
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

MORE: A MIXTURE OF LOW-RANK EXPERTS FOR
ADAPTIVE MULTI-TASK LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

With the rapid development of Large Language Models (LLMs), Parameter-
Efficient Fine-Tuning (PEFT) methods have gained significant attention, which
aims to achieve efficient fine-tuning of LLMs with fewer parameters. As a repre-
sentative PEFT method, Low-Rank Adaptation (LoRA) introduces low-rank ma-
trices to approximate the incremental tuning parameters and achieves impressive
performance over multiple scenarios. After that, plenty of improvements have
been proposed for further improvement. However, these methods either focus on
single-task scenarios or separately train multiple LoRA modules for multi-task
scenarios, limiting the efficiency and effectiveness of LoRA in multi-task scenar-
ios. To better adapt to multi-task fine-tuning, in this paper, we propose a novel
Mixture of Low-Rank Experts (MoRE) for multi-task PEFT. Specifically, instead
of using an individual LoRA for each task, we align different ranks of LoRA mod-
ule with different tasks, which we named low-rank experts. Moreover, we design
a novel adaptive rank selector to select the appropriate expert for each task. By
jointly training low-rank experts, MoRE can enhance the adaptability and effi-
ciency of LoRA in multi-task scenarios. Finally, we conduct extensive experi-
ments over multiple multi-task benchmarks along with different LLMs to verify
model performance. Experimental results demonstrate that compared to traditional
LoRA and its variants, MoRE significantly improves the performance of LLMs in
multi-task scenarios and incurs no additional inference cost. We also release the
model and code to facilitate the community1.

1 INTRODUCTION

Recent advancements in Large Language Models (LLMs) have revolutionized various domains, of-
fering unprecedented performance across numerous tasks (Devlin et al., 2019; Raffel et al., 2020;
Brown et al., 2020; Touvron et al., 2023). Plenty of tuning strategies are designed to extend the
application of LLMs, such as Instruction Tuning (Wei et al., 2022; Zhang et al., 2023b), Continual
Pre-Training (Ke et al., 2023), and Parameter-Efficient Fine-Tuning (PEFT) (Houlsby et al., 2019;
Liu et al., 2023b; 2022; Lester et al., 2021; Li & Liang, 2021; Hu et al., 2022). Among these strate-
gies, PEFT has drawn the most attention due to its fewer parameter tuning and lower computational
cost. As the representative PEFT method, Low-Rank Adaptation (LoRA) (Hu et al., 2022) intro-
duces low-rank matrices to approximate the incremental tuning parameters and demonstrate good
performance in many scenarios, which has become a standard paradigm for LLM fine-tuning and
inspired many improvements (Liu et al., 2024; Valipour et al., 2023; Ding et al., 2023).

Table 1: LoRA-based Fine-tuning Performance of T5-base with varying ranks on different tasks

Task/Rank r=1 r=2 r=4 r=8 r=16 r=32

MRPC 89.7 89.2 88.7 89.2 89.2 89.5
RTE 77.6 78.7 80.5 77.6 80.1 79.1
SST-2 94.4 94.6 94.8 94.5 94.4 94.5
CoLA 60.9 60.0 61.9 63.3 62.3 60.5

1https://anonymous.4open.science/r/MoRE-3C37

1

https://anonymous.4open.science/r/MoRE-3C37

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Despite the achieved progress, LoRA relies on a fixed and unalterable intrinsic rank, making it not
flexible enough in multi-task scenarios. Taking Table 1 as an example, when dealing with different
tasks, LoRA requires different ranks to achieve the best performance (e.g., best ranks for MRPC and
CoLA tasks are 1 and 8). Considering the high computational cost and storage cost of LLM fine-
tuning, training multiple LoRA modules is sub-optimal for applying LLMs to multi-task scenarios.
Meanwhile, searching the best rank of LoRA during LLM fine-tuning is also time-consuming and
computationally expensive (Valipour et al., 2023), which highlights the limitations of a one-size-
fits-all approach in LoRA. This phenomenon also emphasizes the need for adaptive mechanisms
that dynamically adjust ranks based on task requirements.

To overcome the limitations of fixed ranks in LoRA, one promising direction is to explore adaptive
mechanisms. For example, DyLoRA (Valipour et al., 2023) dynamically trained all ranks during
training to avoid separate rank tuning for each task. AdaLoRA (Zhang et al., 2023a) allocated the
parameter budget based on the importance scores of the weight matrices and pruned insignificant
singular values to exclude unimportant rank spaces. SoRA (Ding et al., 2023) introduced a trainable
gating unit and used proximal gradient descent to optimize the sparsity of the update matrices,
thereby dynamically adjusting the intrinsic rank size during training. While these improvements
enable dynamic adjustment of rank space, they are primarily designed for single-task scenarios.
They do not consider the distinctions and connections among different tasks in multi-task scenarios,
prohibiting the effectiveness of LoRA in multi-task scenarios.

In the meantime, there also exist other strategies that try to exploit the connections among different
tasks. However, they are still far from satisfied. For example, HyperFormer (Mahabadi et al., 2021)
enhanced adapter-based methods by utilizing a shared hypernetwork to facilitate cross-task knowl-
edge sharing, while incorporating task-specific adapters to tailor the model for individual tasks.
However, they face limitations due to their inherent performance constraints and additional infer-
ence latency. Prompt Tuning methods (Vu et al., 2022; Asai et al., 2022; Wang et al., 2023b) are
proposed to use learned prompts on source tasks to initialize the learning of target tasks. Despite the
effectiveness, these approaches typically require a two-stage training process (i.e., first on the source
task and then on the target task), which requires higher data quality and results in training efficiency
decrease. Meanwhile, parallel LoRA strategies (Wang et al., 2023a; Li et al., 2024; Liu et al., 2023a;
Huang et al., 2023) can effectively address the above shortcoming, offering a better adaptability
in multi-task scenarios. Nonetheless, the usage of parallel LoRA modules increases the overall pa-
rameter count and resource consumption, contradicting the original purpose of LoRA to reduce the
training parameters. Thus, one important question should be considered: “How to achieve efficient
LLM fine-tuning in multi-task scenarios remains challenging”.

