
Modeling Latent Neural Dynamics with Gaussian
Process Switching Linear Dynamical Systems

Amber Hu
Stanford University

amberhu@stanford.edu

David Zoltowski
Stanford University

dzoltow@stanford.edu

Aditya Nair
Caltech & Howard Hughes Medical Institute

adi.nair@caltech.edu

David Anderson
Caltech & Howard Hughes Medical Institute

wuwei@caltech.edu

Lea Duncker∗
Columbia University

ld3149@columbia.edu

Scott Linderman∗

Stanford University
swl1@stanford.edu

Abstract

Understanding how the collective activity of neural populations relates to computa-
tion and ultimately behavior is a key goal in neuroscience. To this end, statistical
methods which describe high-dimensional neural time series in terms of low-
dimensional latent dynamics have played a fundamental role in characterizing
neural systems. Yet, what constitutes a successful method involves two opposing
criteria: (1) methods should be expressive enough to capture complex nonlinear
dynamics, and (2) they should maintain a notion of interpretability often only war-
ranted by simpler linear models. In this paper, we develop an approach that balances
these two objectives: the Gaussian Process Switching Linear Dynamical System
(gpSLDS). Our method builds on previous work modeling the latent state evolution
via a stochastic differential equation whose nonlinear dynamics are described by a
Gaussian process (GP-SDEs). We propose a novel kernel function which enforces
smoothly interpolated locally linear dynamics, and therefore expresses flexible –
yet interpretable – dynamics akin to those of recurrent switching linear dynamical
systems (rSLDS). Our approach resolves key limitations of the rSLDS such as arti-
factual oscillations in dynamics near discrete state boundaries, while also providing
posterior uncertainty estimates of the dynamics. To fit our models, we leverage
a modified learning objective which improves the estimation accuracy of kernel
hyperparameters compared to previous GP-SDE fitting approaches. We apply our
method to synthetic data and data recorded in two neuroscience experiments and
demonstrate favorable performance in comparison to the rSLDS.

1 Introduction

Computations in the brain are thought to be implemented through the dynamical evolution of neural
activity. Such computations are typically studied in a controlled experimental setup, where an animal
is engaged in a behavioral task with relatively few relevant variables. Consistent with this, empirical
neural activity has been reported to exhibit many fewer degrees of freedom than there are neurons in
the measured sample during such simple tasks [1]. These observations have driven the use of latent

∗Corresponding authors.

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

variable models to characterize low-dimensional structure in high-dimensional neural population
activity [2, 3]. In this setting, neural activity is often modeled in terms of a low-dimensional latent
state that evolves with Markovian dynamics [4–14]. It is thought that the latent state evolution is
related to the computation of the system, and therefore, insights into how this evolution is shaped
through a dynamical system can help us understand the mechanisms underlying computation [15–21].

In practice, choosing an appropriate modeling approach for a given task requires balancing two
key criteria. First, statistical models should be expressive enough to capture potentially complex
and nonlinear dynamics required to carry out a particular computation. On the other hand, these
models should also be interpretable and allow for straightforward post-hoc analyses of dynamics. One
model class that strikes this balance is the recurrent switching linear dynamical system (rSLDS) [8].
The rSLDS approximates arbitrary nonlinear dynamics by switching between a finite number of
linear dynamical systems. This leads to a powerful and expressive model which maintains the
interpretability of linear systems. Because of their flexibility and interpretability, variants of the
rSLDS have been used in many neuroscience applications [19, 22–28] and are examples of a general
set of models aiming to understand nonlinear dynamics using compact and interpretable components
[29, 30].

However, rSLDS models suffer from several limitations. First, while the rSLDS is a probabilistic
model, typical use cases do not capture posterior uncertainty over inferred dynamics. This makes
it difficult to judge the extent to which particular features of a fitted model should be relied upon
when making inferences about their role in neural computation. Second, the rSLDS often suffers
from producing oscillatory dynamics in regions of high uncertainty in the latent space, such as
boundaries between linear dynamical regimes. This artifactual behavior can significantly impact
the interpretability and predictive performance of the rSLDS. Lastly, the rSLDS does not impose
smoothness or continuity assumptions on the dynamics due to its discrete switching formulation.
Such assumptions are often natural and useful in the context of modeling realistic neural systems.

