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ABSTRACT

Bimanual manipulation is essential in robotics, yet developing foundation models
is extremely challenging due to the inherent complexity of coordinating two robot
arms (leading to multi-modal action distributions) and the scarcity of training data.
In this paper, we present the Robotics Diffusion Transformer (RDT), a pioneering
diffusion foundation model for bimanual manipulation. RDT builds on diffusion
models to effectively represent multi-modality, with innovative designs of a scalable
Transformer to deal with the heterogeneity of multi-modal inputs and to capture
the nonlinearity and high frequency of robotic data. To address data scarcity, we
further introduce a Physically Interpretable Unified Action Space, which can unify
the action representations of various robots while preserving the physical meanings
of original actions, facilitating learning transferrable physical knowledge. With
these designs, we managed to pre-train RDT on the largest collection of multi-robot
datasets to date and scaled it up to 1.2B parameters, which is the largest diffusion-
based foundation model for robotic manipulation. We finally fine-tuned RDT on
a self-created multi-task bimanual dataset with over 6K+ episodes to refine its
manipulation capabilities. Experiments on real robots demonstrate that RDT signif-
icantly outperforms existing methods. It exhibits zero-shot generalization to unseen
objects and scenes, understands and follows language instructions, learns new skills
with just 1∼5 demonstrations, and effectively handles complex, dexterous tasks.
Code and a Demo video are provided in the supplementary materials.

1 INTRODUCTION

Bimanual manipulation is essential for robots to accomplish real-world tasks (Edsinger & Kemp,
2007). For practical applications, a useful manipulation policy should be able to generalize to
unseen scenarios, such as unseen objects and scenes. However, current approaches either depend on
task-specific primitives (Mirrazavi Salehian et al., 2017; Rakita et al., 2019; Grannen et al., 2023a)
or are limited to small-scale model, data and simple tasks (Krebs et al., 2021; Franzese et al., 2023;
Grannen et al., 2023b; Zhao et al., 2023; Grotz et al., 2024; Liu et al., 2024), thereby exhibiting
only narrow generalization and failing in complex tasks. Following the success in natural language
processing (Achiam et al., 2023; Touvron et al., 2023) and computer vision (Radford et al., 2021;
Kirillov et al., 2023), one promising direction to enable generalizable behaviors is to develop a
foundation model through imitation learning on large-scale datasets.

However, it is non-trivial to develop a bimanual manipulation foundation model. One main reason
is that the accessible data for a specific dual-arm robot is significantly scarce (Sharma et al., 2018;
Collaboration et al., 2023) due to high hardware costs. It greatly undermines the data-intensive
requirements of training foundational models. Inspired by recent attempts in unimanual manipula-
tion (Brohan et al., 2023; Kim et al., 2024), we seek to first pre-train on extensive multi-robot datasets
and then fine-tune on the small dataset collected on the target dual-arm robot. This can help us scale
the data size up to three orders of magnitude, enabling the potential to learn transferrable physics
knowledge from datasets of other robots. Nevertheless, there are two key technical challenges. First, a
generalizable foundation model requires a highly capable architecture in terms of both expressiveness
and scalabilty. The dimension of the action space in bimanual manipulation is twice that in unimanual
manipulation, bringing a higher degree of multi-modality in the distribution of feasible actions (Li,
2006; Jia et al., 2024), as illustrated in Fig. 2b. Accordingly, the model must be expressive enough to
capture the multi-modality in action distributions. Previous methods (Zhao et al., 2023; Brohan et al.,
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Figure 1: Overview of Robotics Diffusion Transformer with 1B-Parameters (RDT-1B), a
language-conditioned visuomotor policy for bimanual manipulation,with state-of-the-art generaliz-
ability to unseen scenarios (See App. H for metric calculation details).

2023; Kim et al., 2024) typically fail to meet this standard, leading to unsatisfactory performance.
Besides, the architecture needs to effectively process inputs from different modalities, including text,
images, and actions. It must be scalable to stably train on large-scale robotic data. Second, data
heterogeneity, which is caused by variations in the physical structure and the action space definition
across different robots, can lead to negative transfer and impeding policy generalization during
training on multi-robot data (Pan & Yang, 2009). Existing approaches either discard robots with
differing action spaces or retain only the parts of the data whose structure is constant across the robot,
at the cost of losing valuable data (Brohan et al., 2023; Ghosh et al., 2023; Shah et al., 2023a).

In this paper, we introduce the Robotics Diffusion Transformer (RDT), the largest bimanual manipula-
tion foundation model with strong generalizability. RDT employs diffusion transformer (DiT) as its
scalable backbone (Peebles & Xie, 2023), with special designs for language-conditioned bimanual
manipulation. For expressiveness, RDT excels in capturing the full modalities of bimanual actions
from massive data by using the capacity of diffusion models to represent complex distributions (Sohn
et al., 2015; Ho et al., 2020). For scalability, we harness the Transformer backbone and carefully de-
sign the multi-modal encoding to eliminate the heterogeneity of various modalities. Moreover, robotic
data is differed significantly from images and videos with temporal and spatial continuity (Chen
et al., 2019; Liang et al., 2022). To characterize its inherent nonlinear dynamics (de Wit et al., 2012),
high-frequency changes (Ghosh et al., 2023), and the unstable numerical range, we make important
modifications to the original DiT structure, including MLP decoding, improved normalization, and
alternate injection of conditions (see Fig. 4 for their importance). To further enable training RDT on
heterogeneous data, we propose the Physically Interpretable Unified Action Space, a unified action
format for various robots with gripper arms. This innovative format mitigates potential conflicts
between different robots while retaining the physical meanings of the original actions, which can
promote the model to learn generalizable physical knowledge across diverse robotic datasets.

With the above designs, we managed to pre-train the RDT model on the largest collection of multi-
robot datasets to date (Collaboration et al., 2023; Walke et al., 2023; Fang et al., 2023; Kumar et al.,
2024) and scale it up to 1.2B parameters, which is the largest diffusion-based pre-trained model for
robotic manipulation. To further enhance its bimanual manipulation capabilities, we fine-tuned the
RDT on a self-collected multi-task bimanual dataset comprising over 6K+ trajectories, which is one
of the most extensive bimanual datasets. In our experiments, we have comprehensively evaluated
RDT against strong baselines in both bimanual manipulation and robotic foundation models. Results
show that RDT achieves state-of-the-art performance, outperforming baselines by achieving an
improvement of 56% in success rates across a wide spectrum of challenging tasks. In particular,
RDT has exceptional zero-shot and few-shot (1 ∼ 5 shots) generalizability to unseen objects, scenes,
instructions, and even skills. RDT is also capable of accomplishing tasks requiring fine-grained
operations, such as controlling a robot dog with a joystick. Finally, ablation studies show that
diffusion modeling, large model size, and large data size all contribute to superior performance.
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Figure 2: (a) Schematic diagram of the ALOHA dual-arm robot. (b) A toy example of grasping a
cube. Compared with unimanual manipulation, bimanual manipulation has more possible action
modes, leading to stronger multi-modality. Colors from light to dark indicate that time goes forward.

2 RELATED WORK

Learning-based Bimanual Manipulation. One substantial challenge in learning a bimanual manipu-
lation policy is the high dimensionality of the action space, which exacerbates the data scarcity (Zoll-
ner et al., 2004; Smith et al., 2012; Lioutikov et al., 2016; Stepputtis et al., 2022) and the multi-modal
behavior (Colomé & Torras, 2018; 2020; Figueroa & Billard, 2017; Sharma et al., 2018; Xie et al.,
2020; Franzese et al., 2023). Some works have developed more cost-effective interfaces for data
collection (Zhao et al., 2023; Aldaco et al., 2024), but they are limited to specific hardware configura-
tions and still insufficient to bridge the data gap for a generalizable policy. Others attempt to reduce
data requirements by introducing inductive biases, such as distinguishing two arms for stabilization
and functionality (Grannen et al., 2023b), parameterizing movement primitives (Batinica et al., 2017;
Amadio et al., 2019; Chitnis et al., 2020; Franzese et al., 2023), or using voxel representations (Grotz
et al., 2024; Liu et al., 2024). These methods use strong priors or simplified modeling, which
successfully reduce the action space, but at the cost of a reduced scope of application and inability to
express the multi-modality of bimanual behaviors (Pearce et al., 2023).

