated baseline’s latency.
4.5.1 SPEEDUPS OF ATTENTION MODULE AND END-TO-END DECODING.

Attention module speedup. We compare latency against standard attention without compression
or quantization and show the speedups of Palu and KIVI-4-bit in Fig. 5 (a) and (b) for RoPE-based
and non-RoPE attention. For RoPE-based attention, we applied our online reconstruction kernel for
key and employed offline fusion for value as described in Sec 3.1.2.

As shown in Fig. 5 (a), Palu has minimal to no speedup when the sequence length is short, e.g.
4K. However, as sequence length increases, Palu delivers substantial performance gains. At 64K
input length, Palu achieves a 1.89× speedup over the FP16 baseline when using low-rank projection
alone. By further applying 4-bit quantization to the Value states, the speedup rises to 2.91× for the
same 64K context length, owing to our optimized low-precision kernel and reduced memory loading
times. This performance notably surpasses KIVI-4-bit, which only achieves a 1.89× speedup at
64K, hindered by the overheads of its fined-grained group quantization. Notably, for RoPE-based
attention, Palu-4-bit does not quantize key, as our online reconstruction kernel only supports FP16
precision for now.

For non-RoPE attention, we apply matrix fusion to both the Key and Value states (Eq. 7), effectively
eliminating all reconstruction overhead. At a 64K sequence length with a 50% compression rate,
Palu achieves a 2.20× speedup over the FP16 baseline. By further applying 4-bit quantization
to both the Key and Value states, Palu boosts the speedup to 6.17× for 64K input length. These
results demonstrate that combining low-rank compression and quantization significantly enhances
inference efficiency, particularly in long-context scenarios.

End-to-end speedup. We present the end-to-end speedups in Fig. 5 (c) and (d), measuring the
decoding latency of generating the next token at various input lengths. Similar to the attention
performance results, Palu shows minimal or no speedup for short sequences but delivers signifi-
cant acceleration for longer sequences. Without quantization, Palu achieves up to 1.71× and 2.05×
speedups for RoPE-based and non-RoPE models, respectively. With a 50% compression rate, Palu
runs up to 32K input length on an RTX 4090 GPU. By incorporating 4-bit quantization, Palu han-
dles even longer sequences and delivers 2.59× and 5.53× end-to-end speedups at a 64K sequence
length. Palu integrated with quantization provides a substantial speed advantage over KIVI-4-bit,
which only reaches 1.78× and 1.81× speedups at 32K sequence length for RoPE and non-RoPE
scenarios, respectively, and is out-of-memory for longer sequences.

9



Published as a conference paper at ICLR 2025

4.5.2 KERNEL FOR ROPE-BASED ATTENTION SCORE

In this section, we evaluate the performance of our online reconstruction kernel for RoPE-based
attention scores. We measure latency from the pre-RoPE query vector to post-GEMV attention
score, and compare it with PyTorch’s GEMV, which is used in the baseline attention (see Fig. 2).

Figure 6: Speedup of Palu’s at-
tention score kernel with online
reconstruction.

We present speedups for group size 1, 4, and 32 at different se-
quence lengths in Fig. 6. For gs-32 (J-LRD), the highest accu-
racy decomposition, the high reconstruction cost causes a signif-
icant slowdown across all sequence lengths. For gs-1 (M-LRD),
our kernel achieves up to a 3.56× speedup at sequence length
16K, showing strong performance when moderate accuracy loss
is acceptable. For gs-4 (G-LRD), our kernel reaches up to 1.95×
speedup. These results emphasize the need to explore various de-
composition granularities for better accuracy and speed tradeoffs.

We also observe that speedup decreases for sequence lengths be-
yond 16K due to rising reconstruction costs, shifting the online
reconstruction from memory- to compute-bound. A potential op-
timization is to quantize the decomposed weight matrices fur-
ther and leverage high-throughput, low-precision hardware (e.g.,
INT4 Tensor Cores) for online reconstruction, which we leave for
future work. Despite the speedup drop at longer lengths, Palu’s overall attention speedup increases
with longer input, thanks to matrix fusion on the Value state and the reduced memory footprint.

5 RELATED WORK

SVD for LLM Compression. Several works have explored using SVD to compress LLMs. An
early approach (Noach & Goldberg, 2020) applied standard SVD to weight matrices, resulting in
significant compression errors. FWSVD (Hsu et al., 2022) addressed this by using Fisher informa-
tion to prioritize parameters, while ASVD (Yuan et al., 2023) considered activation outliers. SVD-
LLM (Wang et al., 2024) further minimized compression loss for each singular value. Unlike these
methods, which compress model weights, Palu focuses on reducing KV-Cache size.

KV-Cache Quantization. Quantization is a widely used technique for compressing KV-Cache.
Atom (Zhao et al., 2023) applies simple per-token quantization, while WKVQuant (Yue et al., 2024)
introduces a two-level scheme to enhance accuracy. KIVI (Liu et al., 2024b) uses per-channel and
per-token quantization for Keys and Values, combined with ultra fine-grained group quantization.
KVQuant (Hooper et al., 2024) employs a similar setup but incorporates non-uniform quantization
and sparse matrices to handle outliers. On top of these approaches, GEAR (Kang et al., 2024) adds
a low-rank matrix to compensate for quantization errors. In Palu, we leverage low-rank techniques
to exploit hidden dimension redundancy and achieve outstanding compression through simple per-
token quantization.

MLA. The recently released DeepSeek-V2 model (DeepSeek-AI et al., 2024) introduces the MLA
mechanism, which reduces KV-Cache size by down-projecting Key and Value to a low-rank space
and reconstructing them to full rank at runtime. Although MLA may seem similar to Palu at a high
level, particularly with J-LRD, our design and derivation processes are fundamentally different.
Unlike MLA, a new attention mechanism requiring pre-training, Palu is specifically designed for
post-training integration. Palu focuses on converting existing models with MHA or GQA to support
low-rank compressed KV-Cache, preserving high accuracy while enhancing inference efficiency.

6 CONCLUSION

We introduce Palu, a novel KV-Cache compression framework that decomposes linear projection
weight matrices and caches the compressed latent representations. We propose various optimiza-
tions, including group-head low-rank decomposition, automatic rank allocation algorithm, quanti-
zation compatibility enhancement, and customized kernels with operator fusion. With these op-
timizations, Palu can maintain accuracy while achieving significant memory reduction and high
inference speedup.

10



Published as a conference paper at ICLR 2025

ACKNOWLEDGEMENTS

This research is supported in part by Taiwan’s NSTC under Grant No. 113-2640-E-A49-004 and the
National Science Foundation under Grant No. 2339084. Luis Ceze is supported by the Lazowska
Endowed Professorship. We would like to express our appreciation to Sandy Kaplan from the
University of Washington for her invaluable assistance in editing this paper.

REFERENCES

Mohamed S Abdelfattah, Abhinav Mehrotra, Łukasz Dudziak, and Nicholas Donald Lane. Zero-
cost proxies for lightweight NAS. 2021. URL https://openreview.net/forum?id=
0cmMMy8J5q.

Muhammad Adnan, Akhil Arunkumar, Gaurav Jain, Prashant Nair, Ilya Soloveychik, and Pu-
rushotham Kamath. Keyformer: Kv cache reduction through key tokens selection for efficient
generative inference. Proceedings of Machine Learning and Systems, 7, 2024.

Joshua Ainslie, James Lee-Thorp, Michiel de Jong, Yury Zemlyanskiy, Federico Lebrón, and Sumit
Sanghai. Gqa: Training generalized multi-query transformer models from multi-head check-
points. arXiv preprint arXiv:2305.13245, 2023.

Saleh Ashkboos, Maximilian L. Croci, Marcelo Gennari do Nascimento, Torsten Hoefler, and
James Hensman. SliceGPT: Compress large language models by deleting rows and columns.
In The Twelfth International Conference on Learning Representations, 2024a. URL https:
//openreview.net/forum?id=vXxardq6db.

Saleh Ashkboos, Amirkeivan Mohtashami, Maximilian L Croci, Bo Li, Martin Jaggi, Dan Alistarh,
Torsten Hoefler, and James Hensman. Quarot: Outlier-free 4-bit inference in rotated llms. arXiv
preprint arXiv:2404.00456, 2024b.

Yushi Bai, Xin Lv, Jiajie Zhang, Hongchang Lyu, Jiankai Tang, Zhidian Huang, Zhengxiao Du,
Xiao Liu, Aohan Zeng, Lei Hou, Yuxiao Dong, Jie Tang, and Juanzi Li. Longbench: A bilingual,
multitask benchmark for long context understanding. arXiv preprint arXiv:2308.14508, 2023.

Yonatan Bisk, Rowan Zellers, Jianfeng Gao, Yejin Choi, et al. Piqa: Reasoning about physical com-
monsense in natural language. In Proceedings of the AAAI conference on artificial intelligence,
volume 34, pp. 7432–7439, 2020.

Patrick Chen, Hsiang-Fu Yu, Inderjit Dhillon, and Cho-Jui Hsieh. Drone: Data-
aware low-rank compression for large nlp models. In M. Ranzato, A. Beygelz-
imer, Y. Dauphin, P.S. Liang, and J. Wortman Vaughan (eds.), Advances in Neural In-
formation Processing Systems, volume 34, pp. 29321–29334. Curran Associates, Inc.,
2021. URL https://proceedings.neurips.cc/paper_files/paper/2021/
file/f56de5ef149cf0aedcc8f4797031e229-Paper.pdf.

Yuang Chen, Cheng Zhang, Xitong Gao, Robert D. Mullins, George A. Constantinides, and Yiren
Zhao. Optimised grouped-query attention mechanism for transformers, 2024. URL https:
//arxiv.org/abs/2406.14963.

