
KAN-AD: Time Series Anomaly Detection with Kolmogorov–Arnold Networks

Quan Zhou 1 2 Changhua Pei 1 3 Fei Sun 4 Jing Han 5 Zhengwei Gao 5 Haiming Zhang 1 Gaogang Xie 1

Dan Pei 6 Jianhui Li 7 1

Abstract

Time series anomaly detection (TSAD) underpins
real-time monitoring in cloud services and web
systems, allowing rapid identification of anoma-
lies to prevent costly failures. Most TSAD meth-
ods driven by forecasting models tend to overfit
by emphasizing minor fluctuations. Our analy-
sis reveals that effective TSAD should focus on
modeling “normal” behavior through smooth lo-
cal patterns. To achieve this, we reformulate time
series modeling as approximating the series with
smooth univariate functions. The local smooth-
ness of each univariate function ensures that the
fitted time series remains resilient against local
disturbances. However, a direct KAN implemen-
tation proves susceptible to these disturbances
due to the inherently localized characteristics of
B-spline functions. We thus propose KAN-AD,
replacing B-splines with truncated Fourier expan-
sions and introducing a novel lightweight learning
mechanism that emphasizes global patterns while
staying robust to local disturbances. On four pop-
ular TSAD benchmarks, KAN-AD achieves an
average 15% improvement in detection accuracy
(with peaks exceeding 27%) over state-of-the-art
baselines. Remarkably, it requires fewer than
1,000 trainable parameters, resulting in a 50%
faster inference speed compared to the original
KAN, demonstrating the approach’s efficiency
and practical viability.
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Figure 1. Illustration of local drops and peaks.
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Figure 2. Comparison of anomaly detection performance. Top: All
methods successfully detect anomalies when trained on clean data
(black curve, anomalous segments in pink). Bottom: TimesNet
and KAN fail to detect anomalies when trained on noisy data. Blue
markers indicate local drops and peaks; red curve shows anomaly
scores.

1. Introduction
Time Series Anomaly Detection (TSAD) serves as a criti-
cal component in modern IT infrastructure (Li et al., 2019;
Qu et al., 2024) and manufacturing systems (Zhan et al.,
2021; Wang et al., 2022), enabling rapid identification of
potential anomalies and providing sufficient clues for fault
localization (Sun et al., 2024; Kieu et al., 2022). The emer-
gence of deep learning-based forecasting approaches (Xu
et al., 2022; Wu et al., 2023; Zhou et al., 2023) have super-
seded traditional rule-based methods (Breunig et al., 2000;
Siffer et al., 2017), establishing new state-of-the-art perfor-
mance through their capacity to fit historical data and detect
anomalies via prediction-observation comparisons.

However, the effectiveness of the forecasting-based ap-
proach declines when encountering time series with local-
ized disturbances. As illustrated in Figure 1, time series
data frequently exhibit local peaks and drops that can sig-
nificantly impact model learning. Existing deep learning
methods (Tuli et al., 2022; Wu et al., 2023) often overfit
to these local disturbances, compromising their ability to
detect anomalies effectively. From the third column of Fig-
ure 2, we can observe that compared to training with clean
data, TimesNet (Wu et al., 2023) trained on noisy data fails
to detect anomalies in the samples.

Our experimental analysis reveals that forecasting-based
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TSAD methods suffer performance degradation by attempt-
ing to model every detailed patterns in raw time series data.
While these methods aim to identify anomalies through
comparison with predicted behavior, such detailed model-
ing proves unnecessary and potentially detrimental, espe-
cially given that real-world time series typically contain
various forms of anomalies and irrelevant disturbances, pre-
senting two significant challenges: firstly, the difficulty
in establishing a universal criterion for filtering these dis-
turbances, and secondly, developing another model to en-
sure the forecasting model’s input is free of local distur-
bances is resource-intensive. Given these inherent limita-
tions in both filtering-based and dual-modeling approaches,
researchers have explored VAE-based approaches to address
the challenge of local disturbance mitigation. VAE-based
approaches (Xu et al., 2018; Wang et al., 2024) assume that
normal patterns in time series cluster in a low-dimensional
latent space and can be effectively reconstructed, thereby
overcoming interference from data perturbations. Never-
theless, as demonstrated in FCVAE (Wang et al., 2024),
VAE-based approaches struggle with underfitting, which
impairs their ability to reconstruct the original time series
and limits their effectiveness.

To mitigate local disturbances, we reformulate TSAD by ap-
proximating time series using smooth univariate functions,
building on the theoretical foundation that normal sequences
exhibit greater local smoothness than abnormal ones (Xu
et al., 2022). To achieve this formulation, Kolmogorov-
Arnold Networks (KANs) (Liu et al., 2025) offer a promis-
ing direction by decomposing complex objectives into com-
binations of learnable univariate functions based on the
Kolmogorov-Arnold representation theorem (Kolmogorov,
1957). This decomposition approach has shown remarkable
effectiveness in various domains (Yu et al., 2024; Bodner
et al., 2024). However, direct application of KAN to TSAD
presents significant challenges. From the fourth column
in the upper part of Figure 2, it can be observed that mod-
els trained on clean training samples can detect anomalies
in the test samples. But we find that KAN fails to detect
anomalies when the training samples contain noisy samples
. The main reason is that, although KAN can specify uni-
variate functions, i.e., B-spine function, these functions are
not specifically designed for time series and can still overfit
local features, failing to completely eliminate the impact of
local peaks or drops.