Foundation Models for Robotics. Foundation models have shown immense promise in enabling
generalizable behaviors by training multi-task “generalist” models (Brohan et al., 2022; 2023; Ghosh
et al., 2023; Kim et al., 2024) on large multi-task robot datasets (Collaboration et al., 2023; Brohan
et al., 2022; Fang et al., 2023). Most studies adapt large vision-language models to directly predict
action (Brohan et al., 2022; Driess et al., 2023; Brohan et al., 2023; Collaboration et al., 2023; Kim
et al., 2024). While demonstrating generalization to new objects and tasks, they face issues with
quantization errors and uncoordinated behaviors (Pearce et al., 2023) when applied to bimanual
manipulation. It’s largely due to their discretization of action spaces. To enhance precision, diffusion
models have been used for continuous control (Ho et al., 2020; Chi et al., 2023; Pearce et al., 2023;
Ghosh et al., 2023). Ghosh et al. (2023) pre-train a Transformer-based diffusion policy on a subset of
Open X-Embodiment (Collaboration et al., 2023) dataset (25 datasets), with up to 93M parameters.

3 PROBLEM FORMULATION AND CHALLENGES

We start by formulating the task and elaborating on the challenges. To evaluate the model on
the hardware, we choose the ALOHA dual-arm robot as our target robot since it is one of the
most representative dual-arm robots and is suitable for collecting human demonstration data via
teleoperation (Zhao et al., 2023; Fu et al., 2024; Aldaco et al., 2024). Fig. 2a shows a schematic
diagram of the target robot, which consists of two arms with grippers and three cameras. Note that
our setting and foundation model are generic to any dual-arm gripper robot.

We consider the concrete task of language-conditioned bimanual manipulation with vision, which is
fundamental in robotics and has great value in real-world scenarios such as household (Stepputtis
et al., 2020; Brohan et al., 2022; Zhao et al., 2023). Formally, given a language instruction ℓ, the
policy is presented with an observation ot at time t ∈ N+; and then it produces an action at to
control two robot arms to achieve the goal specified by ℓ. The observation is represented as a triple
ot := (Xt−Timg+1:t+1, zt, c), where Xt−Timg+1:t+1 := (Xt−Timg+1, . . . ,Xt) is the RGB observation
history of size Timg, zt is the low-dimensional proprioception of the robot, and c is the control
frequency. The action at is usually a subset of the desired proprioception zt+1

1.
1E.g., zt may include the gripper position at time t, and at can be the target gripper position at step t+ 1.
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Figure 3: RDT framework. Heterogeneous action spaces of various robots are embedded into a
unified action space for multi-robot training. Inputs: proprioception zt, noisy action chunk ãt:t+Ta

,
control frequency c, and diffusion time step k, acting as denoising inputs; image inputs (Timg = 2
and X· = {X1

· ,X
2
· ,X

3
· } denotes a set of images from exterior, right-wrist, and left wrist cameras)

and language inputs, acting as conditions. Outputs: denoised action chunk at:t+Ta
.

A specific task in bimanual manipulation typically consists of multiple elements: a skill (e.g., verbs
like “pick”, “wipe”, or “open”), an object (e.g., nouns like “bottle”, “table”, or “door”), a scene (i.e.
the environment in which the task takes place), and a modality describing how the skill is performed
(e.g., adverbials like “pick the bottle with the left hand”). When encountering a new task, a practical
policy is required to generalize to unseen2 elements in the task, which is particularly challenging
for previous rule-based methods (Mirrazavi Salehian et al., 2017; Rakita et al., 2019; Grannen et al.,
2023a) as well as learning-based methods that are limited to either small models and data or simple
tasks, as discussed in Sec. 2.

We aim to train a foundation model policy via imitation learning to achieve generalizability. However,
the available data for a specific dual-arm robot is particularly scarce (< 10K trajectories) due to
high hardware costs, far from the common requirement to train a foundation model. To address
this, we propose to employ a pre-training and fine-tuning pipeline (Radford et al., 2018) to take
advantage of data from multiple robots by drawing inspiration from recent advances in unimanual
manipulation (Ghosh et al., 2023; Collaboration et al., 2023; Kim et al., 2024). In this manner, we
would expand the data size by three orders of magnitude. Specifically, we first pre-train the model
on a large-scale multi-robot dataset Dpre (mostly single-arm) and then fine-tune on a dataset of the
target robot Dft. We denote the dataset by D· = {(ℓ(i),o(i)

t ,a
(i)
t ) | 0 ≤ t < T (i), 1 ≤ i ≤ N},

where T (i) is the length of the i-th trajectory and N is the number of trajectories. Moreover, it is
worth emphasizing that our goal is to use multi-robot data to enhance the model’s generalizability in
bimanual manipulation rather than developing a cross-embodiment model for various robots. There
are two main challenges to developing such a foundation model with multi-robot data:

Challenge 1: How to design a powerful architecture? A generalizable foundation model ne-
cessitates a powerful architecture. This requirement encompasses two primary aspects. Firstly,
the architecture must possess sufficient expressiveness to capture the multi-modality in the action
distribution. Fig. 2b illustrates a toy example where the robot attempts to grasp a cube. We can see
that there are many modes to finish this task, in contrast to unimanual manipulation, where only one
robot arm is controlled. When collecting demonstrations, the human operator may randomly pick one
of them, leading to multi-modality in the collected action data. Secondly, scalability is necessary for
such an architecture. As a foundation model, it should effectively process heterogeneous inputs from
various modalities (text, images, actions, etc.) while being scalable to train stably on large datasets.

Challenge 2: How to train on heterogeneous data? Training on multi-robot data presents a unique
challenge of data heterogeneity. The physical structure and the action space can vary greatly across
different robots. Previous attempts either restrict themselves to a subset of robots with similar action
spaces (Yang et al., 2023; Ghosh et al., 2023; Kim et al., 2024) or only retain a subset of inputs

2unseen means that a certain element has not appeared in the training data.
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sharing the same structure (Collaboration et al., 2023; Yang et al., 2024), at the cost of losing a lot of
information. It remains largely under-addressed on how to train models on such heterogeneous data.

4 ROBOTICS DIFFUSION TRANSFORMER

We now present Robotics Diffusion Transformer (RDT), as illustrated in Fig. 3. In Sec. 4.1, we
present the diffusion model and the corresponding architecture to address Challenge 1. In Sec. 4.2,
we resolve Challenge 2 by proposing a physically interpretable unified action space to unify various
robot action spaces and enable multi-robot pre-training. We also collect a comprehensive multi-task
bimanual dataset for fine-tuning to improve the bimanual manipulation capabilities of RDT.

4.1 RDT MODEL

Diffusion Modeling. Due to multi-modality, given the language instruction ℓ and observation ot,
there may be many possible actions at to proceed with the task. The policy will learn the “average”
of action modes if we model it as a deterministic mapping (ℓ,ot) 7→ at and regress the tuples of
(ℓ,ot,at) in the training data. This may result in out-of-distribution actions, such as the arithmetic
mean of multiple modes, which can be completely infeasible (Pearce et al., 2023). Instead, we choose
to model the continuous conditional distribution p(at|ℓ,ot). As discussed in Sec. 2, among various
approaches, diffusion models excel in both expressiveness and sampling quality, but can be slow to
sample high-dimensional data (e.g., images). Luckily, for our settings, the drawback is minor since
that at has a much lower dimension than images, which requires only minimal sampling overhead.
This has made diffusion models an ideal choice for policy as in Chi et al. (2023).

Nevertheless, employing diffusion models for robotic tasks faces unique challenges since the in-
herent properties of robotic physics quantities (i.e., the action and proprioception) are different
from image/video data. Image and video data, while high-dimensional, often exhibit a degree of
temporal and spatial continuity (Chen et al., 2019; Liang et al., 2022), with changes between frames
typically being incremental. In contrast, robotic physics quantities are characterized by its nonlinear
dynamics (de Wit et al., 2012) and the potential for high-frequency changes stemming from the
physical interactions, such as collision, constraints, and material properties like damping. Moreover,
the quantities also feature an unstable numerical range, probably due to extreme values caused by
unreliable sensors. This underscores the necessity of adapting current diffusion models to effectively
capture the instability and nonlinearity of robot data. Next, we will first elaborate on diffusion
formulation and then introduce our design of architecture to resolve these challenges.