Hung-Yueh Chiang, Chi-Chih Chang, Natalia Frumkin, Kai-Chiang Wu, and Diana Marculescu.
Quamba: A post-training quantization recipe for selective state space models, 2024. URL
https://arxiv.org/abs/2410.13229.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and
Oyvind Tafjord. Think you have solved question answering? try arc, the ai2 reasoning challenge.
arXiv:1803.05457v1, 2018.

Pradeep Dasigi, Kyle Lo, Iz Beltagy, Arman Cohan, Noah A. Smith, and Matt Gardner. A dataset of
information-seeking questions and answers anchored in research papers. In Kristina Toutanova,
Anna Rumshisky, Luke Zettlemoyer, Dilek Hakkani-Tur, Iz Beltagy, Steven Bethard, Ryan Cot-
terell, Tanmoy Chakraborty, and Yichao Zhou (eds.), Proceedings of the 2021 Conference of

11

https://openreview.net/forum?id=0cmMMy8J5q
https://openreview.net/forum?id=0cmMMy8J5q
https://openreview.net/forum?id=vXxardq6db
https://openreview.net/forum?id=vXxardq6db
https://proceedings.neurips.cc/paper_files/paper/2021/file/f56de5ef149cf0aedcc8f4797031e229-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2021/file/f56de5ef149cf0aedcc8f4797031e229-Paper.pdf
https://arxiv.org/abs/2406.14963
https://arxiv.org/abs/2406.14963
https://arxiv.org/abs/2410.13229


Published as a conference paper at ICLR 2025

the North American Chapter of the Association for Computational Linguistics: Human Lan-
guage Technologies, pp. 4599–4610, Online, June 2021. Association for Computational Linguis-
tics. doi: 10.18653/v1/2021.naacl-main.365. URL https://aclanthology.org/2021.
naacl-main.365.

DeepSeek-AI, Aixin Liu, Bei Feng, Bin Wang, Bingxuan Wang, Bo Liu, Chenggang Zhao, Chengqi
Dengr, Chong Ruan, Damai Dai, Daya Guo, Dejian Yang, Deli Chen, Dongjie Ji, Erhang Li,
Fangyun Lin, Fuli Luo, Guangbo Hao, Guanting Chen, Guowei Li, H. Zhang, Hanwei Xu, Hao
Yang, Haowei Zhang, Honghui Ding, Huajian Xin, Huazuo Gao, Hui Li, Hui Qu, J. L. Cai, Jian
Liang, Jianzhong Guo, Jiaqi Ni, Jiashi Li, Jin Chen, Jingyang Yuan, Junjie Qiu, Junxiao Song, Kai
Dong, Kaige Gao, Kang Guan, Lean Wang, Lecong Zhang, Lei Xu, Leyi Xia, Liang Zhao, Liyue
Zhang, Meng Li, Miaojun Wang, Mingchuan Zhang, Minghua Zhang, Minghui Tang, Mingming
Li, Ning Tian, Panpan Huang, Peiyi Wang, Peng Zhang, Qihao Zhu, Qinyu Chen, Qiushi Du, R. J.
Chen, R. L. Jin, Ruiqi Ge, Ruizhe Pan, Runxin Xu, Ruyi Chen, S. S. Li, Shanghao Lu, Shangyan
Zhou, Shanhuang Chen, Shaoqing Wu, Shengfeng Ye, Shirong Ma, Shiyu Wang, Shuang Zhou,
Shuiping Yu, Shunfeng Zhou, Size Zheng, T. Wang, Tian Pei, Tian Yuan, Tianyu Sun, W. L.
Xiao, Wangding Zeng, Wei An, Wen Liu, Wenfeng Liang, Wenjun Gao, Wentao Zhang, X. Q.
Li, Xiangyue Jin, Xianzu Wang, Xiao Bi, Xiaodong Liu, Xiaohan Wang, Xiaojin Shen, Xiaokang
Chen, Xiaosha Chen, Xiaotao Nie, Xiaowen Sun, Xiaoxiang Wang, Xin Liu, Xin Xie, Xingkai
Yu, Xinnan Song, Xinyi Zhou, Xinyu Yang, Xuan Lu, Xuecheng Su, Y. Wu, Y. K. Li, Y. X. Wei,
Y. X. Zhu, Yanhong Xu, Yanping Huang, Yao Li, Yao Zhao, Yaofeng Sun, Yaohui Li, Yaohui
Wang, Yi Zheng, Yichao Zhang, Yiliang Xiong, Yilong Zhao, Ying He, Ying Tang, Yishi Piao,
Yixin Dong, Yixuan Tan, Yiyuan Liu, Yongji Wang, Yongqiang Guo, Yuchen Zhu, Yuduan Wang,
Yuheng Zou, Yukun Zha, Yunxian Ma, Yuting Yan, Yuxiang You, Yuxuan Liu, Z. Z. Ren, Zehui
Ren, Zhangli Sha, Zhe Fu, Zhen Huang, Zhen Zhang, Zhenda Xie, Zhewen Hao, Zhihong Shao,
Zhiniu Wen, Zhipeng Xu, Zhongyu Zhang, Zhuoshu Li, Zihan Wang, Zihui Gu, Zilin Li, and
Ziwei Xie. Deepseek-v2: A strong, economical, and efficient mixture-of-experts language model,
2024.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, Anirudh Goyal, Anthony
Hartshorn, Aobo Yang, Archi Mitra, Archie Sravankumar, Artem Korenev, Arthur Hinsvark,
Arun Rao, Aston Zhang, Aurelien Rodriguez, Austen Gregerson, Ava Spataru, Baptiste Roziere,
Bethany Biron, Binh Tang, Bobbie Chern, Charlotte Caucheteux, Chaya Nayak, Chloe Bi, Chris
Marra, Chris McConnell, Christian Keller, Christophe Touret, Chunyang Wu, Corinne Wong,
Cristian Canton Ferrer, Cyrus Nikolaidis, Damien Allonsius, Daniel Song, Danielle Pintz, Danny
Livshits, David Esiobu, Dhruv Choudhary, Dhruv Mahajan, Diego Garcia-Olano, Diego Perino,
Dieuwke Hupkes, Egor Lakomkin, Ehab AlBadawy, Elina Lobanova, Emily Dinan, Eric Michael
Smith, Filip Radenovic, Frank Zhang, Gabriel Synnaeve, Gabrielle Lee, Georgia Lewis Ander-
son, Graeme Nail, Gregoire Mialon, Guan Pang, Guillem Cucurell, Hailey Nguyen, Hannah
Korevaar, Hu Xu, Hugo Touvron, Iliyan Zarov, Imanol Arrieta Ibarra, Isabel Kloumann, Ishan
Misra, Ivan Evtimov, Jade Copet, Jaewon Lee, Jan Geffert, Jana Vranes, Jason Park, Jay Ma-
hadeokar, Jeet Shah, Jelmer van der Linde, Jennifer Billock, Jenny Hong, Jenya Lee, Jeremy
Fu, Jianfeng Chi, Jianyu Huang, Jiawen Liu, Jie Wang, Jiecao Yu, Joanna Bitton, Joe Spisak,
Jongsoo Park, Joseph Rocca, Joshua Johnstun, Joshua Saxe, Junteng Jia, Kalyan Vasuden Al-
wala, Kartikeya Upasani, Kate Plawiak, Ke Li, Kenneth Heafield, Kevin Stone, Khalid El-Arini,
Krithika Iyer, Kshitiz Malik, Kuenley Chiu, Kunal Bhalla, Lauren Rantala-Yeary, Laurens van der
Maaten, Lawrence Chen, Liang Tan, Liz Jenkins, Louis Martin, Lovish Madaan, Lubo Malo,
Lukas Blecher, Lukas Landzaat, Luke de Oliveira, Madeline Muzzi, Mahesh Pasupuleti, Man-
nat Singh, Manohar Paluri, Marcin Kardas, Mathew Oldham, Mathieu Rita, Maya Pavlova,
Melanie Kambadur, Mike Lewis, Min Si, Mitesh Kumar Singh, Mona Hassan, Naman Goyal,
Narjes Torabi, Nikolay Bashlykov, Nikolay Bogoychev, Niladri Chatterji, Olivier Duchenne, Onur
Çelebi, Patrick Alrassy, Pengchuan Zhang, Pengwei Li, Petar Vasic, Peter Weng, Prajjwal Bhar-
gava, Pratik Dubal, Praveen Krishnan, Punit Singh Koura, Puxin Xu, Qing He, Qingxiao Dong,
Ragavan Srinivasan, Raj Ganapathy, Ramon Calderer, Ricardo Silveira Cabral, Robert Stojnic,
Roberta Raileanu, Rohit Girdhar, Rohit Patel, Romain Sauvestre, Ronnie Polidoro, Roshan Sum-
baly, Ross Taylor, Ruan Silva, Rui Hou, Rui Wang, Saghar Hosseini, Sahana Chennabasappa,
Sanjay Singh, Sean Bell, Seohyun Sonia Kim, Sergey Edunov, Shaoliang Nie, Sharan Narang,
Sharath Raparthy, Sheng Shen, Shengye Wan, Shruti Bhosale, Shun Zhang, Simon Vandenhende,
Soumya Batra, Spencer Whitman, Sten Sootla, Stephane Collot, Suchin Gururangan, Sydney

12

https://aclanthology.org/2021.naacl-main.365
https://aclanthology.org/2021.naacl-main.365