To address these challenges, we propose KAN-AD, adopt-
ing KAN as our backbone. By considering the characteris-
tics of time series, we redesign KAN in three aspects. First,
we replace the B-spine function with Fourier series. Fourier
series have local smoothness compared to spline functions,
while their natural periodicity allows for better modeling
of global patterns (Dym & HP, 1972; Stein & Shakarchi,
2011). Second, as the Fourier series contains unlimited

terms which is computation intensive, we only use the first
N terms of Fourier series. To overcome the limitation that
the first N terms of Fourier series can only model periodic
no smaller than 1

N , we designed an alternative index-based
univariate function to capture the fine-scale periodic missing
from the first N terms. Third, we incorporated differencing
to isolate time series trend effects on coefficient estima-
tion, leading to improved modeling accuracy through more
precise coefficients.

Our comprehensive evaluation demonstrates that KAN-AD
achieves 15% higher F1 accuracy while being 50% faster
than the original KAN architecture. Our code is publicly
available at https://github.com/CSTCloudOps/
KAN-AD. Our contributions are as follows:

• We reformulate the problem to assist deep learning-
based forecasting models for time series anomaly de-
tection (TSAD) tasks by minimizing overfitting to local
perturbations.

• We introduce KAN-AD, an innovative TSAD approach.
KAN-AD, built meticulously on the KAN backbone,
exhibits substantial improvements in both detection
precision and inference efficiency.

• We performed comprehensive experiments on four pub-
licly available datasets, verifying the effectiveness and
efficiency against state-of-the-art TSAD benchmarks.

2. Preliminaries and Problem Formulation
2.1. Problem Statement

This paper primarily addresses the issue of anomaly de-
tection in single time series curves, also known as uni-
variate time series (UTS). To elaborate on the problem
more comprehensively, consider the following UTS observa-
tional data: x0:t = {x0, x1, x2, . . . , xt} and anomaly labels
C = {c0, c1, c2, . . . , ct}, where xt ∈ R, c ∈ {0, 1}, and
t ∈ N. Here, x0:t represents the entire observed time series,
and C denotes the temporal anomaly labels.

Given a UTS x = [x0, x1, x2, . . . , xt], the objective of UTS
anoomaly detection is to utilize the data [x0, x1, . . . , xi]
preceding each point xi to predict ci.

2.2. Kolmogorov–Arnold Networks

2.2.1. THEORETICAL FOUNDATION

The Kolmogorov–Arnold representation theorem demon-
strates that any multivariate continuous function can be
decomposed into a finite sum of univariate functions, as
shown in Equation (1), where φq,p are univariate functions
that map each input variable xp, and Φq are continuous
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functions.

f(x1, x2, . . . , xn) =

2n+1∑
q=1

Φq(

n∑
p=1

φq,p(xp)) (1)

KAN(x) = (ΦL−1 ◦ ΦL−2 ◦ · · · ◦ Φ0)(x) (2)

2.2.2. NETWORK ARCHITECTURE AND FUNCTION
REPRESENTATION

KAN consists of a series of interconnected univariate sub-
networks, each responsible for learning distinct features of
the data. Unlike traditional multi-layer perceptrons (MLPs),
which employ fixed activation functions at each node, KAN
replaces each weight parameter with a univariate function.
The resulting functional form for deeper KAN can be ex-
pressed as Equation (2), where each Φl represents a layer
of univariate functions applied to the input or intermediate
outputs. The vanilla KAN (Liu et al., 2025) implements
these univariate functions using B-splines (De Boor, 1978),
which provide localized function approximation capabili-
ties. However, this localization property presents a notable
consideration in anomaly detection contexts. Since anoma-
lous patterns typically manifest as localized features (Xu
et al., 2022), B-splines may inadvertently fit these outliers,
potentially compromising model accuracy.

3. Methodology
The core challenge in time series anomaly detection (TSAD)
lies in establishing accurate normal patterns while maintain-
ing robustness to local disturbances (Li et al., 2021). Tradi-
tional approaches that directly predict based on historical
data inevitably incorporate local noise into their learned
patterns. Building on the observation that normal sequences
exhibit greater smoothness than abnormal ones, we pro-
pose KAN-AD, a novel anomaly detection framework that
leverages this smoothing feature to identify anomalies in
complex time series data.

3.1. Design of KAN-AD

The pipeline of KAN-AD consists of three main stages:
mapping, reducing, and projection. In the mapping phase,
we decompose the input time window into multiple uni-
variate functions. The reducing phase then combines these
functions through learned coefficients to reconstruct the
“normal” pattern. Finally, the projection phase leverages
this pattern to predict future behavior, enabling anomaly
detection through comparison with real-time observations.

f(x0:i) = A0 +

N∑
n=1

(An cos(nx0:i) +Bn sin(nx0:i))︸ ︷︷ ︸
g(x0:i)

+ϵ

(3)

H = Stack(cos(x0:i), sin(x0:i), . . . , cos(nx0:i), sin(nx0:i))

Θ(x0:i) =
[
A1, B1, A2, B2, . . . , An, Bn

]
x′
0:i = A0 +Θ(x0:i)×H (4)

Formally, we employ Fourier series for normal pattern rep-
resentation, motivated by two key advantages over alter-
native approaches such as B-spline functions. First, the
constituent sine and cosine functions exhibit superior lo-
cal smoothness, avoiding the potential overfitting to local
noise. Second, Fourier series naturally capture global pat-
terns, particularly excelling at modeling periodic behaviors
in time series. Following this motivation, we introduce
the function deconstruction (FD) mechanism, where f , the
mapping between the historical window x0:i and its next
behavior xi+1, can be expanded as shown in Equation (3).
The normal pattern can be represented by the finite N terms
of the series (Kolmogorov, 1957), denoted as g(x), while
the terms beyond N capture the stochastic observational
noise ϵ. The normal pattern x′

0:i can then be expressed as
in Equation (4), where H denotes the univariate function
matrix. This decomposition combined with learnable coeffi-
cients filters out potential noise and significantly simplifies
the construction of normal patterns.