When making a decision with diffusion policies, we first sample a totally noisy action aK
t ∼ N (0, I)

and then perform K ∈ N+ denoising steps to denoise it to a clean action sample a0
t from p(at|ℓ,ot):

ak−1
t =

√
ᾱk−1βk

1− ᾱk
a0
t +

√
αk(1− ᾱk−1)

1− ᾱk
ak
t + σkz, k = K, . . . , 1, (1)

where {αk}Kk=1, {σk}Kk=1 are scalar coefficients pre-defined by a noise schedule (Nichol & Dhariwal,
2021). Here, βk := 1− αk, and ᾱk−1 :=

∏k−1
i=1 αi, z ∼ N (0, I) if k > 1, else ᾱk−1 = 1, z = 0.

However, a0
t is intractable before sampling is finished. We opt to use a learnable denoising network

fθ with parameters θ to estimate the clean sample from a noisy one: a0
t ← fθ(ℓ,ot,a

k
t , k). To train

such a network, we will minimize the following mean-squared error (MSE) of denoising:

L(θ) := MSE
(
at, fθ(ℓ,ot,

√
ᾱkat +

√
1− ᾱkϵ, k)

)
, (2)

where k ∼ Uniform({1, . . . ,K}), ϵ ∼ N (0, I), and (ℓ,ot,at) is sampled from our training dataset.
Later in this paper, we will denote noisy action inputs by ãt :=

√
ᾱkat +

√
1− ᾱkϵ, in which the

superscript of k is dropped for simplicity. Besides, in practice, we prefer to predict a sequence of
actions, i.e., an action chunk, in one shot to encourage temporal consistency (Chi et al., 2023) and to
alleviate error accumulation over time by reducing number of decisions in a task (Zhao et al., 2023).
Specifically, we model p(at:t+Ta

|ℓ,ot), where at:t+Ta
:= (at, . . . ,at+Ta−1) is an action chunk and

Ta denotes the chunk size (Zhao et al., 2023). We provide a detailed discussion in App. A.

We now present the design of the architecture, including the encoding of multi-modal inputs and the
network structure of fθ, while details are deferred to App. B.
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Encoding of Heterogeneous Multi-Modal Inputs. The heterogeneity of multi-modal inputs
is reflected in the structure; that is, the format and number of dimensions of each modality are
significantly different. This has posed challenges for mult-modal training. To address this, we encode
these diverse modalities into a unified latent space. Below are the encoding methods:

• Low-Dimensional Inputs are low-dimensional vectors that represent physical quantities of the
robot, including the proprioception, the action chunk, and the control frequency. To encode them,
we use MLPs (with Fourier features (Tancik et al., 2020)), which can effectively capture the
high-frequency changes in low-dimensional spaces.

• Image Inputs are high-dimensional and contain rich spatial and semantic information. To extract
compact representations, we use an image-text-aligned pre-trained vision encoder, SigLIP (Zhai
et al., 2023). We fix its weights during training to save GPU memory.

• Language Inputs are of varying length and highly abstract, posing integration challenges due to
their complexity and ambiguity. To encode them, we use a pre-trained Transformer-based language
model, T5-XXL (Raffel et al., 2020). We also fix its weights during training to save GPU memory.

In addition to structure, heterogeneity features the different amounts of information contained in
different inputs. First, data in different modalities contain different amounts of information. For
example, images usually contain more information than text, and after encoding, they produce more
tokens. Second, different inputs of the same modality may hold very different amounts of information.
For example, the exterior camera of a robot has a more global view and contains richer information
than the wrist cameras, as shown in the upper right of Fig. 3. In this case, the model may learn a
shortcut: only focusing on the exterior view and ignoring the wrist views, thereby losing the ability to
perceive depth. To tackle this issue, we randomly and independently mask each multi-modal input
with a certain probability during encoding to prevent the model from over-relying on a specific input.
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Figure 4: (a) Unstable loss curve
during training without QKNorm
& RMSNorm. (b) Success rates
of RDT (w/o MLP Decoder or
w/o ACI) in tasks of Robot Dog
(walk straight sub-task) and Pour
Water-L-1/3 (correct amount sub-
task). See Fig. 5 for task defini-
tions. All the models are with-
out pre-training in this experiment
due to resource constraints.

Network Structure of fθ . We choose Transformer as the scalable
backbone network (Bao et al., 2023; Peebles & Xie, 2023) and make
the following three key modifications from Diffusion Transfomer
(DiT) by considering the characteristics of our robotic problem:

• QKNorm & RMSNorm. The unstable numerical range of the
inputting robotic physical quantities can lead to problems such
as gradient instability and numerical overflow, especially when
training large foundation models. To solve this problem, we add
QKNorm (Henry et al., 2020) to avoid numerical instability when
calculating attention. Besides, we also note that our problem can
be considered as a time series forecasting task, and the centering
operation in the original DiTs’ LayerNorm could cause token
shift and attention shift, thus destroying the symmetry of the time
series (Huang et al., 2024). Therefore, we replace LayerNorm
with RMSNorm (Zhang & Sennrich, 2019) without a centering
operation. Fig. 4a shows that large-scale pre-training tends to be
very unstable or even explode without this modification.

• MLP Decoder. To improve the approximation capability for
nonlinear robot actions, we replace the final linear decoder with
a nonlinear MLP decoder as a projection from the latent space
back to the physical space. As empirically shown in Fig. 4b,
without this design, RDT cannot effectively capture nonlinear
dynamics and thus loses the ability to accomplish dexterous tasks
that require delicate operations.

• Alternating Condition Injection (ACI). In our model, image and
language inputs serve as conditions, which are high-dimensional
and variable in length, contrasting with the class label conditions
in traditional DiTs (Peebles & Xie, 2023). These informative
conditions are challenging to compress into a single token, making
the original adaptive layer norm approach unsuitable. Therefore, we employ cross-attention to
accommodate conditions of varying lengths avoiding the information loss in further compression.
Besides, we further analyze that, given that image tokens are usually much more than text tokens,
simultaneous injection of both modalities tends to overshadow text-related information, thus
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impairing the capability of the instruction following (see Fig. 4b for quantitative results). To
mitigate this issue, we strategically alternate between injecting image and text tokens in successive
layers’ cross-attention rather than injecting both in every layer.

4.2 DATA

Training on Heterogeneous Multi-Robot Data. To enable training on heterogeneous multi-robot
data, we need a unified action space shared among various robots to provide a unified format for
multi-robot actions. The mapping from the original action space of a robot to the unified action space
should be physically interpretable, and each dimension of the space should have a clear physical
meaning. This can encourage the model to learn shared physical laws from different robot data,
thereby improving the efficiency of learning from data of different robots (Shah et al., 2023a).

The design of the space consists of two steps. Firstly, for each robot, we can use a single space to
accommodate both its proprioception zt and action at. This is because at is usually a subset of the
desired zt+1 (de Wit et al., 2012; Kouvaritakis & Cannon, 2016), and thus the space of zt naturally
contains the space of at. Secondly, we design a unified space that encompasses all the main physical
quantities of most robots with gripper arms. As illustrated in the left side of Fig. 3, we embed the
action space of a robot into this unified space by filling each element of the original action vector into
the corresponding position of the unified action space vector according to its physical meaning, with
the remaining positions being padded. The specific definition of the space is given in App. C.

With this unified space, we are able to pre-train RDT on data from almost all modern robots with
gripper arms, and greatly expand the data scale towards the requirement for a foundation model.
Specifically, our collection of pre-training datasets includes 46 datasets of various robots, with a total
size of 1M+ trajectories and 21TB. More details and preprocessing are deferred to App. D.

Collecting a Comprehensive Multi-Task Bimanual Dataset. Though having been pre-trained
on large-scale datasets, RDT could still need help to zero-shot generalize to the target dual-arm
robot due to the embodiment gap. To bridge the gap, we need to collect a multi-task bimanual
dataset on the target robot for fine-tuning. Recent advances in large language models (Ziegler et al.,
2019; Brown et al., 2020; Touvron et al., 2023) have shown that high-quality fine-tuning datasets
are crucial for model performance. We ensure the high quality of our dataset from three aspects: (1)
Regarding quantity, we have collected 6K+ trajectories, making our dataset one of the largest bimanual
datasets nowadays; (2) Regarding comprehensiveness, we consider 300+ challenging tasks, covering
most manipulation task types, from pick-and-place to plugging cables, even including writing math
equations; (3) Regarding diversity, we prepare 100+ objects with rigid and non-rigid bodies of various
sizes and textures and 15+ different rooms with different lighting conditions. Besides, we further
utilize GPT-4-Turbo (Achiam et al., 2023) to rewrite human-annotated instructions to increase text
diversity. For more information, we refer to Fig. 6 and App. E.