Published as a conference paper at ICLR 2025

Borodinsky, Tamar Herman, Tara Fowler, Tarek Sheasha, Thomas Georgiou, Thomas Scialom,
Tobias Speckbacher, Todor Mihaylov, Tong Xiao, Ujjwal Karn, Vedanuj Goswami, Vibhor Gupta,
Vignesh Ramanathan, Viktor Kerkez, Vincent Gonguet, Virginie Do, Vish Vogeti, Vladan Petro-
vic, Weiwei Chu, Wenhan Xiong, Wenyin Fu, Whitney Meers, Xavier Martinet, Xiaodong Wang,
Xiaoqing Ellen Tan, Xinfeng Xie, Xuchao Jia, Xuewei Wang, Yaelle Goldschlag, Yashesh Gaur,
Yasmine Babaei, Yi Wen, Yiwen Song, Yuchen Zhang, Yue Li, Yuning Mao, Zacharie Delpierre
Coudert, Zheng Yan, Zhengxing Chen, Zoe Papakipos, Aaditya Singh, Aaron Grattafiori, Abha
Jain, Adam Kelsey, Adam Shajnfeld, Adithya Gangidi, Adolfo Victoria, Ahuva Goldstand, Ajay
Menon, Ajay Sharma, Alex Boesenberg, Alex Vaughan, Alexei Baevski, Allie Feinstein, Amanda
Kallet, Amit Sangani, Anam Yunus, Andrei Lupu, Andres Alvarado, Andrew Caples, Andrew
Gu, Andrew Ho, Andrew Poulton, Andrew Ryan, Ankit Ramchandani, Annie Franco, Aparajita
Saraf, Arkabandhu Chowdhury, Ashley Gabriel, Ashwin Bharambe, Assaf Eisenman, Azadeh
Yazdan, Beau James, Ben Maurer, Benjamin Leonhardi, Bernie Huang, Beth Loyd, Beto De
Paola, Bhargavi Paranjape, Bing Liu, Bo Wu, Boyu Ni, Braden Hancock, Bram Wasti, Bran-
don Spence, Brani Stojkovic, Brian Gamido, Britt Montalvo, Carl Parker, Carly Burton, Catalina
Mejia, Changhan Wang, Changkyu Kim, Chao Zhou, Chester Hu, Ching-Hsiang Chu, Chris Cai,
Chris Tindal, Christoph Feichtenhofer, Damon Civin, Dana Beaty, Daniel Kreymer, Daniel Li,
Danny Wyatt, David Adkins, David Xu, Davide Testuggine, Delia David, Devi Parikh, Diana
Liskovich, Didem Foss, Dingkang Wang, Duc Le, Dustin Holland, Edward Dowling, Eissa Jamil,
Elaine Montgomery, Eleonora Presani, Emily Hahn, Emily Wood, Erik Brinkman, Esteban Ar-
caute, Evan Dunbar, Evan Smothers, Fei Sun, Felix Kreuk, Feng Tian, Firat Ozgenel, Francesco
Caggioni, Francisco Guzmán, Frank Kanayet, Frank Seide, Gabriela Medina Florez, Gabriella
Schwarz, Gada Badeer, Georgia Swee, Gil Halpern, Govind Thattai, Grant Herman, Grigory
Sizov, Guangyi, Zhang, Guna Lakshminarayanan, Hamid Shojanazeri, Han Zou, Hannah Wang,
Hanwen Zha, Haroun Habeeb, Harrison Rudolph, Helen Suk, Henry Aspegren, Hunter Gold-
man, Ibrahim Damlaj, Igor Molybog, Igor Tufanov, Irina-Elena Veliche, Itai Gat, Jake Weissman,
James Geboski, James Kohli, Japhet Asher, Jean-Baptiste Gaya, Jeff Marcus, Jeff Tang, Jennifer
Chan, Jenny Zhen, Jeremy Reizenstein, Jeremy Teboul, Jessica Zhong, Jian Jin, Jingyi Yang, Joe
Cummings, Jon Carvill, Jon Shepard, Jonathan McPhie, Jonathan Torres, Josh Ginsburg, Junjie
Wang, Kai Wu, Kam Hou U, Karan Saxena, Karthik Prasad, Kartikay Khandelwal, Katayoun
Zand, Kathy Matosich, Kaushik Veeraraghavan, Kelly Michelena, Keqian Li, Kun Huang, Kunal
Chawla, Kushal Lakhotia, Kyle Huang, Lailin Chen, Lakshya Garg, Lavender A, Leandro Silva,
Lee Bell, Lei Zhang, Liangpeng Guo, Licheng Yu, Liron Moshkovich, Luca Wehrstedt, Madian
Khabsa, Manav Avalani, Manish Bhatt, Maria Tsimpoukelli, Martynas Mankus, Matan Hasson,
Matthew Lennie, Matthias Reso, Maxim Groshev, Maxim Naumov, Maya Lathi, Meghan Ke-
neally, Michael L. Seltzer, Michal Valko, Michelle Restrepo, Mihir Patel, Mik Vyatskov, Mikayel
Samvelyan, Mike Clark, Mike Macey, Mike Wang, Miquel Jubert Hermoso, Mo Metanat, Mo-
hammad Rastegari, Munish Bansal, Nandhini Santhanam, Natascha Parks, Natasha White, Navy-
ata Bawa, Nayan Singhal, Nick Egebo, Nicolas Usunier, Nikolay Pavlovich Laptev, Ning Dong,
Ning Zhang, Norman Cheng, Oleg Chernoguz, Olivia Hart, Omkar Salpekar, Ozlem Kalinli,
Parkin Kent, Parth Parekh, Paul Saab, Pavan Balaji, Pedro Rittner, Philip Bontrager, Pierre Roux,
Piotr Dollar, Polina Zvyagina, Prashant Ratanchandani, Pritish Yuvraj, Qian Liang, Rachad Alao,
Rachel Rodriguez, Rafi Ayub, Raghotham Murthy, Raghu Nayani, Rahul Mitra, Raymond Li,
Rebekkah Hogan, Robin Battey, Rocky Wang, Rohan Maheswari, Russ Howes, Ruty Rinott,
Sai Jayesh Bondu, Samyak Datta, Sara Chugh, Sara Hunt, Sargun Dhillon, Sasha Sidorov, Sa-
tadru Pan, Saurabh Verma, Seiji Yamamoto, Sharadh Ramaswamy, Shaun Lindsay, Shaun Lind-
say, Sheng Feng, Shenghao Lin, Shengxin Cindy Zha, Shiva Shankar, Shuqiang Zhang, Shuqiang
Zhang, Sinong Wang, Sneha Agarwal, Soji Sajuyigbe, Soumith Chintala, Stephanie Max, Stephen
Chen, Steve Kehoe, Steve Satterfield, Sudarshan Govindaprasad, Sumit Gupta, Sungmin Cho,
Sunny Virk, Suraj Subramanian, Sy Choudhury, Sydney Goldman, Tal Remez, Tamar Glaser,
Tamara Best, Thilo Kohler, Thomas Robinson, Tianhe Li, Tianjun Zhang, Tim Matthews, Tim-
othy Chou, Tzook Shaked, Varun Vontimitta, Victoria Ajayi, Victoria Montanez, Vijai Mohan,
Vinay Satish Kumar, Vishal Mangla, Vı́tor Albiero, Vlad Ionescu, Vlad Poenaru, Vlad Tiberiu
Mihailescu, Vladimir Ivanov, Wei Li, Wenchen Wang, Wenwen Jiang, Wes Bouaziz, Will Con-
stable, Xiaocheng Tang, Xiaofang Wang, Xiaojian Wu, Xiaolan Wang, Xide Xia, Xilun Wu,
Xinbo Gao, Yanjun Chen, Ye Hu, Ye Jia, Ye Qi, Yenda Li, Yilin Zhang, Ying Zhang, Yossi Adi,
Youngjin Nam, Yu, Wang, Yuchen Hao, Yundi Qian, Yuzi He, Zach Rait, Zachary DeVito, Zef
Rosnbrick, Zhaoduo Wen, Zhenyu Yang, and Zhiwei Zhao. The llama 3 herd of models, 2024.
URL https://arxiv.org/abs/2407.21783.

13

https://arxiv.org/abs/2407.21783


Published as a conference paper at ICLR 2025

Alexander Fabbri, Irene Li, Tianwei She, Suyi Li, and Dragomir Radev. Multi-news: A large-scale
multi-document summarization dataset and abstractive hierarchical model. In Anna Korhonen,
David Traum, and Lluı́s Màrquez (eds.), Proceedings of the 57th Annual Meeting of the Associ-
ation for Computational Linguistics, pp. 1074–1084, Florence, Italy, July 2019. Association for
Computational Linguistics. doi: 10.18653/v1/P19-1102. URL https://aclanthology.
org/P19-1102.

Fino and Algazi. Unified matrix treatment of the fast walsh-hadamard transform. IEEE Transactions
on Computers, C-25(11):1142–1146, 1976. doi: 10.1109/TC.1976.1674569.

Elias Frantar, Roberto L. Castro, Jiale Chen, Torsten Hoefler, and Dan Alistarh. Marlin: Mixed-
precision auto-regressive parallel inference on large language models, 2024. URL https://
arxiv.org/abs/2408.11743.

Yao Fu. Challenges in deploying long-context transformers: A theoretical peak performance analy-
sis, 2024. URL https://arxiv.org/abs/2405.08944.

Leo Gao, Jonathan Tow, Baber Abbasi, Stella Biderman, Sid Black, Anthony DiPofi, Charles Fos-
ter, Laurence Golding, Jeffrey Hsu, Alain Le Noac’h, Haonan Li, Kyle McDonell, Niklas Muen-
nighoff, Chris Ociepa, Jason Phang, Laria Reynolds, Hailey Schoelkopf, Aviya Skowron, Lin-
tang Sutawika, Eric Tang, Anish Thite, Ben Wang, Kevin Wang, and Andy Zou. A framework
for few-shot language model evaluation, 12 2023. URL https://zenodo.org/records/
10256836.

