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Abstract

Model merging has emerged as a lightweight alternative to ensembling, combin-
ing multiple fine-tuned models into a single set of parameters without additional
training. However, existing methods rarely match the accuracy of individually
fine-tuned models. We introduce MASS (MoErging through Adaptive Subspace
Selection), a training-free approach that narrows this gap while maintaining near
state-of-the-art performance across tasks. MASS leverages low-rank decomposi-
tions of task-specific updates, storing only the most salient singular components
and merging them into a shared model. At inference, a data-free, non-parametric
router selects the most relevant subspace (or combination of subspaces) based on
intermediate features. This adds only a two-pass inference overhead and a ∼ 2×
storage cost relative to a single pretrained model, regardless of the number of tasks.
Evaluated on CLIP-based image classification with ViT-B-16, ViT-B-32, and
ViT-L-14 across 8, 14, and 20 tasks, MASS achieves up to∼ 98% of the accuracy
of separate fine-tuned models, establishing a new state-of-the-art while remaining
far more storage-efficient than ensembling.

1 Introduction

Early deep learning models were trained from scratch, but the rise of large pretrained backbones
shifted the focus to fine-tuning for specific tasks Devlin et al. [2019], Tan et al. [2018], Yosinski
et al. [2014], Hu et al. [2022], Radford et al. [2021]. Today, the abundance of publicly available
fine-tuned models1 has sparked interest in no-tuning methods that exploit both the foundation model
and existing fine-tuned endpoints.

Among these, model merging [Ilharco et al., 2023, Akiba et al., 2025, Yadav et al., 2023, Yu et al.,
2024, Ainsworth et al., 2023, Crisostomi et al., 2025, Singh and Jaggi, 2020, Gargiulo et al., 2025,
Zhou et al., 2024, Daheim et al.] offers a lightweight, storage-efficient alternative to ensembling by
combining multiple fine-tuned models into a single parameter set. Early approaches such as Task
Arithmetic [Ilharco et al., 2023] simply summed task vectors (fine-tuned minus pretrained weights),
while later methods [Gargiulo et al., 2025, Daniel et al., 2025] preserved layer-wise structure for
better accuracy. In particular, Task Singular Vectors (TSV) [Gargiulo et al., 2025] leveraged the
low-rank structure of task updates, retaining most fine-tuned performance with only a few singular
vectors per task.

However, current structured merging methods remain static: their aggregation weights do not adapt
to the input, leading to suboptimal performance and significant accuracy drops for certain tasks.

1https://huggingface.co/docs/hub/models-the-hub
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Figure 1: (left) Fine-tuning creates separate mod-
els for tasks A, B, and C. (middle) Model merging
combines their task vectors {A,B,C} using a fixed
aggregation. (right) MASS stores θpre and orthog-
onalized task singular vectors V ⊤

⊥ , and adaptively
merges them at test time via a routing function
g(x) that selects task subspaces based on input fea-
tures.

To address this, we introduce MASS (Mo-
Erging through Adaptive Subspace Selection),
which integrates the adaptivity of Mixture-of-
Experts (MoE) [Shazeer et al., 2017, Eigen et al.,
2014, Fedus et al., 2022, Du et al., 2022] with
singular-vector-based merging. MASS dynam-
ically routes inputs to the most relevant task
subspaces (Fig. 1) without requiring task data
or additional tuning. This is a key advantage
in scenarios where only model checkpoints are
available.

We evaluate MASS on ViT-B-32, ViT-B-16,
and ViT-L-14 backbones across 8, 14, and 20
tasks. Our method consistently outperforms
existing merging techniques, recovering up to
95%–98% of the accuracy of individually fine-
tuned models with only a modest overhead
(∼ 2× inference and storage relative to the base
model). In batched settings, MASS reduces accuracy loss to below 1% on most benchmarks.

Our key contributions are:

• Introducing MASS, a singular-vector-based merging method with adaptive input routing.
• Proposing a projection-based, data-free router that requires no additional fine-tuning.
• New state-of-the-art results in multitask merging across models and tasks.

2 Background

In this section, we introduce the key concepts underlying our approach.

Task Vectors Task Arithmetic (TA) [Ilharco et al., 2023] represents each task as a task vector,
i.e., the difference between fine-tuned and pretrained weights. A multitask model for T tasks is
obtained by summing these vectors:

θMT = θpre + α

T∑
i=1

τi , (1)

where θpre are the pretrained weights, α is a scaling factor, and τi = θfti − θpre is the task vector for
task i. Following Gargiulo et al. [2025], we consider this operation layer-wise:

θ
(ℓ)
MT = θ(ℓ)pre + α

T∑
i=1

∆
(ℓ)
i , (2)

where ∆
(ℓ)
i = θ

(ℓ)
fti − θ

(ℓ)
pre is the task-specific weight difference for layer ℓ. For matrix-shaped layers,

∆
(ℓ)
i is referred to as the per-layer task matrix. For brevity, we omit the layer index.