5 EXPERIMENTS

We aim to answer the following questions through real-robot experiments: Q1: Can RDT zero-shot
generalize to unseen objects and scenes? Q2: How effective is RDT’s zero-shot instruction-following
capability for unseen modalities? Q3: Can RDT facilitate few-shot learning for previously unseen
skills? Q4: Is RDT capable of completing tasks that require delicate operations? and Q5: Are large
model sizes, extensive data, and diffusion modeling helpful for RDT’s performance?

5.1 EXPERIMENT SETUPS

Tasks. We select 7 challenging tasks to evaluate the generalizability and capabilities of RDT from
different dimensions, including complex scenarios that the model may encounter in real-world tasks,
such as various unseen elements and dexterous manipulation. An illustration of the dimension of
each task is given in Table 1 while detailed definitions and visualizations are provided in Fig. 5.

Data. We use the pre-training and fine-tuning datasets in Sec. 4.2. We now list the number of demos
related to each task in our fine-tuning dataset. Wash Cup: 133 demos for seen cups combined and 0
demos for unseen cups; Pour Water: 350 demos for seen rooms combined and 0 demos for unseen
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Init. #1 #2 #3

b

Pour Water: “Pour water from the bottle into the mug.” The bottle and mug are randomized up to 6cm. The robot needs to Pick Up
Bottle (#1), Pour Water (#2), and Place Back Bottle (#3). The last image shows one seen room (a) and three unseen rooms (b-d).

Wash Cup: “Fill the mug with water from the faucet and pour it into the sink.” The mug is randomized up to 10cm. The robot needs
to Pick Up Cup (#1), Turn On Faucet (#2), Get Water (#3, to ensure that the water falls into the cup), Pour Out Water (#4), and Place
Back Up (#5). The last image shows seen and unseen cups (from left to right).

Init. #1 #2 #3 #4 #5

seen 1-4; unseen 1,2

Handover: “Pick up the black marker on the right and put it into the packaging box on the left.” The marker pen and box are
randomized up to 3cm. The robot needs to Pick Up Pen (#1), Switch Hand (#2), Drop Pen (#3), and ensure it can Fall into Box (#4).

Init. #1 #2 #3 #4

Init.

Fold Shorts: “Fold the basketball shorts into a rectangle.” The shorts are randomized up to 3cm and wrinkles are also randomized.

Init. #1 #2 Walk Straight

Robot Dog: “Push the left joystick forward to make the robot dog walk straight forward.” The remote control is randomized up to
4cm and the robot dog is up to 50cm. The robot needs to Grab Remote (#1) and Push Joystick (#2) as straight as possible to make the
robot dog walk in a straight line as shown in the last two images.

Init. Left Hand

a

c d

1/3 Right Hand 2/3

Pour Water-L-1/3 (-R-2/3): “Pour water from the bottle into the mug until about one-third (two-thirds) with the left (right) hand.” In
the left-hand task, the bottle is initially placed to the left of the mug, and vice versa. The bottle and mug are randomized up to 6cm.

Figure 5: Task definitions and visualizations. For 7 challenging tasks, we describe their language
instruction, randomization, and definitions of each sub-task. For Pour Water-L-1/3 and Pour Water-R-
2/3, we show the resulting water levels in two images.

rooms; Pour Water-L-1/3 & Pour Water-R-2/3: 18 demos for the water level of little, 19 demos for
half, and 19 demos for full; Handover: 5 demos; Fold Shorts: 1 demo; Robot Dog: 68 demos.

Model Training and Inference. We scale the size of RDT up to 1.2B parameters, establishing it as
the currently largest diffusion-based robotic foundation model. The model is pre-trained on 48 H100
80GB GPUs for a month, giving a total of 1M training iteration steps. It takes three days to fine-tune
this model using the same GPUs for 130K steps. We defer further details to App. F, including the
running platform, design choices, and data augmentation techniques. For real-time inference, we
adopt DPM-Solver++ (Lu et al., 2022), a recent sampling accelerator of diffusion models. It can
reduce the diffusion steps required to sample an action chunk from 100 steps to 5 steps, achieving an
action chunk inference frequency of 6 Hz (action chunks per second) and an average action inference
frequency of 381 Hz (actions per second) on the target robot’s onboard RTX 4090 24GB GPU.

Baselines. To comprehensively evaluate RDT, we consider the most advanced baselines in robotic
foundation models and bimanual manipulation, including Action Chunking with Transformers

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Table 1: Dimensions when designing tasks. For Pour Water-L-1/3 and Pour Water-R-2/3, only the
water levels of little, half (i.e., 1/2), and full are seen in training instructions. For Handover and Fold
Shorts, the dataset only contains 5 demos and 1 demo of the skill, respectively. For Robot Dog, it
requires delicate operations, as a slight angle when pushing joysticks can make the robot dog deviate.

TASK NAME DIMENSION EXPLANATION
Wash Cup Unseen Object (Q1) To wash one seen and two unseen cups with the faucet
Pour Water Unseen Scene (Q1) To pour water into the cup in three unseen rooms
Pour Water-L-1/3 Instruction Following (Q2) To pour water into the cup with the left hand until one-third full
Pour Water-R-2/3 Instruction Following (Q2) To pour water into the cup with the right hand until two-thirds full
Handover 5-Shot Learning (Q3) To move the marker to the box, where handover is needed due to far distance
Fold Shorts 1-Shot Learning (Q3) To fold the shorts in half horizontally
Robot Dog Dexterity (Q4) To push the joystick straight to control the robot dog to walk in a straight line

(ACT) (Zhao et al., 2023), OpenVLA (Kim et al., 2024), and Octo (Ghosh et al., 2023). ACT is a
state-of-the-art method in bimanual manipulation, which uses VAE to model the action distribution.
OpenVLA is the largest open-source foundation model (7B), employing the discretization modeling.
Octo is a diffusion-based foundation model, and its largest version has only 93M parameters.

Metric and Hardware. We employ the success rate as our main metric, which is calculated by
dividing successful trials by total trials. Wash Cup is tested with 8 trials for each cup (one seen
cup, two unseen cups, 24 trials in total). Pour Water is tested with 8 trials for each room (three
unseen rooms, 24 trials in total). Pour Water-L-1/3 and Pour Water-R-2/3 are tested with 8 trials each.
Handover, Fold Shorts, and Robot Dog are tested with 25 trials each. All the tests are performed on
the ALOHA dual-arm robot (see App. G for hardware configurations). Experimental details, such as
the implementation and hyper-parameters, are elaborated in App. H.

Table 2: Ablation study results. Here are the success
rates (%) of the original RDT and its three variants in
tasks of Wash Cup (unseen cup 2, total success rate),
Pour Water (unseen room 3, total success rate), and Pour
Water-L-1/3 (correct amount sub-task). All the models
except RDT (scratch) are pre-trained before fine-tuning.

VARIANT
NAME

UNSEEN
OBJECT

UNSEEN
SCENE

INSTRUCTION
FOLLOWING

RDT (regress) 12.5 50 12.5
RDT (small) 37.5 62.5 25
RDT (scratch) 0 25 62.5
RDT (ours) 50 62.5 100

Ablation Study. AnsweringQ5, we have con-
ducted ablation studies on the model size, pre-
training, and the modeling method to understand
their importance. We consider the variants of:
RDT (ours): the original RDT. RDT (regress):
RDT without diffusion modeling. It models
the deterministic mapping (ℓ,ot) 7→ at. RDT
(small): RDT without large parameters. It has
only 166M parameters. RDT (scratch): RDT
without pre-training. It is trained from scratch
during fine-tuning. In Table 2, we evaluate these
variants in terms of three dimensions of gener-
alizability. Table 7 provides a comparison of
different variants of RDT as well as baselines.