Suyu Ge, Yunan Zhang, Liyuan Liu, Minjia Zhang, Jiawei Han, and Jianfeng Gao. Model tells
you what to discard: Adaptive KV cache compression for LLMs. In The Twelfth International
Conference on Learning Representations, 2024. URL https://openreview.net/forum?
id=uNrFpDPMyo.

Amir Gholami, Zhewei Yao, Sehoon Kim, Coleman Hooper, Michael W. Mahoney, and Kurt
Keutzer. Ai and memory wall, 2024. URL https://arxiv.org/abs/2403.14123.

Bogdan Gliwa, Iwona Mochol, Maciej Biesek, and Aleksander Wawer. Samsum corpus: A human-
annotated dialogue dataset for abstractive summarization. CoRR, abs/1911.12237, 2019. URL
http://arxiv.org/abs/1911.12237.

Daya Guo, Canwen Xu, Nan Duan, Jian Yin, and Julian J. McAuley. Longcoder: A long-range pre-
trained language model for code completion. In Andreas Krause, Emma Brunskill, Kyunghyun
Cho, Barbara Engelhardt, Sivan Sabato, and Jonathan Scarlett (eds.), International Conference
on Machine Learning, ICML 2023, 23-29 July 2023, Honolulu, Hawaii, USA, volume 202 of
Proceedings of Machine Learning Research, pp. 12098–12107. PMLR, 2023. URL https:
//proceedings.mlr.press/v202/guo23j.html.

Coleman Hooper, Sehoon Kim, Hiva Mohammadzadeh, Michael W Mahoney, Yakun Sophia Shao,
Kurt Keutzer, and Amir Gholami. Kvquant: Towards 10 million context length llm inference with
kv cache quantization. arXiv preprint arXiv:2401.18079, 2024.

Yen-Chang Hsu, Ting Hua, Sungen Chang, Qian Lou, Yilin Shen, and Hongxia Jin. Language model
compression with weighted low-rank factorization. In International Conference on Learning
Representations, 2022. URL https://openreview.net/forum?id=uPv9Y3gmAI5.

Edward J Hu, yelong shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. LoRA: Low-rank adaptation of large language models. In International Con-
ference on Learning Representations, 2022. URL https://openreview.net/forum?
id=nZeVKeeFYf9.

Albert Q. Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chap-
lot, Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile Saulnier,
Lélio Renard Lavaud, Marie-Anne Lachaux, Pierre Stock, Teven Le Scao, Thibaut Lavril, Thomas
Wang, Timothée Lacroix, and William El Sayed. Mistral 7b, 2023.

Ian T Jolliffe and Jorge Cadima. Principal component analysis: a review and recent developments.
Philosophical transactions of the royal society A: Mathematical, Physical and Engineering Sci-
ences, 374(2065):20150202, 2016.

14

https://aclanthology.org/P19-1102
https://aclanthology.org/P19-1102
https://arxiv.org/abs/2408.11743
https://arxiv.org/abs/2408.11743
https://arxiv.org/abs/2405.08944
https://zenodo.org/records/10256836
https://zenodo.org/records/10256836
https://openreview.net/forum?id=uNrFpDPMyo
https://openreview.net/forum?id=uNrFpDPMyo
https://arxiv.org/abs/2403.14123
http://arxiv.org/abs/1911.12237
https://proceedings.mlr.press/v202/guo23j.html
https://proceedings.mlr.press/v202/guo23j.html
https://openreview.net/forum?id=uPv9Y3gmAI5
https://openreview.net/forum?id=nZeVKeeFYf9
https://openreview.net/forum?id=nZeVKeeFYf9


Published as a conference paper at ICLR 2025

Mandar Joshi, Eunsol Choi, Daniel Weld, and Luke Zettlemoyer. TriviaQA: A large scale distantly
supervised challenge dataset for reading comprehension. In Regina Barzilay and Min-Yen Kan
(eds.), Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics
(Volume 1: Long Papers), pp. 1601–1611, Vancouver, Canada, July 2017. Association for Com-
putational Linguistics. doi: 10.18653/v1/P17-1147. URL https://aclanthology.org/
P17-1147.

Hao Kang, Qingru Zhang, Souvik Kundu, Geonhwa Jeong, Zaoxing Liu, Tushar Krishna, and Tuo
Zhao. Gear: An efficient kv cache compression recipe for near-lossless generative inference of
llm, 2024.

Dacheng Li, Rulin Shao, Anze Xie, Ying Sheng, Lianmin Zheng, Joseph Gonzalez, Ion Stoica,
Xuezhe Ma, and Hao Zhang. How long can context length of open-source llms truly promise? In
NeurIPS 2023 Workshop on Instruction Tuning and Instruction Following, 2023.

Xin Li and Dan Roth. Learning question classifiers. In 19th International Conference on Computa-
tional Linguistics, COLING 2002, Howard International House and Academia Sinica, Taipei,
Taiwan, August 24 - September 1, 2002, 2002. URL https://aclanthology.org/
C02-1150/.

Yuhong Li, Yingbing Huang, Bowen Yang, Bharat Venkitesh, Acyr Locatelli, Hanchen Ye, Tianle
Cai, Patrick Lewis, and Deming Chen. SnapKV: LLM knows what you are looking for before
generation. In The Thirty-eighth Annual Conference on Neural Information Processing Systems,
2024. URL https://openreview.net/forum?id=poE54GOq2l.

Liyang Liu, Shilong Zhang, Zhanghui Kuang, Aojun Zhou, Jing-Hao Xue, Xinjiang Wang, Yimin
Chen, Wenming Yang, Qingmin Liao, and Wayne Zhang. Group fisher pruning for practical
network compression. In Marina Meila and Tong Zhang (eds.), Proceedings of the 38th Inter-
national Conference on Machine Learning, ICML 2021, 18-24 July 2021, Virtual Event, vol-
ume 139 of Proceedings of Machine Learning Research, pp. 7021–7032. PMLR, 2021. URL
http://proceedings.mlr.press/v139/liu21ab.html.

Tianyang Liu, Canwen Xu, and Julian McAuley. Repobench: Benchmarking repository-level code
auto-completion systems, 2023.

Zechun Liu, Changsheng Zhao, Igor Fedorov, Bilge Soran, Dhruv Choudhary, Raghuraman Krish-
namoorthi, Vikas Chandra, Yuandong Tian, and Tijmen Blankevoort. Spinquant–llm quantization
with learned rotations. arXiv preprint arXiv:2405.16406, 2024a.

Zirui Liu, Jiayi Yuan, Hongye Jin, Shaochen Zhong, Zhaozhuo Xu, Vladimir Braverman, Beidi
Chen, and Xia Hu. Kivi: A tuning-free asymmetric 2bit quantization for kv cache. arXiv preprint
arXiv:2402.02750, 2024b.

Alexander Ly, Maarten Marsman, Josine Verhagen, Raoul Grasman, and Eric-Jan Wagenmakers. A
tutorial on fisher information, 2017.

Xinyin Ma, Gongfan Fang, and Xinchao Wang. Llm-pruner: On the structural pruning of large
language models, 2023.

Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher. Pointer sentinel mixture
models, 2016.

Carl Dean Meyer. Matrix Analysis and Applied Linear Algebra. SIAM, 2000.

Todor Mihaylov, Peter Clark, Tushar Khot, and Ashish Sabharwal. Can a suit of armor conduct
electricity? a new dataset for open book question answering. arXiv preprint arXiv:1809.02789,
2018.

Matan Ben Noach and Yoav Goldberg. Compressing pre-trained language models by matrix decom-
position. In Kam-Fai Wong, Kevin Knight, and Hua Wu (eds.), Proceedings of the 1st Confer-
ence of the Asia-Pacific Chapter of the Association for Computational Linguistics and the 10th
International Joint Conference on Natural Language Processing, AACL/IJCNLP 2020, Suzhou,
China, December 4-7, 2020, pp. 884–889. Association for Computational Linguistics, 2020. URL
https://aclanthology.org/2020.aacl-main.88/.

15

https://aclanthology.org/P17-1147
https://aclanthology.org/P17-1147
https://aclanthology.org/C02-1150/
https://aclanthology.org/C02-1150/
https://openreview.net/forum?id=poE54GOq2l
http://proceedings.mlr.press/v139/liu21ab.html
https://aclanthology.org/2020.aacl-main.88/


Published as a conference paper at ICLR 2025

Ofir Press, Noah Smith, and Mike Lewis. Train short, test long: Attention with linear biases enables
input length extrapolation. In International Conference on Learning Representations, 2022. URL
https://openreview.net/forum?id=R8sQPpGCv0.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J Liu. Exploring the limits of transfer learning with a unified text-to-text
transformer. Journal of machine learning research, 21(140):1–67, 2020.

Luka Ribar, Ivan Chelombiev, Luke Hudlass-Galley, Charlie Blake, Carlo Luschi, and Douglas Orr.
Sparq attention: Bandwidth-efficient LLM inference. In ICLR 2024 Workshop on Mathematical
and Empirical Understanding of Foundation Models, 2024. URL https://openreview.
net/forum?id=Ue8EHzaFI4.

Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavatula, and Yejin Choi. Winogrande: An adver-
sarial winograd schema challenge at scale. Communications of the ACM, 64(9):99–106, 2021.

Charbel Sakr and Brucek Khailany. Espace: Dimensionality reduction of activations for model
compression. arXiv preprint arXiv:2410.05437, 2024.

Pratyusha Sharma, Jordan T. Ash, and Dipendra Misra. The truth is in there: Improving reasoning
in language models with layer-selective rank reduction, 2023.