In this paper, we improve upon the rSLDS by introducing the Gaussian Process Switching Linear
Dynamical System (gpSLDS). Our method extends prior work on the Gaussian process stochastic
differential equation (GP-SDE) model, a continuous-time method that places a Gaussian process (GP)
prior on latent dynamics. By developing a novel GP kernel function, we enforce locally linear,
interpretable structure in dynamics akin to that of the rSLDS. Our framework addresses the afore-
mentioned modeling limitations of the rSLDS and contributes a new class of priors in the GP-SDE
model class. Our paper is organized as follows. Section 2 provides background on GP-SDE and
rSLDS models. Section 3 presents our new gpSLDS model and an inference and learning algorithm
for fitting these models. In Section 4 we apply the gpSLDS to a synthetic dataset and two datasets
from real neuroscience experiments to demonstrate its practical use and competitive performance.
We review related work in Section 5 and conclude our paper with a discussion in Section 6.

2 Background

2.1 Gaussian process stochastic differential equation models

Gaussian processes (GPs) define nonparametric distributions over functions. They are a popular
choice in machine learning due to their ability to capture nonlinearities and encode reasonable prior
assumptions such as smoothness and continuity [31]. Here, we review the GP-SDE, a Bayesian
generative model that leverages the expressivity of GPs for inferring latent dynamics [10].

Generative model In a GP-SDE, the evolution of the latent state x ∈ RK is modeled as a
continuous-time SDE which underlies observed neural activity y(ti) ∈ RD at time-points ti ∈ [0, T].
Mathematically, this is expressed as

dx = f(x)dt+Σ
1
2 dw, E[y(ti) | x] = g (Cx(ti) + d) . (1)

The drift function f : RK → RK describes the system dynamics, Σ is a noise covariance matrix,
and dw ∼ N (0, dtI) is a Wiener process increment. Parameters C ∈ RD×K and d ∈ RD define an
affine mapping from latent to observed space, which is then passed through a pre-specified inverse
link function g(·).

2

A GP prior is used to model each output dimension of the dynamics f(·) independently. More
formally, if f(·) = [f1(·), . . . , fK(·)]T, then

fk(·)
iid∼ GP(0, κΘ(·, ·)), for k = 1, · · · ,K, (2)

where κΘ(·, ·) is the kernel for the GP with hyperparameters Θ.

Interpretability GP-SDEs and their variants can infer complex nonlinear dynamics with posterior
uncertainty estimates in physical systems across a variety of applications [32–34]. However, one
limitation of using this method with standard GP kernels, such as the radial basis function (RBF)
kernel, is that its expressivity leads to dynamics that are often challenging to interpret. In Duncker et al.
[10], this was addressed by conditioning the GP prior of the dynamics f(·) on fixed points f(x∗) =
0 and their local Jacobians J(x∗) = ∂

∂xf(x)|x=x∗ , and subsequently learning the fixed-point
locations x∗ and the locally-linearized dynamics J(x∗) as model parameters. This approach allows
for direct estimation of key features of f(·). However, due to its flexibility, it is also prone to
finding more fixed points than those included in the prior conditioning, which undermines its overall
interpretability.

2.2 Recurrent switching linear dynamical systems

The rSLDS models nonlinear dynamics by switching between different sets of linear dynamics [8].
Accordingly, it retains the simplicity and interpretability of linear dynamical systems while providing
much more expressive power. For these reasons, variations of the rSLDS are commonly used to
model neural dynamics [19, 22–29].

Generative model The rSLDS is a discrete-time generative model of the following form:

xt ∼ N (Astxt−1 + bst ,Qst), E[yt | xt] = g(Cxt + d) (3)

where dynamics switch between J distinct linear systems with parameters {Aj , bj ,Qj}Jj=1. This
is controlled by a discrete state variable st ∈ {1, . . . , J}, which evolves via transition probabilities
modeled by a multiclass logistic regression,

p(st | st−1,xt−1) ∝ exp(wTxt−1 + rst−1). (4)

The “recurrent” nature of this model comes from the dependence of eq. (4) on latent space locations xt.
As such, the rSLDS can be understood as learning a partition of the latent space into J linear
dynamical regimes seprated by linear decision boundaries. This serves as important motivation for
the parametrization of the gpSLDS, as we describe later.

Interpretability While the rSLDS has been successfully used in many applications to model
nonlinear dynamical systems, it suffers from a few practical limitations. First, it often produces
unnatural artifacts of modeling nonlinear dynamics with discrete switches between linear systems.
For example, it may oscillate between discrete modes with different discontinuous dynamics when
a trajectory is near a regime boundary. Next, common fitting techniques for rSLDS models with
non-conjugate observations typically treat dynamics as learnable hyperparameters rather than as
probabilistic quantities [26], which prevents the model from being able to capture posterior uncertainty
over the learned dynamics. Inferring a posterior distribution over dynamics is especially important
in many neuroscience applications, where scientists often draw conclusions from discovering key
features in latent dynamics, such as fixed points or line attractors.