5.2 RESULTS ANALYSIS

From the results in Table 3, we can see that RDT consistently outperforms other baselines. This
is because RDT employs diffusion with a powerful network architecture to model the distribution
of multi-modal actions accurately, while discretization and VAE lack accuracy and expressiveness,
respectively. Besides, the large number of parameters after large-scale pre-training provides a lot of
prior knowledge, which significantly improves the generalizability. Here is a detailed analysis:

• Q1 & Q2: RDT can zero-shot generalize to unseen objects, scenes, and modalities. In Wash Cup
and Pour Water, RDT can still achieve a high success rate on unseen scenarios, and its performance
is not much different from that on seen ones. In contrast, the other baselines cannot even complete
the entire task. In Pour Water-L-1/3 and Pour Water-R-2/3, from the third row of Fig. 5 or Fig. 10
(zoomed-in version), we can find that RDT understands precisely which hand to manipulate and
how much water to pour and closely follows the instruction through its actions, even though it has
never seen words like “one-third” or “two-thirds”. It is precisely because of large-scale pre-training
that RDT has seen a large number of diverse objects, scenes, and instructions, leading to such
strong zero-shot generalization.
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Table 3: Quantitative results. We report success rates (%) of ACT, OpenVLA, RDT (from scratch,
no pre-trained), and RDT (ours, pre-trained) for 7 tasks. Sub-columns in each sub-task cell repre-
sent different elements (objects, instructions, scenes). ACT is not language-conditioned and thus
unavailable for instruction following. RDT (ours) consistently outperforms others.

Wash Cup: seen cup 1 | unseen cup 1 | unseen cup 2 (Unseen Object)
Pick Up Cup Turn On Faucet Get Water Pour Out Water Place Back Cup Total

ACT 50 12.5 37.5 0 0 0 0 0 0 0 0 0 37.5 0 0 0 0 0
OpenVLA 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Octo 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
RDT (scratch) 37.5 12.5 0 0 12.5 12.5 0 0 0 37.5 12.5 0 25 0 0 0 0 0
RDT (ours) 87.5 87.5 50 62.5 75 50 50 75 50 87.5 75 50 87.5 62.5 50 50 75 50

Pour Water-L-1/3 | Pour Water-R-2/3 (Instruction Following)
Pick Up Bottle Pour Water Place Back Bottle Total Correct Hand Correct Amount

OpenVLA 50 0 0 0 0 0 0 0 50 0 0 0
Octo 0 0 0 0 0 0 0 0 0 0 0 0
RDT (scratch) 100 75 75 25 62.5 25 62.5 25 100 75 62.5 12.5
RDT (ours) 100 87.5 100 87.5 100 87.5 100 87.5 100 87.5 100 75

Pour Water: unseen room 1 | unseen room 2 | unseen room 3 (Unseen Scene) Fold Shorts (1-Shot)
Pick Up Bottle Pour Water Place Back Bottle Total - Total

ACT 25 87.5 25 0 50 12.5 0 37.5 12.5 0 37.5 12.5 - 0
OpenVLA 0 0 0 0 0 0 0 0 0 0 0 0 - 0
Octo 50 0 12.5 12.5 0 0 12.5 0 0 12.5 0 0 - 4
RDT (scratch) 62.5 100 62.5 25 87.5 37.5 25 75 25 25 75 25 - 40
RDT (ours) 62.5 100 62.5 62.5 100 62.5 62.5 100 62.5 62.5 100 62.5 - 68

Handover (5-Shot) Robot Dog (Dexterity)
Pick Up

Pen
Switch
Hand

Drop
Pen

Fall into
Box

Total
Grab

Remote
Push

Joystick
Total

Walk
Straight

ACT 44 0 0 0 0 88 32 32 32
OpenVLA 0 0 0 0 0 84 0 0 0
Octo 12 0 0 0 0 100 4 4 0
RDT (scratch) 88 32 24 16 16 100 64 64 32
RDT (ours) 100 56 56 40 40 100 76 76 48

• Q3: RDT can learn new skills using only a few shots. In Handover and Fold Shorts, RDT has
learned new and complex skills of handover and folding through few-shot learning, whose action
patterns are very different from known skills, while the success rate of others is almost zero. Such
improvement is also due to large-scale pre-training. Few-shot learning can help RDT quickly adapt
to new working environments, which is of great significance for practical applications.

• Q4: RDT can handle dexterous tasks. In Robot Dog, RDT accurately controls the angle when
pushing the joystick, while others have caused the robot dog to deviate. This is because diffusion,
with our powerful network architecture, can model the distribution of multi-modal and nonlinear
actions so that the action precision can meet the requirements of dexterous tasks. We also note that
the joystick and the remote control are both black, making the joystick not visually apparent. It
probably makes ACT prone to failure. In contrast, large-scale pre-training has made RDT learn a
better vision-language representation of the joystick concept, improving the recognition capability.

• Q5: Large model size, extensive data, and diffusion are all essential factors for our excellence.
In Table 2, there is a serious performance drop without any of these factors, demonstrating the
necessity of our contributions. In particular, RDT (scratch) performs poorly on unseen objects and
scenes, indicating that the knowledge from pre-training is critical for generalization.

6 CONCLUSION

In this paper, we tackled the challenges of data scarcity and increased manipulation complexity in
generalizable bimanual manipulation by developing the Robotics Diffusion Transformer (RDT), a
diffusion-based foundation model for language-conditioned visuomotor imitation learning. Our model
was pre-trained on an extensive multi-robot dataset and fine-tuned on a self-collected bimanual dataset.
We further introduce a Physically Interpretable Unified Action Space to unify action representations
across different robots, enhancing robustness and transferability. Outperforming existing methods,
RDT not only demonstrates significant improvements in dexterous bimanual capability and instruction
following but also achieves remarkable performance in few-shot learning and zero-shot generalization
to unseen objects and scenes.
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ETHICS STATEMENT

All the data used in this research comes from open-source and well-documented datasets, and we
strictly follow all applicable licensing and usage guidelines. Our finetuning dataset is collected by the
authors of this paper along with some volunteers.

While RDT is a model trained for scalable, language-conditioned visuomotor policy learning and
tested on the ALOHA dual-arm robot, we emphasize that any harmful use of our model is neither
intended nor encouraged, and we encourage responsible deployment on real-world robots.

REPRODUCIBILITY STATEMENT

To reproduce our pre-training and fine-tuning processes, we have provided the code in the supplemen-
tary materials. We also include instructions for downloading the dataset, how to use the training code,
and a guide for deploying on a real machine in the README file. Once the paper is accepted, we
will fully open-source all our code, model weights, and fine-tuning datasets.

Please refer to App. D for pre-training dataset details, App. E for fine-tuning dataset details, App. F
for RDT training details, App. G for hardware details, and App. H for experimental details and
implementation of baselines.
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A ACTION CHUNKING TECHNIQUE

In practice, we find that the errors in action prediction accumulate as the number of historical decisions
increases due to the imperfection of the learned policy. This may cause the robot to drift out of the
training distribution, reaching hard-to-recover states (Ross et al., 2011). To alleviate this, we prefer to
predict multiple actions in one shot, thereby reducing the total number of decisions in a trajectory. In
this way, we model p(at:t+Ta |ℓ,ot), where at:t+Ta := (at, . . . ,at+Ta−1) is an action chunk and Ta

denotes the chunk size (Zhao et al., 2023). To adapt Eq. 1 and Eq. 2 to this context, we could simply
replace at by at:t+Ta

. Besides, according to Chi et al. (2023), action chunking is also helpful for
improving temporal consistency. It can better consider the coherence of previous and subsequent
actions when making decisions and may avoid sudden changes in actions that may cause damage to
the robot.

B ARCHITECTURE DETAILS

Encoding of Multi-Modal Inputs. Encoding details are outlined below:

• Low-Dimensional Inputs. The proprioception zt and the noisy action chunk ãt:t+Ta
are first

embedded into the unified action space. This space is used to unify the representation of zt and
ãt:t+Ta

across various robots, which is elaborated in Sec. 4.2. Then, they are encoded into the
token space by a shared MLP since they have similar physical meanings. Such continuous encoding
can avoid precision loss in contrast to discretized encoding (Brohan et al., 2022; 2023; Kim et al.,
2024). For frequency c as well as the diffusion time step k, we encode them into the token space
through two MLPs, respectively. Afterward, all of them are concatenated together in the length
direction to achieve in-context conditioning (Peebles & Xie, 2023; Bao et al., 2023), resulting in
an input token sequence of length 1 + Ta + 1 + 1. Finally, position embeddings are added to
distinguish different modalities and to inject temporal information in ãt:t+Ta

.
• Image Inputs. We encode the RGB images by a frozen SigLIP (Zhai et al., 2023) and utilize

an additional MLP to project the output to the token space. To enhance the model’s ability to
distinguish images based on viewpoint and time steps, we extend traditional sinusoidal positional
embeddings to multi-dimensional grids, as shown on the right side of Fig. 3. This modification
integrates spatial-temporal information, enabling the model to capture the relationships between
input images. Specifically, we adopt the implementation by Liu et al. (2022), employing grid
dimensions of (Timg, Ncam, Npatch, D). Here, Ncam represents the number of cameras, set to three
in our configuration, and Npatch indicates the number of patches into which each image is divided
by the ViT-based Image Encoder and D denotes the embedding dimension.

