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Figure 1: OSKAR is a self-supervised multimodal foundation model that learns in the latent space
using a fuse-then-predict strategy. It integrates multiple modalities to capture cross-modal features,
matching latent predictions to targets from modality-specific momentum encoders. This preserves
uni-modal structure while enabling rich cross-modal learning, and finetuning the unified encoder
surpasses specialized models across video, skeleton, and text tasks.

Abstract

We present OSKAR, the first multimodal foundation model based on bootstrapped
latent feature prediction. Unlike generative or contrastive methods, it avoids mem-
orizing unnecessary details (e.g., pixels), and does not require negative pairs, large
memory banks, or hand-crafted augmentations. We propose a novel pretraining
strategy: given masked tokens from multiple modalities, predict a subset of missing
tokens per modality, supervised by momentum-updated uni-modal target encoders.
This design efficiently utilizes the model capacity in learning high-level representa-
tions while retaining modality-specific information. Further, we propose a scalable
design which decouples the compute cost from the number of modalities using
a fixed representative token budget—in both input and target tokens—and intro-
duces a parameter-efficient cross-attention predictor that grounds each prediction
in the full multimodal context. We instantiate OSKAR on video, skeleton, and text
modalities. Extensive experimental results show that OSKAR’s unified pretrained
encoder outperforms models with specialized architectures of similar size in action
recognition (rgb, skeleton, frozen, low-shot) and localization, video-text retrieval,
and video question answering. Project website: https://multimodal-oskar.github.io
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1 Introduction

Human perception is inherently multimodal—we naturally integrate visual, motion, and linguistic cues
to form coherent understanding from partial observations. In computer vision, multimodal models
offer key advantages: (1) they align with human perception by leveraging visual, structural, and
semantic signals; (2) they provide architectural flexibility through unified, reusable representations;
and (3) they enhance robustness by fusing complementary inputs (e.g., RGB + LiDAR). Existing
multimodal methods typically fall into two categories: generative and contrastive. Generative
approaches [6, 60, 7, 36, 42, 26], often based on masked autoencoding [40], focus on low-level
reconstruction, which may waste capacity on irrelevant details. Contrastive methods [34, 83, 3, 55, 88]
align high-level embeddings but rely on modality-specific priors, handcrafted augmentations, and
lack cross-modal predictive reasoning. Therefore, we ask: Is it possible to move beyond inefficient
reconstruction and restrictive contrastive objectives to learn rich cross-modal representations?

To address these challenges, we explore multiple strategies for effectively routing multimodal
information, culminating in OSKAR (Omnimodal Self-supervised Knowledge Abstraction and
Representation), comprising three novel contributions:

(1) A new pretext task: given partial multimodal observations, use cross-modal cues to predict
the latent representations of a subset of the missing parts in each modality. As shown in Fig. 1,
OSKAR fuses visible multimodal tokens but infers the missing token representations in each modality
separately. This strikes a crucial balance between cross-modal fusion and retention of modality-
specific information. Further, by learning in the latent space, the model capacity is efficiently utilized
in learning transferrable high-level representations instead of low-level details. Our approach is
grounded in the predictive coding theory [65, 30], which posits that the brain learns by predicting
internal multimodal representations and minimizing errors, rather than reconstructing raw inputs.

(2) Modality-specific target encoders: Unlike prior works [63, 70, 20, 43] distilled from external
teachers, OSKAR trains from scratch with momentum-updated target encoders—one per modality.
These encoders co-evolve with the model and data, generating stable yet adaptive targets that align
closely with the model’s internal representation space. This design offers an interesting trade-off:
with a fixed momentum update rate, we get shared-weight target encoders, thus providing a flexible
modality-agnostic encoder in fine-tuning; with customized update rates, we allow each modality to
evolve at its own learning pace, providing multiple modality-specific encoders with peak performance.

(3) Scalable design: OSKAR scales efficiently thanks to three key design choices. First, it processes
a fixed total number of tokens in both the input and target, thus dissociating the compute cost from
the number of modalities. Importantly, it ensures fair representation of all modalities, regardless of
their raw size, through a Dirichlet allocation strategy. Second, it avoids information leaks through
non-overlapping masking, within and between the inputs and targets. Finally, OSKAR introduces
a unified, modality-agnostic cross-attention predictor that efficiently anchors predictions in shared
multimodal context—seamlessly scaling to new modalities with limited growth in model size.