3.2. Mapping Phase

As shown in Figure 3b, the primary purpose of the mapping
phase is to transform the original time series signal x0:i ∈
RT into multiple new sets of values x0:i ∈ RT×(N+N)

through a series of univariate functions. Here, T is the size
of the sliding window. The first N represents the number
of sine series univariate functions, and the other N repre-
sents the number of cosine series univariate functions. The
detailed calculation method is shown in Equation (3). No-
tably, besides the univariate function terms, an A0 term
representing the average value within the sliding window
is also present, which varies across different windows. To
mitigate the impact of fluctuating A0 on coefficient fitting,
a constant term elimination module is employed.

Constant Term Elimination: In Fourier series, A0 repre-
sents the mean value of the function. Although normaliza-
tion ensures that the entire time series has a mean of zero,
individual time windows may still exhibit significant fluctu-
ations in their means due to the presence of a trend. These
variations in the constant term ultimately affect the model’s
accurate estimation of Fourier coefficients, leading to biases
in the construction of the normal pattern.

To mitigate the impact of mean fluctuations on the model’s
approximation of normal time series patterns, we employ
first-order differencing during data preprocessing to min-
imize the residual trend component in the data and sub-
sequently renormalize the differenced data. This strategy
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(a) Illustration of learning components in
KAN and KAN-AD. KAN-AD learns the
coefficients on edges with fixed univari-
ate functions, and performs weighted sum
operations on nodes. Blue lines indicate
edges with weights.

(b) Illustration of the KAN-AD process using a sliding window approach. During the
mapping phase, raw time windows are transformed into multiple univariate functions. In
the reducing phase, a one-dimensional convolutional kernel learns coefficients for these
univariate functions, aggregating them into a normal pattern for the current time window.
In the projection phase, a single-layer MLP predicts future normal patterns.

Figure 3. Illustration of KAN-AD.

allows the model to focus on estimating Fourier coefficients
A1:n and B1:n, thereby avoiding the need to learn frequently
changing constant terms. After this differential strategy, the
normal pattern x′

0:i can be expressed as x′
0:i ∼ Θ(x0:i)×H

Periodic-Enhanced KAN-AD: Fourier series of finite N
terms cannot model a period smaller than 1

N , which limits
KAN-AD’s ability to express time series containing more
subtle periods.

To address this limitation and enhance the model’s ability
to capture periodic patterns in time series, we introduce ad-
ditional univariate functions with different periods. Specifi-
cally, we incorporate trigonometric components cos( 2πniT )

and sin( 2πniT ) where i denotes the window index, with co-
efficients learned through one-dimensional convolution net-
works. Our implementation utilizes three complementary
univariate functions shown in Equation (5): the raw time
variable X , the Fourier series Sn, and the sine-cosine wave
Pn. This integration of multi-periodic univariate functions
enhances KAN-AD ’s capacity to model temporal patterns.

X = x0:i

Sn = {sin(nx0:i), cos(nx0:i)} (5)

Pn = {sin(2πni
T

), cos(
2πni

T
)}

3.3. Reducing Phase

Another challenge in real-world time series anomaly de-
tection is the high computational cost. Existing methods
often sacrifice efficiency for accuracy, making them im-
practical in resource-constrained or large-scale settings.

The function deconstruction (FD) mechanism addresses this
challenge by transforming the modeling of normal patterns
into a weighted combination of univariate functions. This
transformation substantially reduces the model’s parameter
quantity - instead of requiring numerous parameters for fine-
grained feature modeling, FD mechanism achieves efficient
representation through estimating coefficients of a small
number of univariate functions.

H(0)=Stack(X,S1, P1, . . . , Sn, Pn),∀n∈ [1, . . . , N ] (6)

H(l) = CNN(CNN(H(l−1))) ∀l ∈ [1, 2, . . . , L] (7)

Conv(H) =

2N∑
c=1

2∑
m=0

Wc[m] ·Hc[i+m− 1] (8)

CNN(H) = GELU(BN(Conv(H))) (9)

To effectively estimate these univariate function coefficients,
we employ a stacked one-dimensional convolutional neural
network (1D CNN). This architecture choice is motivated
by two key factors: 1D CNNs excel at sequence modeling
through temporal dimension traversal, while their convolu-
tional kernels naturally capture the diverse features intro-
duced by the FD mechanism. As shown in Equation (6),
KAN-AD first constructs a univariate function matrix H(0)

by combining the required functions for a given time win-
dow. This matrix is then processed through multiple stacked
1D convolutional layers with a kernel size of 3, progres-
sively approximating the normal pattern through coefficient
learning, as expressed in Equation (7). Here, L denotes
the number of CNN blocks, with the network CNN(H) and
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convolution operation Conv(H) defined in Equations (8)
and (9). The convolution operation in Equation (8) applies
a kernel Wc to each channel Hc, where indices m and t
represent positions within the convolutional kernel and time
window, respectively.

To ensure training stability and reduce internal covariate
shift, we apply batch normalization (Ioffe & Szegedy, 2015)
after each convolutional layer (Equation (9)), followed by
Gaussian Error Linear Units (GELUs) (Hendrycks & Gim-
pel, 2016) for activation. The final stage of the reducing
phase employs a residual connection (He et al., 2016) be-
tween the hidden state H(L) and the original input H(0) to
maintain numerical stability, as shown in Equation (10). Fi-
nally, a 1-width convolutional kernel reduces the dimension-
ality of H(L)′ to generate the normal pattern approximation
x′
0:i within the current time window:

H(L)′ =H(L) +H(0) (10)

x′
0:i = GELU(BN(DownConv(H(L)′)) (11)

Here, DownConv(H) =
∑2N

c=1 Wc ·Hc[i] denotes the con-
volution operation for reducing dimensions.