To this end, in this paper, we design a novel Mixture of Low-Rank Experts (MoRE) for efficient LLM
fine-tuning in multi-task scenarios. Since different tasks require different ranks of LoRA, we propose
to build connections between the ranks and the tasks in a Mixture-of-Expert (MoE) manner. Specif-
ically, we propose to treat each rank in the LoRA module as an expert and design a novel Adaptive
Rank Selector. Thus, the different experts corresponding to different tasks can share common infor-
mation and maintain distinctive information simultaneously (i.e., the ranks ri and rj can share some
common parameters). Meanwhile, our proposed selector uses a gating mechanism to select the ap-
propriate rank expert for each task. Moreover, to fully exploit the distinctions and connections among
different tasks for accurate rank selection, we develop a novel CL-based Task Embedding module,
which assigns a task embedding to each task and uses a Contrastive Learning (CL) optimization to
ensure the quality of learned task embeddings. Furthermore, we incorporate the Balanced Dataset
Sampling strategy to address the severe dataset imbalance in multi-task scenarios. Along this line,
MoRE can fully exploit the potential of LoRA and realize efficient LLM fine-tuning in multi-task
scenarios. Finally, we conduct extensive experiments on multi-task benchmarks to validate the ef-
fectiveness of MoRE. Experimental results demonstrate the efficiency of MoRE in multi-task and
low-resource transfer scenarios.

2 RELATED WORK

2.1 PARAMETER-EFFICIENT FINE-TUNING (PEFT)

PEFT methods are designed to adapt LLMs to new tasks with minimal additional parameters. Rep-
resentative works include BitFit (Zaken et al., 2021), Adapters (Houlsby et al., 2019), Prompt Tun-

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

ing (Liu et al., 2023b; 2022; Lester et al., 2021), Prefix Tuning (Li & Liang, 2021) and Low-Rank
Adaptation (LoRA) (Hu et al., 2022). Among these methods, LoRA is the most representative one.
It introduces trainable low-rank matrices to approximate weight updates, realizing highly efficient
fine-tuning with low cost, which has led to various extensions (Kopiczko et al., 2024; Liu et al., 2024;
Valipour et al., 2023; Zhang et al., 2023a; Ding et al., 2023). For example, VeRA (Kopiczko et al.,
2024) further reduced the number of trainable parameters in LoRA by employing shared low-rank
matrices and trainable scaling vectors. DoRA (Liu et al., 2024) enhanced fine-tuning performance
and stability by decomposing the pre-trained weights into magnitude and direction components. For
greater flexibility in LoRA’s rank, DyLoRA (Valipour et al., 2023) dynamically trained all ranks dur-
ing training to avoid separate rank tuning for each task. AdaLoRA (Zhang et al., 2023a) allocated the
parameter budget based on the importance scores of the weight matrices and pruned insignificant
singular values to exclude unimportant rank spaces. SoRA (Ding et al., 2023) introduced a train-
able gating unit and used proximal gradient descent to optimize the sparsity of the update matrices,
dynamically adjusting the intrinsic rank size during training.

However, LoRA’s fixed-rank constraint limits its flexibility. Although recent works (Valipour et al.,
2023; Zhang et al., 2023a) have enhanced LoRA’s adaptability, they predominantly address single-
task training scenarios. These approaches do not consider multi-task scenarios, where selecting the
most suitable rank for different tasks remains an open challenge. This gap underscores the need for
more flexible and adaptive methods capable of efficiently handling diverse and concurrent tasks in
multi-task learning scenarios.

2.2 MULTI-TASK LEARNING

Multi-task learning (MTL) focuses on simultaneously solving multiple related tasks with a single
model, which has been studied from multiple perspectives and offers several advantages (Zhang &
Yang, 2021; Vandenhende et al., 2022). As large language models advance, multi-task learning has
become an essential skill for them. However, it still faces several challenges, such as conflicts be-
tween different tasks, balancing task weights, and the demands on training resources (Chen et al.,
2021; Kollias et al., 2024). Optimizing PEFT methods for MTL scenarios is a highly valuable direc-
tion. For instance, HyperFormer (Mahabadi et al., 2021) improved Adapter-based methods by using
a shared hypernetwork for cross-task knowledge sharing while integrating task-specific Adapters.
In Prompt Tuning, SPoT (Vu et al., 2022) learned prompts from source tasks and adapted them for
target tasks, enhancing model performance. ATTEMPT (Asai et al., 2022) used an attention mecha-
nism to merge source and target prompts for effective knowledge transfer. MPT (Wang et al., 2023b)
employed prompt decomposition and knowledge distillation to create a transferable prompt, which
was then fine-tuned with low-rank modifications for specific tasks.

Additionally, LoRA-based improvements have shown significance in multi-task scenarios. Multi-
LoRA (Wang et al., 2023a) employed multiple parallel LoRA modules during training, ensuring
that the rank space closely approximates fine-tuning. MixLoRA (Li et al., 2024) used multiple
parallel LoRA experts with a gating mechanism to select the appropriate expert for each token.
MOELoRA (Liu et al., 2023a) learned task-shared and specific knowledge with multiple experts
and adjusted their contributions for each task using a gating function. However, these methods also
have limitations. The parallel LoRA modules increase the number of trainable parameters, signifi-
cantly reducing training efficiency. Besides, they do not account for the varying rank requirements
of different tasks.

3 PRELIMINARY

3.1 PROBLEM DEFINITION

In multi-task learning scenarios, the objective is to concurrently learn multiple tasks, each char-
acterized by potentially diverse data distributions and goals. Formally, we consider a set of tasks
T = {T1, T2, . . . , TT }, where each task Tt is associated with a dataset Dt = {(xt

i, y
t
i)}

Nt
i=1 com-

prising Nt input-output pairs. Here, xt
i denotes the input data and yti denotes the corresponding

label or output for task Tt. The target is to learn a shared model F with parameters θ to satisfy the
requirements of different simultaneously.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

MoRE
…

Expert 1 Expert 2 Expert T

MoRE FFN

Norm Layer

MoRE Attention

Norm Layer

input

×N

Expert 3

…

Router

…

…

Task 1 Task 2 Task 3 Task T

Trainable

Frozen

Samples

Maximize

Minimize
… …Task Embedding

𝑟1
𝑟2 𝑟3

𝑟t

Shared

weight

A

B

Figure 1: The overall framework of our proposed MoRE.
3.2 LORA: LOW-RANK ADAPTATION

(LoRA) (Hu et al., 2022) is designed to reduce the computational cost and memory footprint of
adapting LLMs to new tasks. Instead of fine-tuning all parameters, LoRA adapts the model by in-
troducing low-rank updates to the existing weight matrices. Formally, let W0 ∈ Rm×d be a weight
matrix of a specific LLM, where m and d denote the input and output dimensions, respectively.
LoRA approximates the weight update ∆W using a low-rank decomposition:

∆W = BA, (1)

where A ∈ Rr×d and B ∈ Rm×r are the learned low-rank matrices, and r ≪ min(m, d) is the
pre-defined rank. This decomposition significantly reduces the number of trainable parameters from
m× d to r × (m+ d). For original h = W0x, the modified forward pass yields:

h = W0x+∆Wx = Wx+BAx. (2)

However, this process highly depends on the pre-defined rank r, which is time-consuming and com-
putationally expensive to search. And this problem will be amplified in multi-task scenarios, limiting
the potential of LoRA. Thus, How to use LoRA to achieve efficient LLM fine-tuning in multi-task sce-
narios is the main focus of our paper.

