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ABSTRACT

Real-world multi-agent tasks usually involve dynamic team composition with
the emergence of roles, which should also be a key to efficient cooperation in
multi-agent reinforcement learning (MARL). Drawing inspiration from the cor-
relation between roles and agent’s behavior patterns, we propose a novel frame-
work of Attention-guided COntrastive Role representation learning for MARL
(ACORM) to promote behavior heterogeneity, knowledge transfer, and skillful
coordination across agents. First, we introduce mutual information maximization
to formalize role representation learning, derive a contrastive learning objective,
and concisely approximate the distribution of negative pairs. Second, we leverage
an attention mechanism to prompt the global state to attend to learned role repre-
sentations in value decomposition, implicitly guiding agent coordination in a skill-
ful role space to yield more expressive credit assignment. Experiments on chal-
lenging StarCraft II micromanagement and Google research football tasks demon-
strate the state-of-the-art performance of our method and its advantages over ex-
isting approaches. Our code is available at https://github.com/NJU-RL/ACORM.

1 INTRODUCTION

Cooperative multi-agent reinforcement learning (MARL) aims to coordinate a system of agents to-
wards optimizing global returns (Vinyals et al., 2019), and has witnessed significant prospects in
various domains, such as autonomous vehicles (Zhou et al., 2020), smart grid (Chen et al., 2021a),
robotics (Yu et al., 2023), and social science (Leibo et al., 2017). Training reliable control policies
for coordinating such systems remains a major challenge. The centralized training with decentral-
ized execution (CTDE) (Foerster et al., 2016) hybrids the merits of independent Q-learning (Foerster
et al., 2017) and joint action learning (Sukhbaatar et al., 2016), and becomes a compelling paradigm
that exploits the centralized training opportunity for training fully decentralized policies (Wang et al.,
2023). Subsequently, numerous popular algorithms are proposed, including VDN (Sunehag et al.,
2018), QMIX (Rashid et al., 2020), MAAC (Iqbal & Sha, 2019), and MAPPO (Yu et al., 2022).

Sharing policy parameters is crucial for scaling these algorithms to massive agents with acceler-
ated cooperation learning (Fu et al., 2022). However, it is widely observed that agents tend to
acquire homogeneous behaviors, which might hinder diversified exploration and sophisticated co-
ordination (Christianos et al., 2021). Some methods (Li et al., 2021; Jiang & Lu, 2021; Liu et al.,
2023) attempt to promote individualized behaviors by distinguishing each agent from the others,
while they often neglect the prospect of effective team composition with implicit task allocation.
Real-world multi-agent tasks usually involve dynamic team composition with the emergence of
roles (Shao et al., 2022; Hu et al., 2022). 1 Early works introduce the role concept into multi-agent

∗Correspondence to Zhi Wang <zhiwang@nju.edu.cn>.
1Taking the football game (Kurach et al., 2020) as an example, the midfielders are primarily responsible for

delivering the ball to the forwards to coordinate shots on goal in the offensive phase, while they need to drop
back and join the defenders to block passing lanes on the defensive.
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systems (Dastani et al., 2003; Sims et al., 2008; Lhaksmana et al., 2018), while they usually require
prior domain knowledge to pre-define role responsibilities. Recently, ROMA (Wang et al., 2020)
learns emergent roles conditioned solely on current observations, and RODE (Wang et al., 2021)
associates each role with a fixed subset of the joint action space. COPA (Liu et al., 2021) allows
dynamic role allocation via distributing a global view of team composition to each agent during exe-
cution. Some works decompose the task into a set of skills (Liu et al., 2022) or subtasks (Yang et al.,
2022; Iqbal et al., 2022) with a hierarchical structure for control. Overall, existing role-based meth-
ods still suffer from several deficiencies, such as insufficient characterization of complex behaviors
for role emergence, neglect of evolving team dynamics, or relaxation of the CTDE constraint.

To better leverage dynamic role assignment, we propose a novel framework of Attention-guided
COntrastive Role representation learning for MARL (ACORM). Our main insight is to learn a
compact role representation that can capture complex behavior patterns of agents, and use that
role representation to promote behavior heterogeneity, knowledge transfer, and skillful coordina-
tion across agents. First, we formalize the learning objective as mutual information maximization
between the role and its representation, to maximally reduce role uncertainty given agent’s behav-
iors while minimally preserving role-irrelevant information. We introduce a contrastive learning
method to optimize the infoNCE loss, a mutual information lower bound. To concisely approximate
the distribution of negative pairs, we extract agent behaviors by encoding its trajectory into a latent
space, and periodically partition all agents into several clusters according to their latent embeddings
where points from different clusters are paired as negative. Second, during centralized training, we
employ an attention mechanism to prompt the global state to attend to learned role representations
in value decomposition. The attention mechanism implicitly guides agent coordination in a skillful
role space, thus yielding more expressive credit assignment with the emergence of roles. 2

ACORM is fully compatible with CTDE methods, and we realize ACORM on top of two popu-
lar MARL algorithms, QMIX (Rashid et al., 2020) and MAPPO (Yu et al., 2022), benchmarked
on challenging StarCraft multi-agent challenge (SMAC) (Samvelyan et al., 2019) and Google re-
search football (GRF) (Kurach et al., 2020) environments. Experiments demonstrate that ACORM
achieves state-of-the-art performance on most scenarios. Visualizations of learned role representa-
tions, heterogeneous behavior patterns, and attentional value decomposition shed further light on our
advantages. Ablation studies confirm that ACORM promotes higher coordination capacity by virtue
of contrastive role representation learning and attention-guided credit assignment, respectively, even
if agents have the same innate characteristics. In summary, our contributions are threefold:

• We propose a general role representation learning framework based on contrastive learning,
which effectively tackles agent homogenization and facilitates efficient knowledge transfer.

• We leverage role representations to realize more expressive credit assignment via an attention
mechanism, promoting strategical coordination in a sophisticated role space.

• We build our method on top of popular QMIX and MAPPO, and conduct extensive experiments
on SMAC and GRF to demonstrate our state-of-the-art performance and advantages.