• Language Inputs. Language instruction is encoded by a frozen T5-XXL (Raffel et al., 2020), and
an MLP is used to project the output to the token space. When calculating attention for language
tokens, we apply the language attention mask to mask out the pad tokens appended during batching.

During training, each input from various modalities is independently masked with a probability of
10%.

Network Structure of fθ . After encoding, we feed the tokens of the low-dimensional inputs into the
main network, which is adjusted from Diffusion Transformers (DiTs) with Cross-Attention (Peebles
& Xie, 2023) due to their high scalability. For better training stability, we add QKNorm (Henry et al.,
2020) into each attention layer and replace each LayerNorm with RMSNorm (Zhang & Sennrich,
2019). In each DiT block’s cross-attention layer, we alternately inject language and image tokens
rather than simultaneously inject both, avoiding the issue of token imbalance between the two
modalities. After L DiT blocks, we normalize the output and project it back to the action space via
an MLP decoder.

C PHYSICALLY INTERPRETABLE UNIFIED ACTION SPACE

As mentioned in Sec. 4.2, we embed the actions of various robots into one unified space that includes
all the main physical quantities of robots. This unified action space has a dimensionality of 128.
Table 4 describes each element of the vector in this unified action space. For a specific robot, each
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element of the raw action vector is filled into the corresponding position of the unified action vector
according to its physical meanings, with the remaining positions being padded.

Index Range Element Index Mapped Physical Quantity
[0, 10) 0–9 Right arm joint positions
[10, 15) 10–14 Right gripper joint positions
[15, 25) 15–24 Right arm joint velocities
[25, 30) 25–29 Right gripper joint velocities
[30, 33) 30–32 Right end effector positions
[33, 39) 33–38 Right end effector 6D pose
[39, 42) 39–41 Right end effector velocities
[42, 45) 42–44 Right end effector angular velocities
[45, 50) 45–49 Reserved
[50, 60) 50–59 Left arm joint positions
[60, 65) 60–64 Left gripper joint positions
[65, 75) 65–74 Left arm joint velocities
[75, 80) 75–79 Left gripper joint velocities
[80, 83) 80–82 Left end effector positions
[83, 89) 83–88 Left end effector 6D pose
[89, 92) 89–91 Left end effector velocities
[92, 95) 92–94 Left end effector angular velocities
[95, 100) 95–99 Reserved
[100, 102) 100–101 Base linear velocities
[102, 103) 102 Base angular velocities
[103, 128) 103–127 Reserved

Table 4: Description of the unified action space vector. For single-arm robot cases, its arm is
mapped to the “right” arm. For a robot arm with only 6 DoF, its joint positions will be filled in the
first 6 of the 10 corresponding positions. The same is true for other physical quantities.

D PRE-TRAINING DATASETS

Our pre-training dataset collection includes 46 datasets, with a total scale of 1M+ trajectories and
21TB, making it the largest pre-training collection of robotics datasets to date. Table 5 presents the
complete list of our pre-training datasets and their sampling weights. We assign an initial weight
of

√
Nj to each dataset with size Nj and adjust it according to the diversity and quality of each

dataset. Compared to linear weighting, this approach prevents excessive sampling of large datasets
while ensuring smaller datasets are adequately sampled, thus enhancing the diversity of pre-training
samples in each mini-batch. During the pre-training stage, we further observed and adjusted the
weights of different datasets based on their intermediate loss results. We increased the weights of
those slow-convergent datasets.

Main Datasets. We list some main datasets as follows:

• RT-1 Dataset (Brohan et al., 2022) is a large diversve dataset including 130K trajectories with
multiple tasks, objects and environments. It is collected across 13 different embodiments, each
equipping a single exterior RGB camera. The action space includes the 6D end effector (EEF),
gripper open, and base displacement with a control frequency of 3Hz.

• DROID (Khazatsky et al., 2024) is a large-scale multi-task dataset with 76K trajectories and 564
scenes. It is collected via teleoperating a Franka Panda 7-DoF Robot Arm, with both wrist and
exterior RGB-D cameras. The action space includes 7-DoF joint positions and a gripper width,
while the proprioception additionally includes the 6D EEF with a control frequency of 15Hz.

• RH20T (Fang et al., 2023) is a comprehensive dataset covering 110K trajectories and 140 tasks.
It includes four different robotic embodiments and three different camera views, sampled at a
frequency of 10Hz. It also includes both long and short tasks. Its state space is a mix of 6-DoF and
7-DoF joint positions, and it features a third-person perspective RGB-D camera.
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• Mobile ALOHA Dataset (Fu et al., 2024) is a bimanual dataset containing 1K+ trajectories col-
lected by the Mobile ALOHA robot. Its state space includes base movements and 14-dimensional
joint positions of both hands, along with three or four first-person perspective cameras. Some of
its data includes wide-ranging perspective changes and base movements, which were originally
suitable for imitation learning.

• Other Datasets. The other data come from RH20T (Fang et al., 2023), RoboSet (Kumar et al.,
2024), BridgeData V2 (Walke et al., 2023), and Open X-Embodiment (Collaboration et al., 2023).
Most of them feature different robotic morphology and camera observation, enhancing both
heterogeneity and variety of our pretraining datasets.

Data Cleaning. Repetitive episodes and episodes of failure are excluded to ensure the quality of
the pre-training datasets. We remove blank images, exclude erroneously recorded velocities, and
filter out overly short trajectories. Overlength trajectories will be downsampled to avoid unfairness.

Preprocessing of Multi-Modal Observation/Action Inputs. We describe the preprocessing details
of each modality:

• Language Instruction ℓ. We perform a simple cleaning on the raw text, such as removing illegal
characters and extra spaces, capitalizing the beginning of sentences, and adding a period at the
end of sentences. We leave the text variable-length.

• RGB Images Xt−Timg+1:t+1. We employ a fixed-length image input strategy. We fix the image
input order and format for all robots, with a total of three views: a static exterior view, a right-wrist
view, and a left-wrist view, deemed sufficient for the requirements of most bimanual tasks. We
treat a single-arm robot’s wrist camera as the right-wrist one and pad the unavailable views
with the background color. When fed into the model, each image is padded into a square and
resized to 384 × 384, keeping its origin aspect ratio. Besides, we choose Timg = 2 since a
history length of two is adequate for most situations, striking a balance between efficiency and
performance (Ghosh et al., 2023; Wu et al., 2024). Finally, we can write the image inputs as
Xt−1:t+1 := ({X1

t−1,X
2
t−1,X

3
t−1}, {X1

t ,X
2
t ,X

3
t }).

• Proprioception zt and Action Chunk at:t+Ta . We roughly align the scales of various datasets
by unifying the units of physical quantities (m, rad, m/s, rad/s, etc) rather than strictly normalizing
to [−1, 1] or N (0, 1) as in prior work (Chi et al., 2023; Ghosh et al., 2023). For example, “1 (m)”
in different datasets corresponds to the same real-world length. Rescaling the physical quantities
will destroy such shared properties and thus impair the model’s ability to transfer across robots.
We also employ the 6D representation (Zhou et al., 2019) for the EEF rotation to overcome the
gimbal lock issue.
Before choosing Ta = 64, we have referred to the previous ablation studies by Zhao et al.
(2023) and balanced between the performance and computational overhead. Besides, historical
proprioceptions zi, i < t are excluded to prevent the model from learning shortcuts using the
low-dimensional inputs only and thus sticking to fixed motion patterns. Instead, we encourage the
model to learn generalizable decision-making structures from high-dimensional image features.

• Control Frequency c. In addressing the challenge posed by differing control frequencies across
datasets, we feed the control frequency into the model, allowing the model to take this variation
into account when making decisions.

E FINE-TUNING DATASET

Our fine-tuning dataset is created using Mobile ALOHA robot (Fu et al., 2024), including 300+ tasks,
6K+ trajectories, and 3M+ frames. It is also one of the largest open-source multi-task bimanual robot
datasets to date. Fig. 6 gives a summary of this dataset. We have borrowed 3 tasks (140 episodes in
total) from the open-source Songling dataset (Wang et al., 2024).

