
Under review as a conference paper at ICLR 2024

TRAINING-FREE GENERALIZATION ON HETEROGE-
NEOUS TABULAR DATA VIA META-REPRESENTATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Tabular data is prevalent across various machine learning domains. Yet, the inher-
ent heterogeneities in attribute and class spaces across different tabular datasets
hinder the effective sharing of knowledge, limiting a tabular model to benefit from
other datasets. In this paper, we propose Tabular data Pre-Training via Meta-
representation (TabPTM), which allows one tabular model pre-training on a set of
heterogeneous datasets. Then, this pre-trained model can be directly applied to
unseen datasets that have diverse attributes and classes without additional train-
ing. Specifically, TabPTM represents an instance through its distance to a fixed
number of prototypes, thereby standardizing heterogeneous tabular datasets. A
deep neural network is then trained to associate these meta-representations with
dataset-specific classification confidences, endowing TabPTM with the ability of
training-free generalization. Experiments validate that TabPTM achieves promis-
ing performance in new datasets, even under few-shot scenarios.

1 INTRODUCTION

Tabular data, with rows representing instances and columns corresponding to attributes (features), is
ubiquitous in machine learning applications (Borisov et al., 2022) such as financial prediction (Cao
& Tay, 2001), recommendation system (Richardson et al., 2007), and healthcare analytics (Ogunleye
& Wang, 2020). Due to the inherent variability of tabular tasks, the tabular model for a given task
often requires careful design or training (Hutter et al., 2019; He et al., 2021), and should be re-
trained when the spaces of attributes and classes change (Hou & Zhou, 2018). While pre-trained
models have achieved tremendous success in areas like natural language processing (Devlin et al.,
2019; Liu et al., 2019; Zhou et al., 2023) and computer vision (Dosovitskiy et al., 2021; Kirillov
et al., 2023), enabling “zero-shot” and “few-shot” generalization to new tasks (Radford et al., 2021;
Alayrac et al., 2022), their experience is difficult to be extended to the tabular domain. A significant
obstacle is the heterogeneity among tabular datasets — the attribute as well as class spaces often
differ substantially from one dataset to another, hampering the joint training of a tabular model on
multiple datasets, let alone the direct application of pre-trained models.

Some recent methods take advantage of the semantic meaning of columns. By transforming an ex-
ample into textual form, the strong ability of large language models could be applied (Hegselmann
et al., 2023; Wang & Sun, 2022; Liu et al., 2022a; Wang et al., 2023). Yet, these methods face lim-
itations when column semantics are ambiguous or unavailable in real-world applications. Without
the semantic meaning of attributes, some approaches either focus on adapting a tabular model from
one dataset to another (Ye et al., 2021; Onishi et al., 2023), or explore shareable transformations
which facilitate the tuning of remaining parameters given a downstream dataset (Iwata & Kumagai,
2020; Kumagai et al., 2022; Liu et al., 2022b; Wydmanski et al., 2023; Zhu et al., 2023). To enhance
the utility of a pre-trained tabular model and save tuning resources during its deployment, we ask:

Is it possible to pre-train a powerful model over heterogeneous tabular datasets,
enabling seamless generalization to downstream tasks without additional tuning?

In this paper, we propose to represent an instance in a tabular dataset through its distance to a fixed
number of prototypes from a certain class. Such a “meta-representation” effectively standardizes
heterogeneous datasets, rendering them into a uniform form of the same dimension. By training
a joint deep neural network on the meta-representations of a large number of datasets, the classi-

1

Under review as a conference paper at ICLR 2024

Vanilla training and prediction Pre-training, fine-tune, and prediction Pre-training and training-free prediction

Tabular
Training data

Test
instance

Tabular
Classifier

Data-specific
Learnable Parameters

training

prediction
predictionfine-tune

training training

training-free prediction

Frozen
parameters

Shareable
parameters

+

+

downstream datasets

pre-training datasets

downstream datasets

pre-training datasets

Figure 1: An illustration of training strategies on tabular data. The left one depicts the vanilla
training and prediction, where tabular models are trained on each dataset separately. The middle
one shows pre-training a joint model across datasets with shared parameters, and the non-shared
parameters will be fine-tuned given a downstream dataset before prediction. In our training-free
approach (right), a model is trained on heterogeneous tabular datasets. Then we can directly apply
the pre-trained model to make predictions without additional training for a downstream dataset.

fication ability among datasets is extracted and shared. The Tabular model Pre-Trained via Meta-
representation (TabPTM) could be easily extended to downstream tabular datasets in a training-free
manner. Figure 1 compares different strategies that train and deploy models over tabular datasets.

In particular, the meta-representation characterizes an instance based on its similarity to prototypes
from each class’s training set given any tabular dataset. Paired with a distance metric, the meta-
representation adaptively filters out redundant and noisy attributes, accurately reflecting the class
membership of an instance. A deep neural network learns to map the class-wise meta-representations
in each dataset to the confidence scores for classification, benefiting final predictions. Our ex-
perimental results demonstrate that TabPTM achieves promising generalization ability on unseen
datasets efficiently in both few-shot and full-shot scenarios. The contributions are:

• We utilize meta-representations to reduce attribute heterogeneity and enable the pre-training of a
joint classification model over tabular datasets.

• We explore how to make predictions based on the meta-representations, and the pre-trained
TabPTM is capable of generalizing to unseen tabular datasets without additional training.

• Meta-representation is validated as an effective way for tabular classification. TabPTM shows
promising capabilities in generalizing to unseen datasets.

2 RELATED WORK

Learning with tabular data. Tabular data is one of the most common data forms in many
fields (Richardson et al., 2007; Vanschoren et al., 2014; Hamidieh, 2018), and a lot of classi-
cal machine learning methods have been developed for tabular data, such as XGBoost (Chen &
Guestrin, 2016), LightGBM (Ke et al., 2017), and CatBoost (Prokhorenkova et al., 2018). Recently,
researchers have tried to extend the success of deep neural networks such as multi-layer percep-
tron (Gorishniy et al., 2021), Transformer (Huang et al., 2020), and diffusion models (Kotelnikov
et al., 2023) from visual and textual domains to the tabular fields (Borisov et al., 2022). Attribute
embeddings (Song et al., 2019) and deep architectures have been designed (Guo et al., 2017; Katzir
et al., 2021; Chen et al., 2023b) for tabular data, and some simple baselines can achieve competitive
results as the classical methods after carefully tuned (Kadra et al., 2021). Deep tabular models have
the flexibility for various scenarios and can be incorporated well with the classical methods (Cheng
et al., 2016; Wang et al., 2017; Shwartz-Ziv & Armon, 2022; Grinsztajn et al., 2022).

Reuse a heterogeneous tabular model. Instead of training a tabular model from scratch on a new
task, reusing a pre-trained model from a related task becomes a useful choice, especially when effi-

2

Under review as a conference paper at ICLR 2024

ciency is emphasized (Tommasi et al., 2014; Kuzborskij & Orabona, 2017; Aghbalou & Staerman,
2023). In addition to the distribution shift between the pre-trained and the target tasks, the changes
in their attribute spaces as well as the class spaces make the transfer of a tabular model challeng-
ing (Hou & Zhou, 2018; Ye et al., 2021). The reuse of tabular models across heterogeneous datasets
usually relies on some assumptions. For example, the existence of a set of overlapped attributes
between two datasets (Hou et al., 2022; Levin et al., 2023; Onishi et al., 2023) and the column
meanings (the textual names of all attributes) (Wang & Sun, 2022).

Learning with multiple tabular datasets. One more step to take advantage of the ability of deep
neural networks on tabular fields is to pre-train a discriminative model on a large number of tabular
datasets and extend its ability to downstream tasks. The in-distribution generalization ability of a
pre-trained tabular model has been validated in multi-task learning (Argyriou et al., 2006; Zhang
& Yang, 2022; Rubachev et al., 2022; Luetto et al., 2023) and self-supervised learning (Ucar et al.,
2021b; Bahri et al., 2022), where all datasets are collected in a homogeneous form. In multi-view
learning, a model is required to capture the consistent nature among heterogeneous views, but those
multiple views of an instance are paired and share the same class space (Xu et al., 2013; Ye et al.,
2015). Some recent approaches utilize the deep neural network to pre-train a more generalizable
tabular model, taking the difference in attributes and classes into account. One representative kind of
approach assumes the existence of attribute names along with a dataset so that each instance could be
transformed into a text, then a large language model could be applied to generalize the classification
ability (Liu et al., 2022a; Hegselmann et al., 2023; Zhang et al., 2023a; Wang et al., 2023). Another
thread of method learns shared components such as attribute-agnostic transformation across datasets,
which provides a good model initialization given a downstream task (Iwata & Kumagai, 2020; Liu
et al., 2022b; Zhang et al., 2023b; Shen et al., 2023; Zhu et al., 2023). We propose TabPTM to
transform all datasets into a uniform form with meta-representation to enable the pre-training. Then,
the pre-trained model could be applied directly to a downstream dataset in a training-free manner.

3 PRELIMINARY

Learning with a single tabular dataset. We denote a tabular classification dataset as D =
{(xi, yi)}Ni=1 which has N examples (rows in the table) and C classes. Each instance xi ∈ X
is depicted by d attributes (columns).1 Denote the class set of the task as Y , the goal is to learn a
tabular classifier f , e.g., linear classifiers, decision trees, or deep neural networks, mapping an in-
stance xi to its label yi. f could be learned on the training set by minimizing the empirical objective
minf

∑N
i=1 ℓ (f(xi), yi), where ℓ(·, ·) is a loss function that measures the discrepancy between a

prediction and the label. The generalization ability of f is measured by the prediction accuracy on
an unseen instance sampled from the same distribution as D.