Noam Shazeer. Fast transformer decoding: One write-head is all you need, 2019. URL https:
//arxiv.org/abs/1911.02150.

Jianlin Su, Yu Lu, Shengfeng Pan, Bo Wen, and Yunfeng Liu. Roformer: Enhanced transformer
with rotary position embedding. CoRR, abs/2104.09864, 2021. URL https://arxiv.org/
abs/2104.09864.

Jiaming Tang, Yilong Zhao, Kan Zhu, Guangxuan Xiao, Baris Kasikci, and Song Han. QUEST:
Query-Aware Sparsity for Efficient Long-Context LLM Inference. In Proceedings of the Interna-
tional Conference on Machine Learning (ICML), 2024.

Philippe Tillet, Hsiang-Tsung Kung, and David Cox. Triton: an intermediate language and compiler
for tiled neural network computations. In Proceedings of the 3rd ACM SIGPLAN International
Workshop on Machine Learning and Programming Languages, pp. 10–19, 2019.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Niko-
lay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, Dan Bikel, Lukas Blecher,
Cristian Canton Ferrer, Moya Chen, Guillem Cucurull, David Esiobu, Jude Fernandes, Jeremy
Fu, Wenyin Fu, Brian Fuller, Cynthia Gao, Vedanuj Goswami, Naman Goyal, Anthony Hartshorn,
Saghar Hosseini, Rui Hou, Hakan Inan, Marcin Kardas, Viktor Kerkez, Madian Khabsa, Isabel
Kloumann, Artem Korenev, Punit Singh Koura, Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee,
Diana Liskovich, Yinghai Lu, Yuning Mao, Xavier Martinet, Todor Mihaylov, Pushkar Mishra,
Igor Molybog, Yixin Nie, Andrew Poulton, Jeremy Reizenstein, Rashi Rungta, Kalyan Saladi,
Alan Schelten, Ruan Silva, Eric Michael Smith, Ranjan Subramanian, Xiaoqing Ellen Tan, Binh
Tang, Ross Taylor, Adina Williams, Jian Xiang Kuan, Puxin Xu, Zheng Yan, Iliyan Zarov, Yuchen
Zhang, Angela Fan, Melanie Kambadur, Sharan Narang, Aurelien Rodriguez, Robert Stojnic,
Sergey Edunov, and Thomas Scialom. Llama 2: Open foundation and fine-tuned chat models,
2023.

Albert Tseng, Jerry Chee, Qingyao Sun, Volodymyr Kuleshov, and Christopher De Sa. Quip#:
Even better llm quantization with hadamard incoherence and lattice codebooks. arXiv preprint
arXiv:2402.04396, 2024.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Isabelle Guyon, Ulrike von
Luxburg, Samy Bengio, Hanna M. Wallach, Rob Fergus, S. V. N. Vishwanathan, and Roman
Garnett (eds.), Advances in Neural Information Processing Systems 30: Annual Conference on
Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp.
5998–6008, 2017. URL https://proceedings.neurips.cc/paper/2017/hash/
3f5ee243547dee91fbd053c1c4a845aa-Abstract.html.

16

https://openreview.net/forum?id=R8sQPpGCv0
https://openreview.net/forum?id=Ue8EHzaFI4
https://openreview.net/forum?id=Ue8EHzaFI4
https://arxiv.org/abs/1911.02150
https://arxiv.org/abs/1911.02150
https://arxiv.org/abs/2104.09864
https://arxiv.org/abs/2104.09864
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html


Published as a conference paper at ICLR 2025

Xin Wang, Yu Zheng, Zhongwei Wan, and Mi Zhang. Svd-llm: Truncation-aware singular value
decomposition for large language model compression. arXiv preprint arXiv:2403.07378, 2024.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi,
Pierric Cistac, Tim Rault, Remi Louf, Morgan Funtowicz, Joe Davison, Sam Shleifer, Patrick
von Platen, Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven Le Scao, Sylvain Gugger,
Mariama Drame, Quentin Lhoest, and Alexander Rush. Transformers: State-of-the-art natural
language processing. In Qun Liu and David Schlangen (eds.), Proceedings of the 2020 Confer-
ence on Empirical Methods in Natural Language Processing: System Demonstrations, pp. 38–
45, Online, October 2020. Association for Computational Linguistics. doi: 10.18653/v1/2020.
emnlp-demos.6. URL https://aclanthology.org/2020.emnlp-demos.6.

Guangxuan Xiao, Yuandong Tian, Beidi Chen, Song Han, and Mike Lewis. Efficient streaming
language models with attention sinks. In The Twelfth International Conference on Learning Rep-
resentations, 2024. URL https://openreview.net/forum?id=NG7sS51zVF.

Zhihang Yuan, Yuzhang Shang, Yue Song, Qiang Wu, Yan Yan, and Guangyu Sun. Asvd:
Activation-aware singular value decomposition for compressing large language models, 2023.

Zhihang Yuan, Yuzhang Shang, Yang Zhou, Zhen Dong, Zhe Zhou, Chenhao Xue, Bingzhe Wu,
Zhikai Li, Qingyi Gu, Yong Jae Lee, Yan Yan, Beidi Chen, Guangyu Sun, and Kurt Keutzer.
LLM inference unveiled: Survey and roofline model insights. CoRR, abs/2402.16363, 2024.
doi: 10.48550/ARXIV.2402.16363. URL https://doi.org/10.48550/arXiv.2402.
16363.

Yuxuan Yue, Zhihang Yuan, Haojie Duanmu, Sifan Zhou, Jianlong Wu, and Liqiang Nie. Wkvquant:
Quantizing weight and key/value cache for large language models gains more. arXiv preprint
arXiv:2402.12065, 2024.

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. Hellaswag: Can a ma-
chine really finish your sentence? arXiv preprint arXiv:1905.07830, 2019.

Zhenyu Zhang, Ying Sheng, Tianyi Zhou, Tianlong Chen, Lianmin Zheng, Ruisi Cai, Zhao Song,
Yuandong Tian, Christopher Ré, Clark Barrett, et al. H2o: Heavy-hitter oracle for efficient gen-
erative inference of large language models. Advances in Neural Information Processing Systems,
36, 2024.

Jiawei Zhao, Zhenyu Zhang, Beidi Chen, Zhangyang Wang, Anima Anandkumar, and Yuan-
dong Tian. Galore: Memory-efficient LLM training by gradient low-rank projection. CoRR,
abs/2403.03507, 2024. doi: 10.48550/ARXIV.2403.03507. URL https://doi.org/10.
48550/arXiv.2403.03507.

Yilong Zhao, Chien-Yu Lin, Kan Zhu, Zihao Ye, Lequn Chen, Size Zhenga, Luis Ceze, Arvind
Krishnamurthy, Tianqi Chen, and Baris Kasikci. Atom: Low-bit quantization for efficient and
accurate llm serving. arXiv preprint arXiv:2310.19102, 2023.

Ming Zhong, Da Yin, Tao Yu, Ahmad Zaidi, Mutethia Mutuma, Rahul Jha, Ahmed Hassan Awadal-
lah, Asli Celikyilmaz, Yang Liu, Xipeng Qiu, and Dragomir Radev. QMSum: A new benchmark
for query-based multi-domain meeting summarization. In Kristina Toutanova, Anna Rumshisky,
Luke Zettlemoyer, Dilek Hakkani-Tur, Iz Beltagy, Steven Bethard, Ryan Cotterell, Tanmoy
Chakraborty, and Yichao Zhou (eds.), Proceedings of the 2021 Conference of the North Amer-
ican Chapter of the Association for Computational Linguistics: Human Language Technologies,
pp. 5905–5921, Online, June 2021. Association for Computational Linguistics. doi: 10.18653/v1/
2021.naacl-main.472. URL https://aclanthology.org/2021.naacl-main.472.

17

https://aclanthology.org/2020.emnlp-demos.6
https://openreview.net/forum?id=NG7sS51zVF
https://doi.org/10.48550/arXiv.2402.16363
https://doi.org/10.48550/arXiv.2402.16363
https://doi.org/10.48550/arXiv.2403.03507
https://doi.org/10.48550/arXiv.2403.03507
https://aclanthology.org/2021.naacl-main.472


Published as a conference paper at ICLR 2025

APPENDIX

A QUANTIZATION BASICS

Quantization techniques use discrete low-bit values to approximate high-precision floating points.
The general asymmetric uniform quantization function is defined as:

X = clamp
(⌊X

s

⌉
+ z, 0, 2B − 1), (9)

where X denotes the approximated tensor with low-bit representations (i.e., 4-bit integers), X is the
floating-point tensor, s = Xmax−Xmin

2B−1
is the scaling factor, and z =

⌊−Xmin
s

⌉
is a zero-point. The ⌊·⌉

is the rounding operation.

B KERNEL IMPLEMENTATION DETAILS

𝐇𝑟 𝐁q 𝑟

𝑑!𝑑!
1

Split 1 Split 2 … Split N-1

	𝐁𝐇𝐢

Matmul

𝐊𝐢

𝐿"#$% 𝐿

RoPE

𝐊𝐢∗

Matmul

𝐚

q Thread	Block	1 𝐿
𝐿!"#$

Cos/Sin

Position	id

𝐿
1

...

Figure 7: Illustration of our fused GPU kernel for computing attention scores with online reconstruc-
tion. In this figure, q represents the query vector, H denotes the low-rank compressed key states,
and B stands for the reconstruction matrices.

Kernel for attention score calculation with reconstruction. The central idea of Palu is to lever-
age low-rank latent representations to accelerate the attention mechanism by reducing data transfer
overhead. Instead of working directly with the full-sized key matrix, we store and transfer a com-
pressed low-rank latent representation, denoted as H ∈ RL×r. During computation, our custom
GPU kernel performs an on-the-fly reconstruction using a reconstruction matrix B ∈ Rr×dh , pro-
ducing a restored key matrix K ∈ RL×dh , where L is the sequence length, dh is the hidden di-
mension, and r denote the remaining rank after performing low-rank projection. The query vector,
represented as q ∈ R1×dh , then multiplies with the reconstructed keys to obtain the attention scores.