2 METHOD

In this section, we present the ACORM framework. We consider cooperative multi-agent tasks
formulated as a Dec-POMDP (Oliehoek & Amato, 2016), G = ⟨I, S,A, P,R,Ω, O, n, γ⟩, where I
is a finite set of n agents, s ∈ S is the global state, and γ ∈ [0, 1) is the discount factor. At each time
step, each agent i draws an observation oi ∈ O from Ω(s, i) and selects a local action ai ∈ A. After
executing the joint action a = [a1, ..., an]

⊤ ∈ An, the system transitions to a next state s′ according
to P (s′|s,a) and receives a reward r = R(s,a) shared by all agents.

Our idea is to learn a compact role representation that can characterize complex behavior patterns of
agents, and use the role information to facilitate individual policy learning and guide agent coordina-
tion. Agents with similar roles can enjoy higher learning efficiency via more aggressive knowledge
transfer, and agent heterogeneity is also guaranteed with the discrimination of diverse roles. For-
mally, we propose the following definition of the role and its representation.

2Taking StarCraft II as an example, the acquired roles represent diverse strategies in a team-based manner,
such as focusing fire, sneaking attack, and drawing fire. Agents with similar role representations learn a special-
ized strategy more efficiently by more positive information sharing, and the attention mechanism is responsible
for coordinating these heterogeneous behaviors more strategically with clearer role extraction in the team.
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Figure 1: The ACORM framework based on QMIX. (a) The overall architecture. (b) The structure
of shared individual Q-network. (c) The detail of contrastive role representation learning, where zi
is the query q, and zi′/zi∗ are positive/negative keys k+/k−. (d) The attention module that incorpo-
rates learned role representations into the mixing network’s input for better value decomposition.

Definition 1. Given a cooperative multi-agent task G = ⟨I, S,A, P,R,Ω, O, n, γ⟩, each agent i is
associated with a role Mi ∈M that describes its behavior pattern. Each role Mi is quantified by a
role representation zi ∈ Z , which is obtained by training a complex function as zi = f (ρi), where
ρi ∈ Γ ≡ (O,A)l is the local trajectory of agent i, and l is the number of observation-action pairs.
πzi : O ×A×Z → [0, 1] is the individual policy for agent i.

ACORM consists of individual Q-networks in Fig. 1(b) and a mixing network in Fig. 1(a). We
introduce mutual information maximization to formalize role representation learning, and derive a
contrastive learning objective that optimizes agent embeddings {eti}ni=1 in a self-supervised way to
acquire contrastive role representations {zti}ni=1, which is shown in Fig. 1(c) and will be introduced
in detail in Section 2.1. In value decomposition, we employ multi-head attention (MHA) to prompt
the global state to attend to learned role patterns, guiding skillful agent coordination in the high-level
role space for facilitating expressive credit assignment, as described in Fig. 1(d) and in Section 2.2.
Appendix B presents the pseudocode, and Appendix C gives the extension to MAPPO.

2.1 CONTRASTIVE ROLE REPRESENTATIONS

Our objective is to ensure that agents with similar behavior patterns exhibit closer role representa-
tions, while those with notably different strategies are pushed away from each other. This stands in
contrast to using a one-hot ID to preserve the agent’s individuality, which lacks adequate discrimi-
nation under the paradigm of parameter sharing. Hence, the primary issues we aim to tackle are: i)
how to define a feasible metric to quantify the degree of similarity between agent’s behaviors, and
ii) how to develop an efficient method to optimize the discrimination of role representations.

Agent Embedding. To tackle the first issue, we learn an agent embedding eti from each agent’s
trajectory to extract complex agent behaviors with contextual knowledge as eti = fϕ(o

t
i, a

t−1
i , et−1

i ),
where ϕ is a shared gated recurrent unit (GRU) encoder, oti is the current observation, at−1

i is the
last action, and et−1

i is the hidden state of the GRU. Naturally, the distance between the obtained
agent embeddings can serve as the metric to measure the behavior dissimilarity between agents.

Contrastive Learning. An ideally discriminative role representation should be dependent on roles
associated with agent’s behavior patterns, while remaining invariant across agent identities. We
introduce mutual information to measure the mutual dependency between the role and its repre-
sentation. Formally, mutual information aims to quantify the uncertainty reduction of one random
variable when the other one is observed. To tackle the second issue, we propose to maximize the
mutual information between the role and its representation, and learn a role encoder that maximally
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reduces role uncertainty while minimally preserving role-irrelevant information. Mathematically,
we formalize the role encoder θ as a probabilistic encoder zt∼fθ(z

t|et), where zt denotes the role
representation at time t, and et=fϕ(

∑t
t′=1(o

t′ , at
′−1)) denotes the agent embedding obtained from

the history trajectory. 3 Role M follows the role distribution P (M), and the distribution of agent
embedding e is determined by its role. The learning objective for the role encoder is:

max I(z;M) = Ez,M

[
log

p(M |z)
p(M)

]
. (1)

In practice, directly optimizing mutual information is intractable. Inspired by the noise contrastive
estimation (InfoNCE) (Oord et al., 2018) in the literature of contrastive learning (Laskin et al., 2020;
Yuan & Lu, 2022), we derive a lower bound of Eq. (1) with the following theorem.
Theorem 1. Let M denote a set of roles following the role distribution P (M), and |M| = K.
M ∈ M is a given role. Let e = fϕ(

∑
t(o

t, at−1)), z ∼ fθ(z|e), and h(e, z) = p(z|e)
p(z) , where∑

t(o
t, at−1) is the agent’s local trajectory following a given policy. For any role M∗ ∈M, let e∗

denote the agent embedding generated by the role M∗, then we have

I(z;M) ≥ logK + EM,z,e

[
log

h(e, z)∑
M∗∈M h(e∗, z)

]
. (2)

The proof of this theorem is given in Appendix A. Since we cannot evaluate p(z) or p(z|e) directly,
we turn to techniques of NCE and importance sampling based on comparing the target value with
randomly sampled negative values. Hence, we approximate h with the exponential of a score func-
tion S(z, z∗) that is a similarity metric between latent codes of two examples. We derive a sampling
version of the tractable lower bound to be the role encoder’s learning objective as

min
θ
LK=−EMi∈M,(e,e′)∼Mi,z∼fθ(z|e)