3 Gaussian process switching linear dynamical systems

To address these limitations of the rSLDS, we propose a new class of models called the Gaussian
Process Switching Linear Dynamical System (gpSLDS). The gpSLDS combines the modeling
advantages of the GP-SDE with the structured flexbility of the rSLDS. We achieve this balance
by designing a novel GP kernel function that defines a smooth, locally linear prior on dynamics.
While our main focus is on providing an alternative to the rSLDS, the gpSLDS also contributes a new
prior which allows for more interpretable learning of dynamics and fixed points than standard priors
in the GP-SDE framework (e.g., the RBF kernel). Our implementation of the gpSLDS is available at:
https://github.com/lindermanlab/gpslds.

3

https://github.com/lindermanlab/gpslds

1DA B 2D Generative ModelC
sampled dynamics & trajectories

single-trial latent states

T

point process observations

time

samples from

samples from

samples from

samples from

samples from

Figure 1: SSL kernel and generative model. A. 1D function samples, plotted in different colors, from
GPs with five kernels: two linear kernels with different hyperparameters, partition kernels for each
of the two regimes, and the SSL kernel. B. (top) An example π(x) in 2D and (bottom) a sample of
dynamics from a SSL kernel in 2D with π(x) as hyperparameters. The x1- and x2- directions of the
arrows are given by independent 1D samples of the kernel. C. Schematic of the generative model.
Simulated trajectories follow the sampled dynamics. Each trajectory is observed via Poisson process
or Gaussian observations.

3.1 The smoothly switching linear kernel

The core innovation of our method is a novel GP kernel, which we call the Smoothly Switching
Linear (SSL) kernel. The SSL kernel specifies a GP prior over dynamics that maintains the switching
linear structure of rSLDS models, while allowing dynamics to smoothly interpolate between different
linear regimes.

For every pair of locations x,x′ ∈ RK , the SSL kernel with J linear regimes is defined as,

κssl(x,x
′) =

J∑
j=1

((x− cj)
TM(x′ − cj) + σ2

0)︸ ︷︷ ︸
κ
(j)
lin (x,x′)

πj(x)πj(x
′)︸ ︷︷ ︸

κ
(j)
part (x,x

′)

(5)

where cj ∈ RK , M ∈ RK×K is a diagonal positive semi-definite matrix, σ2
0 ∈ R+, and πj(x) ≥ 0

with
∑J

j=1 πj(x) = 1. To gain an intuitive understanding of the SSL kernel, we will separately
analyze each of the two terms in the summands.

The first term, κ(j)
lin (x,x

′), is a standard linear kernel which defines a GP distribution over linear
functions [31]. The superscript j denotes that it is the linear prior on the dynamics in regime j. M
controls the variance of the function’s slope in each input dimension, and cj is such that the variance
of the function achieves its minimum value of σ2

0 at x = cj . We expand on the relationship between
the linear kernel and linear dynamical systems in Appendix A.

The second term is what we define as the partition kernel, κ(j)
part(x,x

′), which gives the gpSLDS its

switching structure. We interpret π(x) = [π1(x) . . . πJ(x)]
T as parametrizing a categorical dis-

tribution over J linear regimes akin to the discrete switching variables in the rSLDS. We model π(x)
as a multiclass logistic regression with decision boundaries {wT

j ϕ(x) = 0 | j = 1, . . . , J−1}, where
ϕ(x) is any feature transformation of x. This yields random functions which are locally constant and
smoothly interpolate at the decision boundaries. More formally,

πj(x) =
exp(wT

j ϕ(x)/τ)

1 +
∑J−1

j=1 exp(wT
j ϕ(x)/τ)

, j = 1, . . . , J (6)

where wJ = 0. The hyperparameter τ ∈ R+ controls the smoothness of the decision boundaries.
As τ → 0, π(x) approaches a one-hot vector which produces piecewise constant functions with

4

sharp boundaries, and as τ → ∞ the boundaries become more uniform. While we focus on the
parametrization in eq. (6) for the experiments in this paper, we note that in principle any classification
method can be used, such as another GP or a neural network.