3.4. Projection Phase

After obtaining the current window’s normal mode approxi-
mation x′

0:i, we predict the future behavior xi+1 through a
single-layer MLP, leveraging KAN-AD’s accurate approxi-
mation capability:

xi+1 = W · x′
0:i + b (12)

where W and b denote the weight matrix and bias term of
the linear layer.

4. Evaluation
In this section, we conduct comprehensive experiments pri-
marily aimed at answering the following research questions.

RQ1: How does KAN-AD compare to state-of-the-art
anomaly detection methods in performance and efficiency?
RQ2: How sensitive is KAN-AD to hyperparameters?
RQ3: How effective is each design choice in KAN-AD?
RQ4: How sensitive is KAN-AD to anomalies in the train-
ing data?

In addition, we also evaluate our method on a multivariate
time series anomaly detection dataset to demonstrate the
application potential of KAN-AD in more scenarios.

4.1. Experimental settings

4.1.1. DATASET

We evaluate KAN-AD on four publicly available UTS
datasets: KPI (Competition, 2018), TODS (Lai et al., 2021),

Table 1. Dataset Statistics.
Dataset Curves Train Train Ano% Test Test Ano%
KPI 29 3,073,567 2.70% 3,073,556 1.85%
TODS 15 75,000 5.32% 75,000 6.38%
WSD 210 3,829,373 2.43% 3,829,537 0.76%
UCR 203 3,572,316 0.00% 7,782,539 0.47%

WSD (Zhang et al., 2022), and UCR (Wu & Keogh, 2021).
Dataset characteristics are summarized in Table 1, includ-
ing curve counts, sizes, and anomaly rates. The anomaly
interval length distributions, shown in Figure 6, reveal that
while most anomalies span less than 10 points, WSD and
UCR contain extended anomaly segments exceeding 300
points, enabling comprehensive evaluation. Detailed dataset
descriptions are provided in Appendix A.1.

4.1.2. MODEL TRAINING AND INFERENCE

We implement a systematic experimental protocol for both
our method and baseline approaches. For each time series,
we train dedicated KAN-AD models using consistent hyper-
parameters: batch size 1024, learning rate 0.01, and maxi-
mum 100 epochs. The validation strategy varies by dataset,
with UCR reserving 20% of training data and other datasets
employing a 4:1:5 ratio for training, validation, and testing
splits. To ensure fair comparison, we faithfully replicate all
baseline methods following their original implementations
and hyperparameter settings as specified in their respective
papers. During inference, we standardize the batch size to
1 across all methods for comparable efficiency assessment.
Results presented in Table 2 report means and standard de-
viations from five independent trials with different random
seeds.

4.1.3. BASELINES

We conducted comparative experiments with ten state-
of-the-art time series anomaly detection methods: LST-
MAD (Malhotra et al., 2015), FCVAE (Wang et al.,
2024), SRCNN (Ren et al., 2019), FITS (Xu et al., 2024),
TimesNet (Wu et al., 2023), OFA (Zhou et al., 2023),
TranAD (Tuli et al., 2022), SubLOF (Breunig et al., 2000),
Anomaly Transformer (Xu et al., 2022) (abbreviated as An-
oTrans in the tables), KAN (Liu et al., 2025) and SAND (Bo-
niol et al., 2021). Detailed descriptions of these methods can
be found in Appendix A.2. For datasets not featured in the
baseline literature, we meticulously tuned hyperparameters
via grid search to optimize the performance of the baseline
method on the respective evaluation metrics.

4.1.4. EVALUATION METRICS

In practical applications, operations teams are less con-
cerned with point-wise anomalies (i.e., whether individual
data points are classified as anomalous) and more focused
on detecting sustained anomalous segments within time se-
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Table 2. Performance comparison. Best scores are highlighted in bold, and second best scores are highlighted in bold and underlined.
Metrics include F1 (Best F1), F1e (Event F1), F1d (Delay F1), AUPRC (area under the precision-recall curve) and Avg F1e (average F1e
score across four datasets).

Method
KPI TODS WSD UCR

Avg F1eF1 F1e F1d AUPRC F1 F1e F1d AUPRC F1 F1e F1d AUPRC F1 F1e F1d AUPRC

SRCNN 0.4137 0.0994 0.2266 0.3355 0.6239 0.1918 0.4399 0.6076 0.4092 0.1185 0.1951 0.3080 0.5964 0.1369 0.1656 0.5109 0.1367
SAND 0.2710 0.0397 0.1097 0.2022 0.5372 0.1879 0.5103 0.5145 0.1761 0.0839 0.1267 0.1238 0.7044 0.5108 0.5116 0.6550 0.2056
AnoTrans 0.6103 0.3020 0.3623 0.5676 0.4875 0.1915 0.2918 0.4148 0.4348 0.2311 0.1517 0.3527 0.6135 0.1696 0.1084 0.5458 0.2236
TranAD 0.7553 0.5611 0.6399 0.7399 0.5035 0.2460 0.3619 0.4501 0.7570 0.6338 0.4158 0.7106 0.5278 0.1840 0.1554 0.4599 0.4062
SubLOF 0.7273 0.2805 0.4994 0.7015 0.7997 0.4795 0.7169 0.7809 0.8683 0.6585 0.4917 0.8353 0.8468 0.4772 0.4151 0.8001 0.4739
TimesNet 0.8022 0.6363 0.6995 0.8166 0.6232 0.3327 0.4495 0.6031 0.9406 0.8444 0.6170 0.9376 0.5273 0.1805 0.1439 0.4536 0.4985
FITS 0.9083 0.6353 0.8175 0.9359 0.7773 0.5416 0.6312 0.7725 0.9732 0.8391 0.6535 0.9771 0.6664 0.2926 0.2912 0.5969 0.5772
OFA 0.8810 0.6150 0.7952 0.9009 0.6928 0.5811 0.5588 0.7206 0.9564 0.8344 0.6250 0.9615 0.6294 0.3176 0.1503 0.5699 0.5870
FCVAE 0.9398 0.7556 0.8624 0.9572 0.8652 0.6995 0.7482 0.8798 0.9650 0.8610 0.6583 0.9653 0.7651 0.3812 0.2857 0.7145 0.6743
LSTMAD 0.9376 0.7742 0.8782 0.9624 0.8633 0.6981 0.7655 0.8740 0.9866 0.9028 0.6743 0.9849 0.7040 0.3482 0.3121 0.6432 0.6808
KAN 0.9411 0.7816 0.8666 0.9664 0.8109 0.6466 0.7518 0.8286 0.9879 0.8939 0.6650 0.9881 0.8016 0.4120 0.3971 0.7489 0.6835