Learning with multiple tabular datasets. Assume there are T datasets D = {D1, . . . ,DT }. The
attribute and label spaces of the t-th dataset are Xt and Yt. The number of instances, attributes (the
dimension of instance), and classes in Dt are denoted as Nt, dt, and Ct, respectively. Different from
vanilla multi-task learning where all datasets are homogeneous (Argyriou et al., 2006), i.e., with
the same Xt and Yt, here we consider heterogeneous datasets where the meaning of attributes and
classes change from one dataset to another. In this case, the classifier f is trained over T datasets

min
f

T∑
t=1

Nt∑
i=1

ℓ
(
f(xt

i), y
t
i

)
. (1)

By learning on heterogeneous tasks, the model f should deal with different attribute and label sets.
The pre-trained f then generalizes its discerning ability to an unseen task Du, and even in few-shot
scenarios where the size Nt of Du is small. Assume a test instance of Du is xu

∗ , its label could be
predicted through

ŷu∗ = f(xu
∗ | Du) . (2)

In some cases, several steps of gradient descent are required to adapt the joint model f on the target
dataset Du (Zhu et al., 2023). The training-free generalization means the model f is able to predict
the unseen instance xu

∗ in task Du without additional training.

1We assume all attributes of an instance are numerical (continuous). If there exist categorical (discrete)
attributes, we transform them into the one-hot forms in advance.

3

Under review as a conference paper at ICLR 2024

Meta-
representation

extractor

pre-training datasets

Meta-
representation

extractor

Meta-
representation

extractor

Meta-
representation

extractor

downstream dataset

Class1 Class2 Class3 …

()

()

()

()
raw tabular data meta-representation

classification with
meta-representation

meta-representation extractor

class-A MR class-B MR class-C MR

the instance is more likely to be class A

Figure 2: An illustration of the Meta-Representation (MR). MR transforms heterogeneous tabular
datasets with different dimensions into a homogeneous form. A dataset has a set of K-dimension
of MRs, one for each class. The prediction scores for different classes could be obtained via MRs.
We pre-train a joint model on MRs of different datasets and extend its generalization ability to
downstream datasets. The right figure shows the MR of an instance, containing distances from an
instance to the nearest prototypes of a certain class, characterizes the class membership patterns.

4 METHOD

Considering the inherent heterogeneity in attribute and class spaces across various tabular datasets,
the core idea of TabPTM is to standardize diverse datasets so that a joint deep neural network can
be applied. We define an instance’s membership to a class in terms of its distance to the top-K
nearest prototypes within the training set. This process transforms any instance, irrespective of its
original dimensionality, into a set of K-dimensional vectors, one for each of the C classes. Based on
this meta-representation, a multi-layer perceptron is trained across multiple tabular datasets, which
helps recognize class membership patterns and subsequently extract class-specific confidence scores.
Armed with this pre-trained model, we can directly compute the meta-representation of any down-
stream dataset and proceed with generalization-free classification. TabPTM is illustrated in Figure 2.

4.1 META-REPRESENTATION OF AN INSTANCE

Vanilla meta-representation. First, we describe how to obtain the vanilla meta-representation for
any instance in a tabular classification dataset D with C classes. Based on the label of each instance,
we collect the same-class instances in D together into C sets:

Dy=c = {(xi, yi) | yi = c} ,∀c = 1, , C . (3)

Then we extract class-specific prototypes based on Dy=c. Instances themselves are kept in Equa-
tion 3 as prototypes, and more ways to obtain prototypes will be introduced later. Given a class
c, we calculate the distance between an instance xi to those prototypes in Dy=c (|Dy=c| instances
in Equation 3), and sort them in an ascending order:

{dist(xi,x1), . . . ,dist(xi,xj), . . . ,dist(xi,x|Dy=c|)}
s.t. dist(xi,x1) ≤ . . . ≤ dist(xi,xj) ≤ . . . ≤ dist(xi,x|Dy=c|) . (4)

Here dist(·, ·) measures the instance-wise distance, e.g., Euclidean distance or Manhattan distance.
We then select the K smallest distance values in the set, which constructs the meta-representation
for the instance xi. We define the mapping from xi to its meta-representation by ϕc:

ϕc(xi) = [dist(xi,x1), . . . ,dist(xi,xj), . . . ,dist(xi,xK)] ∈ RK . (5)

ϕc(xi) captures the neighborhood distribution of an instance, revealing its membership to a par-
ticular class. If an instance resides within a high-density region of a class (akin to being near the
class center), the majority of values in ϕc(xi) would typically be small, indicating close proximity
to neighboring instances of that class. Conversely, if only a few values in ϕc(xi) are small, while
most are large, it indicates that the instance xi is likely located at the boundary among classes. In
summary, ϕc(xi) transforms any instance xi based on its relationship with class-wise prototypes in
D. No matter what value the original dimension d of xi is, ϕc(xi) has a fixed dimension with value
K, standardizing the vectors and facilitating pre-training over heterogeneous tabular datasets.

4

Under review as a conference paper at ICLR 2024

Prototypes for each class. Prototypes for each class are extracted based on Dy=c before calculating
distances in Equation 4. Besides using all instances from the c-th class, we investigate several other
kinds of prototypes to reveal the characteristics of a class. For example, we randomly sample a
subset of the instances in Dy=c, or apply some clustering approaches such as k-means to sketch the
set. We empirically observe that although clustering helps in some cases, it may lose some details
for partial tabular datasets. Keeping the full training set as in Equation 3 is beneficial in most cases,
so we use it as the default option.

Metric-based meta-representation. The distance measure dist in Equation 4 utilizes either Eu-
clidean or Manhattan distance. Yet, in the presence of high-dimensional features (large d), relying
on all attributes becomes computationally challenging. Moreover, the distance might be unduly in-
fluenced by redundant or noisy attributes. To address this, we implement a distance metric over raw
attributes, which ensures that our final meta-representation accurately captures both the properties
of individual instances and the dataset.

The main challenge lies in designing an adaptive metric compatible with heterogeneous tasks. In
this paper, we first formulate the distance measure in the following form:

dist(xi,xj) =

(
d∑

k=1

wk · |xik − xjk|p
) 1

p

, (6)

where xik denote the k-th dimension of xi. We set p ∈ {1, 2} and wk > 0 is a weight for each
dimension. When wk = 1, the distance in Equation 6 degenerates to the Euclidean distance (p = 2)
or Manhattan distance (p = 1). Given the training set D = {X,Y } of a dataset where X and Y
denote the instance matrix and label vector, respectively, we derive feature weights from the mutual
information shared between individual attributes and their labels

wk = normalize (MI(X:k, Y)) . (7)

X:k is the k-th column of X , i.e., the vector containing values of the k-th attribute of all instances.
MI(·, ·) calculates the mutual information between two sets, which measures the dependency be-
tween an attribute and the labels (Brown et al., 2012). The larger the mutual information, the more
important an attribute is, so that we increase its weight in Equation 6. The normalize(·) normal-
izes input values by dividing their cumulative sum. The experiments validate that integrating this
distance metric in meta-representation significantly enhances the model’s generalization ability.

Meta-representation in the few-shot scenario. The previously discussed meta-representation as-
sumes there are at least K neighbors in the set Dy=c. However, in some applications like few-shot
classification or the existence of minority class, Dy=c might only contain a limited number of pro-
totypes smaller than K. To address the data scarcity challenge, we pad the meta-representation with
its last value (the largest distance) (Yang & Gopal, 2012). We also investigate augmenting the in-
stances to size K by swapping their attributes (Ucar et al., 2021a). In detail, the k-th element in
xi is replaced by another value in X:k with the same label for a given probability. This supervised
swap strategy mimics the distribution of the training data in a particular class. In experiments, both
strategies help in few-shot scenarios, why the former one performs better, so we set the padding
strategy as our default choice.

Remarks. The notion of meta-representation has been previously leveraged in multi-label learning
to express the relationship between an instance and a specific label, which facilitates decoupling the
label correlations (Yang & Gopal, 2012; Zhang & Wu, 2015). The meta-representation is also used
together with the raw tabular features to assist text clasification (Canuto et al., 2014; 2018). In this
paper, we provide a more general form of meta-representation. We employ meta-representation as
a pivotal tool to construct a pre-trained model that can effectively operate across multiple heteroge-
neous tabular datasets. We also emphasize the metric-based variant and the strategies to deal with
few-shot scenarios when a deep neural network is pre-trained over the meta-representations.

4.2 CLASSIFICATION VIA META-REPRESENTATION

Given a dataset D, we represent an instance xi with {ϕc(xi)}Cc=1. Based on the meta-representation,
we need to obtain the prediction score for each class in a classification task. Define the score for
each class as

[s(xi)1, . . . , s(xi)C] = TΘ ([ϕ1(xi), . . . , ϕC(xi)]) . (8)

5

Under review as a conference paper at ICLR 2024

TΘ is a transformation that captures the class membership patterns from the meta-representation
for each class and then outputs the corresponding class-wise classification scores. Θ denotes the
learnable parameters in T. In TabPTM, we implement T with Multi-Layer Perceptron (MLP), i.e.,

s(xi)c = MLP(ϕc(xi)), ∀c = 1, . . . , C . (9)

When multiple types of distances are used, we concatenate them together at first and then use
Equation 9 to map the concatenated meta-representation vectors to a scalar. We also apply Trans-
former (Vaswani et al., 2017) based on the output of MLP to correlate the predictions of C classes.