[
log

exp(S(z, z′))

exp(S(z, z′)) +
∑

M∗∈M\Mi
exp(S(z, z∗))

]
, (3)

whereM is the set of training roles, e, e′ are two instances of agent embeddings sampled from the
dataset of role Mi, and z, z′ are latent representations of e, e′. For any role M∗ ∈M\Mi, z∗ is
the representation of agent embedding e∗ sampled by role M∗. Following the literature, we denote
(e, e′)Mi

as a positive pair and denote {(e, e∗)}M∗∈M\Mi
as negative pairs. The objective in Eq. (3)

optimizes for a K-way classification loss to classify the positive pair out of all pairs. Minimizing
the InfoNCE loss LK maximizes a lower bound on mutual information in Eq. (2), and this bound
becomes tighter as K becomes larger. The role encoder ought to extract shared features in agent
embeddings of the same role to maximize the score of positive pairs, while capturing essential
distinctions across various roles to decrease the score of negative pairs.

Negative Pairs Generation. Periodically, we partition all n agents into K clusters {Cj}Kj=1 accord-
ing to agent embeddings.4 Naturally, we encourage role representations from the same cluster to stay
close to each other, while differing from agents in other clusters. For agent i, we denote its role repre-
sentation zi as the query q, and role representations of other agents as the keys K = {z1, ..., zn}\zi.
Points from the same cluster as the query, i ∈ Cj , are set as positive keys {k+} and those from differ-
ent clusters are set as negative {k−} = K\{k+}. In practice, we use bilinear products (Laskin et al.,
2020) for the score function in Eq. (3), and similarities between the query and keys are computed as
q⊤Wk, where W is a learnable parameter matrix. The InfoNCE loss in Eq. (3) is rearranged as

LK=− log
exp(q⊤Wk+)

exp(q⊤Wk+) + exp(q⊤Wk−)
=− log

∑
i′∈Cj

exp(z⊤i Wzi′)∑
i′∈Cj

exp(z⊤i Wzi′)+
∑

i∗ /∈Cj

exp(z⊤i Wzi∗)
. (4)

Following the MoCo method (He et al., 2020), we maintain a query encoder θq and a key encoder
θk, and use a momentum update to facilitate the key representations’ consistency as

θk ← βθk + (1− β)θq, (5)
where β∈ [0, 1) is a momentum coefficient, and only parameters θq are updated by backpropagation.

3Here, we use the superscript t for highlighting the time-evolving property of role representations and
relevant variables, and we will partially omit it for simplicity in the below.

4In this paper, we simply use K-means (Hartigan & Wong, 1979) based on Euclidean distances between
agent embeddings. Moreover, it can be easily extended to more complex clustering methods such as Gaussian
mixture models (Bishop, 2006). In Appendix D, we conduct the hyperparameter analysis about the influence
of different K values and how to determine the number of clusters automatically.
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2.2 ATTENTION-GUIDED ROLE COORDINATION

After acquiring agents’ contrastive role representations from their local information, we introduce an
attention mechanism in value decomposition to enhance agent coordination in the sophisticated role
space with a global view. Popular CTDE algorithms, such as QMIX, realize behavior coordination
across agents via a mixing network that estimates joint action-values as a monotonic combination of
per-agent values, and the mixing network weights are conditioned on the system’s global state. Natu-
rally, it is interesting to incorporate the learned role information into the mixing network to facilitate
skillful coordination across roles. The simplest approach is to concatenate the global state and role
representations for generating mixing network weights, while it fails to exploit the internal structure
to effectively extract correlations in the role space. Fortunately, the attention mechanism (Vaswani
et al., 2017) aligns perfectly with our intention by prompting the global state to attend to learned
role patterns, thus providing more expressive credit assignment in value decomposition.

The attention mechanism aims to draw global dependencies without regard to their distance in the
input or output sequences, and has gained substantial popularity as a fundamental building block of
compelling sequence modeling and transduction models, such as GPT (Brown et al., 2020), vision
transformers (Dosovitskiy et al., 2021), and decision transformers (Chen et al., 2021b). An attention
function can be described as mapping a query and a set of key-value pairs to a weighted sum of the
values, where the weight assigned to each value is computed by a compatibility function of the query
and corresponding key. As role representations are learned based on extracting agent behaviors
from history trajectories, we also use a GRU to encode the history states (s0, s1, ..., st) into a state
embedding τ t for facilitating information matching between states and role representations. Then,
we set the state embedding τ ∈ Rds×d as the query, and the role representations z = [z1, ..., zn]

⊤ ∈
Rn×d as both the key and value, where d is the dimension of role representation and ds is the length
of state embedding. Formally, we calculate a weighted combination of role representations as

τatten =
∑n

i=1
αivi =

∑n

i=1
αi · ziWV , (6)

where the value vi is a linear transformation of zi by a shared parameter matrix WV ∈ Rd×dv . The
attention weight αi computes the relevance between the state embedding τ and the i-th agent’s role
representation zi, and we apply a softmax function to obtain the weight as

αi =
exp

(
1√
dk
· τWQ ·

(
ziW

K
)⊤)

∑n
j=1 exp

(
1√
dk
· τWQ · (zjWK)

⊤
) , (7)

where WQ,WK ∈ Rd×dk are shared parameter matrices for linear transformation of query-key
pairs, and 1/

√
dk is a factor that scales the dot-product attention. We use multi-head attention

(MHA) for allowing the model to jointly attend to information from different representation sub-
spaces at different positions, and obtain the aggregated output as

τmha = Concat
(
τ 1

atten, ..., τ
H
atten

)
WO, (8)

where τh
atten (h ∈ {1, 2, ...,H}) is the attention output using projections of WQ

h ,WK
h , and WV

h ,
and WO ∈ RH·dv×d is the parameter matrix for combining outputs of all heads. Finally, the MHA
output is combined with the global state to be responsible for generating weights of the mixing
network, as shown in Fig. 1(d). In this way, we flexibly leverage role representations to offer more
comprehensive information for value decomposition. By allowing the global state to attend to the
learned role patterns, the attention mechanism implicitly guides the agent coordination in a skillful
role space, thus yielding more expressive credit assignment with the emergence of roles.