KAN-AD 0.9442 0.7989 0.8755 0.9693 0.9425 0.8940 0.8391 0.9716 0.9888 0.8927 0.6623 0.9868 0.8554 0.5335 0.5177 0.8188 0.7798
±0.0007 ±0.0054 ±0.0024 ±0.0008 ±0.0040 ±0.0022 ±0.0055 ±0.0035 ±0.0005 ±0.0025 ±0.0022 ±0.0009 ±0.0040 ±0.0046 ±0.0042 ±0.0041

5-Delay PA

Ground Truth

Detected Result

Point-wise PA

Anomaly point
True Positive
False Positive
False Negative

Event-wise PA

view as an event

Figure 4. Illustration of the adjustment strategy. Point-wise PA
gives an inflated score when some anomaly segments persist for
a long duration. Event-wise PA treats each anomaly segment
as an event, completely disregarding the length of the anomaly
segment. k-delay PA considers only anomalies detected within the
first k points after the anomaly onset, treating any detected later as
undetected.
ries data. Furthermore, due to the potential impact of such
segments, early identification is crucial. Previous work (Xu
et al., 2018) proposed the Best F1 metric, which iterates
over all thresholds and applies a point adjustment strategy
to calculate the F1 score. However, it has been criticized for
performance inflation (Lai et al., 2021; Wu & Keogh, 2021).

To address this, we also adopt Delay F1 (Ren et al., 2019)
and Event F1. Delay F1 is similar to Best F1 but uses a
delay point adjustment strategy. As shown in Figure 4, the
second anomaly was missed because the detection delay
exceeded the threshold of five time intervals. In all experi-
ments, a delay threshold of five was used across all datasets.
Event F1, on the other hand, treats anomalies of varying
lengths as anomalies with a length of 1, minimizing per-
formance inflation caused by excessively long anomalous
segments. For the sake of convenience, unless otherwise
stated, we use Event F1 as the primary metric, as it is more
alignment with the need for real-time anomaly detection in
real-world situations.

4.2. RQ1. Performance and Efficiency Comparison

We present a comprehensive evaluation of KAN-AD across
multiple time series anomaly detection (TSAD) experiments,

Table 3. Efficiency comparison on UCR dataset.
Method GPU Time CPU Time Parameters F1e
SAND - 5637s - 0.5108
SubLOF - 299s - 0.4772
OFA 220s 3087s 81.920 M 0.3176
AnoTrans 201s 1152s 4.752 M 0.1696
FCVAE 2327s 1743s 1.414 M 0.3812
TimesNet 182s 259s 73,449 0.1805
LSTMAD 73s 267s 10,421 0.3482
KAN 66s 34s 1,360 0.4120
FITS 32s 17s 624 0.2926
TranAD 113s 62s 369 0.1840
KAN-AD 42s 36s 274 0.5335

with results summarized in Table 2. Our analysis focuses
on three key dimensions: detection accuracy, model effi-
ciency, and computational requirements. Across diverse ex-
perimental settings, KAN-AD demonstrates consistent and
robust performance advantages. In the TODS dataset, where
training data contains a substantial proportion of anomalies,
KAN-AD significantly outperforms SOTA by 27% on Event
F1, highlighting its robust learning capabilities in handling
noisy training data. For datasets exhibiting strong periodic
characteristics (WSD and KPI), KAN-AD achieves com-
parable or superior performance relative to state-of-the-art
approaches. Even in the challenging UCR dataset scenario,
where the training set lacks anomaly samples and contains
significant periodic variations, KAN-AD effectively cap-
tures normal patterns, whereas baseline methods show re-
duced effectiveness in pattern recognition. Quantitatively,
KAN-AD achieves more than a 15% improvement in av-
erage Event F1 score compared to existing state-of-the-art
methods.

The computational efficiency analysis, presented in Table 3,
reveals another distinctive advantage of KAN-AD. We note
that several baseline methods are excluded from this compar-
ison due to implementation constraints: SAND’s CPU-only
execution requirement and SubLOF’s limited multi-core
utilization capabilities preclude fair comparison in modern
hardware acceleration contexts. Among the other mod-
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Original Sample SubLOF FITS FCVAE

KAN TimesNet TranAD OFA

SAND AnomalyTransformer LSTMAD KAN-AD (ours)

Figure 5. Case study on UCR InternalBleeding10. The black curve
represents the original sample, the red curve represents the anomaly
scores provided by the method, and the true anomaly segments are
highlighted in pink.
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Figure 7. Model performance under
different hyperparameters.

els, we observe a wide spectrum of model complexities,
with parameter counts ranging from millions to hundreds.
Large-scale models like OFA utilize 81.92M parameters,
while established approaches such as Anomaly Transformer,
FCAVE, and TimesNet employ between 73k and 4.75M
parameters. In contrast, KAN-AD achieves competitive per-
formance with remarkable efficiency, requiring only 274
parameters, a 25% reduction compared to TranAD, the next
most compact model in our comparison.