4 MIXTURE OF LOW-RANK EXPERTS

To tackle the inefficient problem of LoRA in multi-task scenarios, we propose a novel Mixture of
Low-Rank Experts (MoRE). The cores lie in how to learn experts and how to select them. As il-
lustrated in Figure 1, we focus on parameters in attention layer and FFN layer of the Transformer
block. We first assign a task embedding for each task to describe the abstract task characteristics.
Then, based on the task embedding, we design a novel adaptive rank selector to select the appropri-
ate rank for each task, term as the rank expert. Finally, we incorporate contrastive learning to ensure
the quality of learned task embedding and design a Balanced Data Sampling strategy to stabilize the
learning process for better multi-task learning. Next, we will introduce each part in detail.

4.1 TASK EMBEDDING

Existing multi-task learning methods focus on mining useful information from task data and trans-
ferring knowledge from one task to another. Despite the progress, they are still weak at sharing
common information among tasks and distinguishing specific information aligning with each task.
This shortcoming will prohibit the efficiency of PEFT methods when using them to tune LLMs in
multi-task scenarios. Therefore, we propose using task embeddings to represent different tasks so
that task characteristics can be summarized comprehensively. This operation is also the precondition
of our designed rank expert for measuring the connections and distinctions among different tasks.

Specifically, we use matrix E = {e1, e2, ..., el} to denote all tasks, where ei represents the ith task
in the multi-task scenarios. Then, we leverage Kaiming Initialization to initialize them and learn
precise E during model training. Since there is no supervised signal for E, we design a Contrastive
Learning (CL) based optimization target to learn them, which will be introduced in Section 4.3.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

4.2 ADAPTIVE RANK SELECTOR

As illustrated in Section 1, vanilla LoRA and its typical variances usually have a fixed rank r, which
is pre-defined by experts. However, different tasks may benefit from different ranks depending on
their complexity and data distributions (Valipour et al., 2023; Ding et al., 2023). Searching the best
rank is time-consuming and computationally expensive. Meanwhile, training parallel LoRA mod-
ules or multiple LoRAs when applying LLMs to multi-task scenarios will amplify the problem
and prohibit the effectiveness, causing high computational and storage costs. Therefore, we employ
Mixture-of-Experts (MoE) framework and design a novel Adaptive Rank Selector.

Different from previous work that treated the entire LoRA module as an expert, we propose to treat
the rank r as the expert and use one LoRA to realize LLM fine-tuning in multi-task scenarios. As-
suming the selected rank of LoRA is r, the rank expert can be selected within the range [1, r]. Along
this line, different experts can share common information at the overlap part in the learned metrics
(i.e., A and B) and align specific information corresponding to each task at the non-overlap part.
Formally, we use the learned task embedding et to select the appropriate rank from the LoRA mod-
ule and leverage a gating network G(·) to guarantee the quality of the selection. Let {1, 2, . . . , r}
be the set of experts’ ranks. For task Tt, G(·) takes et as input and outputs a probability distribution
over rank experts as follows:

pt = G(et) = softmax(Wget + bg), (3)

where {Wg,bg} are learnable parameters. The probability distribution pt ∈ Rr indicates the rel-
evance of each rank to task Tt. During the forward pass, we select the rank with the highest prob-
ability and use the selected rank to truncate the LoRA module for rank expert construction. Then,
MoRE uses LoRA paradigm to realize the fine-tuning as follows:

rt = argmaxpt,

h = W0x+BtAtx, At = A[: rt, :], Bt = B[:, : rt].
(4)

One step further, during the backward pass, the argmax in Eq.(3) is non-differentiable, causing G(·)
unable to be learned. Thus, we incorporate Straight-Through Estimator (STE) (Bengio et al., 2013)
technique to address this issue. Specifically, we use STE to calculate the approximate gradient to
allow the gradient to propagate back to G(·) correctly:

Ste(pt) = pt + sg[one hot(pt)− pt], (5)

where one hot(·) is a function that converts a vector into its one-hot version. sg(·) stands for stop
gradient. Then, we modify the forward process in Eq.(4) as:

h = W0x+ Ste(pt)[rt] ·BtAtx. (6)

Thus, Adaptive Rank Selector module can realize a precise selection of rank experts. Furthermore,
since MoRE uses the overlap part among LoRA metrics to share the common information across
different tasks, the lower part will be updated more frequently during fine-tuning. Thus, its learning
rate should be small for a slow and stable updating. To realize this goal, we perform a linear scaling
on its weights for the balance:

h = W0x+ Ste(pt)[rt] ·
rt
|T |

BtAtx, (7)

where |T | represents the total number of tasks. To verify the effectiveness of this design, we also
conducted an ablation study on this operation in Section 5.4.

4.3 BALANCED DATA SAMPLING AND CL-BASED OPTIMIZATION

Balanced Data Sampling. In multi-task scenarios, data distributions of different tasks are also
essential for LLM fine-tuning. For instance, in GLUE benchmark (Wang et al., 2018), MNLI and
RTE datasets have proportionally disparate data distributions (i.e., 392, 000 v.s. 2, 500 examples).
If this attribute is not considered when fine-tuning LLMs in multi-task scenarios, it is obvious that
fine-tuned LLMs will underfit the task with smaller datasets.

In response, we propose a simple but effective Balanced Dataset Sampling strategy to ensure each
dataset contributes proportionally during the fine-tuning process, regardless of its size. Specifically,
we assign a sampling weight ϕt to each dataset Dt, which is inversely proportional to its size:

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Φ = [ϕ1, ϕ2, ..., ϕT], ϕt = exp

(
|Dt|∑T
i=1 |Di|

)
,

Dt = Sampling(D,Φ),

(8)

where |Dt| is the size of dataset Dt. Sampling(D,Φ) denotes sampling a subset from all datasets D
with the probability distribution Φ. This dynamic sampling strategy helps to balance the contribu-
tions of different datasets, thereby reducing the risk of underfitting smaller datasets and improving
the overall performance of the multi-task training.

CL-based Optimization. As mentioned in Section 4.1, there is no supervised signal for task em-
bedding learning. Thus, one important question should be considered: “How to ensure the task char-
acteristics and task distinguishability of the learned task embedding without annotation require-
ments?” In response, we propose to leverage CL to ensure the quality of learned task embeddings.
Consider a batch B of samples, where all samples in B belong to the same task Tt. Let {xi}Ni=1 be the
set of N samples in B, and let hi be the representation of sample xi obtained from the model. The
task embedding for task Tt is denoted as et. The optimization target can be formulated as follows:

Lcon =
1

N

N∑
i=1

log exp
(

sim(hi,et)
τ

)
∑T

k=1 exp
(

sim(hi,ek)
τ

)
 , (9)

where sim(·, ·) denotes a similarity measure, such as the dot product or cosine similarity, and T is
the total number of tasks. τ is the temperature. et and ek are the tth and kth tasks where t ̸= k.
By using Eq.(9), we can measure the connection between task embedding et and its data samples
{xi}Ni=1. Since each data sample is close to the corresponding task embedding, we can conclude
the learned task embeddings can be used to describe task characteristics, which is also supported by
experimental results in Section 5.3.