Task Singular Vectors Gargiulo et al. [2025] show that task matrices ∆i exhibit strong low-rank
structure. For each task i, they compute the SVD:

∆i = UiΣiV
⊤
i ,

and truncate it to rank k, keeping the top-k singular vectors and values: Ũi, Ṽi, and Σ̃i. Stacking these
across tasks yields U = [Ũ1 · · · ŨT ] (left TSVs), V = [Ṽ1 · · · ṼT ] (right TSVs), and Σ̃ (block-diagonal
with Σ̃i). The multitask update is then expressed as:

∆̂ = U⊥ΣV
⊤
⊥ , (3)

where U⊥ and V ⊤
⊥ are orthogonalized to reduce inter-task interference. This effectively sums the

top-k rank-one updates per task while ensuring the task subspaces remain distinct (see Alg. 1 in the
Appendix).
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Method
ViT-B-32 ViT-B-16 ViT-L-14

8 tasks 14 tasks 20 tasks 8 tasks 14 tasks 20 tasks 8 tasks 14 tasks 20 tasks

Zeroshot 48.2(53.5) 57.2(63.6) 56.1(62.4) 55.3(59.3) 61.2(66.1) 59.7(64.5) 64.7(68.0) 68.2(72.1) 65.2(68.9)

B
as

e
Finetuned 92.8(1.00) 90.8(1.00) 91.3(1.00) 94.6(1.00) 92.7(1.00) 93.1(1.00) 95.8(1.00) 94.2(1.00) 94.7(1.00)

Fi
xe

d
Weight Averaging 66.3(72.1) 64.3(71.1) 61.0(67.5) 72.2(76.6) 69.4(74.8) 65.3(70.3) 79.5(83.1) 76.7(81.1) 71.6(75.6)

Task Arithmetic Ilharco et al. [2023] 70.7(76.5) 65.3(72.0) 60.5(66.7) 75.4(79.5) 70.5(75.8) 65.7(70.7) 84.9(88.6) 79.4(83.9) 74.0(78.0)

Consensus TA Wang et al. [2024] 75.0(80.8) 70.3(77.3) 65.4(71.9) 79.3(83.8) 74.3(79.9) 69.7(74.9) 86.3(90.0) 82.2(86.9) 79.0(83.2)

TSV-M Gargiulo et al. [2025] 85.8(92.3) 80.0(87.8) 77.0(84.2) 89.0(93.9) 84.5(91.0) 80.5(86.4) 92.9(96.9) 89.1(94.4) 87.7(92.5)

Iso-C Daniel et al. [2025] 86.3(92.9) 80.3(88.1) 75.5(82.5) 90.6(95.6) 84.8(91.1) 79.6(85.4) 94.2(98.3) 89.3(94.5) 87.6(92.2)

Iso-CTS Daniel et al. [2025] 86.2(92.8) 81.7(89.7) 78.1(85.5) 91.1(96.1) 86.4(92.8) 82.4(88.4) 94.7(98.8) 91.0(96.3) 90.1(94.9)

M
oE MASS 90.6(97.6) 86.8(95.5) 84.4(92.5) 93.2(98.5) 90.2(97.3) 85.3(91.9) 94.6(98.7) 91.4(97.0) 90.6(95.7)

Table 1: Average absolute accuracy results on model merging benchmarks; subscript (in parentheses)
is the normalized average accuracy.

3 Approach

Our approach consists of a one-time fixed merging step and an adaptive inference step.

Fixed merging. We first merge task-specific updates using TSV-M Gargiulo et al. [2025] to produce
an encoder θMT capable of separating task subspaces. This step is input-independent and performed
only once.

Adaptive inference. At test time, MASS dynamically routes each input x through four steps:

(i) First pass: forward x through θMT;
(ii) Routing: compute the projection residual of intermediate activations onto each task subspace

and select the lowest-residual tasks;
(iii) Adaptive merge: combine the selected subspaces into ∆ada;
(iv) Second pass: predict with θpre + α∆ada.