These empirical findings underscore KAN-AD’s excep-
tional efficiency-performance in TSAD tasks. By achiev-
ing state-of-the-art or near state-of-the-art performance
while significantly reducing the parameter footprint,
KAN-AD demonstrates the effectiveness of our design prin-
ciples in creating efficient, practical solutions. This com-
bination of high detection accuracy and minimal computa-
tional requirements positions KAN-AD as an ideal choice
for resource-constrained or cost-sensitive deployment sce-
narios, offering a compelling balance between model com-
plexity and detection capabilities.

4.2.1. CASE STUDY

We analyzed anomaly detection performance on UCR
dataset samples to illustrate how various methods respond to
identical anomalies, as shown in Figure 5. The selected sam-
ple displayed pattern anomalies, marked by significant devi-
ations from typical behavior. Both TranAD and TimesNet
exhibit difficulty establishing normal patterns. Minor varia-

tions among normal samples across cycles lead to periodic
false alarms during normal segments, consistent with our
observations in Figure 2. Among the methods listed, while
OFA, LSTMAD, SubLOF, and FITS can detect anomalies,
their high anomaly scores during normal segments indi-
cate excessive sensitivity to minor fluctuations in normal
data. In contrast, KAN-AD excels in identifying anomalies
while maintaining minimal anomaly scores during normal
segments.

4.3. RQ2. Hyperparameter sensitivity

The KAN-AD model incorporates two key hyperparameters:
the number of terms in univariate functions N and the win-
dow size T . To investigate the ultimate impact of these pa-
rameters on model performance, we conducted experiments
on the UCR dataset while holding all other parameters con-
stant. As findings summarized in Figure 7, a larger window
size facilitates more accurate learning of normal patterns
when N is fixed, leading to improved performance. When
T is fixed, insufficient univariate functions limit KAN-AD’s
expressive power, while excessive N can lead to overfit-
ting. Overall, KAN-AD achieved its best performance with
T = 96 and N = 2. Notably, even with suboptimal hyper-
parameter settings like T = 16 and N = 1, we surpassed
SOTA methods on the UCR dataset.

4.4. RQ3. Ablation Studies

In this section, we investigated the impact of constant term
elimination modules, different univariate function selec-
tions on algorithm performance and the influence of the
function deconstruction mechanism.

4.4.1. CONSTANT TERM ELIMINATION MODULE

We employed a constant term elimination (CTE) module
during data preprocessing to mitigate the influence of the
offset term A0 in Equation (3). Further experiments were
conducted across all datasets to evaluate the impact of in-
corporating CTE within the preprocessing pipeline. As pre-
sented in Figure 8, the impact of CTE varies across datasets,
reflecting inherent data characteristics. For datasets with
pronounced periodicity or strong temporal stability (e.g.,
WSD), the benefits of CTE are less apparent. Conversely,
for datasets exhibiting larger value fluctuations or trends
(e.g., KPI, TODS and UCR), CTE yields significant im-
provements.

4.4.2. SELECTION OF UNIVARIATE FUNCTIONS

To assess the impact of different univariate functions on
model performance, we conducted experiments using com-
mon univariate functions listed in Table 4. In our imple-
mentations, due to varying input range requirements across
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Table 4. Commonly used univariate functions for time series ap-
proximation.

Name Φn(x)

Taylor Series xn

Fourier Series cos(nx) + sin(nx)
Chebyshev Polynomial I cos(n arccos(x))

Chebyshev Polynomial II sin((n+1) arccos(x))
sin(arccos(x))

univariate functions, appropriate normalization techniques
are employed. Specifically, min-max scaling to the range
x ∈ [−1, 1] was utilized for both types of Chebyshev poly-
nomials, while z-score was employed for Taylor series and
Fourier series. The performance of all four univariate func-
tions was compared using the same configuration. As results
presented in Figure 9, Fourier series consistently achieved
the top two performance across all datasets. In contrast, Tay-
lor series exhibited persistent bias due to non-zero function
values in most cases, hindering optimal model performance.
The objective of both types of Chebyshev polynomials is
to minimize the maximum error, which potentially con-
flicts with anomaly detection methods that minimize mean
squared prediction error, thus leading to suboptimal perfor-
mance.

4.5. RQ4. Robustness to Anomalous Data

To evaluate KAN-AD’s robustness to anomalies in the train-
ing set, we conducted additional experiments using synthetic
datasets constructed in accordance with the TODS dataset
generation methodology. We synthesized test datasets
containing local peaks and drops anomalies, and progres-
sively increased the proportion of these anomalies in the
initially anomaly-free training set. As illustrated in Fig-
ure 10, KAN-AD demonstrates stable performance across
all anomaly ratios. Popular methods such as LSTMAD,
perform well at lower anomaly ratios but experience a sig-
nificant decline as the ratio increases. Other approaches,
like TranAD, fail to achieve optimal performance due to
overfitting to fine-grained structures within the time series.

Table 5. Model performance on UCR dataset under different func-
tion deconstruction strategies.