To efficiently leverage parallelism, we perform tiling along the sequence length dimension L.
Specifically, we split the sequence into smaller tiles of size Ltile, assigning each tile to a dedicated
thread block. Each thread block independently reconstructs a submatrix Hi ∈ RLtile×dh from the
low-rank latent representation H, then applies the positional embedding using RoPE, and finally per-
forms the matrix-vector multiplication between q and Hi to produce partial attention scores. This
design ensures that all intermediate computations, from reconstruction to embedding and final mul-
tiplication, remain entirely in on-chip memory (i.e., share memory), thus minimizing high-latency
memory access and taking full advantage of the GPU’s parallel processing capabilities to achieve
significant speedups.

18



Published as a conference paper at ICLR 2025

C DISCUSSION REGARDING MEMORY USAGE

In this work, the experimental results focus on the compression rate of the KV-Cache as a key
metric. However, it is crucial to consider overall memory savings as a more significant factor. For
instance, as demonstrated in Sec. 2.2, a typical compression rate of 30% can lead to an increase in
weight size by approximately 40%. This increase is calculated under the assumption that m = n
and r = 0.7n, resulting in the equation mr+nr

mn = 1.4. Such an increase indicates substantial extra
memory usage.

This issue primarily arises in J-LRD decomposition schemes, where the projections of all heads
are decomposed jointly. In contrast, our M-LRD decomposition schemes and optimized G-LRD
schemes involve non-square target matrices. For example, in the G-LRD scheme with a group size
of 4, the target matrix is formed by concatenating the original projection matrices of each attention
head in the group. In the Llama-2-7b model, with an embedding dimension of 4096 and head
dimensions of 128, each projection matrix is 4096x128, resulting in a concatenated matrix of size
4096x512. In this case, the dimensions should be considered as m = 8n. Applying the referenced
equation mr+nr

mn with r = 0.7n, we find that mr+nr
mn = 0.7875, indicating no additional storage cost

and, in fact, achieving an additional 21.25% memory savings.

Furthermore, it is important to highlight that the weights associated with the K and V projections
account for only 2 out of 7 linear layers within transformer blocks, comprising merely 16% of the
parameters in Llama-2-7b models. This limits the overall impact on memory usage. Thus, while
J-LRD may incur overhead, the M-LRD and G-LRD schemes provide efficient alternatives that do
not lead to increased memory usage, making them viable options for practical applications.

Table 4: Evaluation integrating LoRA with Palu on Llama2-7B.

Comp. Rate Method Zero-Shot Accuracy (%) ↑
OBQA HellaSwag PIQA ARC-e ARC-c WinoGrande Avg. Diff.

Rate = 0% baseline 44.20 76.00 78.07 76.30 46.42 69.30 65.05 -

Rate = 50%
w/o LoRA

J-LRD 45.40 75.57 77.48 75.97 45.31 69.22 64.83 -0.22
G-LRD 43.60 73.39 76.33 73.02 42.57 66.77 62.61 -2.44
M-LRD 39.60 65.35 74.76 67.17 35.24 64.64 57.79 -7.26

Rate = 50%
w/ LoRA

J-LRD 44.20 74.09 78.51 77.27 48.81 71.03 65.65 +0.60
G-LRD 43.40 73.08 78.56 75.72 47.10 69.85 64.62 -0.43
M-LRD 41.80 70.78 78.02 73.86 43.86 69.22 62.92 -2.12

D INTEGRATING Palu WITH LORA FINETUNE

LoRA (Hu et al., 2022) has become one of the most widely used efficient fine-tuning techniques
for adapting models to particular tasks or domains with limited data. It has also been applied with
LLM compression approaches (Wang et al., 2024; Ma et al., 2023) as a post-compression recovery
technique to recover information loss after compression. In Palu, LoRA is also applicable to boost
the accuracy further.

To integrate LoRA with Palu, we introduce additional low-rank matrices A′
r ∈ Rd×r′ and B′

r ∈
Rr′×d to refine the original low-rank projection as below:

h = Ax+Ar′Br′x (10)

Here, A will be fixed parameters derived from low-rank decomposition from pre-trained weights
of linear layers, while A′

r and B′
r are trainable parameters to capture the task-specific nuances and

recovers the information lost during the compression.

Setup. Following Ashkboos et al. 2024a, we sample 8k samples from the Alpaca training dataset
as a fine-tuning dataset and apply LoRA with rank r′ = 32 and α = 32. All other hyper-parameters
are aligned with Ashkboos et al. (2024a), except for the learning rate 2e− 4, and the use of a cosine
learning rate scheduler.

19



Published as a conference paper at ICLR 2025

Table 5: Perplexity and zero-shot accuracy of Palu, with different decomposition strategies at 50%

Model Method Perplexity ↓ Zero-Shot Accuracy (%) ↑
Wiki2 C4 OBQA Hella PIQA ARC-e ARC-c Wino Avg.

Llama2-13B

Baseline 4.88 6.70 45.20 79.39 79.11 79.42 49.06 72.38 67.43

J-LRD 4.97 6.92 46.40 79.48 78.62 79.29 49.91 70.56 67.38
G-LRD 5.31 7.76 45.60 77.29 77.42 76.05 45.99 72.45 65.80
M-LRD 5.65 8.34 43.20 74.34 77.53 75.76 45.39 68.98 64.20

Experiment Results. We present the experiment results with LoRA in Table 4. Following Ashk-
boos et al. 2024a With LoRA incorporated, J-LRD continues to show minimal performance degra-
dation with an average drop of 1.00%. G-LRD (gs=4) and M-LRD show improved results compared
to their non-LoRA counterparts, with average drops of 2.01% and 5.14%, respectively. Notably,
with LoRA integration, G-LRD shows only a 1.03% accuracy difference compared to J-LRD.

E MORE RESULTS ON ZERO-SHOT ACCURACY

Following up Sec. 4.2, we further report the perplexity and zero-shot evaluation results of Palu on
the Llama-2-13B at 50% compression rate. As shown in Table. 5, we observe that Palu achieve
competitive accuracy drops around 3% or less across different using either J-LRD, G-LRD, or M-
LRD. Thus, the users may adopt M-LRD first to optimize the efficiency further.

Table 6: Ablation study of low-rank decomposition group size on perplexity for the Llama2-7B
model at a 50% compression rate using Wikitext-2.

Method Group Size Perplexity

Baseline - 5.47

J-LRD 32 5.62

G-LRD

16 5.74
8 5.88
4 6.01
2 6.42

M-LRD 1 6.81

F ABLATION STUDY

F.1 INFLUENCE OF DIFFERENT GROUP SIZE

Since our proposed G-LRD method allows for balancing performance and efficiency by adjusting
the group size, we conducted an ablation study on group size. As seen in Table 6, as the group size
increases, the amount of shared information also increases, leading to improved performance.

F.2 INFLUENCE OF WALSH-HADAMARD TRANSFORM

We conduct the ablation study to profile the benefits of applying the Walsh-Hadamard Transform
(WHT). Experiment results are reported at Table 7. On the 3-bit quantization level, we observe that
the Hadamard Transform only brings a slight amount of perplexity. However, when we quantize
the low-rank representation more extremely (i.e., 2-bit), we can observe a notable 4.17 perplexity
enhancements. It’s worth re-emphasizing that Hadamard Transform will not bring extra overhead
during inference, as Palu optimizes the WHT process via offline preprocessing. The reader may
refer to Sec. 3.4 for more details.

F.3 AUTOMATIC RANK ALLOCATION VS. UNIFORM RANK ALLOCATION

Table 8 presents the ablation study on the impact of different rank allocation schemes on the model’s
accuracy. Applying rank searching results in a notable performance improvement. For instance, at a

20



Published as a conference paper at ICLR 2025

compression rate of 50%, there is a significant reduction in perplexity by 2.18. Fig. 8 visualizes the
rank allocation across different transformer blocks for key and value projection layers. The results
clearly demonstrate a non-uniform allocation result. Specifically, we observe that the value is gener-
ally allocated a higher rank than the key. Additionally, the first half of the layers are assigned higher
ranks, indicating their greater importance in preserving model performance. This visualization un-
derscores the effectiveness of our rank search algorithm in identifying and allocating appropriate
ranks to different components, thereby optimizing the balance between compression and accuracy.

Table 7: Ablation Study on different quantization settings for quantizing low-rank latent represen-
tations. Same as Sec. 4.3, we use the WikiText-2 with sequence length set to 4096 as the evaluation
benchmark.

Method Wikitext-2 PPL ↓
Llama2-7B 5.12

Palu-30% (FP16) 5.25
+ 3-bits w/o Hadamard 5.52
+ 3-bits w Hadamard 5.33 (0.19↓)

+ 2-bits w/o Hadamard 9.48
+ 2-bits w Hadamard 5.77 (3.71↓)

Palu-50% (FP16) 5.63
+ 3-bits w/o Hadamard 5.99
+ 3-bits w Hadamard 5.77 (0.22↓)

+ 2-bits w/o Hadamard 10.58
+ 2-bits w Hadamard 6.41 (4.17↓)

0 5 10 15 20 25 30
Layer Index

0.0

0.2

0.4

0.6

0.8

Co
m

pr
es

sio
n 

Ra
te

key
value

Figure 8: Visualization of layer-wise low-rank compression rate on Llama-2-7B with 50% of over-
all compression rate. Here, compression rates (i.e., rank) are allocated using the proposed Fisher
Information-based automated rank allocation algorithm.