The SSL kernel in eq. (5) naturally combines aspects of the linear and partition kernels via
sums and products of kernels, which has an intuitive interpretation [35]. The product kernel
κ
(j)
lin (x,x

′)κ
(j)
part(x,x

′) enforces linearity in regions where πj(x) is close to 1. Summing over J
regimes then enforces linearity in each of the J regimes, leading to a prior on locally linear functions
with knots determined by π(x). We note that our kernel is reminiscent of the one in Pfingsten et al.
[36], which uses a GP classifier as a prior for π(x) and applies their kernel to a GP regression
setting. Here, our work differs in that we explicitly enforce linearity in each regime and draw a novel
connection to switching models like the rSLDS.

Figure 1A depicts 1D samples from each kernel. Figure 1B shows how a SSL kernel with J = 2
linear regimes separated by decision boundary x2

1 + x2
2 = 4 (top) produces a structured 2D flow

field consisting of two linear systems, with x1- and x2- directions determined by 1D function
samples (bottom).

3.2 The gpSLDS generative model

The full generative model for the gpSLDS incorporates the SSL kernel in eq. (5) into a GP-SDE
modeling framework. Instead of placing a GP prior with a standard kernel on the system dynamics as
in eq. (2), we simply plug in our new SSL kernel so that

fk(·)
iid∼ GP(0, κΘ

ssl(·, ·)), for k = 1, · · · ,K, (7)

where the kernel hyperparameters are Θ = {M , σ2
0 , {cj}Jj=1, {wj}J−1

j=1 , τ}. We then sample latent
states and observations according to the GP-SDE via eq. (1). A schematic of the full generative model
is depicted in fig. 1C.

Incorporating inputs In many modern neuroscience applications, we are often interested in how
external inputs to the system, such as experimental stimuli, influence latent states. To this end, we
also consider an extension of the model in eq. (1) which incorporates additive inputs of the form,

dx = (f(x) +Bv(t))dt+Σ
1
2 dw, (8)

where v(t) ∈ RI is a time-varying, known input signal and B ∈ RK×I maps inputs linearly to the
latent space. The latent path inference and learning approaches presented in the following section can
naturally be extended to this setting, with updates for B available in closed form. Further details are
provided in Appendix B.3-B.6.

3.3 Latent path inference and parameter learning

For inference and learning in the gpSLDS, we apply and extend a variational expectation-
maximization (vEM) algorithm for GP-SDEs from Duncker et al. [10]. In particular, we propose a
modification of this algorithm that dramatically improves the learning accuracy of kernel hyperpa-
rameters, which are crucial to the interpretability of the gpSLDS. We outline the main ideas of the
algorithm here, though full details can be found in Appendix B.

As in Duncker et al. [10], we consider a factorized variational approximation to the posterior,

q(x,f ,u) = q(x)

K∏
k=1

p(fk | uk,Θ)q(uk), (9)

where we have augmented the model with sparse inducing points to make inference of f tractable [37].
The inducing points are located at {zm}Mm=1 ⊂ RK and take values (fk(z1), . . . , fk(zM))⊤ = uk.
Standard vEM maximizes the evidence lower bound (ELBO) to the marginal log-likelihood
log p(y | Θ) by alternating between updating the variational posterior q and updating model hyperpa-
rameters Θ [38]. Using the factorization in eq. (9), we will denote the ELBO as L(q(x), q(u),Θ).

For inference of q(x), we follow the approach first proposed by Archambeau et al. [39] and extended
by Duncker et al. [10]. Computing the ELBO using this approach requires computing variational

5

expectations of the SSL kernel, which we approximate using Gauss-Hermite quadrature as they
are not available in closed form. Full derivations of this step are provided in Appendix B.3. For
inference of q(u), we follow Duncker et al. [10] and choose a Gaussian variational posterior for
q(uk) = N (uk | mk∗

u ,Sk∗
u), which admits closed-form updates for the mean mk∗

u and covariance
Sk∗
u given q(x) and Θ. Duncker et al. [10] perform these updates before updating Θ via gradient

ascent on the ELBO in each vEM iteration.