Though OSKAR supports plug-and-play extensibility, we instantiate it on three distinct modali-
ties—video (dense), poses (sparse), and text (symbolic)—forming a challenging testbed for eval-
uation. Trained entirely with pseudo-labels and without manual annotations, OSKAR matches or
surpasses specialized models on RGB- and skeleton-based action recognition (86.1% K400, 91.1%
NTU120-XSub), spatiotemporal action localization (37.9 mAP AVA), text-video retrieval (50.4 R@1
MSRVTT), and video question answering (49.3% MSRVTT-QA). It also outperforms baselines in
low-sample, low-parameter, and low-label settings—highlighting its efficiency and versatility.

2 Related Works

Generative architectures (GAs). Generative self-supervised models corrupt the input and train an
encoder together with a lightweight reconstruction head to in-paint the missing content in input space.
MAE [40] restores masked image patches; VideoMAE [71] extends the idea to spatio-temporal tubes;
OmniMAE [35] accepts mixed image–video inputs; Other unified masked models[78, 68] extend it to
vision–language and follow-ups [6, 60, 7, 33] broaden the paradigm to additional modalities. While
effective at capturing low-level details, these methods optimize pixel-level losses, often diverting
model capacity toward reconstructing semantically uninformative elements like texture or lighting.
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Joint-embedding architectures (JEAs). JEAs learn by aligning representations. Given two or
more views of the same instance—obtained through data augmentation or drawn from another
modality—the model is trained with a contrastive [19, 64], redundancy-reduction [89, 11] or average
embedding entropy maximization [15, 4, 38] objective that pulls similar pairs together in feature
space while pushing dissimilar ones apart. In cross modal context, CLIP [64] aligns whole-image
and sentence embeddings via a pure contrastive loss; More recent models [50, 23, 61, 46] add a
momentum teacher that self-distills latent knowledge to the student. ImageBind [34] generalises
the recipe to six sensory streams. The objective enforces only global agreement between paired
embeddings. As a result, JEAs excel at zero-shot recognition and retrieval, yet they lack a mechanism
for structured cross-modal prediction—for instance, nothing in CLIP compels the model to infer a
missing video patch from a co-occurring caption.

Joint-embedding predictive architectures (JEPAs). JEPAs [47] blend both worlds by replacing
pixel reconstruction with latent prediction. A predictor maps visible-context embeddings to the target
embeddings of masked regions; the loss is computed in feature space. Hence, the objective is to
learn representations that are predictive of each other. On images, I-JEPA [5] demonstrates that
latent prediction yields strong abstraction with lower compute than MAE [40]. V-JEPA [12] and
S-JEPA [1] adapt the idea to video and skeleton data, respectively. iBOT [91] and data2vec [8, 9] also
fall under the JEPA framework, performing latent prediction from masked inputs to match teacher
representations—at the patch level in iBOT, and in a modality-agnostic manner in data2vec.

OSKAR diverges from these methods in the following: (1) Cross-modal latent prediction: Com-
pared to [5, 12, 1], OSKAR intentionally uses far fewer per-modality tokens; yet, it complements
them with cross-modal cues. Hence, the model is forced to learn from fused cues from all modalities
to predict the missing latent features in each. (2) Modality-specific target encoders: OSKAR employs
separate target encoders per modality, balancing intra-modality structure with cross-modal alignment,
and allowing a flexible design choice between shared or customized encoders. (3) Scalable cross-
modal masking: OSKAR masks both the inputs and targets with fixed budgets to keep the compute
cost manageable with increasing modalities. Further, it uses Dirichlet sampling to process dense and
sparse modalities fairly, while ensuring cross-modal exclusivity to avoid trivial shortcuts.

3 Methodology

Overview. OSKAR operates in two stages: pretraining and fine-tuning. In pretraining (see Fig. 2),
OSKAR optimizes a novel “fuse–then–predict” task: given partially masked multimodal tokens, it
fuses visible inputs via a cross-modal fusion encoder and predicts modality-specific latent repre-
sentations for masked tokens using shared-weight per-modality predictors. Target representations
are generated by momentum-updated encoders, providing stable supervision. Importantly, learning
occurs entirely in the latent space, emphasizing high-level semantics over low-level reconstruction. In
fine-tuning, the target encoders are adapted directly to downstream tasks. All backbones are standard
transformers [24], enabling seamless integration into existing transformer pipelines.

