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ABSTRACT

Artificial neural networks often struggle with catastrophic forgetting when learn-
ing multiple tasks sequentially, as training on new tasks degrades the performance
on previously learned tasks. Recent theoretical work has addressed this issue
by analysing learning curves in synthetic frameworks under predefined training
protocols. However, these protocols relied on heuristics and lacked a solid the-
oretical foundation assessing their optimality. In this paper, we fill this gap by
combining exact equations for training dynamics, derived using statistical physics
techniques, with optimal control methods. We apply this approach to teacher-
student models for continual learning and multi-task problems, obtaining a theory
for task-selection protocols maximising performance while minimising forgetting.
Our theoretical analysis offers non-trivial yet interpretable strategies for mitigating
catastrophic forgetting, shedding light on how optimal learning protocols modu-
late established effects, such as the influence of task similarity on forgetting. Fi-
nally, we validate our theoretical findings with experiments on real-world data.

1 INTRODUCTION

Mastering a diverse range of problems is crucial for both artificial and biological systems. In the
context of training a neural network on a series of tasks—a.k.a. multi-task learning (Caruana, 1993;
1994b;a; 1997)—the ability to learn new tasks can be improved by leveraging knowledge from pre-
vious ones (Suddarth & Kergosien, 1990). However, this process can lead to catastrophic forgetting,
where learning new tasks degrades performance on older ones. This phenomenon has been observed
in both theoretical neuroscience (McCloskey & Cohen, 1989; Ratcliff, 1990) and machine learning
(Srivastava et al., 2013; Goodfellow et al., 2014), and occurs when the network parameters encod-
ing older tasks are overwritten while training on a new task. Several mitigation strategies have been
proposed (French, 1999; Kemker et al., 2018), including semi-distributed representations (French,
1991; 1992), regularisation methods (Kirkpatrick et al., 2017; Zenke et al., 2017; Li & Hoiem,
2017), dynamical architectures (Zhou et al., 2012; Rusu et al., 2016), and others (see e.g. Parisi
et al. (2019); De Lange et al. (2021) for thorough reviews). A common strategy, known as replay, is
to present the network with examples from the old tasks while training on the new one to minimise
forgetting (Shin et al., 2017; Draelos et al., 2017; Rolnick et al., 2019).

On the theoretical side, Baxter (2000) pioneered the research on continual learning by deriving PAC
bounds. More recently, further performance bounds have been obtained in the context of multi-task
learning, few-shot learning, domain adaptation, and hypothesis transfer learning (Wang et al., 2020;
Zhang & Yang, 2021; Zhang & Gao, 2022). However, these results focused on worst-case analysis,
offering bounds that may not reflect the typical performance of algorithms. In contrast, Dhifal-
lah & Lu (2021) began investigating the typical-case scenario, providing a precise characterisation
of transfer learning in simple neural network models. Gerace et al. (2022); Ingrosso et al. (2024)
extended this analysis to more complex architectures and generative models, allowing for a better
description of the relation between tasks. Finally, Lee et al. (2021; 2022) proposed a theoretical
framework for the study of the dynamics of continual learning with a focus on catastrophic forget-
ting. Their work provided a theoretical explanation for the surprising empirical results of Ramasesh
et al. (2020), which revealed a non-monotonic relation between forgetting and task similarity, where
maximal forgetting occurs at intermediate task similarity. Analogously, Shan et al. (2024) studied a
Gibbs formulation of continual learning in deep linear networks, and demonstrated how the interplay
between task similarity and network architecture influences forgetting and knowledge transfer.
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Despite the significant interest in transfer learning and catastrophic forgetting, mitigation strategies
considered thus far were pre-defined heuristics, offering no guarantees of optimality. In contrast,
here we address the problem of identifying the optimal protocol to minimise forgetting. Specifically,
we focus on replay as a prototypical mitigation strategy. We use optimal control theory to determine
the optimal training protocol that maximises performance across different tasks.

Our contribution. In this work, we combine dimensionality-reduction techniques from statistical
physics (Saad & Solla, 1995a;b; Biehl & Schwarze, 1995) and Pontryagin’s maximum principle
from control theory (Feldbaum, 1955; Pontryagin, 1957; Kopp, 1962). This approach allows us to
derive optimal task-selection protocols for the training dynamics of a neural network in a continual
learning setting. Pontryagin’s principle works efficiently in low-dimensional deterministic systems.
Hence, applying it to neural networks requires the statistical physics approach (Engel, 2001), which
reduces the evolution of high-dimensional stochastic systems to a few key order parameters gov-
erned by ordinary differential equations (ODEs) (Saad & Solla, 1995a;b; Biehl & Schwarze, 1995).
Specifically, we consider the teacher-student framework of Lee et al. (2021)—a prototype continual
learning setting amenable to analytic characterisation. Our main contributions are:

• We leverage the ODEs for the learning curves of online SGD to derive closed-form formu-
lae for the optimal training protocols. In particular, we provide equations for the optimal
task-selection protocol and the optimal learning rate schedule, as a function of the task
similarity γ and the problem parameters. Our framework is broadly applicable beyond the
specific context of continual learning, and we outline several potential extensions.

• We evaluate our equations for a range of problem parameters and find highly structured
protocols. Interestingly, we are nonetheless able to interpret these strategies a posteriori,
formulating a criterion for “pseudo-optimal” task-selection. This strategy consists of an
initial focus phase, where only the new task is presented to the network, followed by a
revision phase, where old tasks are replayed.

• We clarify the impact of task similarity on catastrophic forgetting. At variance with what
previously observed (Ramasesh et al., 2020; Lee et al., 2021; 2022), catastrophic forgetting
is minimal at intermediate task similarity when learning with optimal task selection. We
provide a mechanistic explanation of this phenomenon by disentangling dynamical effects
at the level of first-layer and readout weights.

• We demonstrate that the insights from our optimal strategies in synthetic settings transfer
to real datasets. Specifically, we show the efficacy of our pseudo-optimal strategy on a con-
tinual learning task using the Fashion-MNIST dataset. Here, the pseudo-optimal strategy
effectively interpolates between simple heuristics depending on the problem’s parameters.

Further related works. Recent theoretical works on online dynamics in one-hidden-layer neural
networks have addressed various learning problems, including over-parameterisation (Goldt et al.,
2019), algorithmic analysis (Refinetti et al., 2021; Srinivasan et al., 2024), and learning strate-
gies (Lee et al., 2021; Saglietti et al., 2022; Sarao Mannelli et al., 2024). However, these studies
have not explored the problem from an optimal control perspective.

Early works addressed the optimality of hyperparameters in high-dimensional online learning for
committee machines via control theory. These studies focused on optimising the learning rate (Saad
& Rattray, 1997; Rattray & Saad, 1998; Schlösser et al., 1999), the regularisation (Saad & Rattray,
1998), and the learning rule (Rattray & Saad, 1997). However, to the best of our knowledge, the
problem of optimal task selection has not been explored yet. Carrasco-Davis et al. (2023) and Li
et al. (2024) applied optimal control to the dynamics of connectivist models of behaviour, but their
analysis was limited to low-dimensional settings. Urbani (2021) extended the Bellman equation to
high-dimensional mean-field dynamical systems, though without considering learning processes.

Several other works have combined ideas from machine learning and optimal control. Notably,
Han et al. (2019) interpreted deep learning as an optimal control problem on a dynamical system,
where the control variables correspond to the network parameters. Chen & Hazan (2024) formulated
meta-optimization as an optimal control problem, but their analysis did not involve dimensionality
reduction techniques nor did it address task selection.
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Figure 1: Pictorial representation of the continual learning task in the teacher-student setting.
A “student” network is trained on i.i.d. inputs from two teacher networks, defining two different
tasks (panel a). The student has sufficient capacity to learn both tasks. However, sequential training
results in catastrophic forgetting, where the performance on a previously learned task significantly
deteriorates when a new task is introduced (panel b). Parameters: K = T = 2.