Variation F1e F1d AUPRC
KAN-AD 0.5335 0.5177 0.8188
w/o X 0.5153 0.4974 0.8066
w/o P 0.5081 0.4810 0.8007
w/o S 0.5056 0.5113 0.7998
w/o X&P 0.4737 0.4583 0.7872
w/o X&S 0.4698 0.4610 0.7767
w/o S&P 0.4561 0.4637 0.7595

4.6. Ablation on function deconstruction mechanism

To investigate the impact of the function deconstruction
mechanism, we compared the model’s detection capabilities
under different univariate function combination strategies.
For clarity, the specific definitions are provided in Equa-
tion (5). As the results presented in Table 5, the model’s
detection performance exhibited a notable improvement
with an increasing number of univariate functions. Both
Fourier series and cosine waves outperformed the raw input
data, likely due to their smoother representations compared
to the original signal, enabling higher detection accuracy.
The combination of different features, particularly those
involving Fourier series and cosine waves, resulted in signif-
icant performance gains as the feature count increased. Ulti-
mately, KAN-AD achieved optimal detection performance
by integrating all features. It is worth noting that even the
variant of KAN-AD utilizing only the raw time series X
outperforms KAN, clearly demonstrating the advantage of
Fourier series over the use of spline functions for optimizing
univariate functions.

4.7. Performance on Multivariate Time Series

To extend KAN-AD’s application to the multivariate time
series (MTS) scenario, we adopt a channel-independent
approach. Specifically, an MTS input with the shape
(batch size, window length, n features)
is reshaped into (batch size * n features,
window length). Each of the n features channels
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Table 6. Best F1 and parameter counts for multivariate time series anomaly detection. Best and second best results are in bold and
underline.

Methods SMD MSL SMAP SWaT PSM Avg F1 Parameters@MSL
Informer (Zhou et al., 2021) 0.8165 0.8406 0.6992 0.8143 0.7710 0.7883 504,174
Anomaly Transformer (Xu et al., 2022) 0.8549 0.8331 0.7118 0.8310 0.7940 0.8050 4,863,055
DLinear (Zeng et al., 2023) 0.7710 0.8488 0.6926 0.8752 0.9355 0.8246 20,200
Autoformer (Wu et al., 2021) 0.8511 0.7905 0.7112 0.9274 0.9329 0.8426 325,431
FEDformer (Zhou et al., 2022) 0.8508 0.7857 0.7076 0.9319 0.9723 0.8497 1,119,982
TimesNet (Wu et al., 2023) 0.8462 0.8180 0.6950 0.9300 0.9738 0.8526 75,223
UniTS (Gao et al., 2024) 0.8809 0.8346 0.8380 0.9326 0.9743 0.8921 8,066,376
KAN-AD (ours) 0.8429 0.8501 0.9450 0.9350 0.9650 0.9076 4,491

is thus treated as an independent univariate time series
instance. KAN-AD is then applied to these individual series.
This channel-independent strategy has proven effective (Nie
et al., 2023). By adopting a similar principle, KAN-AD can
leverage its robust univariate modeling capabilities across
all channels of an MTS dataset. The model is trained on the
collection of these reshaped univariate instances, allowing
it to learn generalized normal patterns.

We implemented MTS versions of KAN-AD in popular time
series library (THUML) and evaluated them on the com-
mon SMD (Su et al., 2019), MSL (Hundman et al., 2018a),
SMAP (Hundman et al., 2018b), SWaT (Mathur & Tippen-
hauer, 2016), and PSM (Abdulaal et al., 2021) datasets. Our
evaluation metric uses the Best F1 score which is consistent
with the baseline methods. We introduce these datasets and
baseline methods in detail in the Appendix B. As detailed
in Table 6, KAN-AD achieves the highest average Best F1
score of 0.9076, across all five benchmark datasets, outper-
forming all listed SOTA methods. A significant advantage
of KAN-AD is its exceptional parameter efficiency. With
only 4,491 trainable parameters (measured on MSL), KAN-
AD utilizes substantially fewer parameters than all other
compared methods.

5. Related Work
Time Series Forecasting Methods: These methods can be
categorized into prediction-based and reconstruction-based
methods, both aiming to identify deviations from normal
patterns through temporal analysis. Prediction-based meth-
ods, like FITS (Xu et al., 2024) achieves efficient detection
through frequency domain analysis with minimal param-
eters, while LSTMAD (Malhotra et al., 2015) leverages
LSTM networks (Hochreiter & Schmidhuber, 1997) to cap-
ture complex temporal dependencies. Reconstruction-based
approaches, like Donut (Xu et al., 2018) focus on time se-
ries denoising, while FCVAE (Wang et al., 2024) enhances
the VAE (Kingma & Welling, 2022) framework by incor-
porating frequency domain information. Recent advances
in Transformer architectures have further strengthened re-

construction capabilities: TranAD (Tuli et al., 2022) em-
ploys adversarial learning for robust pattern capture, while
OFA (Zhou et al., 2023) leverages GPT-2 (Radford et al.,
2019) for modeling complex temporal dependencies.

Pattern Change Detection Methods: These approaches
identify anomalies through comparative analysis of current
and historical patterns. Early methods, like SubLOF (Bre-
unig et al., 2000) quantify pattern variations using window-
based distance metrics. SAND employs temporal shape-
based clustering to distinguish anomalous patterns. Recent
advances, exemplified by TriAD (Sun et al., 2024), leverage
multi-domain contrastive learning frameworks, demonstrat-
ing superior performance on UCR datasets.