3 EXPERIMENTS

We evaluate ACORM to answer the following questions: (i) Can ACORM facilitate learning effi-
ciency and stability in complex multi-agent domains? If so, what are the respective contributions
of different modules to the performance gains? (See Sec. 3.1). (ii) Can ACORM learn meaningful
role representations associated with agent’s behavior patterns and achieve effective dynamic team
composition? (See Sec. 3.2). (iii) Can ACORM successfully attend to learned role representations
to realize skillful role coordination and more expressive credit assignment? (See Sec. 3.3).
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Figure 2: Performance comparison between ACORM and baselines on six representative maps.

Implementations. We choose SMAC (Samvelyan et al., 2019) as the first testbed for its rich maps
and convenient visualization tools, and realize ACORM on top of the popular QMIX algorithm. For
visualization, we render game scenes, and show agent embeddings and role representations using
t-SNE. Appendix C gives evaluation results on the GRF benchmark, and Appendix D shows the
algorithm architecture, experimental settings and results of MAPPO-based ACORM.

Baselines. We compare ACORM to QMIX and six baselines: 1) RODE (Wang et al., 2021) with
action space decomposition; 2) EOI (Jiang & Lu, 2021) that encourages diversified individuality
via training an observation-to-identity classifier; 3) MACC (Yuan et al., 2022) that uses attention
to concentrate on most related subtasks; 4) CDS (Li et al., 2021) that introduces diversity in both
optimization and representation; 5) CIA (Liu et al., 2023) that boosts credit-level distinguishability
via contrastive learning; and 6) GoMARL (Zang et al., 2023) with an automatic grouping mechanism.

3.1 PERFORMANCE AND ABLATION STUDY

For evaluation, all experiments are carried out with five different random seeds, and the mean of
the test win rate is plotted as the bold line with 95% bootstrapped confidence intervals of the mean
(shaded). Appendix B describes the detailed setting of hyperparameters.

Performance. SMAC contains three kinds of maps: easy, hard, and super hard. Super hard maps
are typically complex tasks that require deeper exploration of diversified behaviors and more skillful
coordination. Since ACORM is designed to promote these properties, the performance on these
maps is especially significant to validate our research motivation and advantages. Fig. 2 presents the
performance of ACORM on six representative tasks, and performance on more maps can be found
in Appendix B. ACORM obtains the best performance on all super-hard maps and most of the other
maps. A noteworthy point is that ACORM outperforms all baselines by the largest margin on super
hard maps that demand a significantly higher degree of behavior diversity and coordination: MMM2,
3s5z_vs_3s6z, and corridor. In these maps, ACORM gains an evidently faster-increasing
trend regarding the test win rate in the first million training steps, which is supposed to benefit from
the high efficiency of exploring cooperatively heterogeneous behaviors via our discriminative role
assignment. Moreover, ACORM exhibits the lowest variance in learning curves, signifying not only
superior learning efficiency but also enhanced training stability.

Ablations. We carry out ablation studies to test the respective contributions of contrastive learn-
ing and attention. We compare ACORM to four ablations: i) ACORM_w/o_CL, it only ex-
cludes contrastive learning; ii) ACORM_w/o_MHA, it only removes the attention module; iii)
ACORM_w/o_MHA (Vanilla), it removes both the attention and state encoding, and directly
feeds the current state into the mixing network like QMIX; and iv) QMIX, it removes all compo-
nents. For ablations, all other structural modules are kept consistent strictly with the full ACORM.
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Figure 3: Ablation studies. ACORM_w/o_CL removes contrastive learning, ACORM_w/o_MHA
removes attention, and ACORM_w/o_MHA (Vanilla) removes attention and state encoding.

Figure 3 shows ablation results on three super hard maps, and more ablations on other maps can be
found in Appendix F. When either of the two components is removed, ACORM obtains decreased
performance and still outperforms QMIX. It demonstrates that both components are essential for
ACORM’s capability and they are complementary to each other. Especially, both ACORM_w/o_CL
and ACORM_w/o_MHA achieve significant performance gains compared to QMIX, which further
verifies the respective effectiveness in tackling complex tasks. Specifically, ACORM_w/o_MHA
(Vanilla) obtains very similar performance compared to ACORM_w/o_MHA, indicating that the
effectiveness comes from the attention module other than encoding the state trajectory via a GRU.

3.2 CONTRASTIVE ROLE REPRESENTATIONS

To answer the second question, we gain deep insights into learned role representations through visu-
alization on the example MMM2 task, where the agent controls a team of units (1 Medivac, 2 Maraud-
ers, and 7 Marines) to battle against an opposing army (1 Medivac, 3 Marauders, and 8 Marines).
Fig. 4 presents example rendering scenes in an evaluation trajectory of the trained ACORM policy.
Initially (t=1, 12), all agent embeddings tend to be crowded together with limited discrimination,
and the K-means algorithm moderately separates them into several clusters. Via contrastive learning,
the acquired role representations within the same cluster are pushed closer to each other, and those in
different clusters are notably separated. At a later stage (t=40), agent embeddings are already scat-
tered widely throughout the space with a good clustering effect so far. This phenomenon indicates
that the system has learned effective role assignment with heterogeneous behavior patterns. Then,
the role encoder transforms these agent embeddings into more discriminative role representations.

The team composition naturally evolves over time. At t = 1, Marauders {0, 1} form a group and
Marines {2, 3, 4, 5, 6, 7} form another due to their intrinsic agent heterogeneity. In the middle of
the battle t = 12, Marauders {0, 1} join the same group of Marines {2, 4, 7, 6, 8} to focus fire on
enemies, while Marines {3, 5} separate from the offense team since they are severely injured. Late
in the battle at t= 40, Marines {2, 3, 4, 6, 7} are still in the offense team, while Marauders {0, 1}
and Marine 5 fall into the same dead group. In summary, it is clearly verified that ACROM learns
meaningful role representations associated with agent’s behavior patterns and achieves effective
dynamic team composition. More insights and explanations can be found in Appendix G.