2 MODEL-BASED THEORETICAL FRAMEWORK

We adopt a model-based approach to investigate the supervised learning of multiple tasks. Follow-
ing Lee et al. (2021; 2022), we consider a teacher-student framework (Gardner & Derrida, 1989).
A “student” neural network is trained on synthetic inputs x ∈ RN , drawn i.i.d. from a standard
Gaussian distribution, xi ∼ N (0, 1). The labels for each task t = 1, . . . , T are generated by single-
layer “teacher” networks: y(t) = g∗(x · w(t)

∗ /
√
N), where W∗ = (w

(1)
∗ , . . . ,w

(T )
∗ )⊤ ∈ RT×N

denote the corresponding teacher vectors, and g∗ the activation function. The student is a two-layer
neural network with K hidden units, first-layer weights W = (w1, . . . ,wK)

⊤ ∈ RK×N , activation
function g, and second-layer weights v ∈ RK . It outputs the prediction:

ŷ (x;W ,v) =

K∑
k=1

vk g

(
x ·wk√

N

)
. (1)

Following a standard multi-headed approach to continual learning (Zenke et al., 2017; Farquhar
& Gal, 2018), we allow for task-dependent readout weights: V = (v(1), . . . ,v(T ))⊤ ∈ RT×K .
Specifically, the readout for task t is updated only when that task is presented. While the readout is
switched during training according to the task under consideration, the first-layer weights are shared
across tasks. A pictorial representation of this model is displayed in Fig. 1. Training is performed
via Stochastic Gradient Descent (SGD) on the squared loss of y(t) and ŷ(t) = ŷ(x;W ,v(t)). We
consider the online regime, where at each training step the algorithmic update is computed using a
new sample (x, y(t)). The generalisation error of the student on task t is given by

εt (W ,V ,W∗) :=
1

2

〈(
y(t) − ŷ(t)

)2〉
=

1

2
Ex

(g∗(w
(t)
∗ · x√
N

)
− ŷ(x;W ,v(t))

)2
 . (2)

The angular brackets ⟨·⟩ denote the expectation over the input distribution for a given set of teacher
and student weights. Crucially, the error depends on the input data only through the preactivations

λk :=
x ·wk√

N
, k = 1, . . . ,K , and λ

(t)
∗ :=

x ·w(t)
∗√

N
, t = 1, . . . , T. (3)

Eq. 3 defines jointly Gaussian variables with zero mean and second moments given by

Mkt := Ex

[
λkλ

(t)
∗

]
=

wk ·w(t)
∗

N
,

Qkh := Ex [λkλh] =
wk ·wh

N
,

Stt′ := Ex

[
λ
(t)
∗ λ

(t′)
∗

]
=

w
(t′)
∗ ·w(t)

∗

N
,

(4)
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called overlaps in the statistical physics literature. Therefore, the dynamics of the generalisation er-
ror is entirely captured by the evolution of the student readouts V and the overlaps. As shown in Lee
et al. (2021; 2022), we can track the evolution of the generalisation error in the high-dimensional.
We leverage this description and optimal control theory to derive optimal training protocols for
multi-task learning. In particular, we optimise over task selection and learning rate.

Forward training dynamics. First, we derive equations governing the dynamics of the overlaps
and readouts under a given task-selection protocol. These equations fully determine the evolution
of the generalization error. For the remainder of the paper, we consider K = T to guarantee that
the student network has enough capacity to learn all tasks perfectly. Teacher vectors are normalised,
and the task similarity is tuned by a parameter γ, so that Stt′ = δt,t′ + γ(1− δt,t′). For simplicity,
it is useful to encode all the relevant degrees of freedom—namely, the overlaps and the readout
weights—in the same vector. We use the shorthand notation Q = (vec(Q), vec(M), vec(V ))⊤ ∈
RK2+2KT . As further discussed in Appendix A, in the limit of large input dimension N → ∞ with
K,T ∼ ON (1), the training dynamics is described by a set of ODEs

dQ(α)

dα
= fQ (Q(α),u(α)) with α ∈ (0, αF ] . (5)

The parameter α denotes the effective training time—the ratio between training steps and input
dimension N . The vector u encodes the dynamical variables that we want to control optimally. In
particular, we study the optimal schedules for task-selection tc(α) and learning rate η(α). Here,
tc(α) ∈ {1 , . . . , T} indicates on which task the student is trained at time α. The specific form of
the functions fQ is derived in Appendix A. The initial condition Q(0) matches the initialisation of
the SGD algorithm. In particular, the initial first-layer weights and readout weights are drawn i.i.d.
from a normal distribution with variances of 10−3 and 10−2, respectively. Notably, the trajectory
appears to be largely independent of the specific initialisation of the first-layer weights. For instance,
in Fig. 2, simulations and theory correspond to different initialisations, yet the curves show excellent
agreement. Let us stress that Eq. 5 is a low-dimensional deterministic equation that fully captures
the high-dimensional stochastic dynamics of SGD as N → ∞. This dimensionality reduction is
crucial to apply the optimal control techniques presented in the next section.

Optimal control framework and backward conjugate dynamics. Our first main contribution is
to derive training strategies that are optimal with respect to the generalisation performance at the
end of training and on all tasks. In practice, the goal of the optimisation process is to minimise a
linear combination of the generalisation errors on the different tasks at the final training time αF :

h(Q(αF )) =

T∑
t=1

ct εt(Q(αF )) with ct ≥ 0 and
T∑

t=1

ct = 1 , (6)

where the coefficients ct identify the relative importance of different tasks and εt denotes the infinite-
dimensional limit of the average generalisation error on task t, as defined in Eq. 2. Crucially, we
have an analytic expression for εt, derived in Appendix A. In the remainder of the paper, we assume
equally important tasks ct = 1/T . As customary in optimal control theory (Pontryagin, 1957), we
adopt a variational approach to solve the problem. We define the cost functional

F [Q, Q̂,u] = h (Q(αF )) +

∫ αF

0

dα Q̂(α)⊤
[
−dQ(α)

dα
+ fQ (Q(α),u(α))

]
, (7)

where the conjugate order parameters Q̂ = (vec(Q̂), vec(M̂), vec(V̂ ))⊤ enforce the training dy-
namics in the training interval α ∈ [0, αF ]. Finding the optimal protocol amounts to minimising the
cost functional F with respect to Q, Q̂, and u. We defer the details of this variational procedure to
Appendix A, and present only the main steps here. For a general introduction to the control methods
adopted here, see, e.g., Kirk (2004). The minimisation with respect to Q provides a set of equations
for the backward dynamics of the conjugate parameters

−dQ̂(α)⊤

dα
= Q̂(α)⊤∇QfQ(Q(α),u(α)) with α ∈ [0, αF ). (8)

The final condition for the dynamics is given by

Q̂(αF ) = ∇Qh(QF ) =

T∑
t=1

ct∇Qεt(Q(αF )) . (9)

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

No replay Interleaved Optimal

Ta
sk

 
pr

ot
oc

ol

Task 1 Task 2

Lo
ss

￼  time step / input dimensionα = ￼α ￼αa) b) c)

Figure 2: How to learn a new task without forgetting the old one? The student is trained on task
1 until convergence during the first phase (α ∈ [0, 1000]), then task 2 is introduced. During the
second phase (α ∈ (1000, 1025]), task 1 may be replayed to prevent forgetting. For better visibility,
we only display the regions α ∈ [0, 20] ∪ [990, 1025]. We compare three strategies: a) no replay, b)
interleaved replay, i.e., alternating between the two tasks, c) the optimal strategy derived in Sec. 2.
Crosses mark numerical simulations of a single trajectory at N = 20000, lines mark the solution of
Eq. 5. Colour bars represent the protocol tc. Parameters: γ = 0.3, K = T = 2, and η = 1.