Besides using contrastive loss to learn task embeddings, we also select generation loss Lgen to mea-
sure the discrepancy between the sequences generated by the model and the target sequences. Let y
and ŷ be target sequence and generation, Lgen can be formulated with the cross-entropy loss:

Lgen = −
T∑

t=1

yt log ŷt. (10)

Then, we leverage a hyperparameter λ to balance the contributions of the generation loss and the
contrastive loss, and formulate the overall optimization target of MoRE as follows:

L = Lgen + λLcon. (11)

Discussion. Compared with existing LoRA-based PEFT methods and MoE-based fine-tuning
methods, our proposed MoRE has the following properties. 1) We propose to treat different rank
values in one LoRA module as experts, and design an adaptive rank selector to select appropriate
rank experts for different tasks, which can effectively share the common information among tasks
and emphasize the specific information aligned to each task; 2) We leverage task embeddings to ac-
curately describe the abstract task characteristics with a CL optimization; 3) We also consider task
data distributions and design a simple but effective Balanced Data Sampling strategy to ensure the
capability of fine-tuned LLMs on different tasks.

5 EXPERTMENTS

5.1 EXPERIMENTAL SETUP

Datasets. We utilized GLUE benchmark (Wang et al., 2018) to evaluate the model performance.
GLUE covers multiple tasks of paraphrase detection (MRPC, QQP), sentiment classification (SST-
2), natural language inference (MNLI, RTE, QNLI), and linguistic acceptability (CoLA). Following
previous work (Zhang et al., 2021), for those datasets with fewer than 10, 000 samples (i.e., RTE,
MRPC, STS-B, CoLA), we split the original validation set into new validation and test sets equally.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Table 2: Performance on GLUE benchmark. For STS-B, we report Pearson correlation coeffi-
cients. For CoLA, we report Matthews correlation. For all other tasks, we report accuracy. Bold
and underlined fonts indicate the best and the second-best results.

Methods params/task MNLI QQP QNLI SST-2 STS-B MRPC RTE CoLA AVG

Finetuning 28M 85.7 91.1 92.0 92.5 88.8 90.2 75.4 54.9 83.8
Adapters 1.8M 86.3 90.5 93.2 93.0 89.9 90.2 70.3 61.5 84.4
PT 9.6k 85.6 90.6 93.2 93.9 89.9 86.3 67.6 55.3 82.8
LoRAr=8 0.39M 85.8 89.2 93.1 93.2 90.4 89.9 76.3 62.8 85.1
LoRAr=16 0.78M 84.9 89.6 93.0 93.7 90.4 88.7 80.6 63.9 85.6

HyperFomer 638K 85.7 90.0 93.0 94.0 89.7 87.2 75.4 63.7 84.8
MPT 10.5K 84.3 90.0 93.0 93.3 90.4 89.2 82.7 63.5 85.8
MultiLoRA 1.56M 85.9 89.7 92.8 94.5 89.8 88.2 80.6 66.9 86.0
MixLoRA 1.49M 85.8 90.0 92.9 93.7 90.3 89.2 78.4 67.2 85.9
MOELoRA 0.78M 86.3 90.1 93.2 94.2 90.0 89.7 81.3 68.4 86.7

MoRE 0.78M 86.2 90.0 93.4 93.7 90.7 91.2 83.5 69.9 87.3

LLaMA2-LoRA 2.5M 86.9 88.6 93.5 96.2 90.2 92.6 89.2 65.0 87.8
LLaMA2-MultiLoRA 10M 87.6 85.0 93.4 96.7 92.2 88.7 87.8 72.4 88.0
LLaMA2-MixLoRA 12.2M 86.8 88.1 93.6 96.0 91.3 88.2 87.1 73.2 88.0
LLaMA2-MOELoRA 5M 87.0 87.6 91.4 96.3 92.4 91.2 87.8 64.4 87.3

LLaMA2-MoRE 5M 89.4 89.0 94.4 96.9 92.2 89.2 92.1 66.9 88.8

For others, we randomly select 1, 000 examples from training set as the validation set, and use origi-
nal validation sets as test sets. Additionally, we included the BoolQ (Clark et al., 2019), PIQA (Bisk
et al., 2020), OBQA (Mihaylov et al., 2018), and ARC (Clark et al., 2018) datasets to assess the
model’s performance in commonsense reasoning tasks. These datasets provide a variety of chal-
lenges that require understanding of everyday scenarios and logical reasoning. Moreover, we select
SciTail (Khot et al., 2018), BoolQ (Clark et al., 2019), and CB (de Marneffe et al., 2019) datasets
to evaluate model robustness and generalization capabilities in few-shot learning scenarios. We also
provide an early attempt on generation tasks (Nan et al., 2021) and report results in Appendix A.

Baselines. We compare MoRE with the following baselines: (1) Full fine-tuning (FT), (2) Vanilla
Adapter (Houlsby et al., 2019), (3) Vanilla prompt tuning (PT) (Raffel et al., 2020), (4) Vanilla
LoRA (Hu et al., 2022), We also select the following advanced multi-task PEFT baselines: (1) Hy-
perFomer (Mahabadi et al., 2021), (2) MPT (Wang et al., 2023b), (3) MultiLoRA (Wang et al.,
2023a), (4) MixLoRA (Li et al., 2024). (5) MOELoRA (Liu et al., 2023a). All methods are tuned
based on reported settings with T5-base and LLaMA2-7B as backbone for a fair comparison.

Training Setup. We select T5-base (Raffel et al., 2020) and LLaMA2-7B (Touvron et al., 2023) as
the backbone. The optimizer is AdamW. The learning rate is 3× 10−4, with a linear decay schedule
and warm-up over the first 500 steps. The batch size is 32, and the training process spanned 5
epochs. The maximum input sequence length is 128 tokens. The λ is set to 0.1, and the temperature
τ in Eq.(9) is 0.05. For few-shot domain transfer, We use the best checkpoint trained on the GLUE
tasks for initialization. The task embeddings of the most similar tasks will be shared (e.g., MNLI for
SciTail and CB). The T5-base is trained on Ubuntu 20.04 platform using two NVIDIA RTX 4090
GPUs, and LLaMA2-7B is trained with four NVIDIA Tesla A100 PCIe GPUs.

Evaluation Setup. For GLUE benchmark and commonsense reasoning tasks, we selected the
checkpoint with the highest average performance on validation set. For few-shot learning, we per-
formed training and testing under each shot setting using 5 random seeds. Then, we reported the
average performance for a fair and robust estimation and comparison.