3.3 ATTENTION-GUIDED ROLE COORDINATION

To answer the last question, we visualize attention weights α in Eq. (6) using heatmaps, as shown
in Fig. 5. The number of agent clusters is K = 4. In most heads, roles in the same cluster have
similar attention weights, while different clusters exhibit significantly varying weights (e.g., in all
four heads at t= 10, the weight distribution over four clusters: {0, 1, 2, 3}, {5}, {4, 6, 7, 8}, {9}).
This phenomenon indicates that the global state has successfully attended to the learned role patterns.

The attention mechanism draws several interesting insights on the battle, such as: i) Head 2 evidently
attends to the injury-rescue pattern, since the largest weights come from Medivac 9 and low-health
units (Marauder 1 at t = 4, Marine 5 at t = 10, and Marines {3, 4, 5, 6, 7} at t = 36). ii) In most
heads, attention weights of Marauders {0, 1} are usually high at the beginning, and are significantly
decreased over time. It corresponds to the behavior pattern that Marauders play an important role
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Figure 4: Example rendering scenes at three time steps in an evaluation trajectory generated by
the trained ACORM policy on MMM2. The upper row shows screenshots of combat scenarios that
contain the information of positions, health points, shield points, states of ally and enemy units,
etc. The lower row visualizes the corresponding agent embeddings (denoted with bullets ‘•’) and
role representations (denoted with stars ‘⋆’) by projecting these vectors into 2D space via t-SNE for
qualitative analysis, where agents within the same cluster are depicted using the same color.

Figure 5: Example rendering scenes in an evaluation trajectory generated by the trained ACORM
policy on MMM2. The lower row visualizes attention weights (α in Eq. (6)) of all four heads that
explain how the global state attends to each role to guide skillful coordination in the role space. A
higher weight means a larger contribution made by the corresponding role for value decomposition.

at early attacks and the offensive mission will gradually be handed over to Marines. iii) On the
verge of victory at t=36, the primary concern is using Marines {2, 3, 5} to make final attacks with
low-health Marines {4, 6, 7} providing auxiliary support. Obviously, heads {0, 1} intuitively reflect
this strategy, as Marines {2, 3, 5} have the highest weights, followed by Marines {4, 6, 7} and all
other units. Moreover, the capability of our attention module could be much more profound than
these examples from the superficial visualization.

4 RELATED WORK

Agent Heterogeneity. As a compelling paradigm, CTDE (Foerster et al., 2016) has yielded numer-
ous algorithms (Lowe et al., 2017; Son et al., 2019; Wang et al., 2023). Many of them share policy
parameters to improve learning efficiency and scale to large-scale systems, which results in homo-
geneous behaviors across agents (Liu et al., 2022). To promote diversity, SePS (Christianos et al.,
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2021) partitions agents into a fixed set of groups and shares parameters within the same group only,
while ignoring evolving dynamics of the team. GoMARL (Zang et al., 2023) generates dynamic
groups with an automatic grouping mechanism to possess diverse strategies. MAVEN (Mahajan
et al., 2019) learns diverse exploratory behaviors by introducing a latent space for hierarchical con-
trol. CDS (Li et al., 2021) equips each agent with an additional local Q-function to decompose
the policy to the shared and non-shared part. EOI (Jiang & Lu, 2021) promotes individuality by
encouraging agents to visit their own familiar observations. CIA (Liu et al., 2023) boosts agent
distinguishability in value decomposition via contrastive learning. While differentiating each agent
from the rest, these methods neglect the development of effective team composition with implicit
task allocation, and might hinder the discovery of sophisticated coordination patterns.

Role Emergence. Researchers have also introduced the role concept into multi-agent tasks (Sims
et al., 2008; Lhaksmana et al., 2018; Xia et al., 2023; Cao et al., 2023), or similarly, the concept
of skills (Yang et al., 2020a) or subtasks (Yuan et al., 2022). ROMA (Wang et al., 2020) condi-
tions individual policies on roles and solely relies on the current observation to generate the role
embedding, which might be inadequate for capturing complex agent behaviors. RODE (Wang et al.,
2021) associates each role with a fixed subset of the full action space to reduce learning complexity.
Following RODE, SIRD (Zeng et al., 2023) transforms role discovery into hierarchical action space
clustering. Nonetheless, they neglect the evolving dynamics of the team since roles are kept fixed
in the training stage. For dynamic role assignment, some works learn identity representations to
group agents during training, and maintain a selection strategy to realize the assignment from agents
to skills (Liu et al., 2022) or subtasks (Yang et al., 2022; Iqbal et al., 2022). Nevertheless, they
encode the identity solely from a one-hot vector, which might be insufficient to distinguish complex
agent characteristics. COPA (Liu et al., 2021) realizes dynamic role allocation via periodically dis-
tributing a global view of team composition to each agent even in execution. However, it relaxes
the CTDE constraint by introducing communication during decentralized execution, and the global
composition is simply sampled from a fixed set of teams.

In summary, our method differs from the above approaches involving the role concept, and exhibits
several promising advantages. Our method strictly follows the CTDE paradigm, accommodates the
dynamic nature of multi-agent systems, and learns more efficient role representations.

Contrastive Learning and Attention Mechanism. Contrastive learning is gaining widespread
popularity for self-supervised representation learning in various domains (He et al., 2020; Su et al.,
2022; Laskin et al., 2020). As a simple and effective technique, contrastive learning is also inves-
tigated to assist MARL tasks, such as boosting the credit-level distinguishability (Liu et al., 2023),
facilitating the utilization of the agent-level contextual information (Song et al., 2023), and ground-
ing agent communication (Lo & Sengupta, 2022). In this study, we apply contrastive learning to
optimize role representations, facilitating sophisticated coordination with better role assignment.

Attention is the fundamental building block of famous transformer architectures (Vaswani et al.,
2017) that exhibit growing dominance in advances of AI research (Brown et al., 2020; Dosovitskiy
et al., 2021; Chen et al., 2021b). Due to its superiority in extracting dependencies between se-
quences, attention has been widely applied to MARL domains for various utilities, such as learning
a centralized critic (Iqbal & Sha, 2019), concentrating on relevant subtasks (Yuan et al., 2022), for-
mulating MARL as a sequence modeling problem (Wen et al., 2022), addressing stochastic partial
observability (Phan et al., 2023), etc (Yang et al., 2020b; Shao et al., 2023; Zhai et al., 2023). In this
study, we use attention to guide skillful role coordination for more expressive credit assignment.