The optimal control curve u∗(α) is obtained as the solution of the minimisation:

u∗(α) = argmin
u∈U

{
Q̂(α)⊤fQ(Q(α),u)

}
, (10)

where U is the set of allowed controls, that can be either continuous or discrete. For instance, for task
selection we take u(α) = tc(α) and U = {1 , 2 . . . , T}, where we use the notation tc(α) to indicate
the current task, i.e., the task on which the student is trained at time α. When optimising over
both task selection and learning rate schedule we take u = (tc, η) and U = {1 , 2 . . . , T} × R+.
Crucially, the optimal control equations 5, 8, and 10 must be iterated until convergence, starting
from an initial guess on u, which can be for instance taken at random. Let us stress that the space U
of possible controls is high-dimensional and hence it is not feasible to explore it via greedy search
strategies.

3 RESULTS AND APPLICATIONS

The theoretical framework of Sec. 2 is extremely flexible and can be applied to a variety of settings.
We will present a technical paper focused on the method in a specialised venue. In this section, we
focus on specific settings and investigate in detail the impact of optimal training protocols on both
synthetic and real tasks. First, we consider the synthetic teacher-student framework. We compute
optimal task-selection protocols, investigating their structure and interplay with task similarity and
learning rate schedule. Then, we transfer the insights gained from the interpretation of the optimal
strategies in synthetic settings to applications on real datasets.

3.1 EXPERIMENTS ON SYNTHETIC DATA

We formulate the problem of continual learning as follows. During a first training phase, the student
learns perfectly task t = 1. Then, the goal is to learn a new task t = 2 without forgetting the
previous one. A given time window of duration αF is assigned for the second training phase. In
particular, we investigate the role of replay—i.e., presenting samples from task 1 during the second
training phase—and the structure of the optimal replay strategy.

We use the equations derived in Sec. 2 to study optimal replay during the second phase of training.
To this end, we take the task-selection variable as our control u(α) = tc(α) ∈ {1, 2}, while we set
tc = 1 during the first training phase. The result of the optimisation in Eq. 10 strikes the balance
between training on the new task and replaying the old task. We do not enforce any constraints
on the number of samples from task 1 to use in the second phase. Therefore, our method provides
both the optimal fraction of replayed samples and the optimal task ordering, depending on the time
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Figure 3: The impact of task similarity on continual learning. a) Average loss on both tasks at the
end of the second training phase as a function of the task similarity γ under the replay setting from
Fig. 2. Different lines correspond to different strategies: no replay (purple crosses), optimal replay
(red dots), interleaved (blue squares), pseudo-optimal replay (cyan dashed line). b-e) Optimal replay
strategies for different values of γ = 0.1, 0.3, 0.6, 0.9. Colour bars represent the protocol tc(α).

window αF . Fig. 2 compares the learning dynamics of three different strategies, depicting the loss
on task 1 (full orange line), task 2 (dashed green line), and their average (dotted black line) as a
function of the training time α. Numerical simulations—marked by cross symbols—are in excellent
agreement with our theory. Deviations are smaller than 1/

√
N , compatible with finite-size effects.

The student is trained exclusively on task 1 until α = 1000, when the task is perfectly learned with
loss ∼ 10−6. Then, the student is trained on a combination of new and old tasks for a training time
of duration αF = 25. A colour bar above each plot illustrates the associated task-selection strategy
tc(α). Panel a) shows training without replay, where only task 2 is presented in the second phase.
We observe catastrophic forgetting of task 1. Panel b) shows a heuristic “interleaved” strategy, where
training alternates one sample from the new task to one sample from the old one. As observed in
Lee et al. (2022), the interleaved strategy already provides a performance gain, demonstrating the
relevance of replay to mitigate catastrophic forgetting. Panel c) of Fig. 2 shows the loss dynamics for
the optimal replay strategy. Notably, the optimal strategy exhibits a complex structure and displays a
clear performance improvement over the other two strategies. In particular, we find that the optimal
task-selection strategy always presents an initial phase where training is performed only on the new
task. This behaviour is observed consistently across a range of task similarities.

The impact of task similarity. To understand the structure of the optimal strategy, we examine its
performance in relation to task similarity γ. Fig. 3a) depicts the average loss at the end of training as
a function of γ. For the no-replay strategy, we reproduce the findings from previous works (Lee et al.,
2021; 2022): the highest error occurs at intermediate task similarity. Lee et al. (2022) explained this
non-monotonicity as a trade-off between node re-use and node activation. Specifically, for small γ,
there is minimal interference between tasks. One hidden neuron predominantly aligns with the new
task, while the other neuron retains the knowledge of the old task, leading to task specialisation. At
large γ, features from task 1 are reused for task 2, avoiding forgetting. However, at intermediate γ,
interference is maximal: both neurons quickly align with task 2, and task 1 is forgotten. Remarkably,
Fig. 3a) shows that replay reverses this trend, with the minimal error occurring at intermediate γ. To
explain this nontrivial behaviour, we must first understand the optimal replay protocol.

Interpretation of the optimal replay structure. The optimal replay dynamics is illustrated in
panels b-e) of Fig. 3 and displays a highly structured protocol. We can interpret this structure a
posteriori: an initial focus phase without replay is followed by a revision phase involving interleaved
replay. The transition between these two phases corresponds approximately to the point at which the
loss on the new task matches the loss on the old one. To investigate the significance of this structure,
we also test an interleaved strategy, plotted in Fig. 3a). In this case, the task ordering in the second
training phase is fully randomised while maintaining the same overall replay fraction of the optimal
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strategy. This protocol has a performance gap compared to the optimal one, showing the importance
of a properly structured replay scheme. Additionally, we test a “pseudo-optimal” variant, where the
focus phase is retained, but the revision phase is randomised. This variant performs comparably
to the optimal strategy, suggesting that while the specific order of the revision phase is largely
unimportant, it is key to precede it with a training phase on the new task.

We can now attempt to understand the inverted non-monotonic behaviour of the average loss as a
function of γ under the optimal protocol. First, as shown in Fig. 8 of Appendix C, the optimal
protocol achieves a good level of node specialisation across all values of γ. Thus, replay prevents
the task interference that typically causes performance deterioration at intermediate γ. The non-
monotonic behaviour of the optimal curve in Fig. 3a) arises from a different origin, involving two
opposing effects related to the first-layer weights and the readout. The initial decrease of the loss
with γ is quite intuitive, as only minimal knowledge can be transferred from task 1 to task 2 when
γ is small. Consequently, the focus phase on task 2 must be longer for smaller γ, leaving less
time to revise task 1, thereby reducing performance. On the other hand, the performance decrease
observed in Fig. 3a) for γ > 0.3 is more subtle and is related to the readout layer. Once the two
hidden neurons have specialised—each aligning with one of the teacher vectors—we expect the
readout weights corresponding to the incorrect teacher to be suppressed. Specifically, if w1 = w

(1)
∗

and w2 = w
(2)
∗ , the learning dynamics should drive the readout weights v(1) = (v

(1)
1 , v

(1)
2 )⊤ and

v(2) = (v
(2)
1 , v

(2)
2 )⊤ towards v(1) = (1, 0)⊤ and v(2) = (0, 1)⊤ to achieve full recovery of the

teacher networks. As shown in Fig. 8 of Appendix C, the time required to suppress the off-diagonal
weights v(1)2 and v

(2)
1 increases as γ → 1. This is intuitive, as higher task similarity γ reduces the

distinction between tasks, slowing the suppression of the off-diagonal weights. In Appendix B, we
derive analytically the convergence timescale αconv of the readout layer, showing that

αconv =
3π

η(π − 6 arcsin (γ/2))
, (11)

where η is the learning rate. This timescale is a monotonically increasing function of γ and diverges
as γ → 1 with αconv ≈

√
3π/(2η(1 − γ)). This result explains the performance decrease of the

optimal strategy as γ → 1. In summary, the performance decrease for γ → 0 is due to the first-layer
weights, while for γ → 1 it is related to the readout weights.