• Multi-Modal Features. We collect the dataset with three RGB cameras positioned at the front
and on the left and right grippers. We record dual-arm 6-DoF joint positions and velocities, along
with the gripper angles. We manually annotated instructions for each task. To further augment
our instructions and align them with the pre-training datasets, we utilize GPT-4-Turbo (Achiam
et al., 2023) to generate 100 expanded instructions and one simplified instruction for each task.
This multi-modal information further enhances the richness and quality of our dataset.
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Pre-Training Dataset Sample Percentage (%)

RT-1 Dataset (Brohan et al., 2022) 9.00
TACO Dataset (Rosete-Beas et al., 2022) 1.99
JACO Play Dataset (Dass et al., 2023) 1.10
Cable Routing Dataset (Luo et al., 2023) 0.27
NYU Door Opening (Pari et al., 2021) 0.33
Viola (Zhu et al., 2022a) 0.40
Berkeley UR5 (Chen et al.) 1.06
TOTO (Zhou et al., 2023) 1.06
Kuka (Kalashnikov et al., 2018) 1.66
Language Table (Lynch et al., 2022) 3.32
Columbia Cairlab Pusht Real (Chi et al., 2023) 0.40
Stanford Kuka Multimodal Dataset (Lee et al., 2019) 1.83
Stanford Hydra Dataset (Belkhale et al., 2023) 0.80
Austin Buds Dataset (Zhu et al., 2022b) 0.23
Maniskill Dataset (Gu et al., 2023) 5.78
Furniture Bench Dataset (Heo et al., 2023) 2.36
UCSD Kitchen Dataset (Yan et al., 2023) 0.40
UCSD Pick And Place Dataset (Feng et al., 2023) 1.23
Austin Sailor Dataset (Nasiriany et al., 2022) 0.50
Austin Sirius Dataset (Liu et al., 2023) 0.80
BC Z (Jang et al., 2021) 6.91
UTokyo PR2 Opening Fridge (Oh et al., 2023) 0.30
UTokyo PR2 Tabletop Manipulation (Oh et al., 2023) 0.50
UTokyo Xarm Pick And Place (Matsushima et al., 2023) 0.33
UTokyo Xarm Bimanual (Matsushima et al., 2023) 0.03
Berkeley MVP (Radosavovic et al., 2022) 0.73
Berkeley RPT (Radosavovic et al., 2022) 1.00
KAIST Nonprehensile (Kim et al., 2023) 0.46
Tokyo U LSMO (Osa, 2022) 0.23
DLR Sara Grid Clamp (Padalkar et al., 2023) 0.03
Robocook (Shi et al., 2023) 1.66
Imperialcollege Sawyer Wrist Cam (RethinkRobotics) 0.43
Iamlab CMU Pickup Insert (Saxena et al., 2023) 0.83
UTAustin Mutex (Shah et al., 2023b) 1.29
Fanuc Manipulation (Zhu et al., 2023) 0.66
Play Fusion (Chen et al., 2023) 0.80
DROID (Khazatsky et al., 2024) 10.06
FMB (Luo et al., 2024) 1.39
Dobb·E (Shafiullah et al., 2023) 1.20
QUT Dexterous Manipulation (Federico Ceola, 2023) 0.46
Aloha Dataset (Zhao et al., 2023) 4.98
Mobile Aloha Dataset (Fu et al., 2024) 4.98
RoboSet (Kumar et al., 2024) 4.48
RH20T (Fang et al., 2023) 10.99
Calvin Dataset (Mees et al., 2022) 3.32
BridgeData V2 (Walke et al., 2023) 7.44

Table 5: The pre-training datasets and their corresponding weights.

• Diverse Objects and Scenes. Our dataset includes diverse tasks and scenes, encompassing more
than 300 tasks, including skills such as picking up, inserting, writing, pushing, and pulling. It
features 100+ objects with rigid and non-rigid bodies of various sizes and textures. We collect
the dataset in 15+ scenes and introduce randomness during data collection for each task, such as
varying the initial positions of objects and robots. To further increase diversity, we added random
lighting conditions. For instance, pouring water was performed under both normal lighting and
changing color conditions. These measures further enhance the diversity of our dataset.
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Figure 6: Fine-Tuning dataset. Our dataset includes the following key features: (1) Diverse Objects
and Scenes. Our dataset contains objects with different properties manipulated in different scenes
and conditions. (2) Challenging Tasks. Our dataset incorporates dexterous manipulation, language
and vision comprehension, and bimanual tasks. (3) Multi-Modal Features. Our dataset is annotated
with rich multi-modal data, including 3-View RGB cameras, joint information, and augmented
instructions.

• Challenging Tasks. Various challenging tasks are also considered, encompassing dexterous
manipulations, such as unscrewing the cap from a plastic bottle, and comprehension tasks, such
as spelling “love” with letter blocks. Furthermore, the dataset includes tasks that integrate both
dexterity and comprehension, such as solving mathematical equations on the whiteboard. Addition-
ally, our dataset incorporates bimanual tasks, such as inserting the charging cable into the phone.
These complex, high-quality tasks further enhance the model’s downstream comprehensibility and
generalizability.

F RDT TRAINING DETAILS

Platform. We use Pytorch (Paszke et al., 2019) and DeepSpeed (Rasley et al., 2020) to facilitate
parallel training and employ a producer-consumer framework with TensorFlow Dataset (TFD) for fast
data loading. Since most of the datasets in the Open X-Embodiment (Collaboration et al., 2023) are
stored in the form of TFRecord, we convert all pre-training datasets into TFRecord for storage.
In pre-training, we use the producer process to decompress the data from TFRecord and store it in a
buffer on the hard disk. At the same time, we use the consumer process to read data from the buffer in
a disorderly order and feed it to the model training. This not only decouples the TensorFlow (Abadi
et al., 2015) and PyTorch environments but also alleviates the training performance loss caused by the
small size of the shuffling buffer in the memory. In the fine-tuning stage, since the dataset is relatively
small, we additionally implement a data reading pipeline using the HDF5 dataset for storage.

Padding Action and Proprioception. To embed a specific robot action into the 128-dimensional
unified action space, we need to pad unavailable action elements. The usual practice is to pad with a
0 value or a specific value. But “0” actually has a physical meaning. For example, a speed of “0”
generally represents stillness relative to the ground. This may confuse the model: Does “0” represent
stillness or a filler value? To solve this problem, we concatenate the action and proprioception with a
0-1 vector indicating whether each dimension is padded before encoding them into the token space,
resulting in a 256-dimensional vector. This can supplement the missing availability information and
eliminate confusion.
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Inspecting Training Process. During training, for every fixed period, we conduct a diffusion
sampling and compare the sampled actions with the ground truth of the training dataset. Empirically,
we discover a general positive correlation between the Mean Squared Error (MSE) of the two and the
performance of deployment on the robot. This observation allows us to monitor the model’s training
progress easily. When this MSE converges, we can generally stop training. We note that an overly
low MSE may also mean overfitting.

Data Augmentation. Overfitting is a common challenge in training large neural models, particularly
in the fine-tuning phase. We utilize data augmentation techniques to resolve it. We perform image
augmentation, including color jittering and image corruption, and add Gaussian noise to the input
proprioception with a signal-to-noise ratio (SNR) of 40dB. We also use GPT-4-Turbo to augment and
expand the language instructions (Refer to Sec. E for more details on the instruction augmentation).

Some Fine-Tuning Details. During fine-tuning, we removed a static part at the beginning of each
episode, which might be caused by the operator not reacting after the recording started. Our language
instructions are sampled from the original manually annotated instruction, the expanded instructions,
and the simplified instruction with a probability of one-third. When the expanded instructions are
drawn, we evenly sample one from the 100 expanded instructions corresponding to the task. We did
not apply Classifier-Free Guidance (CFG) because we found that this did not improve the performance
of the model but instead brought the unstable robot arm behavior.

G HARDWARE DETAILS

battery

laptop

wrist cameras 

front camera

control arms

Figure 7: Hardware features.

Parameter Value

DoF 7 × 2 = 14
Size 1080 × 700 × 1140
Arm weight 4.2 kg
Arm Payload 3000 g (peak)

1500 g (valid)
Arm reach 600 mm
Arm repeatability 1 mm
Arm working radius 653 mm
Joint motion range J1: ±154°, J2: 0°∼165°

J3: -175°∼0°, J4: ±106°
J5: ±75° , J6: ±100°

Gripper range 0-80 mm
Gripper max force 10 NM

Table 6: Technical specifications.