3.1 Architecture

Tokenization and Embedding. Following [60, 7], we first tokenize raw inputs (e.g., videos, skeletons,
text) using modality-specific encoders [12, 92, 69]; tokenization serves only to accelerate training and
is not required for the method itself, producing tokens Tm for each modality m. These are linearly
projected via gm into a shared embedding space Em ∈ RNm×d of Nm modality tokens, enabling a
unified encoder across modalities without task-specific customizations. Each E is then augmented
with learnable positional e(pos), modality e(mod), and auxiliary e(aux) signals. In particular, e(aux)
are modality-specific auxiliary signals proposed to resolve ambiguities (e.g., helping the predictor
establish pixel-to-keypoint correspondence and disambiguate multiple people in a scene. Without
them, the model may associate skeletons with the wrong subject, especially in crowded scenes). We
then apply our masking strategy (explained later) to keep only a few non-overlapping patches in the
fusion and target encoders, denoted Ef ∈ RNf×d and Et ∈ RNt×d, where Nf and N t denote the
number of input and target patches, respectively.

Fusion encoder. Given Ef , the fusion encoder’s objective is to exploit the complementary cues
from all modalities to infer the missing information in each. To that end, we feed Ef to the fusion
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Figure 2: OSKAR Architecture. Multimodal tokens (e.g., video, skeleton, text) are projected into a
shared space and split into two branches: (1) a fusion encoder processes visible tokens to produce
fused representations; (2) modality-specific target encoders generate target embeddings. A predictor
estimates masked representations from fused tokens, supervised via MSE loss against targets. Target
encoders are updated via EMA of the fusion encoder and are used exclusively in fine-tuning.

transformer fθ, where all modality tokens interact with each other through the inter-modal Multi-Head
Self-Attention (MHSA) mechanism [72], yielding fused representations H ∈ RNf×d.

Predictor. The role of the predictor is to generate the latent features for a subset of the missing tokens
in every modality. These predictions are conditioned on predictor-specific target-location queries
Qt ∈ RNt×d, which are learnable mask tokens Mt, augmented with positional ep(pos), modality ep(mod),
and auxiliary cues ep(aux). The predictor processes each set of queries Qt

m of modality m through a
transformer with alternating self-attention and cross-attention layers. Self-attention allows queries to
share information and capture intra-modality structure, while cross-attention integrates information
from the fused representations H. At each cross-attention layer, Qt

m attend to all tokens in H:

Yp
m = MHCA(Qt

m,H,H), (1)

where Yp
m are the predicted representations and MHCA is Multi-Head Cross-Attention. Hence, Yp ∈

RNt×d concatenates all per-modality predictions Yp
m. Importantly, there is a single predictor network

with shared weights across modalities. However, it operates like several—one per modality—while
retaining the efficiency and regularization benefits of shared weights. This design (i) allows queries
to exchange information within a modality (via self-attention), (ii) grounds every prediction in the
full multimodal context H (via cross-attention), and (iii) adapts to new modalities without additional
heads, all while remaining decoupled from the fusion encoder for easy transfer to downstream tasks.

Target encoders. Unlike raw inputs (e.g., pose joints)—often subtle, noisy, and isolated—the target
encoders provide clean, high-level targets Yt ∈ RNt×d, steering the model away from overfitting to
spurious details. A key innovation in OSKAR is the use of modality-specific target encoders—rather
than a single cross-modal target encoder—to balance two objectives: enabling the fusion encoder to
learn cross-modal abstractions while preserving each modality’s structure and information content.
While the fusion encoder and predictor parameters (θ, ϑ) are updated with gradients, each target
encoder’s parameters θm are updated via an exponential moving average (EMA) of θ:

θm ← λmθm + (1− λm)θ, (2)

where λm is a modality-specific momentum coefficient. OSKAR supports two target encoder update
strategies: (1) Shared-weight target encoders (i.e., same λ for all m): offering a unified target encoder
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network with strong downstream multimodal performance, and (2) Customized target encoders (i.e.,
modality-specific λm values) offering multiple target encoders with better uni-modal performance,
trained with varying update rates that accommodate each modality’s learning dynamics. For flexible
evaluation, we adopt the first option by default but we study all design choices in ablations sec 5.

3.2 Training

Pretraining: Fuse–then–Predict. Given partially masked multimodal tokens, OSKAR fuses
visible inputs with a cross-modal transformer and predicts modality-specific latent features for
masked tokens via a single shared predictor. Targets are produced by momentum-updated encoders
for stable supervision. Learning occurs entirely in latent space, emphasizing high-level semantics
over low-level reconstruction.

Pretraining Objective. With both Yp and Yt now computed, we optimize OSKAR by minimizing
a Mean Square Error (MSE) loss between the predicted and target representations:

L =
1

N t

∑
i∈Nt

∥∥Yp
i −Yt

i

∥∥2
2
. (3)

Crucially, by predicting in feature space, we bypass the need for task/modality-specific losses (e.g.,
pixel-wise MSE for images or cross-entropy for text). This grants universal flexibility: The shared
latent objective delivers comparable gradients across modalities, simplifying optimization, reducing
negative transfer, and supporting graceful scaling to new modalities without the loss-balancing game.