Le
ar

ni
ng

 ra
te

 ￼η

Task 1 
Task 2

￼ time step / input dimensionα =

Ta
sk

 
pr

ot
oc

ol

Figure 4: Joint optimisation of task-selection
and learning-rate. Optimal learning rate as a
function of training time α for the same parame-
ters as Fig. 2. There is a single optimal learning
rate curve, but for visibility purposes we show it
as a solid orange line when training on task 1 and
a dashed green line on task 2. The task-selection
protocol tc(α) is illustrated in the colour bar.

Optimal learning rate schedules. While the
above results are obtained with a constant learn-
ing rate, annealing schedules are widely used in
machine learning. Thus, it is relevant to study
the optimal interplay between replay and learn-
ing rate. Optimal learning rate dynamics have
been studied with a similar approach in Saad &
Rattray (1997). We jointly optimise the task-
selection protocol together with the learning rate
to investigate its impact on continual learning.
Fig. 4 shows the optimal learning rate schedule
for task similarity γ = 0.3 in the second train-
ing phase of duration αF =25. Similarly as for
constant learning rate (panel c) of Fig. 3), opti-
mal task-selection is characterised by an initial
focus phase. Notably, this phase coincides with
a strong annealing of the learning rate to achieve
optimal performance. Intuitively, when learning
the new task, the learning rate starts high and
is gradually decreased over time. Interestingly,
while entering the revision phase, the optimal
learning rate schedule exhibits a highly nontriv-
ial structure (see Fig. 4). Indeed, although the
optimal learning rate curve is unique, we find
that effectively it can be seen as two different
curves, associated to the respective tasks. In
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Figure 5: The impact of task similarity on multi-task learning. a) Average loss as a function of
task similarity γ at the end of training (αF = 10). Different lines correspond to different strategies:
sequential (purple crosses), optimal (red dots), and randomly interleaved with 50% samples from
each task (blue squares). b-e) Optimal replay strategy for different values of γ = 0.1, 0.3, 0.6, 0.9.
Parameters: K=T =2 and η=10.

practice, the optimal learning rate curve “jumps” between these two curves according to the task
selected at a given training time. performance. Fig. 9 of Appendix C shows that the joint optimiza-
tion of learning rate and task selection outperforms all other protocols, including exponential and
power-law learning rate schedules combined with interleaved replay.

Multi-task learning from scratch. We also consider a multi-task setting (see Fig. 5) where both
tasks must be learned from scratch within a fixed number of steps, corresponding to a total training
time αF . We first consider sequential learning, i.e., training only on task 1 for α < αF /2, then
only on task 2, or vice versa. As shown in Fig. 5a) sequential learning leads to catastrophic forget-
ting, with the worst performance observed at intermediate task similarity. In contrast, a randomly
interleaved strategy, where examples from both tasks are presented in equal proportion but in ran-
dom order, shows significant improvement. This approach can exploit task similarity, leading to a
monotonic decrease in average loss as γ increases. The optimal strategy, displayed in Fig. 5b-e)
for various values of γ, follows a structured interleaved protocol that further enhances performance.
Contrary to the continual learning framework, the optimal structure gives only marginal gain over the
plain interleaved strategy. This observation aligns with our pseudo-optimal strategy, which suggests
employing interleaved replay once performance on both tasks becomes comparable.

3.2 EXPERIMENTS ON REAL DATA

We consider the experimental framework established in Ramasesh et al. (2020); Lee et al. (2022)
for the study of task similarity in relation to catastrophic forgetting. We use the Fashion-MNIST
dataset (Xiao et al., 2017) to generate upstream and downstream tasks. The upstream dataset—
D1 = {xxx(1)

i , y
(1)
i }i—consists in a pair of classes from the standard dataset. The downstream dataset

is generated by a linear interpolation of the upstream dataset with a second auxiliary dataset—
D̃ = {x̃xxi, ỹi}i—containing a new pair of classes,

D2 = {xxx(2)
i , y

(2)
i }i = {γxxx(1)

i + (1− γ)x̃xxi, γy
(1)
i + (1− γ)ỹi}i, (12)

where the parameter γ controls the task similarity. We then train a standard two-layer feedforward
ReLU neural network on the two datasets using online SGD on a squared error loss. We consider a
dynamical multi-head architecture (Zhou et al., 2012; Rusu et al., 2016) where the readout weights
are changed switching from one task to another, but the hidden layer is shared. During training, we
apply the three strategies discussed in the previous sections: a no-replay strategy, a strategy with
interleaved replay, and a “pseudo-optimal” strategy. Recall that the latter is inspired by the optimal
protocol derived in the previous section. It consists of an initial phase of training exclusively on the
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new task until performance on both tasks becomes comparable, followed by a phase of interleaved
replay. Crucially, this protocol can be easily implemented in practice, as it only requires an estimate
of the generalisation error on the two tasks, which can be obtained in real-world settings.

0 10000 20000
Step

10 3

10 2

10 1

Lo
ss

No Replay
task 1
task 2

0 10000 20000
Step

Interleaved

0 10000 20000
Step

Pseudo-Optimal

0 10000 20000
Step

Average loss

15k 20k

No Replay
Interleaved
Pseudo-Optimal

1.5
1.7
2.0

                             [1e-3]

Figure 6: Training dynamics. Training curves on the modified fashion MNIST task at similarity
γ = 0.5. The network is trained for 10.000 steps on the first task before switching to the second task
and being trained for additional 10.000 steps. The results are obtained from 100 realisations of the
problem. The first three panels show the test loss on task 1 (solid orange), task 2 (dashed green), and
their average (dotted black) for three training strategies, from left to right: no-replay, interleaved,
and pseudo-optimal. The rightmost panel shows the average loss over the entire training.

Fig. 6 shows the training loss under the different training protocols for γ = 0.5. While the no-replay
strategy appears to be successful for small downstream datasets (i.e., a few training steps in the
online framework) in the longer run it leads to strong forgetting and high average loss. This behavior
is intuitive: for small datasets, the initial loss on the new task is high, leading to a substantial decrease
in loss early on, which temporarily outweighs the decline in performance on the previous task. The
interleaved is beneficial in the long run but largely slows down learning of the new task. Overall, the
pseudo-optimal protocol identified in Sec. 3.1 shows a better performance over the entire trajectory.
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Figure 7: Average loss comparison. The figure focuses on the average loss and shows the final
loss achieved by the three strategies as we increase the size of task 2 (from left to right: 500, 1.000,
2.000, 4.000, and 8.000 samples) while task 1 has always 10.000 samples. Individual panels show
the performance of the three strategies as we span the value of γ form 0.05 to 0.95.