5.2 OVERALL PERFORMANCE

Performance on GLUE Benchmark and Commonsense Reasoning Tables 2 and 3 present model
performance on multi-task scenarios. From Table 2, we can observe that MoRE achieves impressive
performance over different tasks with a relatively small number of fine-tuned parameters. Moreover,
compared with LoRA implementation (r = 16), MoRE achieves significant improvement (e.g.,
1.7% average improvement) without extra tuning parameter, demonstrate the superiority of MoRE.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Table 3: Performance (Accuracy) of all methods on Commonsense Reasoning scenarios.

Methods params/task BoolQ PIQA OBQA ARC-E ARC-C AVG

LLaMA2-LoRA 2.5M 80.9 77.7 79.0 83.7 76.9 79.6
LLaMA2-MultiLoRA 10M 76.5 72.9 68.2 81.6 61.9 72.2
LLaMA2-MixLoRA 12.2M 84.3 79.5 82.6 86.8 76.3 81.9

LLaMA2-MOELoRA 4.5M 84.0 79.9 81.8 86.8 77.3 82.0

LLaMA2-MoRE 4.5M 87.2 82.3 83.0 86.7 74.2 82.7

By treating ranks as experts and learning accurate task embedding to support the expert selection,
MoRE can effectively share common information and specify aligned information across different
tasks, and achieve impressive performance without too many fine-tuned parameters. Furthermore,
the number of fine-tuned parameters of MoRE is the same as representative LoRAr=16, smaller
than other LoRA-based improvement methods. When fine-tuning larger models (e.g., LLaMA2-7B),
MoRE can achieve much better performance. All these phenomena demonstrate the superiority of
MoRE. Additionally, MoRE can be further optimized during inference, allowing the inference-time
parameters to be comparable to those of LoRAr=8 (see Section 5.4 for details).

For PEFT baselines, we observe that fine-tuned performance over small datasets (i.e., MRPC, RTE,
and CoLA) is not so good. One possible reason is that they do not consider the shared knowledge
across different tasks, treating each task individually. Moreover, their fine-tuned module requires
more training data. Thus, we can observe the sub-optimal multi-task performance on these base-
lines. For multi-task baselines, though they consider the shared knowledge across different tasks,
they do not distinguish the distinctions and connections among different tasks. For example, Hy-
perFormer just learns task embeddings without any constraints. MPT sacrifices too much on MNLI
task. Therefore, their performance is not comparable with MoRE. As for MultiLoRA and MixLoRA,
although they improve the performance of LoRA, they do not utilize task-aware modules or consider
specific rank allocation for different tasks. As a result, their performance improvements are limited.

Meanwhile, we can obtain the similar results from Table 3. MoRE achieves the highest average
accuracy when fine-tuning LLaMA2 on commonsense reasoning scenario, surpassing all other ap-
proaches with a smaller number of fine-tuned parameters, proving the superiority of MoRE. In con-
trast, MultiLoRA has worse performance. We speculate the reason is that commonsense reasoning
tasks require more fine-grained task information sharing and distinguishing, which cannot be satis-
fied by a simple LoRA ensemble.

Performance on Few-shot Domain Transfer To further verify the efficiency of MoRE, we conduct
few-shot domain transfer experiments and report results in Table 4. We can observe MoRE achieves
stable and optimal performance over most datasets with different few-shot settings, This consis-
tency proves the efficiency of MoRE on sharing common information and distinguishing specific
information across different tasks, which helps leverage minimal data for effective transfer learning.

For baselines, traditional fine-tuning and multi-task tuning (i.e., HyperFomer and MPT) require more
parameters to be tuned. Thus, their performance is subpar with limited training data. Increasing
training data will improve their performance. For LoRA-based baselines, multi-task LoRA-based
methods have similar performance with vanilla LoRAr=16 and do not show performance gains
in multi-task learning. We speculate that they may encounter difficulties in efficiently allocating
appropriate ranks or adapting parameters to new tasks when only a small number of samples is
available. These phenomena highlight the challenges of effectively utilizing few-shot data to achieve
good generalization across different domains, demonstrating the superiority of MoRE.

5.3 EXPERT SELECTION ANALYSIS AND TASK VISUALIZATION

Low-Rank Expert Allocation. To investigate the expert distribution after model fine-tuning, we
analyze the expert allocation across all layers for each task. As shown in Figure 2(a), in most cases,
all tasks heavily rely on experts with ranks 1, 2, or 3. This indicates a significant amount of param-
eter redundancy in LoRA, where the higher-rank parameters in many modules do not substantially
contribute during the fine-tuning process. This is consistent with our design that MoRE leverage
rank experts to share common information across different tasks with lower-rank parameters. More-
over, to illustrate the dependency of different tasks on various ranks, and to eliminate the influence

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Table 4: Few-shot domain transfer results (Accuracy) of T5-base models fine-tuned on GLUE aver-
aged across 5 seeds. Bold and underlined fonts indicate the best and the second-best results.

Task k-shot Finetuning LoRA HyperFomer MPT MultiLoRA MixLoRA MOELoRA MoRE

BoolQ
4 50.5 64.2 48.0 62.2 65.2 62.8 64.0 64.6

16 56.5 66.1 50.2 63.3 65.8 64.4 64.8 66.2
32 58.4 67.4 58.3 68.9 67.6 66.2 65.7 67.9

CB
4 57.7 84.3 60.7 73.6 85.0 86.6 85.4 85.7

16 77.0 85.7 76.3 78.6 85.7 86.4 86.3 86.4
32 80.0 87.1 81.4 82.1 86.6 89.3 88.3 88.6

SciTail
4 79.6 80.8 82.0 80.2 78.1 77.5 80.4 83.8

16 80.0 84.0 86.5 87.3 81.7 82.4 83.1 86.7
32 81.9 85.3 85.8 86.3 83.6 83.3 84.5 87.4

(a) (b) (c)

Figure 2: (a)-(b) The distribution of expert allocation. (c) Visualization of the task embeddings.

of low-rank experts 1-3, we proportionally scaled the low-rank experts 1-3 for each task. As depicted
in Figure 2(b), different tasks indeed exhibit stronger dependencies on different ranked experts. For
instance, MRPC relies on expert 4, RTE depends on expert 6, and STSB still relies on expert 1.
This phenomenon proves strong evidence to support that MoRE can allocate more suitable ranks for
different tasks and use higher-rank parameters to emphasize the specific information aligned to each
task. This is also the reason that MoRE can achieve the best performance in multi-task scenarios.