5 CONCLUSION AND DISCUSSION

In this paper, we propose a general framework that learns contrastive role representations to promote
behavior heterogeneity and knowledge transfer across agents, and facilitates skillful coordination in
a sophisticated role space via an attention mechanism. Experimental results and ablations verify the
superiority of our method, and deep insights via visualization demonstrate the achievement of mean-
ingful role representations and skillful role coordination. Though, our method does not consider the
exploitation of history exploratory trajectories for extracting roles, and also needs an explicit clus-
tering component with a pre-defined number of total behavior patterns. We leave these directions as
future work. Moreover, extending our framework to offline settings is a promising line for practical
scenarios where online interaction is expensive and even infeasible.
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APPENDIX A. CONTRASTIVE ROLE REPRESENTATION LEARNING

In this section, we give the proof of Theorem 1 in the text based on introducing a lemma as follows.
Lemma 1. Given a role from the distribution M ∼ P (M), let e = fϕ(

∑
t(o

t, at−1)) as the agent
embedding generated by role M , and z ∼ fθ(z|e), where

∑
t(o

t, at−1) is the agent’s local trajectory
following a given policy. Then, we have

p(M |z)
p(M)

= Ee

[
p(z|e)
p(z)

]
. (9)

Proof.
p(M |z)
p(M)

=
p(z|M)

p(z)

=

∫
e

p(e|M)p(z|e)
p(z)

de

= Ee

[
p(z|e)
p(z)

]
.

(10)

The proof is completed.

Theorem 1. Let M denote a set of roles following the role distribution P (M), and |M| = K.
M ∈ M is a given role. Let e = fϕ(

∑
t(o

t, at−1)), z ∼ fθ(z|e), and h(e, z) = p(z|e)
p(z) , where∑

t(o
t, at−1) is the agent’s local trajectory following a given policy. For any role M∗ ∈M, let e∗

denote the agent embedding generated by the role M∗, then we have

I(z;M) ≥ logK + EM,z,e

[
log

h(e, z)∑
M∗∈M h(e∗, z)

]
. (2)

Proof. Using Lemma A.1 and Jensen’s inequality, we have

EM,z,e

[
log

h(e, z)∑
M∗∈M h(e∗, z)

]
= EM,z,e

log p(z|e)
p(z)

p(z|e)
p(z) +

∑
M∗∈M\M

p(z|e∗)
p(z)


= EM,z,e

− log

1 +
p(z)

p(z|e)
∑

M∗∈M\M

p(z|e∗)
p(z)


≈ EM,z,e

[
− log

(
1 +

p(z)

p(z|e)
(K − 1)EM∗∈M\M

[
p(z|e∗)
p(z)

])]
= EM,z,e

[
− log

(
1 +

p(z)

p(z|e)
(K − 1)

)]

= EM,z,e

log
 1

1 + p(z)
p(z|e) (K − 1)


≤ EM,z,e

log
 1

p(z)
p(z|e)K


≤ EM,z

[
logEe

[
p(z|e)
p(z)

]]
− logK

= EM,z

[
log

p(M |z)
p(M)

]
− logK

= I(z;M)− logK.
(11)

Thus, we complete the proof.
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APPENDIX B. IMPLEMENTATION DETAILS AND EXTENDED EXPERIMENTS OF
QMIX-BASED ACORM

Based on the implementations in Section 2, we summarize the brief procedure of ACORM based on
QMIX in Algorithm 1.

Algorithm 1: ACORM based on QMIX
Input: ϕ: agent’s trajectory encoder

θ: role encoder
K: number of clusters
Tcl: time interval for updating contrastive loss
n: number of agents
B: replay buffer
T : time horizon of a learning episode

1 Initialize all network parameters
2 Initialize the replay buffer B for storing agent trajectories
3 for episode = 1, 2, ... do
4 Initialize history agent embedding e0i , and action vector a0i for each agent
5 for t = 1, 2, ..., T do
6 Obtain each agent’s partial observation the {oti}ni=1 and global state st

7 for agent i = 1, 2, ..., n do
8 Calculate the agent embedding eti = fϕ(o

t
i, a

t−1
i , et−1

i )
9 Calculate the role representation zti = fθ(e

t
i)

10 Select the local action ati according to individual Q-function Qi(ei, a
t
i)

11 end
12 Execute joint action at = [at1, a

t
2, ..., a

t
n]

⊤, and obtain global reward rt

13 end
14 Store the trajectory to B
15 Sample a batch of trajectories from B
16 if episode mod Tcl == 0 then
17 Partition agent embeddings {eti}ni=1 into K clusters {Cj}Kj=1 using K-means
18 for agent i = 1, 2, ..., n do
19 Construct positive keys {zi′}i′∈Cj

and negative keys {zi∗}i∗ /∈Cj
for query zi, i∈Cj

20 end
21 Update contrastive learning loss according to Eq. (4)
22 Update momentum role encoder according to Eq. (5)
23 Calculate attention output τmha via prompting the global state to attend to role

representations {zi}ni=1 in Eqs. (6)-(8)
24 Concatenate τmha with state embedding τ to form the input to the mixing network
25 Update the parameters of individual Q-network and the mixing network
26 end
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In this paper, we use simple network structures for the trajectory encoder, the role encoder, and
the attention mechanism. Specifically, the trajectory encoder contains a fully-connected multi-layer
perceptron (MLP) and a GRU network with ReLU as the activation function, and encodes agent’s
trajectory into a 128-dimensional embedding vector. The role encoder is a fully-connected MLP
that transforms the 128-dimensional agent embedding into a 64-dimensional role representation.
The setting of the mixing network is kept as the same as that of QMIX (Rashid et al., 2020), where
the architecture contains two 32-dimensional hidden layers with ReLU activation. Table 1 shows
the details of network structures.