Projection-based routing. Unlike existing routers, which require task data or additional training, our
router is entirely data-free. For activations zℓ at a chosen layer, we compute:

ri =
∥∥zℓ − ViV

⊤
i zℓ

∥∥
2
, (4)

where Vi is the matrix of right singular vectors for task i. Tasks with residuals below a threshold η
are selected. To prevent redundant directions from dominating, we discard highly similar subspaces
during fixed merging using a cosine-similarity filter.

Adaptive merging and prediction. The selected subspaces Ω are merged via TSV-M to obtain
θMASS. Each corresponding task head hi produces logits zi, and the head with the highest confidence
determines the final prediction:

(i⋆, c⋆) = argmax
(i,c)∈Ω×{1,...,Ci}

zi[c].

This enables MASS to operate without prior knowledge of the task, adapting its merging and
classification on a per-input basis.

4 Experiments

Models and baselines We run experiments on three CLIP Radford et al. [2021] variants with ViT
Dosovitskiy et al. [2021] encoders: ViT-B-32, ViT-B-16, and ViT-L-14. Baselines include training-
free methods such as weight averaging, Task Arithmetic Ilharco et al. [2023], and Consensus
Merging Wang et al. [2024]. Zero-shot accuracy provides a null reference, while the mean accuracy
of individually fine-tuned models serves as the upper bound. We refer to the Appendix for details on
our benchmark.

MoErging results Tab. 1 shows that MASS sets a new state of the art across all model sizes and task
counts, outperforming both classic methods (Task Arithmetic [Ilharco et al., 2023], Consensus
TA [Wang et al., 2024]) and newer ones (Iso-C, Iso-CTS [Daniel et al., 2025]).
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On the 20-task benchmark, MASS improves absolute accuracy over the fixed TSV-M baseline by
+7.4% (ViT-B-32), +4.8% (ViT-B-16), and +2.9% (ViT-L-14), while retaining a higher fraction
of each model’s fine-tuned performance. Gains are largest on smaller backbones, suggesting that
routing more effectively mitigates task interference when capacity is limited.
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Figure 2: Normalized task accuracies for ViT-B-32, ViT-B-16, and
ViT-L-14 on the 20-task benchmark.

Per-task results (Fig. 2)
show consistent improve-
ments, with accuracy reten-
tion above 80% for nearly
all tasks (even in the 20-task
setting) and above 94% in
the 8-task benchmark.

Under the 8-task bench-
mark on ViT-B-32, MASS
reaches 97.6% normal-
ized accuracy, surpassing
TwinMerging’s 95.3%
despite not assuming oracle
knowledge of the correct head.

Choosing a routing layer We analyze the impact of routing layer choice on task accuracy (Fig. 3
in the Appendix). Both ViT-B-32 and ViT-B-16 achieve peak performance at layer 9, with MLP
layers slightly outperforming attention layers.

Accuracy, however, varies widely by task, with standard deviations up to 40% across layers. As
shown in Fig. 3c, STL10 benefits from earlier layers (ℓ = 3–5), while SUN397 performs best at later
ones (ℓ = 9–11). This suggests that optimal routing layers are task-dependent, motivating future
work on adaptive selection.

MASS ViT-B-32 ViT-B-16

+ 8 tasks 14 tasks 20 tasks 8 tasks 14 tasks 20 tasks

nn 94.5 91.3 91.3 93.5 91.7 86.5

mlp 98.9 98.2 96.4 98.9 98.4 95.0

projPRE 96.2 90.4 76.7 97.9 97.3 81.1

projTSV-M 97.6 95.5 92.5 98.5 97.3 91.9

Table 2: Average normalized accuracy for different routers.

Comparison with other routers Fi-
nally, we compare MASS with two
common routing strategies, namely:

(i) Nearest Neighbor (NN), which
builds a small support set from each
task’s validation data and assigns a
test sample to the nearest embedding;
this requires no extra parameters but
assumes access to and storage of val-
idation data.

(ii) MLP router, which trains an
MLP fθ on validation embeddings to predict task identity; while accurate, this approach relies
on labeled task data, which is often unavailable in practical merging scenarios.

Tab. 2 shows that NN performs well but slightly below MASS, while the MLP achieves the highest
accuracy but with limited applicability due to its data requirement. Our projection-based router (proj)
offers the best balance: starting from TSV-M (projTSV-M) outperforms routing from the pretrained
backbone (projPRE), as the orthogonal subspaces created by TSV-M make residual-based selection
effective without any labels or additional training.

5 Conclusions

In this paper, we introduced MASS, a merging approach that leverages low-rank task updates while
adaptively routing each input to the most relevant subspace. To address the lack of per-task datasets
in real-world scenarios, MASS uses a fully data- and training-free projection-based router.