In our setting, this did not work well in practice. The gpSLDS often exhibits strong dependencies
between q(u) and Θ, which makes standard coordinate-ascent steps in vEM prone to getting stuck in
local maxima. These dependencies arise due to the highly structured nature of our GP prior; small
changes in the decision boundaries {wj}J−1

j=1 can lead to large (adverse) changes in the prior, which
prevents vEM from escaping suboptimal regions of parameter space. To overcome these difficulties,
we propose a different approach for learning Θ: instead of fixing q(u) and performing gradient ascent
on the ELBO, we optimize Θ by maximizing a partially optimized ELBO,

Θ∗ = argmax
Θ

{
max
q(u)

L(q(x), q(u),Θ)

}
. (10)

Due to the conjugacy of the model, the inner maximization can be performed analytically. This
approach circumvents local optima that plague coordinate ascent on the standard ELBO. While other
similar approaches exploit model conjugacy for faster vEM convergence in sparse variational GPs
[37, 40] and GP-SDEs [41], our approach is the first to our knowledge that leverages this structure
specifically for learning the latent dynamics of a GP-SDE model. We empirically demonstrate the
superior performance of our learning algorithm in Appendix C.

3.4 Recovering predicted dynamics

It is straightforward to obtain the approximate posterior distribution over f∗ := f(x∗) evaluated at
any new location x∗. Under the assumption that f∗ only depends on the inducing points, we can use
the approximation q(f∗) =

∏K
k=1

∫
p(f∗

k | uk,Θ)q(uk) duk which can be computed in closed-form
using properties of conditional Gaussian distributions. For a batch of points {x∗

i }Ni=1, this can be
computed in O(NM2) time. The full derivation can be found in Appendix B.4.

This property highlights an appealing feature of the gpSLDS over the rSLDS. The gpSLDS infers a
posterior distribution over dynamics at every point in latent space, even in regions of high uncertainty.
Meanwhile, as we shall see later, the rSLDS expresses uncertainty by randomly oscillating between
different sets of most-likely linear dynamics, which is much harder to interpret.

4 Results

4.1 Synthetic data

We begin by applying the gpSLDS to a synthetic dataset consisting of two linear rotational systems,
one clockwise and one-counterclockwise, which combine smoothly at x1 = 0 (fig. 2A). We simulate
30 trials of latent states from an SDE as in eq. (1) and then generate Poisson process observations
given these latent states for D = 50 output dimensions (i.e. neurons) over T = 2.5 seconds (Fig. 2B).
To initialize C and d, we fit a Poisson LDS [4] to data binned at 20ms with identity dynamics. For
the rSLDS, we also bin the data at 20ms. We then fit the gpSLDS and rSLDS models with J = 2
linear states using 5 different random initializations for 100 vEM iterations, and choose the fits with
the highest ELBOs in each model class.

We find that the gpSLDS accurately recovers the true latent trajectories (fig. 2C) as well as the true
rotation dynamics and the decision boundary between them (fig. 2D). We determine this decision
boundary by thresholding the learned π(x) at 0.5. In addition, we can obtain estimates of fixed
point locations by computing the posterior probability

∏K
k=1 Pq(f)(|fk(x)| < ϵ) for a small ϵ > 0;

the locations x with high probability are shaded in purple. This reveals that the gpSLDS finds
high-probability fixed points which overlap significantly with the true fixed points, denoted by stars.
In comparison, both the rSLDS and the GP-SDE with RBF kernel do not learn the correct decision
boundary nor the fixed points as accurately (fig. 2E-F). Of particular note, the RBF kernel incorrectly
extrapolates and finds a superfluous fixed point outside the region traversed by the true latent states.

6

True latents & dynamicsA Observed data

time (s)

ne
ur

on
 in

de
x

B Inferred latents
(gpSLDS)

C

time (s)

Inferred latents &
dynamics (gpSLDS)

D Inferred latents and
dynamics (GP-SDE w/ RBF)

E Inferred latents &
dynamics (rSLDS)

F

G

𝑥!

𝑥! 𝑥! 𝑥!

𝑥 "
𝑥 " 𝑥 " 𝑥 "

H

𝑓(𝑥)
𝑓(𝑥!"#$)

'𝑓(𝑥!"#$)

𝑓(𝑥)
𝑓(𝑥!"#$)

'𝑓 𝑥!"#$, 𝑧 =0
'𝑓 𝑥!"#$, 𝑧 =1

time (s)

La
te

nt
s

M
SE

D
yn

am
ic

s
M

SE

gpSLDS

rSLDS

Quant. comparisons

number of trials

Dynamics along
sampled trajectory

P(fixed point)

P(fixed point)