For all tested algorithms, we use the Adam optimizer with a learning rate of 6e-4. For exploration,
we use the ϵ-greedy strategy with ϵ annealed linearly from 1.0 to 0.02 over 80k time steps and kept
constant for the rest of the training. Every time an entire episode from online interaction is collected
and stored in the buffer, the Q-networks are updated using a batch of 32 episodes sampled from
the replay buffer with a capacity of 5000 state transitions. The target Q-network is updated using
a soft update strategy with momentum coefficient 0.005. The contrastive learning loss is jointly
trained every 100 steps of the Q-network updates. The decentralized policy is evaluated every 5k
update steps with 32 episodes generated. For all domains, the number of clusters in ACORM is
set to K = 3. Appendix D provides an analysis on this hyperparameter, and the experiments show
that the performance of ACORM is not significantly affected by the value of K. The details of
hyperparameters can be found in Table 2.

Table 1: The network configurations used for ACORM based on QMIX.

Network Configurations Value Network Configurations Value
role representation dim 64 hypernetwork hidden dim 32
agent embedding dim 128 hypernetwork layers num 2
state embedding dim 64 type of optimizer Adam
attention output dim 64 activation function ReLU
attention head num 4 add last action True
attention embedding dim 128

Table 2: Hyperparameters used for ACORM based on QMIX.

Hyperparameter Value Hyperparameter Value
buffer size 5000 start epsilon ϵs 1.0
batch size 32 finish epsilon ϵf 0.02
learning rate 6× 10−4 ϵ decay steps 80000
use learning rate decay True evaluate interval 5000
contrastive learning rate 8× 10−4 evaluate times 32
momentum coefficient β 0.005 target update interval 200
update contrastive loss interval Tcl 100 discount factor γ 0.99
cluster num 3
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Figure 6: Extended performance comparison between ACORM and baselines on 12 SMAC maps.

Fig. 6 presents the extended performance of ACORM on 12 SMAC maps. Obviously, the observa-
tions and conclusions from the extended performance are kept consistent with those in Sec. 3.1 of
the main paper.
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APPENDIX C. EXTENDED EXPERIMENTS ON GOOGLE RESEARCH FOOTBALL

In addition to SMAC environments, we also benchmark our approach on three challenging Google
research football (GRF) offensive scenarios as

• academy_3_vs_1_with_keeper: Three of our players try to score from the edge of the
box, one on each side, and the other at the center. Initially, the player at the center has the ball
and is facing the defender. There is an opponent keeper.

• academy_counterattack_hard: 4 versus 2 counter-attack with keeper; all the remaining
players of both teams run back towards the ball.

• academy_run_to_score_with_keeper: Our player starts in the middle of the field with
the ball, and needs to score against a keeper. Five opponent players chase ours from behind.

In GRF tasks, agents need to coordinate timing and positions for organizing offense to seize fleeting
opportunities, and only scoring leads to rewards. In our experiments, we control left-side players
except the goalkeeper. The right-side players are rule-based bots controlled by the game engine.
Agents have a discrete action space of 19, including moving in eight directions, sliding, shooting,
and passing. The observation contains the positions and moving directions of the ego-agent, other
agents, and the ball. The z-coordinate of the ball is also included. Environmental reward only occurs
at the end of the game. They will get +100 if they win, else get −1.

Fig. 7 presents the performance comparison between ACORM and baselines on three challenging
GRF scenarios. It can be observed that QMIX obtains poor performance, since the tasks in GRF
are more challenging than in the SMAC benchmark. In contrast, ACORM gains a significantly im-
proved increase in the test win rate, especially in the first 1M training timesteps, which successfully
demonstrates the effectiveness of our method evaluated on GRF benchmarks. Together with evalua-
tions on SMAC domains, the same conclusion can still be drawn that ACORM outperforms baseline
methods by a larger margin on harder tasks that demand a significantly higher degree of behavior
diversity and coordination. In summary, experimental results on extended GRF environments are
generally consistent with those on the SMAC benchmark. .

Due to the very limited time for rebuttal revision, we only compare ACORM to QMIX and CDS, as
other baselines (RODE, EOI, MACC, CIA) are not evaluated on GRF in their original papers. Also,
we just show the performance within 2M training steps. We hope that the extended experimental
evaluation could demonstrate adequate persuasiveness of our method. We are rushing to conduct the
evaluation of baseline methods on GRF scenarios with more training timesteps, and trying to update
them before the rebuttal deadline.

Figure 7: Performance comparison between ACORM and baselines on three GRF scenarios.
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APPENDIX D. ACORM BASED ON MAPPO

In addition, we realize ACORM on top of the MAPPO algorithm, as show in Fig. 8. Most of the
network structure is kept the same as QMIX-based ACORM, including the agent embedding, the role
encoder, and the attention mechanism. To align with MAPPO that uses an actor-critic architecture,
we input both the agent’s observation and the augmented global state s̃ (obtained from the attention
mechanism in Fig. 8(e)) into the critic, as shown in Fig. 8(a). Tables 3 and 4 present the detailed
network structure and experimental hyperparameters, respectively.

Figure 8: The ACORM framework based on MAPPO. (a) The overall architecture. (b) The shared
actor network structure for each agent, where the role representation is extracted from agent’s tra-
jectory. (c) The detail of learning role representations via contrasting learning. (d) The shared critic
network structure for each agent. (e) The attention module that incorporates learned role represen-
tations into value decomposition.

Table 3: The network configurations used for ACORM based on MAPPO.

Network Configurations Value Network Configurations Value
role representation dim 64 attention output dim 64
agent embedding dim 128 attention head num 4
state embedding dim 64 attention embedding dim 128
critic RNN hidden dim 64 type of optimizer Adam
add agent ID False activation ReLU
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Table 4: Hyperparameters used for ACORM based on MAPPO.