Cross-Modal Masking Strategy. Multimodality introduces three core challenges: scalability
and efficiency with increasing modalities, imbalance because of modality size disparities, and
trivial cross-modal shortcuts. OSKAR addresses them all with key design choices: (1) Fixed token
budget: Inspired by [6], we sample a fixed total budget of N tokens, but for both inputs and targets,
decoupling the compute cost from the number of input modalities. (2) Adaptive budgeting: Instead of
naive random sampling—which would let larger modalities (e.g., video) overwhelm smaller ones
(e.g., text)—we allocate a fraction rm of N to each modality m by drawing rm from a symmetric
Dirichlet(α) distribution, ensuring

∑
m rm = 1. Lower α values (e.g., 0.1–0.5) assign all N to a

single modality, while higher values (≥ 1) promote more balanced allocations. (3) Cross-modal
exclusivity: We sample Nm = rm ×N tokens per modality under a cross-modal spatio-temporal
exclusivity constraint, which prevents trivial prediction—if a video patch is visible to the fusion
encoder, the corresponding skeleton joint is masked from the target encoder. To reduce redundancy
in sequence modalities, we mask contiguous spatio-temporal tubes, encouraging the model to reason
over extended, coherent structures rather than isolated tokens. The fusion and target encoder token
sets, Xf and Xt, are sampled independently and are strictly disjoint (Xf ∩Xt = ∅), preventing
direct copying and enforcing meaningful prediction of unseen information. This strategy generalizes
seamlessly to new modalities while maintaining computational fairness and discouraging shortcuts.

Fine-Tuning. After pretraining, the target encoders are adapted directly to downstream tasks.
Because all backbones are standard transformers, fine-tuning integrates seamlessly into existing
transformer pipelines.

4 Experimental Results

4.1 Pretraining Details.

Datasets. We train OSKAR entirely with pseudo-labels on 10M videos from OpenHumanVid3 [49]
(13.2M videos, 16.7K hours). Using YOLO11 [44], we pseudo-label pose, tracking, and detection,
selecting top-3 individuals in crowded videos via visibility, motion, keypoint/bbox confidence, and
center proximity. Captions are generated with MiniCPM [87] and CogVLM [41]. Following [60,
7], we speed up processing by pre-tokenizing the videos, skeletons, and text using V-JEPA [12],
MotionBERT [92], and WordPiece [69], respectively. Downstream benchmarks include: Kinetics-
400 [45] and Something-Something V2 [37] (RGB action recognition), NTU60 [66] and NTU120 [54]
(skeleton action recognition), AVA [39] (action localization), MSRVTT [84]/MSVD [16]/VATEX [79]
(text-video retrieval), and MSRVTT-QA [84]/MSVD-QA [82]/TGIF-FrameQA [52] (videoQA).

3At the submission time of this paper, only 10M videos from OpenHumanVid were publicly released.
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Figure 3: OSKAR exhibits strong scalability with (a) fewer samples, (b) less parameters, and (c)
less labels per class than comparable methods.

Pre-training. We use standard ViT-S, ViT-B, and ViT-L [24] backbones with learnable positional
encodings. All target encoders use a shared EMA update parameter (λ = 0.998). Models are
randomly initialized and trained on 500B tokens (10B warmup) using AdamW [58] (β1 = 0.9,
β2 = 0.95), a base learning rate of 1e-4, cosine decay, batch size 8192, and weight decay 0.05.
Transformers use SwiGLU [67] activations and bfloat16 [14] precision. Each model processes
Ns = N t = 128 tokens per step, with aggressive masking (<5%, 128 of 2640 tokens visible) via
non-overlapping modality masks and Dirichlet-sampled allocation ratios (α = 0.5). Pretraining
uses 256 GH200 GPUs. Video inputs are 16 frames (stride 2), resized to 224× 224; skeletons are
temporally aligned and normalized to match video dimensions.

4.2 Main Results

By default, OSKAR is fine-tuned per task using standard inputs (e.g., video only for action recogni-
tion).