This result is not limited to the specific value of γ. Fig. 7 shows the average final loss as a function
of γ. From left to right, different panels correspond to an increasing number of available samples
for the downstream task, comparable to αF in the theoretical model. For small downstream tasks,
the no-replay strategy is optimal, as shown in the second and third panels. As the size of the down-
stream task increases, the interleaved strategy approaches optimal performance while the no-replay
becomes suboptimal. The pseudo-optimal strategy combines the advantages of both approaches, in-
terpolating between no-replay and interleaved strategies to automatically adapt to the computational
budget. This results in the best overall performance across regimes. We confirm this observation
with additional experiments on CIFAR10 in Appendix C.2. Notably, despite the differences be-
tween the synthetic and real settings—such as data structure—the pseudo-optimal strategy remains
effective on real-world data, demonstrating its robustness and broad applicability.
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4 DISCUSSION

Conclusion. In this work, we introduce a systematic approach for identifying and interpreting opti-
mal task-selection strategies in synthetic learning settings. We consider a teacher-student scenario as
a prototypical continual learning problem to achieve analytic understanding of supervised multi-task
learning. We incorporate prior results on exact ODEs for high-dimensional online SGD dynamics
into a control-theory framework that allows us to derive exact equations for the optimal protocols.
Our theory reveals that optimal task-selection protocols are typically highly structured—alternating
between focused learning and interleaved replay phases—and display a nontrivial interplay with
task similarity. We also identify highly structured optimal learning rate schedules that synchronise
with optimal task-selection to enhance overall performance. Finally, leveraging insights from the
synthetic setting, we extract a pseudo-optimal strategy applicable to real tasks.

Limitations and Perspectives. This work takes a first step toward understanding the theory behind
optimal training protocols for neural networks. In the following, we discuss current limitations and
outline promising directions for future research. First, Pontryagin’s maximum principle provides
a necessary condition for optimality but does not guarantee a global optimum. Nevertheless, the
strategies derived from this approach in the settings under consideration perform significantly better
than previously proposed heuristics. Additionally, Pontryagin’s principle does not easily extend to
stochastic problems. This limitation is overcome in the high-dimensional limit where concentration
results provide deterministic dynamical equations. For simplicity, we focus on i.i.d. Gaussian inputs,
but our analysis can be extended to more structured data models (Goldt et al., 2020; Loureiro et al.,
2021; Adomaityte et al., 2023) to study how input distribution affects task selection. In particular,
we do not model the relative task difficulty—an important extension that naturally connects to the
theory of curriculum learning (Weinshall & Amir, 2020; Saglietti et al., 2022; Cornacchia & Mossel,
2023; Abbe et al., 2023). Furthermore, it would be interesting to go beyond the study of online
dynamics to understand the impact of memorisation in batch learning settings (Sagawa et al., 2020).
Existing results in the spurious correlations (Ye et al., 2021) and fairness (Ganesh et al., 2023)
literature suggest a strong dependence of the classifier’s bias on the presentation order in batch
learning. Our method can be applied to mean-field models—like (Mannelli et al., 2024; Jain et al.,
2024)—to theoretically investigate this phenomenon. An interesting extension of our work involves
applying recently-developed statistical physics methods to the study of deeper networks and more
complex learning architectures (Bordelon & Pehlevan, 2022b;a; Rende et al., 2024; Tiberi et al.,
2024). Another interesting direction concerns finding optimal protocols for shaping, where task
order significantly impacts both animal learning and neural networks (Skinner, 1938; Tong et al.,
2023; Lee et al., 2024).

REPRODUCIBILITY STATEMENT

The code to reproduce the numerical experiments is available in the supplementary material.

REFERENCES

Emmanuel Abbe, Elisabetta Cornacchia, and Aryo Lotfi. Provable advantage of curriculum learning
on parity targets with mixed inputs. Advances in Neural Information Processing Systems, 36:
24291–24321, 2023.

Urte Adomaityte, Gabriele Sicuro, and Pierpaolo Vivo. Classification of superstatistical features in
high dimensions. In 2023 Conference on Neural Information Procecessing Systems, 2023.

Jonathan Baxter. A model of inductive bias learning. Journal of artificial intelligence research, 12:
149–198, 2000.

John Bechhoefer. Control theory for physicists. Cambridge University Press, 2021.

Michael Biehl and Holm Schwarze. Learning by on-line gradient descent. Journal of Physics A:
Mathematical and general, 28(3):643, 1995.

Blake Bordelon and Cengiz Pehlevan. The influence of learning rule on representation dynamics in
wide neural networks. In The Eleventh International Conference on Learning Representations,
2022a.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Blake Bordelon and Cengiz Pehlevan. Self-consistent dynamical field theory of kernel evolution
in wide neural networks. Advances in Neural Information Processing Systems, 35:32240–32256,
2022b.

Rodrigo Carrasco-Davis, Javier Ması́s, and Andrew M Saxe. Meta-learning strategies through value
maximization in neural networks. arXiv preprint arXiv:2310.19919, 2023.

R Caruana. Multitask learning: A knowledge-based source of inductive bias. In Proceedings of the
Tenth International Conference on Machine Learning, pp. 41–48. Citeseer, 1993.

Rich Caruana. Learning many related tasks at the same time with backpropagation. Advances in
neural information processing systems, 7, 1994a.

Rich Caruana. Multitask learning. Machine learning, 28:41–75, 1997.

Richard A Caruana. Multitask connectionist learning. In Proceedings of the 1993 connectionist
models summer school, pp. 372–379. Psychology Press, 1994b.

Xinyi Chen and Elad Hazan. Online control for meta-optimization. Advances in Neural Information
Processing Systems, 36, 2024.

Lenaic Chizat and Francis Bach. On the global convergence of gradient descent for over-
parameterized models using optimal transport. Advances in neural information processing sys-
tems, 31, 2018.

Elisabetta Cornacchia and Elchanan Mossel. A mathematical model for curriculum learning for
parities. In International Conference on Machine Learning, pp. 6402–6423. PMLR, 2023.

Matthias De Lange, Rahaf Aljundi, Marc Masana, Sarah Parisot, Xu Jia, Aleš Leonardis, Gregory
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A DETAILS ON THE THEORETICAL DERIVATIONS

In this appendix, we provide detailed derivations of the equations in Sec. 2 of the main text. In the
interest of completeness, we also report the derivation of the ODEs describing online SGD dynamics
and the generalisation error as a function of the order parameters, first derived in (Lee et al., 2021).
We remind that inputs are N−dimensional vectors x ∈ RN with independent identically distributed
(i.i.d.) standard Gaussian entries xi ∼ N (0, 1), while the labels are generated by single-layer teacher
networks: y(t) = g∗(x ·w(t)

∗ /
√
N), t = 1, . . . , T , with a different teacher for each task. The student

is a one-hidden layer network that outputs the prediction:

ŷ(t) =

K∑
k=1

v
(t)
k g

(
x ·wk√

N

)
. (13)

In the main text, we focus on the case K = T , where the student has, in principle, the capacity to
perfectly solve the problem and represent all teachers. Specifically, there exists a configuration of
the student’s parameters that achieves perfect recovery. This configuration corresponds to aligning
each of the student’s hidden neurons with a specific teacher/task. Explicitly, this configuration is
given by wk = w

(k)
∗ and v

(t)
k = δk,t, where δk,t denotes the Kronecker delta. However, our theory

remains valid for arbitrary K and T .

We focus on the online (on one-pass) setting, so that at each training step the student network is
presented with a fresh example xµ, µ = 1, . . . , P , and P/N ∼ ON (1). The weights of the student
are updated through gradient descent on 1

2 (ŷ
(t) − y(t))2 following the task-selection protocol tc:

wµ+1
k = wµ

k − ηµ∆(tc)µ v
(tc)µ
k g′ (λµ

k)
xµ

√
N

,

v
(t)µ+1
k = v

(t)µ
k − ηµ

N
∆(t)µ g(λµ

k)δt,tc ,

∆(t)µ := ŷ(t)µ − y(t)µ =

K∑
k=1

v
(t)
k g(λµ

k)− g∗(λ
(t)µ
∗ ) ,

(14)

where ηµ denotes the (possibly time-dependent) learning rate and we have rescaled it by N in
the dynamics of the readout weights for future convenience. We have defined the preactivations,
a.k.a. local fields,

λµ
k :=

xµ ·wµ
k√

N
, λ

(t)µ
∗ :=

xµ ·w(t)
∗√

N
. (15)

Notice that, due to the online-learning setup, at each training step the input x is independent of the
weights. Therefore, due to the Gaussianity of the inputs, the local fields are also jointly Gaussian
with zero mean and second moments given by the overlaps:

Mkt := Ex

[
λkλ

(t)
∗

]
=

wk ·w(t)
∗

N
,

Qkh := Ex [λkλh] =
wk ·wh

N
,

Stt′ := Ex

[
λ
(t)
∗ λ

(t′)
∗

]
=

w
(t′)
∗ ·w(t)

∗

N
.