Hyperparameter Value Hyperparameter Value
batch size 32 entropy coefficient 0.02
mini batch size 32 cluster num 3
actor learning rate 6× 10−4 discount factor γ 0.99
critic learning rate 8× 10−4 momentum coefficient β 0.005
contrastive learning rate 8× 10−4 evaluate interval 5000
update contrastive loss interval Tcl 32 evaluate times 32
clip 0.2 use advantage normalization True
GAE lambda λ 0.95 use learning rate decay False
K epochs 5

Figure 9: Performance comparison between MAPPO-based ACORM and the MAPPO baseline on
representative maps, including two easy levels (2s3z, 3s5z), one hard level (5m_vs_6m), and
three super hard levels (MMM2, corridor, 3s5z_vs_3s6z).

Figure 9 presents the performance of MAPPO-based ACORM on six representative tasks: 2s3z,
3s5z, 5m_vs_6m, MMM2, corridor, and 3s5z_vs_3s6z. It can be observed that ACORM
achieves a significant performance improvement over MAPPO. Akin to the QMIX-based version,
ACORM outperforms MAPPO by the largest margin on super hard maps that demand a signifi-
cantly higher degree of behavior diversity and coordination. Again, experimental results demon-
strate ACORM’s superiority of learning efficiency in complex multi-agent domains.
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APPENDIX E. HYPERPARAMETER ANALYSIS ON THE NUMBER OF CLUSTERS

We test the influence of the number of clusters K on ACROM’s performance. Fig. 10 shows the
performance of ACORM with varying values of K=2, 3, 4, 5. Generally speaking, ACORM obtains
similar performance across different values of K. It demonstrates that ACORM achieves good
learning stability and robustness as the performance is insensitive to the pre-defined number of role
clusters. An outlier case is observed in the 5m_vs_6m map where the ACORM’s performance
drops a little when K = 5. This is likely because there are only 5 agents in 5m_vs_6m. When
K=5, each agent represents a distinct role cluster. It forces the strategies of each agent to diverge,
which might not be conductive to realize effective team composition across agents.

Figure 10: Hyperparameter analysis on the number of clusters K in negative pairs generation.

To illustrate why ACORM performs well across different values of K, we show visualizations from
different learned ACORM policies with K = 3, 4, 5 in Fig. 11. When the clustering granularity is
coarse as K = 3 in Fig. 11(a), even within the same cluster, ACORM can still learn meaningful
role representations with distinguishable patterns. Agent embeddings of Marines {2, 3, 4, 5, 6, 7, 8}
are crowded together with limited discrimination. Via contrastive learning, the obtained role rep-
resentations exhibit an interesting self-organized structure where Marines {2, 5, 6} and {3, 4, 7, 8}
implicitly form two distinctive sub-groups. It can be observed from the rendering scene that Marines
{2, 5, 6} and {3, 4, 7, 8} are all at an attacking stage, while the former sub-group is in lower health
than the latter. On the other hand, with a fine granularity of K = 5 in Fig. 11(c), the contrastive
learning module transforms clustered agent embeddings into more discriminative role representa-
tions. For example, while Marines 2, 3, 5, 6, 8, and 4, 7 form three clusters, their role representations
are still closer to each other and farther from Marauders {0, 1} and Medivac {9}, since they are the
same type of agents with similar behavior patterns. In summary, it again demonstrates that ACORM
learns meaningful role representations and achieves effective and robust team composition.

Figure 11: Visualization with different number of clusters K in negative pairs generation.
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APPENDIX F. MORE ABLATION RESULTS

Figure 12 presents the full ablation results of ACORM on all six representative maps. It again
demonstrates the significance of both the contrastive learning module and the attention mech-
anism for ACORM’s performance. A noteworthy point is that both ACORM_w/o_CL and
ACORM_w/o_MHA gain remarkable performance improvement by the largest margin on super
hard maps, which further validate ACORM’s advantages of promoting diversified behaviors and
skillful coordination in complex multi-agent tasks. Another interesting observation is that when
omitting the contrastive learning module, there is a notable increase in the variance of learning
curves. It can be interpreted as an evidence that contrastive learning helps training more robust role
representations and enhances learning stability.

Figure 12: Full ablation results on ACORM. ACORM_w/o_CL means removing contrastive learn-
ing, ACORM_w/o_MHA represents excluding attention, ACORM_w/o_MHA (Vanilla) represents
excluding attention and state encoding, and QMIX corresponds to removing all components.
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APPENDIX G. MORE INSIGHTS ON CONTRASTIVE REPRESENTATION
LEARNING

Based on Section 3.2, here we provide more insights on the effectiveness of learned role represen-
tations. Indeed, one reason for ACORM’s significant improvement on learning efficiency comes
from its capability of facilitating implicit knowledge transfer across similar agents throughout the
entire learning process. For example, Marines {2, 3, 4, 5, 6, 7} form a group at t = 1, Marauders
{0, 1} and Marines {2, 4, 6, 7, 8} form a group at t = 12, and Marines {2, 3, 4, 6, 7} form a group
at t = 40. It can be observed from the rendering scenes that these three groups are all responsible
for attacking enemies. At different time steps, agents in the attacking group can share similar role
representations to promote knowledge transfer, even if they belong to heterogeneous agent types.
This implicit transfer across agents and across timesteps can significantly increase the exploration
efficiency of agents.

Another highlight of ACORM is the promotion of behavior heterogeneity, even if agents have the
same innate characteristics. For example, while Marines {2, 3, 4, 5, 6, 7, 8} belong to the same agent
type, they are distributed to different groups with heterogeneous roles as: 1) at t = 12, Marines
{2, 4, 6, 7, 8} with role of attacking, and Marines {3} and {3} with role of the wounded; and 2)
at t= 40, Marines {2, 3, 4, 6, 7} with role of attacking, and Marines {5} and {8} with role of the
dead. In general, even though some information is lost during dimension reduction using t-SNE, it
is evident that our role representation still manages to exhibit such remarkable results.

Figure 13: Example rendering scenes at three time steps in an evaluation trajectory generated by
the trained ACORM policy on MMM2. The upper row shows screenshots of combat scenarios that
contain the information of positions, health points, shield points, states of ally and enemy units,
etc. The lower row visualizes the corresponding agent embeddings (denoted with bullets ‘•’) and
role representations (denoted with stars ‘⋆’) by projecting these vectors into 2D space via t-SNE for
qualitative analysis, where agents within the same cluster are depicted using the same color.
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