[s(xi)1, . . . , s(xi)C] = Transformer ([MLP(ϕ1(xi)), . . . ,MLP(ϕC(xi))]) . (10)

Transformer utilizes a self-attention mechanism and works as a set-to-set mapping. We denote this
variant as TabPTM†, and experiments validate that the additional transformer is necessary when the
size of the downstream dataset is large. We use an additional projection in Transformer to map the
output class-specific vectors into scalars. The detailed architectures of MLP and Transformer are
described in Appendix A. Based on the scores, the predicted class for xi is

ŷi = argmax
c

{s(xi)1, . . . , s(xi)C} . (11)

The classification strategy based on meta-representation fits heterogeneous tasks with different at-
tributes and class spaces. Therefore, the meta-representation-based classification enables the usage
of a joint model over heterogeneous tasks.

4.3 PRE-TRAINING WITH META-REPRESENTATION

Based on the previous discussions, we pre-train a joint model, i.e., the transformation TΘ, whose
parameters are shared across multiple seen tabular datasets.

min
Θ

T∑
t=1

Nt∑
i=1

ℓ
(
TΘ({ϕc(x

t
i)}

Ct
c=1), y

t
i

)
. (12)

The transformation TΘ, pre-trained across T datasets, links the meta-representation to the final
classification score. Given a downstream dataset Du, we first obtain the meta-representation for
each instance, and the learned TΘ could be applied directly without additional fine-tuning. In other
words, the pre-trained model TΘ in TabPTM is able to generalize across datasets in a training-
free manner. The detailed pre-training and deployment workflows of TabPTM are summarized in
Algorithm 1 and Algorithm 2 in the appendix.

5 EXPERIMENTS

In this section, we first describe the experimental setups. Then we validate the generalization ability
of our TabPTM in various unseen datasets with different configurations. Finally, we analyze the
effectiveness of our TabPTM as well as meta-representation through ablation studies.

5.1 SETUPS

Datasets. We collect 22 open-source real-world tabular datasets from various fields, including med-
ical, software, and speech recognition domains. We first split 12 relatively larger datasets into parts,
one is used as seen datasets for pre-training and another part is used as downstream datasets. 10 re-
maining medical datasets are also selected as unseen datasets, together with the previous six datasets,
to assess the downstream generalization performance of our pre-trained model. The detailed statis-
tics of all datasets are listed in Table 4. We show the results of this partition in the main paper and
the results we re-split all datasets in Appendix D. For each dataset, we randomly sample 80% of
them as the training set, and the remaining 20% instances are used for test. In the training set, we
randomly hold out 20% of training instances as the validation set.

Evaluation criteria. After pre-training on all seen datasets, we evaluate the classification accuracy
of the model on unseen datasets. There are two configurations. In the full-shot scenario, we keep
the whole training set for a downstream dataset, and the average accuracy over 10 random seeds is

6

Under review as a conference paper at ICLR 2024

Table 1: Average accuracy on 10 unseen datasets in the medical domain. The whole training set
of each dataset is used. The best results are shown in bold. TabTPM utilizes MLP to implement
the model, while TabPTM† incorporates Transformer to further correlate the class-wise predictions.
TabPTM variants make predictions without training.

SVM XGBoost MLP FT-T TabCaps DANets TabPFN XTab DEN TabPTM TabPTM†

BC 67.24 68.10 64.48 65.17 67.93 67.59 67.59 66.55 63.62 68.79 67.93
BW 97.14 97.23 96.64 97.07 96.36 97.64 97.14 97.50 96.71 99.29 98.57
BWD 97.37 96.23 96.32 97.26 97.02 97.64 97.15 96.14 94.74 95.61 96.49
ECD 77.78 78.89 77.41 75.19 79.63 82.96 77.78 83.07 78.89 84.07 85.19
HC 52.46 53.11 51.64 52.30 52.30 53.77 53.44 48.36 51.80 51.80 51.94
HH 81.36 83.05 82.88 78.64 81.36 83.39 81.02 83.22 78.47 79.66 80.51
HV 30.00 34.50 34.50 29.25 34.00 35.00 30.00 32.00 28.75 36.50 33.00
HOC 85.14 87.84 82.57 83.51 83.24 79.05 83.78 71.49 66.89 85.68 86.08
MAM 81.87 83.94 82.23 84.77 83.99 83.32 84.61 83.89 75.39 82.38 83.16
SPE 67.92 63.40 68.68 68.87 68.30 63.58 70.94 70.00 64.34 70.19 70.00

MEAN 73.82 74.63 73.74 73.20 74.41 74.39 74.35 73.22 69.96 75.40 75.29

reported (Gorishniy et al., 2021). While in the few-shot scenario, we randomly select {5, 10, 20, 40}
training instances per class from each dataset to evaluate whether the tabular model is able to deal
with the limited size of training data. For each few-shot configuration, we sample 50 times and report
the average results. Due to the page limit, we leave the standard deviation values in Appendix C.

Comparison methods. We compare TabPTM with three types of methods. First are the classi-
cal tabular classification methods, such as Support Vector Machine (SVM) and XGBoost (Chen &
Guestrin, 2016). The second part contains deep tabular models, such as Multi-Layer Perceptron
(MLP) (Kadra et al., 2021), FT-Transformer (FT-T) (Gorishniy et al., 2021), TabPFN (Hollmann
et al., 2023), TabCaps (Chen et al., 2023a), DANets (Chen et al., 2022). The third part involves
methods that fine-tune a pre-trained model on downstream datasets, such as XTab (Zhu et al., 2023)
and Distribution Embedding Networks (DEN) (Liu et al., 2022b).

Implementation details. We implement our model with a five-layer MLP and a three-layer Trans-
former for the variant of TabPTM. During the pre-training, we set the learning rate as 0.001 and
randomly sample 1024 examples from a seen dataset in each iteration. For the first two groups
of comparison methods, we tune their hyper-parameters and carry out early stopping on the corre-
sponding validation set of a given dataset. For the last type of comparison methods and ours, we use
a model’s average accuracy over all validation sets of the seen datasets to tune the hyper-parameters.

5.2 GENERALIZATION ABILITY OF THE PRE-TRAINED MODEL

Full-shot accuracy on unseen datasets. The average comparison accuracy results are reported
in Table 1 and Table 2. The former contains relatively smaller datasets in the medical domain,
while the latter contains relatively larger datasets with sizes larger than 5000. Notably, our TabPTM
variants make predictions for a downstream dataset instance without additional training, rather than
tuning dataset-specific hyper-parameters separately like other classical and deep tabular models.
We use TabPTM to denote the basic version using MLP to implement the classifier, while TabPTM†

denotes the variant applying transformer to correlate the class-wise predictions.

Based on the results, we find that the classical ensemble approach XGBoost achieves good results
in most datasets, especially when the size of the training set is larger. Our TabPTM achieves the
best performance in 3 of the 10 datasets in Table 1, and the two variants obtain the best two average
results over the 10 medical downstream datasets. When the dataset becomes larger in Table 2, the
additional transformer in TabPTM† helps more, and TabPTM variants achieve promising results
with very short training/prediction time (300 times faster than XGBoost).

The deep tabular baseline MLP is trained over raw features for each downstream dataset separately.
Although our TabPTM also adopts the MLP architecture, it is clear that the pre-trained model ex-
tracts the sharable knowledge across datasets and with better generalization ability, especially when
the dataset is relatively small. XTab learns a joint transformer module during pre-training, and the

7

Under review as a conference paper at ICLR 2024

Table 2: Average accuracy on 6 relatively larger unseen datasets (size > 5000). The whole training
set of each dataset is used. We omit TabPFN since it cannot deal with larger datasets. TabPTM
variants make predictions without training. In addition to the mean value over the six datasets, the
last row lists each method’s average training and prediction time (in seconds) over these downstream
datasets. The running time is evaluated on a system equipped with an Intel(R) Xeon(R) Silver 4210R
CPU @ 2.40GHz, 376GB RAM, and one NVIDIA RTX-3090 GPU.

SVM XGBoost MLP FT-T TabCaps DANets XTab DEN TabPTM TabPTM†

churn 85.25 85.99 85.66 85.92 85.61 85.34 85.60 72.48 85.45 85.45
crowd 42.00 47.17 43.53 39.80 45.83 46.57 42.73 35.13 44.47 44.97
eye 56.35 72.36 60.98 62.87 58.15 57.93 56.55 43.04 61.94 62.22
htru 97.96 98.11 98.09 98.09 98.03 97.94 98.05 94.18 97.94 97.96
jm1 81.21 81.62 81.03 81.87 80.90 80.82 81.03 80.49 77.53 80.88
satellite 99.31 99.41 99.29 99.15 99.03 99.06 99.13 99.03 97.52 99.25

MEAN 77.01 80.78 78.10 76.54 77.93 77.94 77.18 70.73 77.48 78.46
Time (s) 2.3 ×102 1.8×103 8.7×103 4.7×103 5.4 ×102 8.0×103 3.2×102 7.7 ×102 5.7 6.2

5 10 20 40
Shot Number

80

85

90

95

100

Ac
cc

ur
ac

y
(%

)

TabPFN
XGBoost
XTab
TabPTM
TabPTM

(a) htru

5 10 20 40
Shot Number

55

60

65

70

75

Ac
cc

ur
ac

y
(%

)

TabPFN
XGBoost
XTab
TabPTM
TabPTM

(b) jm1

5 10 20 40
Shot Number

70

75

80

85

90

95

Ac
cc

ur
ac

y
(%

)

TabPFN
XGBoost
XTab
TabPTM
TabPTM

(c) satellite
Figure 3: The average results of few-shot classification over multiple trials. For each downstream
dataset, {5, 10, 20, 40} examples per class (shot) are randomly sampled as the training set.

remaining parameters of a model are further fine-tuned for each downstream task. Our TabPTM
outperforms XTab in 9 of the 16 datasets without additional training of its parameters.