Visualization of Task Embeddings. In Section 4.1, we mention that task embedding is essential
for rank expert selection. Here, we visualize the learned task embeddings to verify the quality and
provide some insight for understanding MoRE. Specifically, we use PCA to process the task em-
beddings from the final layer of the self-attention module and report results in Figure 2(c). We can
observe that task embeddings exhibit varying degrees of clustering. Similar tasks (e.g., MRPC and
QNLI) have a tendency to cluster, while different tasks have a large distance. Moreover, STSB and
CoLA tasks seem relatively independent to all other tasks. It is consistent with our expectations.
Since STSB involves similarity computation and other tasks are classification tasks, they indeed
have obvious differences in abstract task characteristics. These phenomena also give us some in-
sight into the efficiency and effectiveness of MoRE. By using task embeddings to extract abstract
task information, MoRE can capture and represent the similarities and differences between tasks in
diverse ways. This capability helps to select the appropriate rank expert, which in turn ensures the
superiority of our proposed MoRE. We also provide more examples in Appendix C.

5.4 ABLATION STUDY AND PARAMETER ANALYSIS

Ablation Study. We perform an ablation study to better verify the contribution of each component
in MoRE. As shown in Table 5, we can observe a significant performance decrease (i.e., 0.9% and
0.7% average accuracy decrease) when replacing task-specific embeddings with a shared embed-
ding (w/o Task Embeddings) or removing contrastive optimization (Eq.(9)) (w/o CL optimization),
proving the importance of the CL-based task embedding module. This is consistent with our de-
sign in Section 4.1. Moreover, removing STE and using soft expert selection with Eq.(3) (w/o STE)
also have a big impact on the model performance. Since we treat different ranks as experts, using
soft expert selection will reduce the discrimination between different experts, leading to a tendency
towards vanilla LoRAr=16. Furthermore, when using random sampling (w/ Random Sample), we
can observe 86.2% average GLUE accuracy, indicating the positive impact of our balanced sample
selection strategy. Besides, when removing linear scaling (w/o Linear Scaling), we observed a slight
drop in performance, indicating that this adjustment helps mitigate the overfitting of LoRA.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Table 5: Ablation study results (Average Results
on GLUE benchmark) of MoRE.

Conditions GLUE Avg.

MoRE 87.3
w/o Linear Scaling 87.0
w/o Task Embeddings 86.1
w/o CL optimization 86.3
w/o STE 86.4
w/ Random Sample 86.2

(a)

(b)
Figure 3: (a) Comparison of trainable param-
eters. (b) Parameter sensitivity experiments.

Parameter Sensitivity Test. There are two hyper-parameters that affect model performance: (1)
λ in Eq.(11); (2) the dimension of task embeddings. Therefore, we conduct additional experiments
to verify their impacts and report results in Figure 3(b). From the figure, we have the following
observations. First, with the increase of λ, model performance first decreases and then increases.
Since different tasks have various data samples, the corresponding contrastive loss would exhibit
oscillations, which may have negative impacts on fine-tuning performance. Thus, we set λ = 0.1 to
obtain the best performance. Second, with the increase of the dimension of task embedding, model
performance will first increase and then decrease. We attribute this phenomenon to the following
reasons. When the dimension is too small, task embedding cannot capture complex task information,
which will harm the selection of rank experts. When the dimension is too big, its training requires
more data, which cannot always be satisfied. Moreover, since we need to calculate similarity with
samples, the sample embedding from LLMs also should be considered. Based on all these reasons,
we finally set the dimension of task embeddings as 768.

Parameter Efficiency. To analyze the model complexity, we give the number of tuning parameters
of different LoRA-based methods, which is summarized in Figure 3 (a). The notation explanations
are as follows: {L, r, (m, d), n, T, h} refer to model layers, LoRA rank, model dimensions, par-
allel LoRA module number, task number, and task embedding dimension. Compared with tuning
parameter size of LoRA, the added parameter number of MoRE is 6Lh(r + T), including the ex-
tra task embeddings (Th for a single LoRA module) and adaptive rank selector (rh for a single
LoRA module). Compared with MultiLoRA and MixLoRA which use parallel module design to
tackle multi-task learning, MoRE is more efficient. Moreover, once our task embedding and gate
modules are trained, we can construct a mapping from tasks to experts, which allows us to avoid
the repeated computation of the task embedding and gate modules during inference, thereby reduc-
ing the parameter count to be consistent with LoRA. This is also the reason why MoRE achieves
impressive performance in multi-task scenarios without too many fine-tuning parameters. We also
provide detailed parameter size calculations of baselines in Appendix B.

6 CONCLUSION AND FUTURE WORK

In this paper, we argued that existing PEFT methods either did not consider multi-task fine-tuning
or used parallel structures that added too many tuning parameters, prohibiting the efficiency of
LoRA. In response, we proposed a novel MoRE for multi-task PEFT. By treating each low-rank
in LoRA module as a specialized expert, MoRE could share common information with lower-rank
parameters and emphasize the specific information aligned to each task with higher-rank parameters,
which not only fully exploited the potential of LoRA module but also reduced the tuning parame-
ter size in multi-task scenarios. To ensure the quality of rank experts, we used task embeddings
to capture the distinctions and connections among different tasks. We also developed a CL-based
optimization target and Balanced Dataset Sampling strategy to ensure the fine-tuning quality. Ex-
tensive experiments demonstrated that our method achieves significant improvements on the GLUE
benchmark and exhibits strong transfer learning performance. In the future, we plan to extend the
application of MoRE and design a more efficient module to further improve its capability.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Akari Asai, Mohammadreza Salehi, Matthew E Peters, and Hannaneh Hajishirzi. Attempt:
Parameter-efficient multi-task tuning via attentional mixtures of soft prompts. In Proceedings
of the 2022 Conference on Empirical Methods in Natural Language Processing, pp. 6655–6672,
2022.

Yoshua Bengio, Nicholas Léonard, and Aaron Courville. Estimating or propagating gradients
through stochastic neurons for conditional computation. arXiv preprint arXiv:1308.3432, 2013.

Yonatan Bisk, Rowan Zellers, Jianfeng Gao, Yejin Choi, et al. Piqa: Reasoning about physical com-
monsense in natural language. In Proceedings of the AAAI conference on artificial intelligence,
volume 34, pp. 7432–7439, 2020.

Tom B Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. In Proceedings of the 34th International Conference on Neural Information
Processing Systems, pp. 1877–1901, 2020.

Shijie Chen, Yu Zhang, and Qiang Yang. Multi-task learning in natural language processing: An
overview. ACM Computing Surveys, 2021.

Christopher Clark, Kenton Lee, Ming-Wei Chang, Tom Kwiatkowski, Michael Collins, and Kristina
Toutanova. Boolq: Exploring the surprising difficulty of natural yes/no questions. In Proceedings
of the 2019 Conference of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 2924–2936,
2019.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and
Oyvind Tafjord. Think you have solved question answering? try arc, the ai2 reasoning challenge.
arXiv preprint arXiv:1803.05457, 2018.