(16)
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A.1 GENERALISATION ERROR AS A FUNCTION OF THE ORDER PARAMETERS

We can write the generalisation error (Eq. 2 of the main text) as an average over the local fields:

εt (W ,V ,W∗) =
1

2

∑
k,h

v
(t)
k v

(t)
h Eλ,λ∗ [g(λk)g(λh)] +

1

2
Eλ,λ∗

[
g∗(λ

(t)
∗ )2

]
−
∑
k

v
(t)
k Eλ,λ∗

[
g(λk)g∗(λ

(t)
∗ )
]
.

(17)

where the expectation is computed over the multivariate Gaussian distribution

P (λ,λ∗) =
1√

(2π)K+T |C|
exp

(
−1

2
(λ,λ∗)

⊤C−1(λ,λ∗)

)
,

C =

(
Q M

M⊤ S

)
.

(18)

From now on, we adopt the unified notation

I2(β, ρ) := Eλ,λ∗ [gβ(λβ)gρ(λρ)] , (19)

where β, ρ can refer both to the indices of the student weights k, h or the tasks t, t′. We can then
rewrite the generalisation error as

εt (W ,V ,W∗) =
1

2

∑
k,h

v
(t)
k v

(t)
h I2(k, h) +

1

2
I2(t, t)−

∑
k

v
(t)
k I2(k, t) . (20)

In all the results presented in Sec. 3, we consider g(z) = g∗(z) = erf
(
z/

√
2
)
. In this case, there is

an analytic expression for the integral I2 (Saad & Solla, 1995a):

I2(β, ρ) =
2

π
arcsin

qβρ√
1 + qββ

√
1 + qρρ

, (21)

and we use the symbol q to denote generically an overlap from Eq. 16, according to the choice of
indices β, ρ, e.g., qkh = Qkh, qkt = Mkt, and qttc = Sttc . In this special case, the generalisation
error can be written explicitly as a function of the overlaps

εt (W ,V ,W∗) =
1

2π

∑
k,h

v
(t)
k v

(t)
h arcsin

Qkh√
1 +Qkk

√
1 +Qhh

+
1

2π
arcsin

Stt

1 + Stt

− 1

π

∑
k

v
(t)
k arcsin

Mkt√
1 +Qkk

√
1 + Stt

.

(22)

A.2 ORDINARY DIFFERENTIAL EQUATIONS FOR THE FORWARD TRAINING DYNAMICS

Given that the generalisation error depends only on the overlaps, in order to characterise the learning
curves we need to compute the equations of motion for the overlaps from the SGD dynamics of the
weights given in Eq. 14. The order parameter Stt′ associated to the teachers is constant in time. We
obtain an ODE for Mkt by multiplying both sides of the first of Eq. 14 by w

(t)
∗ and dividing by N :

wµ+1
k ·w(t)

∗

N
−

wµ
k ·w(t)

∗

N
= −ηµ

N
∆(tc)µv

(tc)µ
k g′(λµ

k)λ
(t)µ
∗ , (23)

where we stress the difference between tc, the task selected for training at step µ, and t, the task
for which we compute the overlap. We define a “training time” α = µ/N and take the infinite-
dimensional limit N → ∞. The parameter α becomes continuous and Mkt concentrates to the
solution of the following ODE:

dMkt

dα
= −ηv

(tc)
k Eλ,λ∗

[
∆(tc)g′(λk)λ

(t)
∗

]
:= fM ,kt , (24)
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where the expectation is computed over the distribution in Eq. 18. The ODE for Qkh is obtained
similarly from Eq. 14:

wµ+1
k ·wµ+1

h

N
−

wµ
k ·wµ

h

N
= −ηµ

N
∆(tc)µv

(tc)µ
k g′(λµ

k)λ
µ
h − ηµ

N
∆(tc)µv

(tc)µ
h g′(λµ

h)λ
µ
k

+ (ηµ)2
(
∆(tc)µ

)2
v
(tc)µ
k v

(tc)µ
h g′(λµ

k)g
′(λµ

h)
x · x
N

.

(25)

In the infinite-dimensional limit, we find

dQkh

dα
= −ηv

(tc)
k Eλ,λ∗

[
∆(tc)g′(λµ

k)λ
µ
h

]
− ηv

(tc)
h Eλ,λ∗

[
∆(tc)g′(λµ

h)λ
µ
k

]
(26)

+ η2v
(tc)
k v

(tc)
h Eλ,λ∗

[(
∆(tc)

)2
g′(λk)g

′(λh)

]
:= fQ,kh . (27)

Finally, taking the infinite dimensional limit of the second Eq. 14, we find the ODE for the readout:

dv
(t)
k

dα
= −η Eλ,λ∗

[
∆(t)g(λk)

]
δt,tc := fV ,tk . (28)

It is useful to write this system of ODEs in a more compact form. With the shorthand notation
Q = (vec(Q), vec(M), vec(V ))

⊤, fQ = (vec(fQ), vec(fM ), vec(fV ))
⊤, we can write

dQ(α)

dα
= fQ (Q(α),u(α)) , α ∈ (0, αF ] . (29)

The initial condition for Q(0) is chosen to reproduce the random initialisation of the SGD algo-
rithm. In particular, the initial first-layer weights and readout weights are drawn i.i.d. from a normal
distribution with variances of 10−3 and 10−2, respectively. A thorough analysis of the validity of
this ODE description is provided in Veiga et al. (2022), where the authors study the crossover be-
tween narrow and infinitely wide networks, clarifying the connection with the so-called mean-field
or hydrodynamic regime (Mei et al., 2018; Chizat & Bach, 2018; Rotskoff & Vanden-Eijnden, 2022).

It is useful to write explicit expressions for the integrals involved in fQ (Lee et al., 2021). First,
expanding the terms in ∆(t), we can write

fQ,kh = −ηv
(tc)
k

[
K∑

n=1

v(tc)n I3(n, k, h)− I3(tc, k, h)

]

− ηv
(tc)
h

[
K∑

n=1

v(tc)n I3(n, h, k)− I3(tc, h, k)

]

+ η2v
(tc)
k v

(tc)
h

[
K∑

n,m=1

v(tc)n v(tc)m I4(n,m, k, h) + I4(tc, tc, k, h)

−2

K∑
n=1

v(tc)n I4(n, tc, k, h)

]
, (30)

fM ,kt = −ηv
(tc)
k

K∑
n=1

v(tc)n I3(n, k, t) + ηv
(tc)
k I3(tc, k, t) , (31)

fV ,tk = η

[
−

K∑
n=1

v(tc)n I2(k, n) + I2(k, tc)

]
δt,tc . (32)

Similarly as in Eq. 19, we adopt the unified notation for the integrals

I3(β, ρ, ζ) := Eλ,λ∗

[
λβg

′
ρ(λρ)g(λζ)

]
,

I4(β, ρ, ζ, τ) := Eλ,λ∗

[
gβ(λβ)gρ(λρ)g

′
ζ(λζ)g

′
τ (λτ )