Action recognition. OSKAR consistently outperforms specialized video-only models across multiple
model sizes and datasets without extra cost. On K400 (Tab. 1), OSKAR outperforms V-JEPA [12]
and VideoMAE [71] with the same ViT-L backbone, and scales better with limited data (Fig. 3a)
and fewer parameters (Fig. 3b). It also beats MViT [27], BEVT [77], and TimeSformer [13] with
fewer frames/parameters. For SSv2, gains reach +3.3% over VideoMAE (ViT-S) and +2.5% over
V-JEPA (ViT-L). Beyond video, OSKAR transfers effectively to skeleton-based action recognition: on
NTU60 and NTU120 XSub (Tab. 4), OSKAR-B achieves new state-of-the-art results, outperforming
MotionBERT [92] by +0.9% and +6.1%, respectively.

Frozen low-shot action recognition. OSKAR’s frozen features deliver strong out-of-the-box perfor-
mance on SSV2 without fine-tuning, particularly in label-scarce settings (Fig. 3c). With only 5%,
10%, or 50% of the labels, it consistently outperforms other models, achieving a 26.5% absolute gain
over VideoMAEv2 [75] and 2.6% over V-JEPA [12] at the 5% setting. Unlike V-JEPA’s visual-only
pretraining, OSKAR intentionally reduces the number of visible video tokens but supplements them
with motion and language tokens to ground the visual features in semantic and structural information,
promoting generalization and yielding consistent gains (+2.6–3.6%) across all low-shot settings.

Spatiotemporal action localization. OSKAR transfers effectively to spatiotemporal action local-
ization, consistently outperforming larger video-only models. With just 22M parameters (ViT-S), it
matches SlowFast [28] (59M) and surpasses VideoMAE-S by +5.0 mAP. Scaling up, OSKAR outper-
forms VideoMAE-B by +3.5 mAP (ViT-B) and, at the large scale, exceeds V-JEPA and VideoMAE-H
by +1.7 and +1.4 mAP, respectively—while using less than half the parameters of VideoMAE-H.
These gains reflect OSKAR’s ability to leverage multimodal pretraining to capture both semantic
context and fine-grained motion cues, essential for localizing actions in space and time.

Text-video retrieval. Compared to methods trained with <200M pairs, OSKAR (ViT-L) achieves 50.4
R1 on MSRVTT (+2.6 over OmniVL [73]); 54.4 R1 on MSVD (+4.3 over LAVENDER [51]); 54.1 R1
on VATEX (+3.7 over CLIP4CLIP [59]). Notably, OSKAR performs within a close margin to special-
ist models trained with 2–3× more data (e.g., only 1.0 below Slide4Video on MSR-VTT) and excels
in video-to-text retrieval (+1.6 to +5.4 R@1 over CLIP2TV [32]/CenterCLIP [90]/CLIP4Clip [59].
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Table 1: RGB-based action recognition accu-
racy (%) on Kinetics-400 [45].

Method Resolution GFLOPs Acc.

Small Models (<80M parameters)
VideoMAE-S [71] 16×224² 57 79.0
SlowFast+NL [28] 80×224² 234 79.8
MViTv1-B [27] 32×224² 170 80.2
OSKAR-S 16×224² 57 80.5

Medium Models (80-150M parameters)
OmniMAE-B [35] 16×224² 180 80.6
TimeSformer-B [13] 96×224² 2380 80.7
BEVT-B [77] 32×224² 282 81.1
ST-MAE-B [29] 16×224² 180 81.3
VideoMAE-B [71] 16×224² 180 81.5
OSKAR-B 16×224² 180 82.0

Large Models (150-700M parameters)
VideoSwin-L [57] 32×224² 604 83.1
OmniMAE-L [35] 16×224² 597 84.0
VideoMAE-L [71] 16×224² 597 85.2
V-JEPA-L [12] 16×224² 597 85.6
OSKAR-L 16×224² 596 86.1

Table 2: Action detection mAP on AVA v2.2 [39],
all using 16×224² resolution.

Method PT data Param
(M) mAP

Small Models (<80M parameters)
VideoMAE-S [71] K400 22 22.5
MViTv1-B [27] K600 36.3 26.1
MViTv2-B [53] K400 34.5 26.2
SlowFast [28] K600 59.2 27.5
OSKAR-S OpenHumanVid 22 27.5

Medium Models (80-150M parameters)
VideoMAE-B [71] K400 87 26.7
OSKAR-B OpenHumanVid 87 30.2

Large Models (150-700M parameters)
VideoMAE-L [71] K400 305 34.3
ST-MAE-L [29] K400 304 34.8
VideoMAE-H [71] K400 633 36.5
V-JEPA-L [12] VideoMix2M 200 36.2
ST-MAE-L [29] K700 304 37.3
OSKAR-L OpenHumanVid 305 37.9

Table 3: Text-to-video retrieval Recall@1 on
MSRVTT [84], MSVD [16], and VATEX [79].