The full-shot evaluation results indicate that our TabPTM variants make fast yet accurate predictions
for various types of heterogeneous downstream datasets. The TabPTM could be a good choice when
the model deployment efficiency is emphasized in some real-world applications.

Few-shot accuracy on unseen datasets. We further investigate whether TabPTM also keeps its su-
periority when the training set is very small. In this few-shot evaluation, we show the change in the
classification accuracy when the number of instances per class (shot) increases in {5, 10, 20, 40}. We
mainly compare with XGBoost, the few-shot tabular model TabPFN, and the pre-training tabular ap-
proach XTab. Due to the limited number of training instances, we use their default hyper-parameters.
The few-shot results of three datasets in Table 2 are shown in Figure 3. The few-shot classification
results show that TabPTM variants outperform others, verifying its few-shot generalization ability.
For example, the 5-shot accuracy of TabPTM is ˜5% higher than TabPFN/XGBoost on htru dataset.

5.3 ANALYSIS OF META REPRESENTATION

Discriminative ability of the metric-based meta-representation. We further analyze the effec-
tiveness of the meta-representation and the learned TabPTM. We first show the TSNE visualization
of the raw attributes and the metric-based meta-representation on two datasets in Figure 4. We use
different colors/shapes to denote different classes. We find the meta-representation makes the fea-
tures discriminative on some datasets, which means the class-wise similarity distribution reveals the
intrinsic property of a tabular dataset.

Based on the meta-representation, we further show whether the jointly learned MLP helps. We tune
some basic classifiers, such as kNN and XGBoost, on the metric-based meta-representation for each
dataset separately and compare them with our pre-trained MLP in TabPTM. The results are listed
in Table 3. Comparing with results in Table 1, We find that kNN gets higher results than DANets and
XTab on HOC, which validates the effectiveness of the metric-based meta-representation. However,

8

Under review as a conference paper at ICLR 2024

(a) Raw (HOC) (b) MMR (HOC) (c) Raw (HH) (d) MMR (HH)

Figure 4: The TSNE visualization over horse-colic (HOC) and heart-hungarian (HH) datasets, based
on their raw features (Raw) and their metric-based meta-representation (MMR). The blue ‘o’ and
pink ‘x’ denote different classes. The metric-based meta-representation improves the discriminative
ability of the datasets to some extent.

Mean-1 Mean-2
60

65

70

75

80

85

Ac
cu

ra
cy

 (
%

)

78.14

80.95

64.41

70.14

w/ Metric
w/o Metric

Figure 5: The average accuracy over 10 medi-
cal downstream datasets (Mean-1) and six rel-
atively larger datasets (Mean-2) when we use
meta-representation with or without the dis-
tance metric. The results clearly demonstrate
that the metric is necessary in constructing
meta-representation as well as a generalizable
TabPTM model.

Mean-1 Mean-2
70

72

74

76

78

80

Ac
cu

ra
cy

 (
%

)

75.40

77.48

73.87

78.75

75.29

78.10

73.91

78.96TabPTM
TabPTM w/ FT
TabPTM
TabPTM w/ FT

Figure 6: The average accuracy over 10 medi-
cal downstream datasets (Mean-1) and six rel-
atively larger datasets (Mean-2) when TabPTM
variants predict in a training-free manner. We
also show the results when we Fine-Tune (FT)
the learned TabPTM variants over each down-
stream dataset separately with a fixed number
of iterations.

applying XGBoost on the meta-representation cannot achieve as good results as the pre-trained
MLP in TabPTM. The superiority of TabPTM over the independently trained MLP also indicates
that TabPTM extracts useful classification ability across multiple pre-trained datasets.

Table 3: The classification accuracy on HH
and HOC datasets, as well as the mean
accuracy over 10 medical datasets. The
classical classifiers are tuned based on the
metric-based meta-representation.

kNN XGBoost MLP TabPTM

HH 78.14 64.41 79.03 79.66
HOC 80.95 70.14 85.27 85.68
MEAN 70.87 64.47 73.91 75.40

The influence of the metric on meta-representation.
We compare the results when we pre-train TabPTM
over the vanilla meta-representation and its metric-
based variant in Figure 5. The results clearly indicate
that the distance metric filters out redundant and noisy
attributes, which is necessary to improve the general-
ization ability of TabPTM.

Will additional fine-tuning help? In Figure 6, we
show the change in results when we execute additional
fine-tuning over the pre-trained TabPTM. In detail, us-
ing the pre-trained model as initialization, we apply
30 iterations of gradient descent on each downstream
dataset. The results show that the training-free version
performs well on smaller datasets, while the fine-tuned version helps on relatively larger datasets.

6 CONCLUSION

Considering the large amount of heterogeneous tabular datasets in many machine learning fields, we
explore a way to pre-train a “foundation model” and extend its generalization ability to downstream
datasets. We address the primary challenge of disparate attribute and class spaces across datasets
with the usage of metric-based meta-representation. Our pre-trained TabPTM can be directly applied
to unseen datasets in a training-free manner. The model achieves competitive performance in various
scenarios, which acts as an effective solution for practical tabular data applications.

9

Under review as a conference paper at ICLR 2024

REFERENCES

Anass Aghbalou and Guillaume Staerman. Hypothesis transfer learning with surrogate classification
losses: Generalization bounds through algorithmic stability. In ICML, pp. 280–303, 2023.

Jean-Baptiste Alayrac, Jeff Donahue, Pauline Luc, Antoine Miech, Iain Barr, Yana Hasson, Karel
Lenc, Arthur Mensch, Katherine Millican, Malcolm Reynolds, Roman Ring, Eliza Rutherford,
Serkan Cabi, Tengda Han, Zhitao Gong, Sina Samangooei, Marianne Monteiro, Jacob L. Menick,
Sebastian Borgeaud, Andy Brock, Aida Nematzadeh, Sahand Sharifzadeh, Mikolaj Binkowski,
Ricardo Barreira, Oriol Vinyals, Andrew Zisserman, and Karén Simonyan. Flamingo: a visual
language model for few-shot learning. In NeurIPS, pp. 23716–23736, 2022.

Andreas Argyriou, Theodoros Evgeniou, and Massimiliano Pontil. Multi-task feature learning. In
NIPS, pp. 41–48, 2006.

Dara Bahri, Heinrich Jiang, Yi Tay, and Donald Metzler. Scarf: Self-supervised contrastive learning
using random feature corruption. In ICLR, 2022.

Vadim Borisov, Tobias Leemann, Kathrin Seßler, Johannes Haug, Martin Pawelczyk, and Gjergji
Kasneci. Deep neural networks and tabular data: A survey. IEEE Transactions on Neural Net-
works and Learning Systems, pp. 1–21, 2022.

Gavin Brown, Adam Craig Pocock, Ming-Jie Zhao, and Mikel Luján. Conditional likelihood max-
imisation: A unifying framework for information theoretic feature selection. Journal of Machine
Learning Research, 13:27–66, 2012.

Sérgio D. Canuto, Thiago Salles, Marcos André Gonçalves, Leonardo Rocha, Gabriel Spada Ramos,
Luiz Gonçalves, Thierson Couto Rosa, and Wellington Santos Martins. On efficient meta-level
features for effective text classification. In CIKM, pp. 1709–1718, 2014.

Sérgio D. Canuto, Daniel Xavier de Sousa, Marcos André Gonçalves, and Thierson Couto Rosa.
A thorough evaluation of distance-based meta-features for automated text classification. IEEE
Transactions on Knowledge and Data Engineering, 30(12):2242–2256, 2018.

Lijuan Cao and Francis Eng Hock Tay. Financial forecasting using support vector machines. Neural
Computing and Applications, 10(2):184–192, 2001.

Jintai Chen, Kuanlun Liao, Yao Wan, Danny Z. Chen, and Jian Wu. Danets: Deep abstract networks
for tabular data classification and regression. In AAAI, pp. 3930–3938, 2022.

Jintai Chen, KuanLun Liao, Yanwen Fang, Danny Chen, and Jian Wu. Tabcaps: A capsule neural
network for tabular data classification with bow routing. In ICLR, 2023a.

Jintai Chen, Jiahuan Yan, Danny Ziyi Chen, and Jian Wu. Excelformer: A neural network surpassing
gbdts on tabular data. CoRR, abs/2301.02819, 2023b.

Tianqi Chen and Carlos Guestrin. Xgboost: A scalable tree boosting system. In KDD, pp. 785–794,
2016.