Table 8: Ablation study on w/ and w/o rank search. We use Llama2-7b and Wikitext-2 with sequence
length 2048 as the benchmark.

Rate=30% Rate=50% Rate=70%

Uniform 6.34 7.36 10.77
Automatic (ours) 5.62 (0.72↓) 6.02 (1.36↓) 8.59 (2.18↓)

G EXPERIMENT DETAILS

G.1 ZERO-SHOT EVALUATION DETAILS

We selected six zero-shot tasks from the LM-eval benchmark to evaluate Palu:

• OpenBookQA (accuracy, Mihaylov et al.)

21



Published as a conference paper at ICLR 2025

• HellaSwag (acc norm, Zellers et al.)
• PIQA (accuracy, Bisk et al.)
• ARC-Easy (accuracy, Clark et al.)
• ARC-Challenge (acc norm, Clark et al.)
• WinoGrande (accuracy, Sakaguchi et al.)

We report accuracy for WinoGrande, PIQA, and ARC-Easy, and accuracy normalized by sequence
length (acc norm) for HellaSwag and ARC-Challenge.

G.2 LONGBENCH EVALUATION DETAILS

For the LongBench evaluation in this manuscript, we conducted tests on all available English tasks.
These comprise sixteen tasks categorized into six subgroups, ensuring a comprehensive evaluation
of Palu. The tasks and their corresponding metrics are detailed below:

• Single-Document QA:
– Qasper (F1 score, Dasigi et al.)
– NarrativeQA (F1 score)
– MultiFieldQA-en (F1 score)

• Multi-Document QA:
– HotpotQA (F1 score, Dasigi et al.)
– 2WikiMultihopQA (F1 score)
– MuSiQue (F1 score)

• Summarization:
– QMSum (ROUGE score, Zhong et al.)
– MultiNews (ROUGE score, Fabbri et al.)
– GovReport (ROUGE score)

• Few-shot Learning:
– TREC (classification score, Li & Roth)
– TriviaQA (F1 score, Joshi et al.)
– SAMSum (ROUGE score, Gliwa et al.)

• Code Completion:
– LCC (similarity score, Guo et al.)
– RepoBench-P (similarity score, Liu et al.)

• Synthetic:
– PassageCount (Accuracy)
– PassageRetrevial (Accuracy)

During the evaluation, we set the maximum sequence length to 31500 for both the Mistral and
LongChat model.

H DISCUSSION OF DIRECTLY PERFORMING SVD ON KV-CACHE DURING
RUNTIME

As discussed at the beginning of Sec. 3.1, a straightforward approach to compress the KV-Cache
with low-rank projections is to apply Singular Value Decomposition (SVD) directly to the KV-
Cache. To evaluate its feasibility, we compare the latency required for performing SVD to the time
taken for a forward pass through a decoder block, as illustrated in Tab.9. The results clearly demon-
strate that performing SVD on the fly introduces significant computational overhead. Specifically,
runtime SVD is approximately 5–10× slower than a single forward pass of the decoder block.

22



Published as a conference paper at ICLR 2025

Seqlen 32k 64k 128k

Decoder Block (fp16) 0.231s 0.65s 1.93s
SVD 9.24s 9.90s 11.44s

Table 9: Latency comparison between performing SVD on the KV-Cache and a single forward pass
through the transformer decoder block, using the model configuration of Llama-2-7B

Given these findings, we adopt static weight decomposition techniques and modify the caching
mechanism to store the lower-dimensional latent representations, thereby reducing the memory foot-
print while avoiding the runtime costs associated with on-the-fly SVD.

I MORE RELATED WORK

Token Eviction. One prominent direction for reducing the memory footprint of KV-Cache is KV-
Cache eviction Adnan et al. (2024); Ge et al. (2024); Xiao et al. (2024); Zhang et al. (2024). KV-
Cache eviction techniques selectively retain parts of the KV-Cache and discard less important tokens
to maintain the use of a fixed-size KV-Cache to control memory usage. Representative works, such
as AttentionSink (Xiao et al., 2024), employ a fixed eviction policy by preserving the tokens in the
very beginning, which is also called attention sink, together with recent KV pairs. H2O (Zhang et al.,
2024) selected the tokens based on accumulative attention scores. SnapKV (Li et al., 2024) evicts
non-important tokens of each head based on the local observation window of prompts. While these
methods reduce the memory footprint of KV-Cache and data to be transferred, they permanently
discard KV pairs deemed less important, leading to accuracy degradation in some complex tasks
that may require information from those eviction parts of the sequence.

Token Selection. To address the limitations of token eviction methods, another line of research
focuses on retaining the entire KV-Cache while employing sparse attention mechanisms to process
only selected parts of the KV-Cache, thereby reducing latency. Notable examples include SparQ
(Ribar et al., 2024) and Quest (Tang et al., 2024). These methods achieve significant improvements
in latency and accuracy preservation. However, since the full KV-Cache is retained, memory re-
quirements remain unaddressed. As a result, techniques like CPU offloading are often necessary to
execute inference requests.

In Palu, we take an orthogonal approach by compressing the hidden dimensions of the KV-Cache
via low-rank projections. A potential direction for future work could be combining Palu with to-
ken selection methods to reduce memory usage further. This approach could involve compressing
non-salient or infrequently accessed tokens to enhance memory efficiency and overall system per-
formance further.

J DISCUSSION OF ALTERNATIVE STRATEGIES FOR DERIVING LOW-RANK
PROJECTION MATRICES

In Palu, low-rank matrices W ≈ AB are derived by applying Singular Value Decomposition (SVD)
to the weight matrices. Aside from this approach, alternative strategies (Chen et al., 2021; Sakr
& Khailany, 2024) for obtaining low-rank projection matrices also exist. For instance, ESPACE
Sakr & Khailany (2024) performs calibration on the input x and subsequently applies eigenvector
decomposition to compute the low-rank projection matrix P. During inference, ESPACE operates
as h = xA′ and y = hB′, where A′ = P and B′ = WP are pre-computed. This approach
ultimately achieves the same down-projection and reconstruction mechanism in the forward pass as
the weight decomposition method used in Palu.

Future research could investigate accuracy differences between deriving low-rank projection ma-
trices through direct weight decomposition, as implemented in Palu, and alternative techniques
like ESPACE. Additionally, Palu’s GPU kernel optimizations and quantization-friendly enhance-
ments—such as the fusion of the Hadamard Transform—are agnostic to the method used to derive

23



Published as a conference paper at ICLR 2025

low-rank projection matrices. This adaptability provides a robust framework for integrating ES-
PACE or other approaches in future work.

K SVD DECOMPOSITION DETAILS AND ERROR BOUND ANALYSIS

In the proposed Palu KV-Cache compression framework, we perform low-rank decomposition onto
the Key and Value projection matrices of each layer. The output error introduced by this decompo-
sition directly corresponds to the error induced in the KV-Cache. To minimize this error, we employ
the truncation-aware SVD technique introduced by (Wang et al., 2024). This method enhances the
standard SVD approach by incorporating a transformation that accounts for the statistical proper-
ties of the activation data, thereby reducing the output error caused by decomposition. Below, we
outline the algorithm details and provide an error analysis for the resulting KV-Cache output error,
demonstrating that the introduced error can be bounded.

K.1 TRUNCATION-AWARE SVD WITH WHITENING TRANSFORMATION

1. Weight Transformation. The primary idea is to adjust the weight matrix W ∈ Rm×n by
introducing an invertible transformation matrix S ∈ Rm×m. This transformation aligns W with the
activation data X ∈ Rb×m, making the subsequent SVD more effective in capturing the essential
components.

We express the transformed output as:

XW = XS−1SW = X̃W̃,

where
X̃ = XS−1 ∈ Rb×m, W̃ = SW ∈ Rm×n.

Following Wang et al. (2024), the transformation matrix S is derived using the Cholesky decompo-
sition (Meyer, 2000) of the covariance matrix of the activation data:

SS⊤ = X⊤X+ λI,

with λ > 0 being a small regularization parameter to ensure numerical stability, and I is the identity
matrix. This choice of S ensures that the transformation accounts for the correlations in the input
activations, thereby minimizing the output error introduced by the decomposition.

2. SVD on Post-transformed Weights. Following the transformation, we perform standard Sin-
gular Value Decomposition (SVD) on the transformed weight matrix W̃:

W̃ = UΣV⊤

3. Deriving Low-Rank Matrices. To achieve compression, we retain the top r singular values
and their corresponding singular vectors, truncating the remaining s = t− r singular values:

Σr = diag(σ1, σ2, . . . , σr), Ur ∈ Rm×r, Vr ∈ Rn×r,

where t = min(m,n) represents the number of singular values in the decomposition. The com-
pressed weight matrix W′ is then reconstructed by reversing the transformation:

W′ = S−1UrΣrV
⊤
r .

This can be expressed as the product of two low-rank matrices A and B:

W′ = AB, where A = S−1Ur

√
Σr ∈ Rm×r, B =

√
ΣrV

⊤
r ∈ Rr×n.

K.2 ERROR BOUND ANALYSIS

We now analyze the error bound of the output error resulting from the compression. The analysis is
divided into two parts:

24



Published as a conference paper at ICLR 2025

1. Expressing the Output Error in Singular Values. Let the output of the original linear layer
and low-rank approximated counterpart to be Y and Y′, individually,

The output error is defined as:

Y −Y′ = XW −XW′ = X̃W̃ − X̃W̃′ = X̃(W̃ − W̃′).