]
,

(33)
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where β, ρ, ζ, τ can refer both to the indices of the student weights k, h, n,m or the tasks t, tc. In
the special case g(z) = g∗(z) = erf(z/

√
2), the integrals have explicit expressions as a function of

the overlaps

I3(β, ρ, ζ) =
2qρζ(1 + qββ)− 2qβρqβζ

π
√
Λ3(1 + qββ)

,

I4(β, ρ, ζ, τ) =
4

π2
√
Λ4

arcsin
Λ0√
Λ1Λ2

,

(34)

the symbol q denotes generically an overlap from Eq. 16, and

Λ0 = Λ4 qβρ − qβτ qρτ (1 + qζζ)− qβζ qρζ (1 + qττ ) + qζτ qβζ qρτ + qζτ qρζ qβτ ,

Λ1 = Λ4 (1 + qββ)− q2βτ (1 + qζζ)− q2βζ (1 + qττ ) + 2qζτqβζ qβτ ,

Λ2 = Λ4 (1 + qρρ)− q2ρτ (1 + qζζ)− q2ρζ (1 + qττ ) + 2qζτqρζqρτ ,

Λ3 = (1 + qββ)(1 + qρρ)− q2βρ ,

Λ4 = (1 + qζζ) (1 + qττ )− q2ζτ .

(35)

A.3 INFORMAL DERIVATION OF PONTRYAGIN MAXIMUM PRINCIPLE

Let us consider the augmented cost functional

F [Q, Q̂,u] = h (Q(αF )) +

∫ αF

0

dα Q̂(α)⊤
[
−dQ(α)

dα
+ fQ (Q(α),u(α))

]
, (36)

where the conjugate variables Q̂(α) act as Lagrange multipliers, enforcing the dynamics at time α.
Setting to zero variations with respect to Q̂(α) results in the forward dynamics

δF [Q, Q̂,u]

δQ̂(α)
= 0 ⇒ dQ(α)

dα
= fQ (Q(α),u(α)) . (37)

Integrating by parts, we find

F [Q, Q̂,u] = h (Q(αF )) +

∫ αF

0

dα Q̂(α)⊤fQ (Q(α),u(α)) +

∫ αF

0

dα
dQ̂(α)

dα

⊤

Q(α) (38)

− Q̂(αF )Q(αF ) + Q̂(0)Q(0) .

Setting to zero variations with respect to Q(α) for 0 < α < αF , we find the backward dynamics

−dQ̂(α)⊤

dα
= Q̂(α)⊤∇QfQ (Q(α),u(α)) , (39)

while for α = αF we get the final condition

Q̂(αF ) = ∇Qh(Q(αF )) . (40)

Note that we do not consider variations with respect to Q(0) as this quantity is fixed by the initial
condition Q(0) = Q0. Finally, minimizing the cost functional with respect to the control u, we get
the optimality condition in Eq. 10 of the main text.

A.4 OPTIMAL CONTROL FRAMEWORK

To determine the optimal control, we iterate Eqs. 5, 8, and 10 of the main text until convergence
(Bechhoefer, 2021). Let us consider first the case where the control is the current task tc(α), such
that tc(α) = t if the network is trained on task t ∈ {1 , . . . , T} at training time α. For simplicity, we
focus on the case T = 2, but the following discussion is easily generalised to any T . In particular,
since here u(α) = tc(α) the evolution equation 5 can be written as

dQ(α)

dα
= fQ (Q(α), tc(α)) , Q(0) = Q0 . (41)

18
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Similarly, the backward dynamics reads

−dQ̂(α)⊤

dα
= Q̂(α)⊤∇QfQ (Q(α), tc(α)) , (42)

with final condition

Q̂(αF ) =
1

2
∇Qε1(Q(αF )) +

1

2
∇Qε2(Q(αF )) . (43)

The optimality equation 10 yields

t∗c(α) = argmin
tc∈{1,2}

{
Q̂(α)⊤fQ (Q(α), tc(α) = tc)

}
. (44)

Therefore, we find the explicit formula for the optimal task protocol

t∗c(α) =

{
1 if Q̂(α)⊤ [fQ (Q(α), tc(α) = 2)− fQ (Q(α), tc(α) = 1)] > 0

2 otherwise.
(45)

Then, we start from a guess for the control variable tc(α). We integrate Eq. 41 forward, obtaining
the trajectory Q(α) for α ∈ (0, αF ). Then, we integrate the backward equation 42, starting from the
final condition 43, obtaining the trajectory Q̂(α) for α ∈ (0, αF ). Then, the control variable can be
updated using Eq. 45 and used in the next iteration of the algorithm. These equations 41, 42, and 45
are iterated until convergence.

We next consider the joint optimisation of the learning rate schedule η(α) and the task protocol
tc(α). The optimality condition 10 can be written as

(t∗c(α), η(α)) = argmin
tc∈{1,2},η∈R+

{
Q̂(α)⊤fQ (Q(α), (tc(α), η(α)) = (tc, η))

}
. (46)

Crucially, the function Q̂⊤fQ(Q, (tc, η)) turns out to be quadratic in η. Explicitly,

Q̂⊤fQ(Q, (tc, η)) = aη2 + bη , (47)

where

a =

K∑
k,h=1

Q̂khv
(tc)
k v

(tc)
h

[
K∑

n,m=1

v(tc)n v(tc)m I4(n,m, k, h) + I4(tc, tc, k, h) (48)

−2

K∑
n=1

v(tc)n I4(n, tc, k, h)

]
,

and

b = −
K∑

k,h=1

Q̂kh

{
v
(tc)
k

[
K∑

n=1

v(tc)n I3(n, k, h)− I3(tc, k, h)

]
(49)

+ v
(tc)
h

[
K∑

n=1

v(tc)n I3(n, h, k)− I3(tc, h, k)

]}

−
K∑

k=1

T∑
t=1

M̂kt

[
v
(tc)
k

K∑
n=1

v(tc)n I3(n, k, t)− v
(tc)
k I3(tc, k, t)

]

+

K∑
k=1

v̂
(tc)
k

[
−

K∑
n=1

v(tc)n I2(k, n) + I2(k, tc)

]
.

Performing the minimization over η first, we obtain

η∗(α, tc) = − b

2a
. (50)
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The minimisation over tc yields

t∗c(α) =

{
1 if Q̂(α)⊤ [fQ (Q(α), (1, η∗(α, 1)))− fQ (Q(α), (2, η∗(α, 2)))] > 0

2 otherwise.
(51)

and hence
η∗(α) = η∗(α, t∗c(α)) . (52)

Interestingly, we observe that the learning rate schedule has a different functional form depending
on the current task tc. This can be seen in Fig. 4 where the learning rate switches between two
different schedules depending on the current task tc.

B READOUT LAYER CONVERGENCE PROPERTIES

In this appendix, we examine the asymptotic behaviour of the readout layer weights during the
late stages of training. In particular, we are interested in the convergence rate as a function of
the task similarity γ. As in the main text, we consider the case K = T = 2. From the overlap
trajectories in Fig. 8 for γ > 0.3, we observe that the cosine similarity quickly approaches unity,
i.e., |Mkt|/

√
Qkk ≈ δkt, which corresponds to perfect feature recovery. Therefore, the decrease

in performance for γ > 0.3 seen in Fig. 3 must be attributed to the dynamics of the second layer.
Indeed, in Fig. 8, we observe a slowdown in the readout dynamics as γ → 1.