Experiments show that MASS achieves state-of-the-art results, recovering nearly the full accuracy of
individual task-specific models at a fraction of their combined storage cost. Future work includes
refining the router for finer subspace selection and extending MASS to out-of-distribution scenarios,
where task subspaces could be combined on the fly to tackle unseen tasks.
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Appendix

We include here additional details on our algorithm, as well as some supplementary results referenced
from the main text.

5.1 Results

Benchmark We evaluate on three collections of tasks, containing 8, 14, and 20 tasks respec-
tively. The latter is the most extensive setup considered in Wang et al. [2024], Gargiulo et al.
[2025], Daniel et al. [2025]. The 8-task benchmark, introduced in Ilharco et al. [2023], com-
prises the following datasets: Cars Krause et al. [2013], DTD Cimpoi et al. [2014], EuroSAT Hel-
ber et al. [2019], GTSRB Stallkamp et al. [2011], MNIST Lecun et al. [1998], RESISC45 Cheng
et al. [2017], SUN397 Xiao et al. [2016], and SVHN Netzer et al. [2011]. Moving to 14 tasks,
we add CIFAR100 Krizhevsky and Hinton [2009], STL10 Coates et al. [2011], Flowers102 Nils-
back and Zisserman [2008], OxfordIIITPet Parkhi et al. [2012], PCAM Veeling et al. [2018], and
FER2013 Goodfellow et al. [2013]. The 20-task suite further includes EMNIST Cohen et al. [2017],
CIFAR10 Krizhevsky and Hinton [2009], Food101 Bossard et al. [2014], FashionMNIST Xiao et al.
[2017], RenderedSST2 Socher et al. [2013], and KMNIST Clanuwat et al. [2018]. We quantify results
using both average absolute accuracy and average normalized accuracy.

Per-layer task accuracy Results are shown in Fig. 3; we refer to the main text for a discussion.
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Figure 3: Per-layer task accuracies for ViT-B-32 on the 20-task benchmark. Layers starting with ‘A’
indicate attention layers, while those starting with ‘M’ refer to MLPs.

5.2 Algorithms

The key algorithms implementing our method are reported below; we refer to the main text for a
discussion.

Algorithm 1 Fixed Merging Step

Require: Pretrained model weights θpre, task-specific updates {∆i}Ti=1, user-specified threshold ε
Ensure: Fixed merged model weights θMT

1: Accounting for redundant directions
2: M = {}
3: for i = 1, . . . , T do
4: δi ← vec(∆i)
5: if max{j∈M} sim(δi, δj) < ε then
6: M←M∪ {i}
7: end if
8: end for
9: Merging step using TSV-M Gargiulo et al. [2025] on the {∆i}i∈M

10: for i ∈M do
11: ∆i = Ui Σi V

⊤
i

12: Ũi ← Ui[:,1:k], Σ̃i ← Σi[1:k,1:k], Ṽi ← Vi[:,1:k]

13: end for
14: U ← [Ũ1 | Ũ2 | · · · | ŨT ]

15: Σ← block_diag(Σ̃1, Σ̃2, . . . , Σ̃T )

16: V ← [Ṽ1 | Ṽ2 | · · · | ṼT ]
17: U⊥ ← orthogonalize(U)
18: V⊥ ← orthogonalize(V )

19: ∆̂← U⊥ ΣV ⊤
⊥

20: θMT ← θpre + α ∆̂
21: return θMT
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Algorithm 2 Adaptive Merging Step

Require: Pretrained model weights θpre, task-specific updates {∆i}Ti=1, fixed merged model θMT,
top-k parameter k, threshold η, task-specific classification heads {hi}Ti=1, sample x

Ensure: Predicted class c∗
1: zℓ ← ForwardPass(θMT,x) # first pass
2: for i = 1, . . . , T do
3: ri ← ∥zℓ − Vi V

⊤
i zℓ∥2 # residual as Eq. 4

4: end for
5: w ← softmax(−r)
6: Ω← {i : wi ≥ η} # Select tasks above threshold
7: Ω← TopK(Ω, w, k) # Keep only top-k weighted tasks
8: Merge selected subspaces
9: ∆ada ←

∑
i∈Ω Ui Σi V

⊤
i

10: Compute adaptive model: θMASS ← θpre + α∆ada
11: Classification procedure
12: zL−1 ← ForwardPass(θMASS,x) # Compute shared representation
13: zi ← hi(zL−1) # Evaluate each head
14: (i⋆, c⋆)← argmax

(i,c)∈Ω×{1,...,Ci}
zi[c] # Highest logit across heads

15: return c⋆
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