Heng-Tze Cheng, Levent Koc, Jeremiah Harmsen, Tal Shaked, Tushar Chandra, Hrishi Aradhye,
Glen Anderson, Greg Corrado, Wei Chai, Mustafa Ispir, Rohan Anil, Zakaria Haque, Lichan
Hong, Vihan Jain, Xiaobing Liu, and Hemal Shah. Wide & deep learning for recommender
systems. In DLRS, pp. 7–10, 2016.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: pre-training of deep
bidirectional transformers for language understanding. In NAACL-HLT, pp. 4171–4186, 2019.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszko-
reit, and Neil Houlsby. An image is worth 16x16 words: Transformers for image recognition at
scale. In ICLR, 2021.

Yury Gorishniy, Ivan Rubachev, Valentin Khrulkov, and Artem Babenko. Revisiting deep learning
models for tabular data. In NeurIPS, pp. 18932–18943, 2021.

10

Under review as a conference paper at ICLR 2024

Léo Grinsztajn, Edouard Oyallon, and Gaël Varoquaux. Why do tree-based models still outperform
deep learning on typical tabular data? In NeurIPS, pp. 507–520, 2022.

Huifeng Guo, Ruiming Tang, Yunming Ye, Zhenguo Li, and Xiuqiang He. Deepfm: A factorization-
machine based neural network for CTR prediction. In IJCAI, pp. 1725–1731, 2017.

Kam Hamidieh. Superconductivty Data. UCI Machine Learning Repository, 2018. DOI:
https://doi.org/10.24432/C53P47.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In CVPR, pp. 770–778, 2016.

Xin He, Kaiyong Zhao, and Xiaowen Chu. Automl: A survey of the state-of-the-art. Knowledge-
Based Systems, 212:106622, 2021.

Stefan Hegselmann, Alejandro Buendia, Hunter Lang, Monica Agrawal, Xiaoyi Jiang, and David
Sontag. Tabllm: few-shot classification of tabular data with large language models. In AISTATS,
pp. 5549–5581, 2023.

Noah Hollmann, Samuel Müller, Katharina Eggensperger, and Frank Hutter. Tabpfn: A transformer
that solves small tabular classification problems in a second. In ICLR, 2023.

Bo-Jian Hou, Lijun Zhang, and Zhi-Hua Zhou. Prediction with unpredictable feature evolution.
IEEE Transactions on Neural Networks and Learning Systems, 33(10):5706–5715, 2022.

Chenping Hou and Zhi-Hua Zhou. One-pass learning with incremental and decremental features.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 40(11):2776–2792, 2018.

Xin Huang, Ashish Khetan, Milan Cvitkovic, and Zohar S. Karnin. Tabtransformer: Tabular data
modeling using contextual embeddings. CoRR, abs/2012.06678, 2020.

Frank Hutter, Lars Kotthoff, and Joaquin Vanschoren (eds.). Automated Machine Learning - Meth-
ods, Systems, Challenges. Springer, 2019.

Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training by
reducing internal covariate shift. In ICML, pp. 448–456, 2015.

Tomoharu Iwata and Atsutoshi Kumagai. Meta-learning from tasks with heterogeneous attribute
spaces. In NeurIPS, pp. 6053–6063, 2020.

Arlind Kadra, Marius Lindauer, Frank Hutter, and Josif Grabocka. Well-tuned simple nets excel on
tabular datasets. In NeurIPS, pp. 23928–23941, 2021.

Liran Katzir, Gal Elidan, and Ran El-Yaniv. Net-dnf: Effective deep modeling of tabular data. In
ICLR, 2021.

Guolin Ke, Qi Meng, Thomas Finley, Taifeng Wang, Wei Chen, Weidong Ma, Qiwei Ye, and Tie-
Yan Liu. Lightgbm: A highly efficient gradient boosting decision tree. In NIPS, pp. 3146–3154,
2017.

Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi Mao, Chloé Rolland, Laura Gustafson, Tete
Xiao, Spencer Whitehead, Alexander C. Berg, Wan-Yen Lo, Piotr Dollár, and Ross B. Girshick.
Segment anything. CoRR, abs/2304.02643, 2023.

Akim Kotelnikov, Dmitry Baranchuk, Ivan Rubachev, and Artem Babenko. Tabddpm: Modelling
tabular data with diffusion models. In ICML, pp. 17564–17579, 2023.

Atsutoshi Kumagai, Tomoharu Iwata, Yasutoshi Ida, and Yasuhiro Fujiwara. Few-shot learning for
feature selection with hilbert-schmidt independence criterion. In NeurIPS, pp. 9577–9590, 2022.

Ilja Kuzborskij and Francesco Orabona. Fast rates by transferring from auxiliary hypotheses. Ma-
chine Learning, 106(2):171–195, 2017.

11

Under review as a conference paper at ICLR 2024

Roman Levin, Valeriia Cherepanova, Avi Schwarzschild, Arpit Bansal, C. Bayan Bruss, Tom Gold-
stein, Andrew Gordon Wilson, and Micah Goldblum. Transfer learning with deep tabular models.
In ICLR, 2023.

Guang Liu, Jie Yang, and Ledell Wu. Ptab: Using the pre-trained language model for modeling
tabular data. CoRR, abs/2209.08060, 2022a.

Lang Liu, Mahdi Milani Fard, and Sen Zhao. Distribution embedding networks for generalization
from a diverse set of classification tasks. Transactions on Machine Learning Research, 2022b.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike
Lewis, Luke Zettlemoyer, and Veselin Stoyanov. Roberta: A robustly optimized BERT pretraining
approach. CoRR, abs/1907.11692, 2019.

Simone Luetto, Fabrizio Garuti, Enver Sangineto, Lorenzo Forni, and Rita Cucchiara. One trans-
former for all time series: Representing and training with time-dependent heterogeneous tabular
data. CoRR, abs/2302.06375, 2023.

Adeola Ogunleye and Qing-Guo Wang. Xgboost model for chronic kidney disease diagnosis. IEEE
ACM Transactions on Computational Biology and Bioinformatics, 17(6):2131–2140, 2020.

Soma Onishi, Kenta Oono, and Kohei Hayashi. Tabret: Pre-training transformer-based tabular mod-
els for unseen columns. CoRR, abs/2303.15747, 2023.

Liudmila Ostroumova Prokhorenkova, Gleb Gusev, Aleksandr Vorobev, Anna Veronika Dorogush,
and Andrey Gulin. Catboost: unbiased boosting with categorical features. In NeurIPS, pp. 6639–
6649, 2018.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agar-
wal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger, and Ilya
Sutskever. Learning transferable visual models from natural language supervision. In ICML, pp.
8748–8763, 2021.

Matthew Richardson, Ewa Dominowska, and Robert Ragno. Predicting clicks: estimating the click-
through rate for new ads. In WWW, pp. 521–530, 2007.

Ivan Rubachev, Artem Alekberov, Yury Gorishniy, and Artem Babenko. Revisiting pretraining
objectives for tabular deep learning. CoRR, abs/2207.03208, 2022.

Junhong Shen, Liam Li, Lucio M. Dery, Corey Staten, Mikhail Khodak, Graham Neubig, and Ameet
Talwalkar. Cross-modal fine-tuning: Align then refine. In ICML, pp. 31030–31056, 2023.

Ravid Shwartz-Ziv and Amitai Armon. Tabular data: Deep learning is not all you need. Information
Fusion, 81:84–90, 2022.

Weiping Song, Chence Shi, Zhiping Xiao, Zhijian Duan, Yewen Xu, Ming Zhang, and Jian Tang.
Autoint: Automatic feature interaction learning via self-attentive neural networks. In CIKM, pp.
1161–1170, 2019.

Tatiana Tommasi, Francesco Orabona, and Barbara Caputo. Learning categories from few exam-
ples with multi model knowledge transfer. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 36(5):928–941, 2014.

Talip Ucar, Ehsan Hajiramezanali, and Lindsay Edwards. Subtab: Subsetting features of tabular
data for self-supervised representation learning. In NeurIPS, pp. 18853–18865, 2021a.

Talip Ucar, Ehsan Hajiramezanali, and Lindsay Edwards. Subtab: Subsetting features of tabular
data for self-supervised representation learning. In NeurIPS, pp. 18853–18865, 2021b.

Joaquin Vanschoren, Jan N Van Rijn, Bernd Bischl, and Luis Torgo. Openml: networked science in
machine learning. ACM SIGKDD Explorations Newsletter, 15(2):49–60, 2014.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. In NIPS, pp. 5998–6008, 2017.

12

Under review as a conference paper at ICLR 2024

Ruoxi Wang, Bin Fu, Gang Fu, and Mingliang Wang. Deep & cross network for ad click predictions.
In ADKDD, pp. 12:1–12:7, 2017.

Zifeng Wang and Jimeng Sun. Transtab: Learning transferable tabular transformers across tables.
In NeurIPS, pp. 2902–2915, 2022.

Zifeng Wang, Chufan Gao, Cao Xiao, and Jimeng Sun. Anypredict: Foundation model for tabular
prediction. CoRR, abs/2305.12081, 2023.

Witold Wydmanski, Oleksii Bulenok, and Marek Smieja. Hypertab: Hypernetwork approach for
deep learning on small tabular datasets. CoRR, abs/2304.03543, 2023.

Chang Xu, Dacheng Tao, and Chao Xu. A survey on multi-view learning. CoRR, abs/1304.5634,
2013.