Substituting the SVD decompositions:

W̃ − W̃′ = UΣV⊤ −UrΣrV
⊤
r = U[:, r + 1 : t]ΣTV[:, r + 1 : t]⊤,

where ΣT = diag(σr+1, . . . , σt) contains the truncated singular values, and U[:, r + 1 : t] and
V[:, r + 1 : t] denote the columns corresponding to the truncated singular vectors.

Therefore, the output error becomes:

Y −Y′ = X̃U[:, r + 1 : t]ΣTV[:, r + 1 : t]⊤.

Assuming that X̃⊤X̃ ≈ I (which holds when λ is small), the squared Frobenius norm of the output
error is:

∥Y −Y′∥2F = Tr
(
(Y −Y′)⊤(Y −Y′)

)
= Tr

(
(ΣTV

⊤
T )

⊤U⊤
T X̃

⊤X̃UTΣTV
⊤
T

)
≈ Tr

(
Σ⊤

TΣT

)
=

t∑
i=r+1

σ2
i .

Here, UT = U[:, r + 1 : t], VT = V[:, r + 1 : t] and Tr(·) refer to matrix trace.

2. Bounding the Singular Values. Each truncated singular value σi satisfies:

σi ≤ σ1 = σmax(W̃) = σmax(SW).

The largest singular value of SW can be bounded by:

σmax(SW) ≤ ∥S∥2∥W∥2.

Since S is obtained via the Cholesky decomposition of C = X⊤X + λI, its largest singular value
is:

∥S∥2 =
√

σmax(C) =
√

σmax(X⊤X) + λ.

Therefore, the largest singular value σmax(SW) is bounded by:

σmax(SW) ≤
√
σmax(X⊤X) + λ ∥W∥2.

Combining these results, the Frobenius norm of the output error is bounded by:

∥Y −Y′∥F ≤

(
t∑

i=r+1

σ2
i

)1/2

≤
√
s σmax(SW),

where s = t− r is the number of truncated singular values.

Thus, the output error is bounded by:

∥Y −Y′∥F ≤
√
s
√
σmax(X⊤X) + λ ∥W∥2 ≤

√
t
√

σmax(X⊤X) + λ ∥W∥2.

K.3 SUMMARY

25



Published as a conference paper at ICLR 2025

0 10 20 30 40 50 60 70 80
Number of Truncated Singular Values (s)

100

101

102

103

104

Fr
ob

en
iu

s N
or

m
 o

f E
rro

r

Empirical Error
Theoretical Bound
Theoretical Upper Bound (s = t)

Figure 9: Empirical and theoretical error
bounds for the output of a low-rank decom-
posed linear layer with respect to the number
of truncated ranks (singular values s)

By applying whitening-based SVD compression, we
obtain a low-rank approximation of W in the form
W ≈ AB, consistent with the standard SVD ap-
proach outlined in Section 2.2. Our theoretical anal-
ysis demonstrates that the output error of the decom-
posed linear layer can be effectively bounded and is
influenced by both the number of truncated singu-
lar values and the properties of X and W. Further-
more, we empirically validate these theoretical error
bounds using randomly generated data (m = 100,
n = 80, b = 50). As demonstrated in Fig. 9, em-
pirical results confirm that the observed errors are
consistently bounded by predicted bounds, which in-
crease proportionally to the square root of the num-
ber of truncated singular values (

√
s).

L COMPUTE AND MEMORY FOOTPRINT ANALYSIS FOR ATTENTION SCORE
COMPUTATION

Table 10: Summary of Complexity for Compute and Memory Requirements.

Configuration Compute Complexity Memory Complexity
Baseline O(L · dh · n) O(L · dh · n)
Palu (M-LRD) O(L · ri · dh · n) O(L · ri · n)
Palu (G-LRD) O(L · rg · dh · n) O(L · rg · ng)

Palu (J-LRD) O(L · rjoint · dh · n) O(L · rjoint)

This section provides a detailed analysis of the compute and memory requirements for attention
score computation in a RoPE-based attention module with a baseline approach and the Palu. The
analysis considers various decomposition granularities, including M-LRD, G-LRD, and J-LRD, ex-
plicitly accounting for reconstruction, positional embedding (e.g., RoPE) re-application, and atten-
tion score computations (GEMV). We summarize the memory and compute complexity in Table.
10.

L.1 DERIVATIONS

General Formulation for Compute Complexity: The total FLOPs differ between the baseline
and Palu configurations. For the baseline:

FBaseline
total = FGEMV.

For Palu configurations:
F Palu

total = Frecons + FRoPE + FGEMV.

Here:

• Frecons: FLOPs to reconstruct the full key matrix K from low-rank latent representations.
• FRoPE: FLOPs to re-apply positional embeddings onto K.
• FGEMV: FLOPs to compute attention scores via GEMV between K and the query q.

General Formulation for Memory Complexity: The total memory complexity includes both
memory reads and writes:

Mtotal = Mreads +Mwrites,

where:
Mreads = Mkeys +MB +Mq, Mwrites = Moutput.

26



Published as a conference paper at ICLR 2025

Memory terms:

• Mkeys: Memory to read the full keys in the baseline, or low-rank latents for Palu.

• MB : Memory to read the reconstruction matrices.

• Mq: Memory to read the query vectors.

• Moutput: Memory to write the computed attention scores.

Baseline: In the baseline configuration, the post-RoPE Key K ∈ RL×dh and query vector q ∈
R1×dh are directly used for GEMV computations. Reconstruction and RoPE re-application are not
required.

Compute complexity:
FBaseline

total = L · dh · n,
FBaseline

total ≈ O(L · dh · n).

Memory complexity:
MBaseline

total = MBaseline
keys +Mq +Moutput

= (L · dh · n) + (dh · n) + (L · n),
MBaseline

total ≈ O(L · dh · n).

Palu (M-LRD): In the M-LRD configuration, each attention head has its own low-rank latent
Hi ∈ RL×ri and reconstruction matrix Bi ∈ Rri×dh . Reconstruction and RoPE are required.

Compute complexity:

FM-LRD
total = FM-LRD

recons + FRoPE + FGEMV

= (L · ri · dh · n) + (L · dh · n) + (L · dh · n),
=
(
L · ri · dh + 2 · L · dh

)
· n,

FM-LRD
total ≈ O(L · ri · dh · n).

Memory complexity:

MM-LRD
total = MM-LRD

keys +MM-LRD
B +Mq +Moutput

= (L · ri · n) + (ri · dh · n) + (dh · n) + (L · n),
≈ O((L · ri · n) + (ri · dh · n))
≈ O(L · ri · n) when L ≫ dh

Palu (G-LRD): In the G-LRD configuration, groups of s heads share a low-rank latent Hgj ∈
RL×rg and reconstruction matrix Bgj ∈ Rrg×(dh·s).

Compute complexity:

FG-LRD
total = FG-LRD

recons + FRoPE + FGEMV

= (L · rg · dh · n) + (L · dh · n) + (L · dh · n),
=
(
L · rg · dh + 2 · L · dh

)
· n,

FG-LRD
total ≈ O(L · rg · dh · n).

Memory complexity:

MG-LRD
total = MG-LRD

keys +MG-LRD
B +Mq +Moutput

= (L · rg · ng) + (rg · dh · n) + (dh · n) + (L · n),
≈ O((L · rg · ng) + (rg · dh · n))
≈ O((L · rg · ng)), when L ≫ (dh · n)

27



Published as a conference paper at ICLR 2025

Palu (J-LRD): In the J-LRD configuration, all n heads share a single low-rank latent Hjoint ∈
RL×rjoint and reconstruction matrix Bjoint ∈ Rrjoint×(dh·n).

Compute complexity:

F J-LRD
total = F J-LRD

recons + FRoPE + FGEMV

= (L · rjoint · dh · n) + (L · dh · n) + (L · dh · n),
=
(
L · rjoint · dh + 2 · L · dh

)
· n,

≈ O(L · rjoint · dh · n).

Memory complexity:

M J-LRD
total = M J-LRD

keys +M J-LRD
B +Mq +Moutput

= (L · rjoint) + (rjoint · dh · n) + (dh · n) + (L · n),
≈ O((L · rjoint) + (rjoint · dh · n)).
≈ O(L · rjoint), when L ≫ (dh · n)

28


	Introduction
	Background
	Multi-Head Attention Mechanism
	Singular Value Decomposition (SVD)

	The Palu Framework
	Compressing the KV-Cache via Low-Rank Projection
	Integration with the Attention Mechanism and Offline Matrix Fusion
	Compability with Positional Embedding

	Decomposition Granularity
	Multi-Head Low-Rank Decomposition
	Joint-Head Low-Rank Decomposition
	Group-Head Low-Rank Decomposition

	Automatic Rank Allocation
	Quantization Compatibility

	Experiments
	Experiments Setup
	Results with Different Decomposition Granularity
	Results of Quantization Integration
	Evaluation on Long Context Datasets
	Latency Evaluation
	Speedups of Attention Module and End-to-end Decoding.
	Kernel for RoPE-Based Attention Score


	Related Work
	Conclusion
	Quantization Basics
	Kernel Implementation Details
	Discussion Regarding Memory Usage
	Integrating Palu with LoRA Finetune
	More Results on Zero-shot Accuracy
	Ablation Study
	Influence of Different Group Size
	Influence of Walsh-Hadamard Transform
	Automatic Rank Allocation vs. Uniform Rank Allocation

	Experiment Details
	Zero-Shot Evaluation Details
	LongBench Evaluation Details

	Discussion of Directly Performing SVD on KV-Cache During Runtime
	More Related Work
	Discussion of Alternative Strategies for Deriving Low-Rank Projection Matrices
	SVD Decomposition Details and Error Bound Analysis
	Truncation-aware SVD with Whitening Transformation
	Error Bound Analysis
	Summary

	Compute and Memory Footprint Analysis for Attention Score Computation
	Derivations