Method Pairs
(M) MSRVTT MSVD VATEX

Methods using large-scale data (>400M samples)
Cap4Video [81] 400 51.4 51.8 66.6
S4Vid-L[86] 400 51.4 54.9 67.9
CLIP-ViP [85] 500 54.2 - -
IntVideo [80] 646 55.2 58.4 -

Methods using < 200M samples
TeachText [21] - 29.6 25.4 53.2
CLIP4CLIP [59] 100 46.2 - 50.4
Frozen [10] 5 31.0 33.7 -
VIOLET [31] 138 34.5 - -
SUPPORT [62] 100 30.1 28.4 45.9
LAV. [51] 30 40.7 50.1 -
Singularity [48] 17 42.7 - -
UMT-B [56] 5 46.3 47.4 -
DRL-B [76] - 47.6 47.0 44.6
OmniVL [73] 17 47.8 - -
OSKAR-S 160 45.5 47.5 49.4
OSKAR-B 160 50.1 52.4 50.1
OSKAR-L 160 50.4 54.4 54.1

Table 4: Skeleton-based action recognition ac-
curacy (%) on NTU60 [66] and NTU120 [54].

Method Param.
(M)

NTU60 NTU120
XSub XView XSub XSet

MoBERT [92] 62 93.0 97.2 84.8 86.4
S-JEPA [1] 21 93.1 97.6 90.3 91.3
MaskCLR [2] 62 93.9 97.3 87.4 89.5
PC3D [25] 2 94.1 97.1 86.9 90.3
OSKAR-S 22 93.7 97.3 89.6 89.6
OSKAR-B 86 93.9 97.3 90.9 92.2
OSKAR-L 305 94.3 97.8 91.1 92.0

Table 5: VideoQA accuracy (%) on MSRVTT-
QA [82], MSVD-QA [16], and TGIF [52].

Method Pairs (M) MSRVTT MSVD TGIF

IntVideo [80] 646 47.1 55.5 72.2
GIT2 [74] 12900 45.6 58.2 74.9
VALOR-L [17] 433 49.2 60.0 78.7
COSA [18] 415 49.2 60.0 79.5
OSKAR-S 160 46.7 56.8 73.2
OSKAR-B 160 48.9 58.3 76.1
OSKAR-L 160 49.3 59.7 79.0

Its multimodal pretraining—without external teachers or massive data—outperforms specialized
retrieval models of comparable data-parameter scale.

Open-ended Video Question Answering. Without QA-specific architecture modifications, OSKAR
demonstrates strong gains on VideoQA benchmarks across two configurations: (1) using OSKAR’s
visual encoder with a BERT [22] text encoder, and (2) using OSKAR for both video and text encoding.
On MSRVTT-QA, OSKAR-L outperforms InternVideo [80] by +2.2 points and performs on par
with VALOR-L [17] (+0.1). On MSVD-QA, it is on par with COSA [18] (–0.3) while surpassing
InternVideo by +4.2. On TGIF, OSKAR-L performs competitively, coming within 0.5 points of
COSA. These results highlight OSKAR’s effective general-purpose representations for QA tasks,
even with ∼2–4× fewer training pairs.

Qualitative Results. To assess OSKAR’s cross-modal predictions, we freeze the pretrained fusion
encoder and predictor, and train a lightweight transformer decoder to map features to joint-space
coordinates. As shown in Fig. 4, OSKAR accurately reconstructs missing human poses from video
and text tokens. Notably, the first column shows that bounding box embeddings effectively guide
pose prediction, even in cluttered scenes with multiple people. These results highlight OSKAR’s
strong multimodal grounding and ability to preserve spatial structure.
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Two people, [age, appearance], on a 
white couch. The young man gestures; 
the older one writes. [setting details], 
[atmosphere/decor].

[setting], two men and a woman on a 
rustic dock. One in black, one in white 
suit; she wears a light blue dress. 
[atmosphere].

Pseudo Labels OSKAR Predictions

Three lab workers in blue—
young man at a computer, 
woman assisting, middle-aged 
man with equipment

On a rooftop in [setting], a dark-haired 
man in a striped sweater inspects two 
tall [objects]. [Background] shows 
[objects].

Figure 4: Visualization of predicted pose features. OSKAR accurately predicts human poses from
video and text, guided by bounding boxes, even in cluttered, multi-person scenes.
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Figure 5: Ablations on (a) MAE and bounding box embeddings, (b) the EMA update parameter, and
(c) the α value of the Dirichlet distribution. Blue denotes the default setting of OSKAR. Blue bold
numbers indicate the difference between our default setting and lowest bar.