Marie-Catherine de Marneffe, Mandy Simons, and Judith Tonhauser. The commitmentbank: Inves-
tigating projection in naturally occurring discourse. In Proceedings of Sinn und Bedeutung 23,
2019.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186, 2019.

Ning Ding, Xingtai Lv, Qiaosen Wang, Yulin Chen, Bowen Zhou, Zhiyuan Liu, and Maosong Sun.
Sparse low-rank adaptation of pre-trained language models. In Proceedings of the 2023 Confer-
ence on Empirical Methods in Natural Language Processing, pp. 4133–4145, 2023.

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski, Bruna Morrone, Quentin De Laroussilhe, An-
drea Gesmundo, Mona Attariyan, and Sylvain Gelly. Parameter-efficient transfer learning for nlp.
In International conference on machine learning, pp. 2790–2799. PMLR, 2019.

Edward J Hu, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, Weizhu Chen,
et al. Lora: Low-rank adaptation of large language models. In International Conference on
Learning Representations, 2022.

Chengsong Huang, Qian Liu, Bill Yuchen Lin, Chao Du, Tianyu Pang, and Min Lin. Lorahub:
Efficient cross-task generalization via dynamic lora composition. In R0-FoMo: Robustness of
Few-shot and Zero-shot Learning in Large Foundation Models, 2023.

Zixuan Ke, Yijia Shao, Haowei Lin, Tatsuya Konishi, Gyuhak Kim, and Bing Liu. Continual pre-
training of language models. In The Eleventh International Conference on Learning Representa-
tions, 2023.

Tushar Khot, Ashish Sabharwal, and Peter Clark. Scitail: A textual entailment dataset from science
question answering. In Proceedings of the AAAI conference on artificial intelligence, volume 32,
2018.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Dimitrios Kollias, Viktoriia Sharmanska, and Stefanos Zafeiriou. Distribution matching for multi-
task learning of classification tasks: a large-scale study on faces & beyond. In Proceedings of the
AAAI Conference on Artificial Intelligence, pp. 2813–2821, 2024.

Dawid Jan Kopiczko, Tijmen Blankevoort, and Yuki M Asano. Vera: Vector-based random matrix
adaptation. In The Twelfth International Conference on Learning Representations, 2024.

Brian Lester, Rami Al-Rfou, and Noah Constant. The power of scale for parameter-efficient prompt
tuning. In Proceedings of the 2021 Conference on Empirical Methods in Natural Language Pro-
cessing, pp. 3045–3059, 2021.

Dengchun Li, Yingzi Ma, Naizheng Wang, Zhiyuan Cheng, Lei Duan, Jie Zuo, Cal Yang, and
Mingjie Tang. Mixlora: Enhancing large language models fine-tuning with lora based mixture
of experts. arXiv preprint arXiv:2404.15159, 2024.

Xiang Lisa Li and Percy Liang. Prefix-tuning: Optimizing continuous prompts for generation. In
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the
11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers),
pp. 4582–4597, 2021.

Qidong Liu, Xian Wu, Xiangyu Zhao, Yuanshao Zhu, Derong Xu, Feng Tian, and Yefeng Zheng.
Moelora: An moe-based parameter efficient fine-tuning method for multi-task medical applica-
tions. CoRR, 2023a.

Shih-yang Liu, Chien-Yi Wang, Hongxu Yin, Pavlo Molchanov, Yu-Chiang Frank Wang, Kwang-
Ting Cheng, and Min-Hung Chen. Dora: Weight-decomposed low-rank adaptation. In Forty-first
International Conference on Machine Learning, 2024.

Xiao Liu, Kaixuan Ji, Yicheng Fu, Weng Tam, Zhengxiao Du, Zhilin Yang, and Jie Tang. P-tuning:
Prompt tuning can be comparable to fine-tuning across scales and tasks. In Proceedings of the
60th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers),
pp. 61–68, 2022.

Xiao Liu, Yanan Zheng, Zhengxiao Du, Ming Ding, Yujie Qian, Zhilin Yang, and Jie Tang. Gpt
understands, too. AI Open, 2023b.

Rabeeh Karimi Mahabadi, Sebastian Ruder, Mostafa Dehghani, and James Henderson. Parameter-
efficient multi-task fine-tuning for transformers via shared hypernetworks. In Proceedings of the
59th Annual Meeting of the Association for Computational Linguistics and the 11th International
Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 565–576, 2021.

Todor Mihaylov, Peter Clark, Tushar Khot, and Ashish Sabharwal. Can a suit of armor conduct
electricity? a new dataset for open book question answering. arXiv preprint arXiv:1809.02789,
2018.

Linyong Nan, Dragomir Radev, Rui Zhang, Amrit Rau, Abhinand Sivaprasad, Chiachun Hsieh, Xi-
angru Tang, Aadit Vyas, Neha Verma, Pranav Krishna, et al. Dart: Open-domain structured data
record to text generation. In Proceedings of the 2021 Conference of the North American Chapter
of the Association for Computational Linguistics: Human Language Technologies, pp. 432–447,
2021.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J Liu. Exploring the limits of transfer learning with a unified text-to-text
transformer. Journal of machine learning research, 21(140):1–67, 2020.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and
efficient foundation language models. arXiv preprint arXiv:2302.13971, 2023.

Mojtaba Valipour, Mehdi Rezagholizadeh, Ivan Kobyzev, and Ali Ghodsi. Dylora: Parameter-
efficient tuning of pre-trained models using dynamic search-free low-rank adaptation. In Pro-
ceedings of the 17th Conference of the European Chapter of the Association for Computational
Linguistics, pp. 3274–3287, 2023.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Simon Vandenhende, Stamatios Georgoulis, Wouter Van Gansbeke, Marc Proesmans, Dengxin Dai,
and Luc Van Gool. Multi-task learning for dense prediction tasks: A survey. IEEE transactions
on pattern analysis and machine intelligence, 44(7):3614–3633, 2022.

Tu Vu, Brian Lester, Noah Constant, Rami Al-Rfou, and Daniel Cer. Spot: Better frozen model adap-
tation through soft prompt transfer. In Proceedings of the 60th Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Papers), pp. 5039–5059, 2022.

Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel R Bowman. Glue:
A multi-task benchmark and analysis platform for natural language understanding. In Interna-
tional Conference on Learning Representations, 2018.

Yiming Wang, Yu Lin, Xiaodong Zeng, and Guannan Zhang. Multilora: Democratizing lora for
better multi-task learning. arXiv e-prints, pp. arXiv–2311, 2023a.

Zhen Wang, Rameswar Panda, Leonid Karlinsky, Rogerio Feris, Huan Sun, and Yoon Kim. Mul-
titask prompt tuning enables parameter-efficient transfer learning. In The Eleventh International
Conference on Learning Representations, 2023b.