6. Conclusion
Training time series anomaly detection models with datasets
containing anomalies is essential for deployment in pro-
duction environments. Existing algorithms often rely on
carefully selected features and complex architectures to
achieve minor accuracy gains, neglecting robustness dur-
ing training. This paper introduces KAN-AD, a robust
anomaly detection model rooted in the Kolmogorov–Arnold
representation theorem. KAN-AD transforms the predic-
tion of time points into the estimation of coefficients of
Fourier series, achieving strong performance with few pa-
rameters, significantly reducing costs while enhancing ro-
bustness to outliers. KAN-AD includes a constant term
elimination module to address temporal trends and lever-
ages frequency domain information for better performance.
KAN-AD surpasses the SOTA model across four public
datasets with a 15% improvement in average Event F1 score,
simultaneously achieving an 80% reduction in parameter
count and 50% faster inference speed compared to vanilla
KAN. With KAN-AD, a promising research direction is
to explore whether normal patterns in time series can be
represented more efficiently by leveraging additional data.
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A. Datasets and Baseliens on Univariate Time Series
A.1. Datasets

We selected four datasets from diverse domains, with samples originating from:

• KPI (Competition, 2018): This dataset comprises service metrics collected from five major Internet companies: Sogou,
eBay, Baidu, Tencent, and Alibaba. The data points are primarily recorded every 1-2 minutes, with some sections
exhibiting a 5-minute interval.

• TODS (Lai et al., 2021): TODS comprises artificially created time series, each designed to present specific types of
anomalies. Its excellent interpretability and carefully constructed data distributions make it suitable for in-depth case
studies.

• WSD (Zhang et al., 2022): This dataset consists of web server metrics collected from three companies providing
large-scale web services: Baidu, Sogou, and eBay.

• UCR (Wu & Keogh, 2021): This archive contains data from multiple domains with a single anomalous segment on
each time series. In addition to real anomalies, UCR also includes synthetic but highly plausible anomalies.

A.2. Baselines

We selected the following baseline approaches to further elaborate on the performance differences between KAN-AD and
SOTA methods:

• SubLOF (Breunig et al., 2000) represents traditional outlier detection techniques based on distance metrics.

• SRCNN (Ren et al., 2019) is a supervised approach reliant on high-quality labeled data.

• LSTMAD (Malhotra et al., 2015) leverages Long Short-Term Memory (LSTM) networks (Hochreiter & Schmidhuber,
1997) for deep learning-based anomaly detection.

• FITS (Xu et al., 2024) achieves parameter-efficient anomaly detection by upsampling frequency domain information
using a low-pass filter and simple linear layers.

• FCVAE (Wang et al., 2024) is unsupervised reconstruction method based on Variational Autoencoder (VAE) (Kingma
& Welling, 2022), designed to reconstruct normal patterns.

• Anomaly Transformer (Xu et al., 2022) employs attention mechanism to computer the association discrepancy.

• TranAD (Tuli et al., 2022) incorporates the principles of adversarial learning to develop a training framework with two
stages while integrating the strengths of self-attention encoders to capture the temporal dependency embedded in the
time series.

• SAND (Boniol et al., 2021) utilizes a novel statistical approach based on curve shape clustering for anomaly detection
in a streaming fashion.

• TimesNet (Wu et al., 2023) leverages an Inception (Szegedy et al., 2015)-based computer vision backbone to enhance
learning capabilities.

• OFA (Zhou et al., 2023), with GPT-2 (Radford et al., 2019) as its backbone, improves its ability to capture point-to-point
dependencies.

• KAN (Liu et al., 2025) leverages Kolmogorov-Arnold representation theory to decompose complex learning objectives
into linear combinations of univariate functions.

These baseline methods encompass a variety of anomaly detection paradigms: shape-based SAND, subsequence distance-
based SubLOF, Transformer-based approaches like OFA, TranAD, and Anomaly Transformer for modeling sequence
relationships, and frequency domain information enhanced methods FCVAE and FITS.
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B. Datasets and Baselines on Multivariate Time Series
B.1. Datasets

We evaluated KAN-AD on five widely-used public benchmark datasets for multivariate time series anomaly detection:

• SMD (Su et al., 2019): A dataset collected from a large internet company, containing data from many server machines
over several weeks.

• MSL (Hundman et al., 2018a): A dataset from NASA containing telemetry data from the Mars Science Laboratory
rover.

• SMAP (Hundman et al., 2018b): Another NASA dataset, containing telemetry data from the SMAP satellite.

• SWaT (Mathur & Tippenhauer, 2016): A dataset generated from a scaled-down real-world water treatment testbed,
including normal and attack scenarios.

• PSM (Abdulaal et al., 2021): A dataset from eBay, consisting of aggregated metrics from multiple application servers.

B.2. Baselines

We selected the following baseline approaches to further evaluate KAN-AD and SOTA methods on multivariate time series
datasets:

• Informer (Zhou et al., 2021): A Transformer-based model designed for long sequence time-series forecasting, featuring
a ProbSparse self-attention mechanism to improve efficiency. For anomaly detection, it typically relies on reconstruction
error or forecast error.

• Anomaly Transformer (Xu et al., 2022): A Transformer architecture specifically tailored for time series anomaly
detection, which aims to learn prior-associations and series-associations to better distinguish anomalies.

• DLinear (Zeng et al., 2023): A simple yet effective linear model that decomposes the time series into trend and
remainder components, challenging the necessity of complex Transformer architectures for some forecasting tasks and
adaptable for anomaly detection via reconstruction.

• Autoformer (Wu et al., 2021): A Transformer model with a novel decomposition architecture and an Auto-Correlation
mechanism, designed to discover series-wise connections and improve long-term forecasting accuracy.

• FEDformer (Zhou et al., 2022): A Transformer variant that enhances performance for long sequence forecasting by
employing frequency-enhanced decomposition and a mixture of expert design in the frequency domain.

• TimesNet (Wu et al., 2023): A model that transforms 1D time series into a set of 2D tensors based on identified periods
and applies a 2D kernel (e.g., Inception block) to capture both intra-period and inter-period variations for general time
series analysis.

• UniTS (Gao et al., 2024): Aims to provide a unified framework for time series analysis, often leveraging large-scale
pre-training on diverse datasets to build a universal representation for both univariate and multivariate time series tasks.
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