5 Ablation Studies

Before large-scale pre-training, we ablate design choices by pre-training ViT-S on 100K OpenHu-
manVid samples, then fine-tuning on NTU60-XSub [66] for RGB (VidCls) and skeleton (SklCls)
action recognition, and MSVD [16] for VidQA, comparing to training from scratch (baseline).

Effect of adding modalities during pre-training. Table 6 shows that combining modalities con-
sistently boosts performance across tasks. Pretraining with video or skeleton alone yields moderate
gains (e.g., +2.6 for VidCls, +2.9 for SklCls). Adding text with video further improves VidQA results
(+2.1), underscoring its value for semantic understanding. The best performance (+3.2/+4.0/+4.3 for
VidCls/SklCls/VidQA) comes from using all three modalities, confirming that multimodal grounding
of appearance, motion, and language produces more transferable features.

Staged Multimodal Attention Routing. Ablations on OSKAR’s attention routing (Table 8) show
that the best performance (+3.2 VidCls, +4.0 SklCls, +4.3 VidQA) comes from using this config-
uration: cross-attention in the fusion encoder to align complementary signals early (e.g., motion
and pose), enabling richer representations; intra-modality attention in the target encoder to preserve
modality-specific structure, yielding clearer supervision; and the predictor’s hybrid setup—first
self-attention within modalities, then cross-attention to fused features—balances specialization with
contextual grounding (+0.1/-0.3/+0.5 over full self-attention). This staged strategy, integrating early
and specializing late, reflects how humans process and combine sensory inputs.

Prediction in the input vs feature space. Figure 5a shows that predicting in feature space outper-
forms input-space reconstruction (MAE) by +1.9 VidCls, +1.7 SklCls, and +0.8 VidQA. These gains
echo the advantages of self-distillation reported in unimodal models [5, 12, 15, 38]. Whereas MAE
spends capacity reproducing low-level artefacts such as blur or illumination, OSKAR concentrates on
semantic cues—e.g., motion dynamics—and its momentum-updated target encoders further stabilise
the supervision signal.

8



Table 6: Impact of adding video, skeleton, and
text modalities during pre-training.

Video Skeleton Text VidCls SklCls VidQA

Baseline 88.2 75.7 39.3

✓ +2.6 – –
✓ ✓ +2.2 – +2.1

✓ – +2.9 –
✓ ✓ – +3.0 –

✓ ✓ +2.5 +4.1 –
✓ ✓ ✓ +3.2 +4.0 +4.3

Table 7: Shared vs customized target encoders.
Update speeds: + (slow, λ = 0.99998), ++ (mod-
erate, λ = 0.9998), +++ (fast, λ = 0.998).

Video Skeleton Text VidCls SklCls VidQA

Baseline 88.2 75.7 39.3

+ + + +3.2 +4.0 +4.3
+++ + ++ +3.2 +3.9 +3.9

+ +++ ++ +2.6 +2.9 +3.7
++ + +++ +3.2 +3.6 +3.8
+ ++ +++ +2.8 +3.9 +4.0

+++ ++ + +5.0 +5.4 +5.2
++ +++ + +4.5 +4.8 +5.0

Table 8: Ablation on modality attention routing.
“S”: separate; “C”: cross-modality.

Fusion Target Pred. VidCls SklCls VidQA

Baseline 88.2 75.7 39.3

S S S +1.1 +3.4 +2.8
S S C +1.3 +2.9 +3.2
S C S +0.8 +2.8 +3.4
C C C +1.2 +2.2 +3.3
C C S +1.0 +2.3 +3.2
C S S +3.2 +4.0 +4.3

Table 9: Impact of the number of input and
target tokens.

Input Target VidCls SklCls VidQA

Baseline 88.2 75.7 39.3

64 64 +1.0 +2.9 +2.7
128 128 +3.2 +4.0 +4.3
256 256 +3.3 +3.3 +3.6
128 256 +3.1 +4.0 +4.2
64 256 +3.4 +4.3 +4.6

Shared-weight vs Customized target encoders. The EMA coefficient λ determines how quickly the
target encoder tracks the fusion encoder. At λ = 0, the encoders are identical, causing representation
collapse and near-random performance. Too small a λ (e.g., 0.1), i.e., fast updates, destabilizes
training, while too large a value (e.g., 0.99998) prevents the target from adapting to new updates.
We evaluate two target encoder variants under this trade-off. (i) Shared-weight target encoders: A
single encoder with a global λ performs best at λ = 0.998 (+2.7 VidCls, +3.8 SklCls, +2.6 VidQA;
Fig.5b). (ii) Customized target encoders: Assigning modality-specific λ values—fast for video
(0.998), moderate for skeleton (0.9998), and slow for text (0.99998)—yields the best overall results
(+5.0 VidCls, +5.4 SklCls, +5.2 VidQA; Table7). This asymmetry aligns with each modality’s nature:
videos (low variability, high redundancy) benefit from fast updates to focus on motion; skeletons
(moderate, structured variation) require balanced updates; and text (high variability, discrete tokens)
improves with slower updates to preserve semantic consistency.