Yiming Yang and Siddharth Gopal. Multilabel classification with meta-level features in a learning-
to-rank framework. Machine Learning, 88(1-2):47–68, 2012.

Han-Jia Ye, De-Chuan Zhan, Yuan Miao, Yuan Jiang, and Zhi-Hua Zhou. Rank consistency based
multi-view learning: A privacy-preserving approach. In CIKM, pp. 991–1000, 2015.

Han-Jia Ye, De-Chuan Zhan, Yuan Jiang, and Zhi-Hua Zhou. Heterogeneous few-shot model rectifi-
cation with semantic mapping. IEEE Transactions on Pattern Analysis and Machine Intelligence,
43(11):3878–3891, 2021.

Min-Ling Zhang and Lei Wu. Lift: Multi-label learning with label-specific features. IEEE Transac-
tions on Pattern Analysis and Machine Intelligence, 37(1):107–120, 2015.

Tianping Zhang, Shaowen Wang, Shuicheng Yan, Jian Li, and Qian Liu. Generative table pre-
training empowers models for tabular prediction. CoRR, abs/2305.09696, 2023a.

Yiyuan Zhang, Kaixiong Gong, Kaipeng Zhang, Hongsheng Li, Yu Qiao, Wanli Ouyang, and
Xiangyu Yue. Meta-transformer: A unified framework for multimodal learning. CoRR,
abs/2307.10802, 2023b.

Yu Zhang and Qiang Yang. A survey on multi-task learning. IEEE Transactions on Knowledge and
Data Engineering, 34(12):5586–5609, 2022.

Ce Zhou, Qian Li, Chen Li, Jun Yu, Yixin Liu, Guangjing Wang, Kai Zhang, Cheng Ji, Qiben
Yan, Lifang He, Hao Peng, Jianxin Li, Jia Wu, Ziwei Liu, Pengtao Xie, Caiming Xiong, Jian
Pei, Philip S. Yu, and Lichao Sun. A comprehensive survey on pretrained foundation models: A
history from BERT to chatgpt. CoRR, abs/2302.09419, 2023.

Bingzhao Zhu, Xingjian Shi, Nick Erickson, Mu Li, George Karypis, and Mahsa Shoaran. Xtab:
Cross-table pretraining for tabular transformers. In ICML, pp. 43181–43204, 2023.

13

Under review as a conference paper at ICLR 2024

There are four parts in the appendix:

• More details of our TabPTM approach in Appendix A;
• Details of the experimental setups in Appendix B;
• The whole experimental results including standard deviation in Appendix C;
• Additional ablation studies on TabPTM in Appendix D.

APPENDIX A DISCUSSION AND DETAILS ON OUR APPROACH

A.1 DETAILS OF THE SCORE TRANSFORMATION

In Equation 8, we utilize a transformation TΘ to map the meta-representation to the prediction score
of an instance, for all C classes. The transformation could be implemented via various kinds of deep
neural networks.

We describe the detailed architectures of the deep model following (Gorishniy et al., 2021). Multi-
Layer Perceptron (MLP) contains several layers of non-linear blocks

MLP(x) = Linear(MLPBlock(. . . (MLPBlock(x)))) (13)
MLPBlock(x) = Dropout(ReLU(Linear(x))) . (14)

The Linear block means a fully connected layer with linear projection. MLP maps the class-wise
meta-representation ϕc(xi) to the prediction score s(xi)c (a scalar):

s(xi)c = MLP(ϕc(xi)), ∀c = 1, . . . , C . (15)

Although this is a one-to-one mapping from the class-specific meta-representation to the confidence
score, we validate its effectiveness in our experiments.

The mapping T could also be implemented with Residual Network (ResNet) (He et al., 2016):

ResNet(x) = Prediction (ResNetBlock (. . . (ResNetBlock (Linear (x))))) (16)
ResNetBlock(x) = x+Dropout(Linear(Dropout(ReLU(Linear(BatchNorm(x)))))) (17)

Prediction(x) = Linear(ReLU(BatchNorm(x))) . (18)

Different from MLP, ResNet has a residual link from its input to the output, and Batch Normaliza-
tion (Ioffe & Szegedy, 2015) is introduced in the building block of ResNet.

Furthermore, we also implement the mapping with Transformer (Vaswani et al., 2017), which is a
self-attention mechanism as a set-to-set mapping. Different from MLP and ResNet, Transformer
takes a set of L vectors (tokens) {x1, . . . ,xL} as input, and outputs their corresponding transforma-
tions:

Transformer({x1, . . . ,xL}) = TransformerBlock (. . . (TransformerBlock ({x1, . . . ,xL})))
TransformerBlock({x1, . . . ,xL}) = FFN(MSA(({x1, . . . ,xL})))

FFN(x) = Linear(ReLU(Linear(x))) .

Specifically, the Transformer contains a sequential TransformerBlock. In each
TransformerBlock, the set of input vectors are forwarded to multi-head self-attention layer
MSA(·) at first, and then to another feed-forward network FFN(·). We set the final linear layer in
the last FFN(·) as a projection which transforms the vector input to the scalar confidence scores.

Given a set of input L vectors (tokens) {x1, . . . ,xL}, MSA(·) transform them into query, key, and
value tokens with three sets of projections Wq , Wk, and Wv . The input xi is transformed to x̂i via

x̂i = xi +

L∑
j=1

αjW
⊤
v xj

αj ∝ exp

(
x⊤
i WQ ·K√

d

)
K = W⊤

K [x1, . . . ,xL] .

14

Under review as a conference paper at ICLR 2024

Algorithm 1 Pre-training on multiple heterogeneous tabular datasets.

Require: T tabular training set D = {D1, . . . ,DT }, the initialized model TΘ

1: for all iteration = 1,... do
2: Sample a dataset say Dt from D
3: Sample a mini-batch with B instances {xt

i, y
t
i}Bi=1

4: for all (xt
i, y

t
i) do

5: Get metric-based meta-representation {ϕc(x
t
i)}

Ct
c=1 based on a prototypes in Dt

6: Obtain the prediction score {TΘ(ϕc(x
t
i))}

Ct
c=1

7: Predict via ŷti = argmaxc {s(xt
i)1, . . . , s(x

t
i)Ct

}
8: Compute loss ℓ(ŷti , y

t
i)

9: end for
10: Accumulate B losses as Eq. 12
11: Update Θ with SGD
12: end for
13: return Pre-trained model Θ

Algorithm 2 Apply the pre-trained model to the downstream tabular dataset.

Require: Tabular training set Du, test instance xu
∗ , the learned model TΘ

1: Compute the metric-based meta-representation {ϕc(x
u
∗)}

Cu
c=1 for xu

∗
2: Obtain the prediction score {TΘ(ϕc(x

u
∗))}

Cu
c=1

3: Predict via ŷu∗ = argmaxc {s(xu
∗)1, . . . , s(x

u
∗)Cu

}
4: return The predicted label of xu

∗

In other words, the projected input calculates its similarity with others, and its output is the weighted
average of the projected values. d is the dimensionality of the input tokens.

We investigate two strategies to implement T with Transformer. First, we consider each input as
a 2-dimension vector (one for each distance value), and the Transformer summarizes all values
in meta-representation. Since the Transformer module cannot differentiate the order of the input,
we add positional encoding following (Vaswani et al., 2017) to indicate the distance value in the
meta-representation in ascending order. In addition, we also consider applying a transformer over
the output of the class-wise vectors mapped by MLP as in Equation 10, where the Transformer
correlates the results of different vectors. In experiments, the latter choice works better, so we use
this choice in TabPTM†.

A.2 THE PRE-TRAINING AND DOWNSTREAM WORKFLOW

The pre-training objective in Equation 12 is optimized in a stochastic way. In each iteration, we
randomly select a seen tabular dataset and randomly sample a mini-batch from the dataset. For each
sampled instance, we first calculate the metric-based meta-representation, and then make predictions
with Equation 11. We summarize the two phases, i.e., pre-training the tabular model and applying
the learned model on the downstream dataset, in Algorithm 1 and Algorithm 2, respectively.

We also investigate a kind of data augmentation in Appendix D, where the meta-representation
is calculated based on a randomly sampled class-wise training set during training, and the whole
training set in the downstream task is utilized in the evaluation. Such a data augmentation can make
further improvements in some cases.

APPENDIX B DETAILS OF EXPERIMENTAL SETUPS

B.1 DATASETS

We experiment with 22 tabular datasets. The statistics of all the datasets are listed in Table 4. We
use C and N to denote the class number and the instance number of the datasets. There are two
types of attributes with numerical and categorical values, and we denote their numbers as “Num.”

15

Under review as a conference paper at ICLR 2024

Table 4: The detailed statistics of all tabular datasets. “Abbr.” means the abbreviation of the name of
the tabular dataset. The C and N denote the class number and the instance number of the datasets.
There are two types of attributes with numerical and categorical values, and we denote their numbers
as “Num.” and “Cat.”, respectively.