Assuming perfect convergence of the feature layer to w1 = w
(1)
∗ and w2 = w

(2)
∗ , we consider the

dynamics of the readout layer while training on task t = 1. We expect the corresponding readout
layer to converge to the specialised configuration v(1) = (v

(1)
1 , v

(1)
2 ) = (1, 0)⊤ and we would like

to compute the convergence rate as a function of γ. The dynamics of the readout layer reads

dv
(1)
1

dα
= η

[
1

3
(1− v

(1)
1 )− 2

π
arcsin

(γ
2

)
v
(1)
2

]
, (53)

dv
(1)
2

dα
= η

[
2

π
arcsin

(γ
2

)
(1− v

(1)
1 )− 1

3
v
(1)
2

]
,

which can be rewritten as

d

dα

(
1− v

(1)
1

v
(1)
2

)
= ηA

(
1− v

(1)
1

v
(1)
2

)
, (54)

where

A =

[
−1/3 a
a −1/3

]
, (55)

and a = 2arcsin (γ/2) /π. Note that a < 1/3 for 0 < γ < 1, hence A is negative definite, implying
convergence to v(1) = (1, 0)⊤. The rate of convergence is determined by the smallest eigenvalue
(in absolute value): a− 1/3. The associated convergence timescale is therefore

αconv =
3π

η(π − 6 arcsin (γ/2))
, (56)

as anticipated in Eq. 11 of the main text.

C SUPPLEMENTARY FIGURES

C.1 ADDITIONAL RESULTS IN THE SYNTHETIC FRAMEWORK

Fig. 8 describes the dynamics of the optimal replay strategy for different values of task similarity in
the same setting as Fig. 3 of the main text. In particular, the upper panel displays the evolution of
the magnitude of the readout weights |v(t)k |, while the lower panel shows the trajectory of the cosine
similarity |Mkt|/

√
Qkk.
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| v
(t) k

|
| M

kt
|

Q
kk

￼  time step / input dimensionα = ￼α ￼α ￼α

γ = 0.1 γ = 0.3 γ = 0.6 γ = 0.9

Figure 8: Overlap dynamics with optimal replay. We plot the absolute value of the task-dependent
readout weights |v(t)k | (upper panel) and the cosine similarity |Mkt|/

√
Qkk as a function of the

training time α. Different columns refer to different choices of task similarity γ = 0.1, 0.3, 0.6, 0.9.

Fig. 9 compares the values of the loss at the end of training, averaged on both tasks, for different
task-selection strategies. In particular, it highlights the performance gap between the four replay
strategies at constant learning rate considered in the main text (no-replay, interleaved, optimal and
pseudo-optimal) and the strategy that simultaneously optimise over task-selection and learning rate.
Additionally, we consider exponential and power law learning rate schedules, in combination with
interleaved replay protocol. For each value of task similarity γ, we optimize over the schedule
parameters via grid search. We still find a performance gap with respect to the optimal strategy,
which highlights the relevance of the joint optimization of training protocols.

Fig. 10 illustrates a continual learning setting with T = 3 tasks. The student is a two-layer neural
networks with K = 3 hidden units, and a different readout is trained for each task. In the initial
training phase, the student is trained on task 1 up to time α = 1000, when the loss reaches ∼ 10−6.
In the second phase, the student must learn tasks 2 and 3 without forgetting task 1. Panel a) shows
the losses of the optimal strategy as a function of time for the three tasks and their average, during
the second training phase. The optimal strategy is represented by a colour bar in the upper panel.
It consists in an initial phase where only the new tasks 2 and 3 are presented to the network, and a
second phase where task 1 is replayed. Despite its complicated structure, it shares some similarities
with the pseudo-optimal strategy described in the main text. Specifically, task 1 is replayed only
when its loss is comparable to the losses on the other two tasks. Panel b) shows the average loss as
a function of time, comparing different task-selection protocols. In particular, we consider

• interleaved protocols, where two or all three tasks are alternated during training;

• sequential protocols, where tasks are presented in distinct blocks without being replayed;

• a shuffled protocol, that preserves the relative fraction of samples from each tasks obtained
from the optimal strategy but presents them in a randomised order.

The final performance of the optimal strategy surpasses all the aforementioned approaches. Notably,
as the number of tasks grows, the number of possible heuristic strategies expands significantly, mak-
ing it difficult to identify effective solutions through intuition alone. This highlights the importance
of a theoretical framework for systematically determining the optimal strategy.

C.2 ADDITIONAL RESULTS ON REAL DATASET

We run additional experiments on real data using the simulation setup detailed in Sec. 3.2. We
consider the CIFAR10 dataset Krizhevsky et al. (2009) and create two classification tasks taking as
task 1 the classes with odd labels and the others as task 2. Fig. 11 shows the results of the training
curve for the two tasks according to the three strategies and the final figure compares the average
loss throughout the training steps. Notice that the observation reported in the controlled Fashion
MNIST experiment are still valid in this scenario.
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Figure 9: Adopting an optimal learning rate schedule leads to major perfomance improvement.
Average loss on both tasks at the end of the second training phase as a function of task similarity γ
under the same setting and parameters as Fig. 3 of the main text. The top four lines correspond to
different strategies at constant learning rate η = 1: no replay (purple crosses), optimal (red dots),
interleaved (blue squares), pseudo-optimal (cyan dashed line). The bottom three curves correspond
to different annealing schemes for the learning rate. Up-facing orange triangles correspond to inter-
leaved replay with power law annealing η(α) = η0(1− α/αf )

β , while down-facing green triangles
indicate exponential annealing η(α) = η0 exp(−α/α0). For both annealing schedules, the scalar
parameters η0, β, and α0 are optimized by grid search for each value of γ. Finally, the brown plus
signs correspond to jointly optimal replay and learning rate schedules (see Fig. 4).
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Figure 10: Optimal replay schedule for T = 3 tasks. The student network has k = 3 hidden units.
In the initial phase, α = [0, 1000] the network is trained on task 1 until convergence (loss is 10−6).
In the second phase α = [1000, 1025], we determine the optimal replay strategy. In both phases
the learning rate is constant η = 1. The tasks are chosen such that the overlaps are S1,2 = 0.5,
S2,3 = 0.5, and S1,3 = 0. Panel a) shows the optimal task protocol and the evolution of the loss
over the three tasks. The result is a complicated replay strategy, though it shares some similarities
with the pseudo-optimal strategy described in the main text. Specifically, task 1 is replayed only
when its loss is comparable to the losses on the other two tasks. Panel b) compares the optimal
strategy with different heuristics, all at η = 1. “Interleaved (1 − 2 − 3)” is an interleaved strategy
containing all tasks in equal proportion. “Interleaved (2 − 3)” is an interleaved strategy containing
tasks (2 − 3) in equal proportion. “Shuffled” contains the same task proportions as in the optimal
strategy, but in random order (showing that the structure of the optimal replay strategy matters).
“Sequential (2− 3)” corresponds to the sequential strategy with t = 2 in the first half and t = 3 in
the second. Similarly for “Sequential (3− 2)”. “Sequential (3− 2− 1)” has t = 3 in the first third
of the replay sequence, then t = 2 in the second third and t = 1 in the last third.

As already observed in the main text, the performance of the Pseudo-Optimal learning strategies
appears to interpolate between No-Replay and Interleaved. In Fig. 12 we highlight the differences
between Pseudo-Optimal and the alternative strategies. We see a up to 3% improvement in perfor-
mance during learning. Contrarily to the main text, we observe also a region where Pseudo-Optimal
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Figure 11: Continual learning on CIFAR10. Training curves of No-Replay, Interleaved, and
Pseudo-Optimal learning strategies (from left to right) on CIFAR10. The two tasks are obtained
partitioning the dataset according to the parity of the labels and training using online stochastic gra-
dient descent. The final panel (rightmost) shows the average loss for the three strategies. The inset
zooms on the final stage of learning.

appears sub-performing with respect to the Interleaved strategies, however this is limited to a less
than 0.5% decrease in loss.
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Figure 12: Learning difference on CIFAR10. This figure complement Fig. 11, highlighting the
differences between the strategies.
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