Jason Wei, Maarten Bosma, Vincent Zhao, Kelvin Guu, Adams Wei Yu, Brian Lester, Nan Du, An-
drew M Dai, and Quoc V Le. Finetuned language models are zero-shot learners. In International
Conference on Learning Representations, 2022.

Elad Ben Zaken, Shauli Ravfogel, and Yoav Goldberg. Bitfit: Simple parameter-efficient fine-tuning
for transformer-based masked language-models. arXiv preprint arXiv:2106.10199, 2021.

Qingru Zhang, Minshuo Chen, Alexander Bukharin, Pengcheng He, Yu Cheng, Weizhu Chen, and
Tuo Zhao. Adaptive budget allocation for parameter-efficient fine-tuning. In International Con-
ference on Learning Representations. Openreview, 2023a.

Shengyu Zhang, Linfeng Dong, Xiaoya Li, Sen Zhang, Xiaofei Sun, Shuhe Wang, Jiwei Li, Runyi
Hu, Tianwei Zhang, Fei Wu, et al. Instruction tuning for large language models: A survey. arXiv
preprint arXiv:2308.10792, 2023b.

Tianyi Zhang, Felix Wu, Arzoo Katiyar, Kilian Q Weinberger, and Yoav Artzi. Revisiting few-
sample bert fine-tuning. In International Conference on Learning Representations, 2021.

Yu Zhang and Qiang Yang. A survey on multi-task learning. IEEE transactions on knowledge and
data engineering, 34(12):5586–5609, 2021.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Table 6: Model performance on NLG tasks

Method DART E2E WebNLG AVG
FT 46.1 61.4 44.2 50.6

LoRAr=8 43.2 60.6 43.8 49.2
LoRAr=16 44.6 60.8 44.3 49.9
MultiLoRA 44.0 61.3 44.9 50.1
MixLoRA 44.3 60.9 45.3 50.2

MoRE 45.0 61.5 45.1 50.5

A ADDITIONAL EXPERIMENTS ON NLG

To further validate the effectiveness of our method, we conducted experiments on natural language
generation (NLG) tasks using three datasets: DART, E2E, and WebNLG. DART focuses on gener-
ating text from structured data, E2E involves generating restaurant descriptions from key attributes,
and WebNLG is designed for generating text from knowledge graph triples. As shown in Table 6,
none of the methods outperform fine-tuning (FT) on NLG tasks, and LoRA shows a significant per-
formance drop. This indicates that using a fixed rank for training all tasks is suboptimal. In contrast,
our method achieves performance comparable to FT. This is attributed to our method’s ability to
allocate an appropriate rank for different tasks efficiently.

B DETAILED CALCULATION OF PARAMETER COUNTS

LoRA parameters: LoRA employs matraix A and B to introduce low-rank adaptations in both
the attention layers (q, k, v, o) and the feed-forward network (FFN) layers (wi, wo) of the T5-base
model. Each LoRA layer has r(m+ d) paramters. The total number of parameters for LoRA with L
transformer layers is 6Lr(m+ d).

MultiLoRA parameters: MultiLoRA employs parallel LoRA models for training, so its parame-
ter count is n times that of vanilla LoRA, where n is the number of parallel LoRA modules. Addi-
tionally, MultiLoRA modifies the scaling factors to be learnable parameters (with parameter count
d). Therefore, the total number of parameters is 6nLr(m+ d) + 6Ld.

MixLoRA parameters: MixLoRA only employs parallel expert LoRA modules in the FFN lay-
ers and uses a gating module (with parameter count nm) to select the appropriate LoRA expert.
Therefore, the total number of parameters is 2nLr(m+ d) + 2Lnm.

MOELoRA Parameters: MOELoRA utilizes parallel LoRA models with a rank of r/n and in-
corporates a task embedding module to represent each task (with a parameter count of Th). Addi-
tionally, it employs a gating module (with a parameter count of nh) to compute the weights for each
LoRA. Therefore, the total number of parameters is given by 6Lr(m+ d) + 6Lh(n+ T).

MoRE parameters: Our proposed MoRE employs the same LoRA modules as vanilla LoRA, but
treats LoRA modules with different ranks as experts, thereby introducing an additional gating mod-
ule (with parameter count rh). To better adapt to different tasks, we also introduce a task embedding
module (with parameter count Th, where h is the hidden dimension). Therefore, the total number of
parameters is 6Lr(m+ d) + 6Lh(r + T). In the GLUE dataset, T = 8 is consistent with r = 8. If
the hidden dimension is set to be the same as d, then the parameter count is 12Lr(m+ d), which is
exactly the same as the parameter count with LoRAr=16. Compared to MultiLoRA and MixLoRA,
we do not use a parallel module design, so there is no parameter n that leads to a parameter count
far exceeding that of LoRA. Furthermore, once our task embedding and gate modules are trained,
we can construct a mapping from tasks to experts. This allows us to avoid the repeated computation
of the task embedding and gate modules during inference, thereby reducing the parameter count to
be consistent with LoRAr=8.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

C ADDITIONAL VISUALIZATION OF TASK EMBEDDINGS

Further analysis of task embeddings is presented in Figures 4-6. These figures reveal that the patterns
observed in other layers and modules of the model are consistent with those reported in the main
text. Notably, stronger clustering is observed in the wi and wo layers. This enhanced clustering
may be attributed to the feed-forward network (FFN) layers’ ability to capture shared information
underlying different tasks more effectively.

encoder_query encoder_key encoder_value encoder_output encoder_wi encoder_wo

decoder_query decoder_key decoder_value decoder_output decoder_wi decoder_wo

cola mnli mrpc qnli qqp rte sst2 stsb

Figure 4: Visualization of Task Embeddings in Layer 1.

encoder_query encoder_key encoder_value encoder_output encoder_wi encoder_wo

decoder_query decoder_key decoder_value decoder_output decoder_wi decoder_wo

cola mnli mrpc qnli qqp rte sst2 stsb

Figure 5: Visualization of Task Embeddings in Layer 6.

encoder_query encoder_key encoder_value encoder_output encoder_wi encoder_wo

decoder_query decoder_key decoder_value decoder_output decoder_wi decoder_wo

cola mnli mrpc qnli qqp rte sst2 stsb

Figure 6: Visualization of Task Embeddings in Layer 12.

15

	Introduction
	Related Work
	Parameter-Efficient Fine-Tuning (PEFT)
	Multi-task learning

	Preliminary
	Problem Definition
	LoRA: Low-Rank Adaptation

	Mixture of Low-Rank Experts
	Task Embedding
	Adaptive Rank Selector
	Balanced Data Sampling and CL-based Optimization

	Expertments
	Experimental Setup
	Overall Performance
	Expert Selection Analysis and Task Visualization
	Ablation Study and Parameter Analysis

	Conclusion and Future Work
	Additional Experiments on NLG
	Detailed Calculation of Parameter Counts
	Additional Visualization of Task Embeddings