Name Abbr. Task type C N Num. Cat. Source

accelerometer AC binclass 2 31991 6 0 UCI
amazon AM binclass 2 32769 9 0 OpenML
credit CE binclass 2 30000 20 3 OpenML
gesture GE multiclass 5 9873 32 0 OpenML
mozilla4 MZ binclass 2 15545 5 0 OpenML
phoneme PH binclass 2 5404 5 0 OpenML

churn CH binclass 2 10000 10 1 OpenML
crowd CO multiclass 6 10845 28 0 UCI
eye EY multiclass 3 10936 26 0 OpenML
htru HT binclass 2 17898 8 0 UCI
jm1 JM binclass 2 10885 21 0 OpenML
satellite ST binclass 2 5100 21 0 OpenML

breast-cancer BC binclass 2 286 9 0 UCI
breast-cancer-wisc BW binclass 2 699 9 0 UCI
breast-cancer-wisc-diag BWD binclass 2 569 30 0 UCI
echocardiogram ECD binclass 2 131 10 0 UCI
heart-cleveland HC multiclass 5 303 13 0 UCI
heart-hungarian HH binclass 2 294 12 0 UCI
heart-va HV multiclass 5 200 12 0 UCI
horse-colic HOC binclass 2 368 25 0 UCI
mammographic MAM binclass 2 961 5 0 UCI
spect SPE binclass 2 265 22 0 UCI

and “Cat.”, respectively. The datasets are collected from UCI Machine Learning Repository 2 or
OpenML 3.

The final 10 datasets are collected from the medical domain with relatively smaller size, so we use
them as the downstream task. The first 12 datasets are relatively larger (with sizes larger than 5000),
so we randomly split them into two sets, each with six datasets. The experiments in the main paper
utilize the first six datasets to pre-train TabPTM, and the remaining six ones as downstream datasets.
In other words, we pre-train the model using six heterogeneous tabular datasets, and evaluate its
generalization ability on 16 datasets with different sizes.

We also evaluate other configurations of the pre-training and downstream split. For example, we use
the six datasets in the second part to pre-train the model and the first six ones as the downstream
datasets. The additional results are reported in Table 12.

B.2 ADDITIONAL IMPLEMENTATION DETAILS

We compare our TabPTM with different types of methods and describe the detailed way we tune
their hyper-parameters in this subsection. We mainly follow the setups in (Gorishniy et al., 2021)
to determine the hyper-parameters.

Classical methods and deep tabular methods. Both classical tabular methods (SVM, XGBoost)
and standard deep methods (MLP) are trained for each dataset separately. We use the official hyper-
parameter search spaces for deep tabular methods (FT-T, TabCaps, DANets, and TabPFN). We tune
their hyper-parameters and carry out early stopping on the corresponding validation set of a given

2https://archive.ics.uci.edu/
3https://www.openml.org/

16

Under review as a conference paper at ICLR 2024

Table 5: Average accuracy on 10 unseen datasets. The whole training set of each dataset is used.
The best results are shown in bold. TabPTM utilizes MLP to implement the model, while TabPTM†

incorporates Transformer to further correlate the class-wise predictions. Our TabPTM makes pre-
dictions without training. The std of TabPTM also comes from the estimation of mutual information
when constructing the metric-based meta-representation.

SVM XGBoost MLP FTT TabCaps DANets TabPFN XTab DEN TabPTM TabPTM†

BC 67.24 68.10 64.48 65.17 67.93 67.59 67.59 66.55 63.62 68.79 67.93
± 0.14 ± 0.12 ± 0.24 ± 0.72 ± 0.28 ± 0.65 ± 0.69 ± 0.19 ± 4.39 ± 0.21 ± 0.12

BW 97.14 97.23 96.64 97.07 96.36 97.64 97.14 97.50 96.71 99.29 98.57
± 0.02 ± 0.01 ± 0.05 ± 0.01 ± 0.01 ± 0.03 ± 0.01 ± 0.01 ± 0.86 ± 0.02 ± 0.01

BWD 97.37 96.23 96.32 97.26 97.02 97.64 97.15 96.14 94.74 95.61 96.49
± 0.01 ± 0.94 ± 0.25 ± 1.25 ± 0.05 ± 0.04 ± 0.01 ± 0.25 ± 0.68 ± 0.05 ± 0.15

ECD 77.78 78.89 77.41 75.19 79.63 82.96 77.78 83.07 78.89 84.07 85.19
± 0.01 ± 0.04 ± 0.01 ± 0.06 ± 0.02 ± 0.15 ± 0.01 ± 0.2 ± 3.33 ± 0.15 ± 0.84

HC 52.46 53.11 51.64 52.30 52.30 53.77 53.44 48.36 66.89 51.80 51.94
± 0.94 ± 2.16 ± 1.05 ± 1.26 ± 0.98 ± 1.85 ± 1.67 ± 2.16 ± 2.12 ± 1.25 ± 2.51

HH 81.36 83.05 82.88 78.64 81.36 83.39 81.02 83.22 78.47 79.66 80.51
± 0.25 ± 1.62 ± 1.24 ± 2.95 ± 1.56 ± 0.82 ± 1.83 ± 1.52 ± 3.11 ± 1.07 ± 1.25

HV 30.00 34.50 34.50 29.25 34.00 35.00 30.00 32.00 28.75 36.50 33.00
± 1.25 ± 0.85 ± 1.77 ± 2.14 ± 1.56 ± 2.56 ± 3.54 ± 1.56 ± 3.25 ± 1.56 ± 2.84

HOC 85.14 87.84 82.57 83.51 83.24 79.05 83.78 71.49 66.89 85.68 86.08
± 0.02 ± 0.04 ± 0.24 ± 0.36 ± 0.05 ± 0.36 ± 0.01 ± 0.05 ± 2.12 ± 0.37 ± 0.01

MAM 81.87 83.94 82.23 84.77 83.99 83.32 84.61 83.89 75.39 82.38 83.16
± 0.82 ± 0.15 ± 0.14 ± 0.21 ± 0.63 ± 0.27 ± 0.33 ± 0.53 ± 2.14 ± 0.46 ± 0.13

SPE 67.92 63.40 68.68 68.87 68.3 63.58 70.94 70.00 64.34 70.19 70.00
± 0.52 ± 1.05 ± 1.21 ± 1.82 ± 0.59 ± 1.2 ± 1.25 ± 1.84 ± 2.73 ± 1.05 ± 0.92

MEAN 73.82 74.63 73.74 73.2 74.41 74.39 74.35 73.22 69.96 75.40 75.29
± 0.39 ± 0.69 ± 0.62 ± 1.07 ± 0.57 ± 0.79 ± 0.93 ± 0.83 ± 2.47 ± 0.61 ± 0.87

dataset. All hyper-parameters are selected by Optuna library4 with Bayesian optimization over 30
trials. The best hyper-parameters are used and the average accuracy over 10 different random seeds
is calculated.

Pre-training and fine-tuning approaches. For XTab, We reuse the checkpoint with the highest
number of training epochs from the official implementation, then we perform evaluations on the
target datasets using XTab’s light fine-tuning approach. For DEN, we divide all pre-training datasets
into binary and multiclass groups. Each group is then used to train models on their corresponding
downstream unseen datasets. We set the learning rate as 0.001 and fine-tune the transform block on
the downstream tasks. When we fine-tune TabPTM in Figure 6, we set the learning rate as 0.001
and fine-tune the whole model for 30 epochs.

Training-free approaches. We implement our model with a five-layer MLP or a five-layer ResNet.
The Transformer-based TabPTM† consists of a two-layer MLP and an additional three-layer Trans-
former. During the pre-training, we randomly sample 1024 examples from a seen dataset in each
iteration.

APPENDIX C WHOLE EXPERIMENTAL RESULTS

The full results including average accuracy and standard deviation of Table 1, Table 2, and Figure 3
are listed in Table 5 and Table 6.

APPENDIX D ADDITIONAL ABLATION STUDIES

We analyze the properties of TabPTM from the following aspects.

4https://optuna.org/

17

Under review as a conference paper at ICLR 2024

Table 6: The average results of few-shot classification on htru, jm1, and satellite. {5, 10, 20, 40}
examples per class are randomly sampled as the training set.

htru TabPFN XGBoost XTab TabPTM TabPTM†

5-shot 89.68± 0.86 80.72± 0.56 91.24± 0.95 94.63 ± 0.74 94.60± 0.88

10-shot 89.65± 0.82 88.22± 0.62 91.43± 0.74 94.78± 0.36 95.05± 0.34

20-shot 92.62± 0.52 93.39± 0.22 93.81± 0.71 95.96± 0.43 96.37± 0.25

40-shot 93.04± 0.25 93.70± 0.27 93.23± 0.39 94.80 ± 0.32 95.75± 0.25

jm1 TabPFN XGboost XTab TabPTM TabPTM†

5-shot 56.41± 1.56 63.23± 2.02 64.52± 1.67 64.81± 1.53 63.62± 2.29

10-shot 59.67± 0.78 60.95± 1.14 65.41 ± 1.02 67.46± 0.74 69.35± 1.33

20-shot 63.37± 0.84 58.67± 1.25 71.61± 0.63 74.46± 0.56 72.62± 0.84

40-shot 65.66± 1.53 60.24± 0.75 72.42± 0.45 72.84± 0.69 74.75± 0.94

satellite TabPFN XGboost XTab TabPTM TabPTM†

5-shot 82.89 ± 0.79 73.74± 1.83 83.99± 2.46 84.62± 1.24 84.85± 1.17

10-shot 91.00 ± 0.73 83.72± 0.82 90.42± 1.91 92.70± 0.43 93.11± 0.41

20-shot 93.08 ± 0.75 86.34± 0.35 89.81± 0.79 92.99± 0.42 92.03 ± 0.77

40-shot 94.38± 0.56 89.42± 0.45 90.81± 0.56 94.56± 0.45 94.65± 0.57

Table 7: Average accuracy on six relatively larger unseen datasets. The whole training set of each
dataset is used. Various strategies to generate prototypes are compared, which influence the gener-
alization ability of meta-representation.