We provide a detailed overview of the hardware configuration of our target dual-arm robot. Our
model is deployed and evaluated on the Cobot Mobile ALOHA, a robot using the Mobile ALOHA
system design (Fu et al., 2024) and manufactured by agilex.ai. The key features of the robot are
illustrated in Fig. 7 . It is equipped with two wrist cameras, a front camera, a laptop, and an onboard
battery. The robot’s technical specifications are listed in Table 6. It is important to note we used the
“mobile” ALOHA only to facilitate transportation and testing between various scenes and did not
use its autonomous mobility feature during any training or inference stages. Our tasks are still static
bimanual manipulation tasks.

H EXPERIMENT DETAILS

Calculation of Total Performance. The general performance in Fig. 1 of each method is calculated
in three steps. Firstly, we calculate the success rate of a method in each task. We take an average
of the total success rate and any additional requirement, i.e., the average of the values in the Total
column and all columns to its right in Table 3. For example, in the Pouer Water-L-1/3, we take the
average of Total, Correct Hand, and Correct Amount. Secondly, we calculate the success rate of
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Table 7: Comparision of different baselines. We compare baselines as well as different variants of
our model in terms of model size, data size, and modeling scheme.

METHOD NAME LARGE MODEL LARGE MULTI-ROBOT DATA MODELING
ACT (Zhao et al., 2023) ✗ ✗ VAE
OpenVLA (Kim et al., 2024) ✓ ✓ Discretization
Octo (Ghosh et al., 2023) ✗ ✓ Diffusion
RDT (scratch) ✓ ✗ Diffusion
RDT (small) ✗ ✓ Diffusion
RDT (regress) ✓ ✓ Regression
RDT (ours) ✓ ✓ Diffusion

each dimension of Unseen Object, Unseen Scene, Instruction Following, Few-Shot Learning, and
Dexterity by averaging all the tasks in this dimension (see Table 1 for the correspondence). Lastly,
we average the success rates of all the dimensions to obtain the overall result.

Implementation and Hyper-Parameters of RDT. We list the details of the multi-modal encoders
in Table 8 and the model parameter in Table 9. The image history size is Timg = 2, the action chunk
size is Ta = 64, the language token space dimension is 4096, the image token space dimension is
1152, and the token space dimension of RDT is 2048. We use adaptors to align each modality’s token
dimension to 2048. And all adaptors for multi-modal encoders are with GeLU activation (Hendrycks
& Gimpel, 2016).

We use the AdamW optimizer (Adam et al., 2019) with a constant learning rate scheduler and
hyper-parameters in Table 10 in the pre-training and fine-tuning stages. The model is pre-trained
and finetuned on 48 H100 80GB GPUs for 1M steps and 130K steps, respectively. Due to schedul-
ing reasons, we did not start fine-tuning from the 1M pre-trained checkpoint but chose the 500K
checkpoint. During the training stage, we use the DDPM scheduler with a glide cosine scheduler
(i.e., squaredcos cap v2) and a step number of 1000. During the sampling stage, we utilize
the DPM-Solver++ (Lu et al., 2022) with a glide cosine scheduler and a sampling step number of 5.
During fine-tuning, we also filter out episodes with a length lower than 32 and down-sample those
with a length higher than 2048 to 2048.

Modality Encoder Trainable Adaptor

Language T5-XXL (Raffel et al., 2020) N 2-layers MLP
Image SigLIP (Zhai et al., 2023) N 2-layers MLP
Action - - 3-layers MLP

Table 8: Encoder configurations of RDT.

Model Layers Hidden size Heads #Params

RDT-1B 28 2048 32 1.2B

Table 9: Model configurations for RDT.

Implementation and Hyper-Parameters of ACT. We directly employed the same architecture and
hyper-parameters of ACT as that in the original paper (Fu et al., 2024), except for the hyper-parameters
in Table 11. We trained ACT with 90% of the 6K fine-tuning episodes for 8000 epochs (about 8 days
in total), while the remaining 10% is treated as the validation set. We took the checkpoint at epoch
5413 as the final outcome, according to the best performance in the validation set.

Implementation and Hyper-Parameters of OpenVLA. We adopt the official implementation
(https://github.com/openvla/openvla) and flagship pre-trained model and checkpoint
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Hyper-Parameter Value
Batch Size 32×48
Learning Rate 1× 10−4

Mixed Precision bf16
Warm-Up Steps 500
β1 0.9
β2 0.999
Weight Decay 1× 10−2

ϵ 1× 10−8

Table 10: Hyper-parameters for both pre-training and fine-tuning RDT.

Hyper-Parameter Value
Batch Size 80×4
Learning Rate 9× 10−5

Learning Rate for Backbone 4× 10−5

Table 11: Adapetd hyper-parameters of ACT.

at https://huggingface.co/openvla/openvla-7b. For each task in evaluation, we
further fine-tune the officially pre-trained OpenVLA with all the task-relevant demonstrations (∼ 100
episodes) from the fine-tuning dataset to facilitate convergence and train the model to around 95%
action token accuracy as suggested by Kim et al. (2024) (https://github.com/openvla/
openvla/issues/12#issuecomment-2203772810). Additionally, we experimented with
both full-parameter tuning and LoRA methods using the entire dataset but did not achieve sufficient
action token accuracy (approximately 60%) for deployment upon convergence (see Fig. 8). According
to real-robot testing, such non-convergent checkpoints exhibit completely static or random behaviors
in the deployment.

Concretely, we adhere to the same hyper-parameters claimed in Kim et al. (2024) for fine-tuning via
LoRA (Hu et al., 2021) as detailed in Table 12.

Figure 8: The accuracy of action token prediction fluctuates rather than converges with the number of
training steps when fine-tuning OpenVLA with the full fine-tuning dataset.

Implementation and Hyper-Parameters of Octo. We utilize the official implementation avail-
able at https://github.com/octo-models/octo and the most comprehensive pre-trained
model, octo-base-1.5, hosted at https://huggingface.co/rail-berkeley/
octo-base-1.5. We follow the officially recommended practices for fine-tuning a bimanual
robot, detailed in https://github.com/octo-models/octo/blob/main/examples/
02_finetune_new_observation_action.py, employing a full-parameter approach. Addi-
tionally, we have incorporated an extra image tokenizer to process images from the right-wrist camera,
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Hyper-Parameter Value
Batch Size 16×8
Learning Rate 2× 10−5

Lora Rank 32
Image Augmentation True

Table 12: Hyper-parameters of fine-tuning OpenVLA for bimanual manipulations.

enhancing the system’s manipulation capabilities. Furthermore, by integrating image augmentation
during the fine-tuning process, we enhance the performance upon deployment in real-world robotics.
We replicate the wrist image tokenizer from the pre-trained model to initialize the right-wrist image
tokenizer. Similar to OpenVLA, we only fine-tune octo with the task-relevant demonstrations for each
evaluation tasks, for we do not observe sufficient test MSE (approximately 10−1) for deployment
upon convergence (Fig. 9). Concretely, we apply the default hyper-parameters with variations listed
in Table 13:

Figure 9: The test MSE of action prediction fluctuates rather than converges with the number of
training steps when fine-tuning Octo with the full fine-tuning dataset.

oct

Hyper-Parameter Value
Action Head Type DiffusionActionHead
Batch Size 8×8
Action Chunk Size 8

Image Augmentation

RandomBrightness(0.1)
RandomContrast(0.9, 1.1)

RandomSaturation(0.9, 1.1)
RandomHue(0.05)

Table 13: Hyper-parameters of fine-tuning Octo for bimanual manipulations.

I MORE RESULTS

We further provide a zoom-in view for water-level across 8 trails in instruction-following evaluation
in Fig. 10.
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Left Hand, 1/3 Water Level Right Hand, 2/3 Water Level

Figure 10: Visulization of the resulting water levels across 8 trails in Pour Water-L-1/3 and Pour
Water-R-2/3. Left: The water level completed by RDT in each trial is extremely close to the ground-
truth 1/3 standard. Right: RDT made one mistake in pouring (empty cup) and one mistake in water
level, but the other trials were in roughly good agreement with 2/3.

28


	Introduction
	Related Work
	Problem Formulation and Challenges
	Robotics Diffusion Transformer
	RDT Model
	Data

	Experiments
	Experiment Setups
	Results Analysis

	Conclusion
	Action Chunking Technique
	Architecture Details
	Physically Interpretable Unified Action Space
	Pre-Training Datasets
	Fine-Tuning Dataset
	RDT Training Details
	Hardware Details
	Experiment Details
	More Results