Input and target number of tokens. Table 9 shows that more tokens generally improve performance,
with the best results at 64 input / 256 target tokens. A 128/128 setting retains 95% of the gains while
using less than half the compute, and is thus adopted as default.

Controlling Modality Mix. We analyze the impact of the Dirichlet concentration parameter α on
modality token sampling (Fig. 5c). Low α skews sampling toward a single modality, while high α
enforces uniformity. Setting α = 0.5 yields the best trade-off (+0.2 VidCls, +1.5 SklCls, -0.2 VidQA
vs. random). Random sampling favors video due to its token volume, benefiting video tasks, but
Dirichlet sampling ensures balanced modality representation, improving SklCls and maintaining
competitive video performance. We adopt α = 0.5 to promote balanced, modality-aware training.

Bounding box embeddings. Adding bounding box embeddings improves performance across tasks
as illustrated in Fig. 5a by providing spatial cues for person-specific predictions. Removing them
causes some ambiguity in multi-person settings. These consistent gains highlight the value of simple
spatial priors for learning more discriminative representations.

6 Conclusion and limitations

We introduced OSKAR, a novel paradigm for multimodal self-supervised learning that learns se-
mantically rich representations via latent feature prediction. OSKAR introduces a fuse-then-predict
pretext task, modality-specific momentum encoders for stable supervision, and a scalable masking
strategy for balanced and efficient learning. Trained across video, skeleton, and text, OSKAR outper-
forms specialized models on diverse downstream tasks, while remaining efficient and label-agnostic.
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Its modular design supports extensions to new modalities, larger datasets, and adaptive learning
dynamics, offering a strong foundation for future multimodal research.

While OSKAR establishes a new state of the art, some limitations offer promising directions for
further improvement: (1) Expanding Modalities: Although OSKAR currently integrates video,
skeleton, and text, adding additional modalities (e.g., audio, depth, IMU) could further enrich the
learned representations and unlock new applications. (2) Scaling Data: Pretraining on even larger and
more diverse datasets would likely enhance the model’s generalization and transferability, particularly
for complex multimodal reasoning tasks.(3) EMA Sensitivity: The performance is sensitive to the
choice of the EMA momentum parameter. While this reflects the delicate balance required for stable
training, it also highlights an opportunity to develop adaptive or learned momentum strategies to
improve robustness. These considerations represent opportunities to build upon OSKAR’s significant
progress and extend its capabilities even further.

Acknowledgment: This research is funded by the Swiss National Science Foundation (SNSF)
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Initiative by a grant from the Swiss National Supercomputing Centre (CSCS) under project ID a03
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NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The abstract and introduction (Sec. 1) clearly state OSKAR’s contributions.
The impacts of these contributions are carefully studied in the experiments (Sec 4) and
ablations (Sec. 5) sections.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: In Sec 6, we provide limitations of our work. We also include a broader impact
statement in the Appendix.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [NA]

Justification: The paper does not include theoretical results

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Detailed pretraining and evaluation settings are provided in Sec 4 and the
Appendix.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: The datasets used in our experiments are all publicly available. An anonymized
version of our code is available as part of the supplementary materials. Codes will be open-
sourced to the community upon publication.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: Detailed experimental settings are available in section 4 and the Appendix. We
also ablate on all introduced hyper-parameters, detailed in section 5.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [No]
Justification: We fix a random seed for all statistical values in our experiments, and we
follow the best practices from domain knowledge and previous works in our experiments.
Due to the high cost of running experiments, we are unable to run each experiment multiple
times. Hence, no error bars are included in our plots.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: The information on the required compute cost is availabe in section 4 as well
as the supplementary materials.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The paper abides by the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We discuss the societal impacts of our paper in the Appendix.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
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• If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [Yes]

Justification: We described the potential impacts of our paper in the Appendix. We will
follow the standard safeguards before releasing any models or data.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We carefully cited all the previous models and datasets we used in our work,
which are all accessible for research purposes.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
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• For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: All our assets are well-documented.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: Our work does not invlove any human subjects or crowdsourcing.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: Our work does not invlove any human subjects or crowdsourcing.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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