Random k-Means k-Means w/neg TabPTM

churn 74.47 72.04 73.77 85.45
crowd 43.03 34.43 45.17 44.47
eye 55.81 29.65 54.35 61.94
htru 96.31 95.97 96.80 97.94
jm1 68.84 80.96 71.39 77.53
satellite 99.22 61.95 99.32 97.52

MEAN 72.95 62.50 73.47 77.48

D.1 INFLUENCE OF PROTOTYPES IN META-REPRESENTATION

The meta-representation is calculated based on the similarity between an instance to the prototypes
in a certain training set Dy=c as in Equation 4. We investigate various strategies to generate the
prototypes and evaluate which strategy helps TabPTM.

• Random. We randomly select a subset of instances from Dy=c, which keeps the majority
of instances but decreases the size of the set.

• k-Means. We apply the clustering approach to split Dy=c into several parts, and the centers
of the parts are used as prototypes.

• k-Means w/ Neg. Given a class c, in addition to consider the cluster centers in Dy=c, we
also consider applying k-Means in the set

⋃
j ̸=c Dy=j . In other words, we treat instances

from other classes as negative ones, and concatenate the distance to negative centers in the
meta-representation.

• TabPTM. The whole instances in Dy=c are kept as the prototypes.

We pre-train the model with MLP transformation and evaluate their classification ability on various
downstream datasets. The results are shown in Table 7. We find the Random strategy cannot work
well since it loses some important details in some classes. The clustering approaches provide good
results in some cases. For example, considering the distance to the negative centers works well in

18

Under review as a conference paper at ICLR 2024

Table 8: Average accuracy on six downstream datasets. We investigate a data augmentation strategy
during pre-training by random sampling a proportion of instances in the selected datasets. When we
set the sampling ratio as 100%, it means we do not apply augmentation and the meta-representation
is the most accurate. In the main experiments, TabPTM does not use data augmentation during pre-
training.

Ratio 70% 80% 90% 100%

churn 85.44 85.44 85.39 85.45
crowd 44.27 43.00 43.63 44.47
eye 60.09 60.69 62.08 61.94
htru 97.91 97.94 97.94 97.94
jm1 76.76 77.14 78.08 77.53
satellite 99.31 99.01 99.36 97.52

MEAN 77.30 77.20 77.75 77.48

Table 9: Average accuracy on three downstream datasets. Different sizes ({3,6,9}) of pre-training
tabular datasets are considered, which influence the generalization ability of meta-representation.

3 datasets 6 datasets 9 datasets

churn 85.44 85.45 85.45
eye 61.83 61.94 62.01
satellite 97.45 97.52 99.41
MEAN 81.57 81.64 82.29

“crowd” and “satellite”. However, the performance of the clustering-based variants is not stable, so
we choose to keep the whole Dy=c in TabPTM.

As shown in Algorithm 1, we sample mini-batches from a selected dataset in each iteration. Since
the meta-representation is calculated based on the similarity between an instance and the prototypes,
we use the “Random” strategy as a kind of data augmentation during pre-training. In detail, we
randomly sample a proportion of datasets in each iteration, so that the meta-representation is noisy
since it cannot access the whole data. While given a downstream dataset, we consider the whole
training set to obtain the meta-representation. The results are listed in Table 8. We find such a
random prototype sampling strategy improves the downstream classification ability, especially when
we set the sampling ratio as 90%.

D.2 INFLUENCE OF THE SIZE OF PRE-TRAINING DATASETS

Six heterogeneous tabular datasets are used for pre-training in our main experiments. We analyze
how the size of tabular datasets influences the generalization ability of TabPTM.

Since there are 12 larger tabular datasets in total, we randomly select three of them as the down-
stream datasets, and select three (mozilla4, credit, gesture), six (mozilla4, credit, gesture, amazon,
accelerometer, phoneme), and nine (mozilla4, credit, gesture, amazon, accelerometer, phoneme,
htru, jm1, crowd) datasets in the remaining part for pre-training TabPTM.

The accuracy values over three downstream datasets are reported in Table 9. Based on the same set
of downstream datasets, all pre-trained models are compared in a fair manner. We find with larger
pre-training datasets, the training-free generalization ability of TabPTM improves. We conjecture by
pre-training on a huge number of heterogeneous tabular datasets, the “foundation” tabular models
could be obtained.

19

Under review as a conference paper at ICLR 2024

Table 10: Average accuracy on three downstream datasets. Different dimension values K of meta-
representation are used to pre-train TabPTM.

16 32 64 128 256

churn 85.31 85.45 85.5 85.45 85.38
crowd 44.9 44.97 44.9 44.47 43.67
eye 63.66 63.06 62.53 61.94 60.44
htru 98.03 97.98 97.94 97.94 97.95
jm1 80.68 80.82 76.47 77.53 81.14
Satellite 99.22 99.42 97.03 97.52 99.22

MEAN 78.63 78.62 77.4 77.48 77.97

Table 11: The average accuracy over 10 medical downstream datasets (Mean-1) and 6 relatively
larger datasets (Mean-2) with different implementations of the transformation T in TabPTM.

Mean-1 Mean-2

MLP 75.40 77.48
ResNet 74.25 77.14
Transformer 75.29 78.10

D.3 THE INFLUENCE OF THE DIMENSION OF THE META-REPRESENTATION

In Equation 5, we consider the nearest K prototypes in the training set of each class, which makes
the meta-representation with dimension K. We set K = 128 by default in previous experiments.
We pre-train TabPTM over meta-representations with different dimensions K in Table 10. We find
different downstream datasets may prefer various dimension values.

D.4 META-REPRESENTATION WITH OTHER TOP-LAYER ARCHITECTURES

We also investigate other implementations of the mapping T from meta-representation to the clas-
sification scores. Since using the vanilla Transformer cannot generalize well, we show the results
when we use MLP, ResNet, and an additional Transformer over the output of MLP in Table 11. The
results indicate that MLP is a good choice in most cases, and the additional Transformer helps when
the size of datasets are larger.

D.5 RESULTS WITH OTHER PRE-TRAINING DATASETS

Recall that there are 22 tabular datasets. In addition to the 10 tabular datasets from the medical
domain used as the downstream datasets, we randomly select six of the remaining 12 datasets as the
pre-training ones and six of them as the downstream ones. We exchange the pre-training and down-
stream datasets in this subsection. The results are shown in Table 12. Our TabPTM still achieves
the best average accuracy over the 10 downstream datasets. The results validate the training-free
generalization ability of TabPTM variants.

20

Under review as a conference paper at ICLR 2024

Table 12: Average accuracy on 10 unseen datasets. We use another set of six datasets as the pre-
training datasets w.r.t. Table 1. The whole training set of each dataset is used. The best results
are shown in bold. TabTPM utilizes MLP to implement the model, while TabPTM† incorporates
Transformer to further correlate the class-wise predictions. Our TabPTM makes predictions without
training.

SVM XGBoost MLP FT-T TabCaps DANets TabPFN XTab DEN TabPTM TabPTM†

BC 67.24 68.10 64.48 65.17 67.93 67.59 67.59 66.55 65.34 68.97 67.24
BW 97.14 97.23 96.64 97.07 96.36 97.64 97.14 97.5 96.00 97.93 97.14
BWD 97.37 96.23 96.32 97.26 97.02 97.64 97.15 96.14 92.81 97.46 98.25
ECD 77.78 78.89 77.41 75.19 79.63 82.96 77.78 83.07 77.04 82.22 85.19
HC 52.46 53.11 51.64 52.30 52.30 53.77 53.44 48.36 51.80 55.90 51.64
HH 81.36 83.05 82.88 78.64 81.36 83.39 81.02 83.22 78.47 75.59 81.53
HV 30.00 34.50 34.50 29.25 34.00 35.00 30.00 32.00 27.50 33.25 29.25
HOC 85.14 87.84 82.57 83.51 83.24 79.05 83.78 71.49 72.39 85.94 86.22
MAM 81.87 83.94 82.23 84.77 83.99 83.32 84.61 83.89 53.42 82.90 83.11
SPE 67.92 63.40 68.68 68.87 68.30 63.58 70.94 70.00 65.85 70.00 69.43

MEAN 73.82 74.63 73.74 73.20 74.41 74.39 74.35 73.22 68.06 75.02 74.90

21

	Introduction
	Related Work
	Preliminary
	Method
	Meta-Representation of an Instance
	Classification via Meta-Representation
	Pre-training with Meta-Representation

	Experiments
	Setups
	Generalization Ability of the Pre-Trained Model
	Analysis of Meta Representation

	Conclusion
	Discussion and Details on Our Approach
	Details of the Score Transformation
	The Pre-training and Downstream Workflow

	Details of Experimental Setups
	Datasets
	Additional Implementation Details

	Whole Experimental Results
	Additional Ablation Studies
	Influence of Prototypes in Meta-representation
	Influence of the Size of Pre-training Datasets
	The Influence of the Dimension of the Meta-representation
	Meta-representation with Other Top-layer Architectures
	Results with Other Pre-training Datasets