𝑥! 𝑡

𝑥" 𝑡

la
te

nt
s

Figure 2: Synthetic data results. A. True dynamics and latent states used to generate the dataset.
Dynamics are clockwise and counterclockwise linear systems separated by x1 = 0. Two latent
trajectories are shown on top of a kernel density estimate of the latent states visited by all 30 trials.
B. Poisson process observations from an example trial. C. True vs. inferred latent states for the
gpSLDS and rSLDS, with 95% posterior credible intervals. D. Inferred dynamics (pink/green) and
two inferred latent trajectories (gray) corresponding to those in Panel A from a gpSLDS fit with 2
linear regimes. The model finds high-probability fixed points (purple) overlapping with true fixed
points (stars). E. Analogous plot to D for the GP-SDE model with RBF kernel. Note that this model
does not provide a partition of the dynamics. F. rSLDS inferred latents, dynamics, and fixed points
(pink/green dots). G. (top) Sampled latents and corresponding dynamics from the gpSLDS, with 95%
posterior credible intervals. (bottom) Same, but for the rSLDS. The pink/green trace represents the
most likely dynamics at the sampled latents, colored by discrete switching variable. H. MSE between
true and inferred latents and dynamics for gpSLDS, GP-SDE with RBF kernel, and rSLDS while
varying the number of trials in the dataset. Error bars are ±2SE over 5 random initializations.

Figure 2G illustrates the differences in how the gpSLDS and the rSLDS express uncertainty over
dynamics. To the left of the dashed line, we sample latent states starting from x0 = (7, 0) and
plot the corresponding true dynamics. To the right, we simulate latent states xsamp from the fitted
model and plot the true dynamics (in gray) and the learned most likely dynamics (in color) at xsamp.
For a well-fitting model, we would expect the true and learned dynamics to overlap. We see that
the gpSLDS produces smooth simulated dynamics that match the true dynamics at xsamp (top). By
contrast, the rSLDS expresses uncertainty by oscillating between the two linear dynamical systems,
hence producing uninterpretable dynamics at xsamp (bottom). This region of uncertainty overlaps
with the x1 = 0 boundary, suggesting that the rSLDS fails to capture the smoothly interpolating
dynamics present in the true system.

Next, we perform quantitative comparisons between the three competing methods (fig. 2H). We find
that both continuous-time methods consistently outperform the rSLDS on both metrics, suggesting
that these methods are likely more suitable for modeling Poisson process data. Moreover, the gpSLDS
better recovers dynamics compared to the RBF kernel, illustrating that the correct inductive bias can
yield performance gains over a more flexible prior, especially in a data-limited setting.

Lastly, we note that the gpSLDS can achieve more expressive power than the rSLDS by learning
nonlinear decision boundaries between linear regimes, for instance by incorporating nonlinear
features into ϕ(x) in eq. (6). We demonstrate this feature for a 2D limit cycle in Appendix D.

4.2 Application to hypothalamic neural population recordings during aggression

In this section, we revisit the analyses of Nair et al. [27], which applied dynamical systems models
to neural recordings during aggressive behavior in mice. To do this, we reanalyze a dataset which
consists of calcium imaging of ventromedial hypothalamus neurons from a mouse interacting with
two consecutive intruders. The recording was collected from 104 neurons at 15 Hz over ∼343

7

steps simulated forward

𝑅
!

P(attractor dynam
ics)

gpSLDS latents & dynamicsrSLDS latents & dynamics gpSLDS attractor dynamics Forward simulation acc.BA C D

𝑥" 𝑥"

𝑥 ! 𝑥 !

𝑥"

𝑥 !

posterior std. dev.

Figure 3: Results on hypothalamic data from Nair et al. [27]. In each of the panels A-C, flow field
arrow widths are scaled by the magnitude of dynamics for clarity of visualization. A. rSLDS inferred
latents and most likely dynamics. The presumed location of the line attractor from [27] is marked
with a red box. B. gpSLDS inferred latents and most likely dynamics in latent space. Background is
colored by posterior standard deviation of dynamics averaged across latent dimensions, which adjusts
relative to the presence of data in the latent space. C. Posterior probability of slow points in gpSLDS,
which validates line-attractor like dynamics, as marked by a red box. D. Comparison of in-sample
forward simulation R2 between gpSLDS, rSLDS, and GP-SDE with RBF kernel. To compute this,
we choose initial conditions uniformly spaced 100 time bins apart in both trials, simulate latent states
k steps forward according to learned dynamics (with k ranging from 100-1500), and evaluate the R2

between predicted and true observations as in Nassar et al. [23]. Error bars are ±2SE over 5 different
initializations.

seconds (i.e. 5140 time bins). Nair et al. [27] found that an rSLDS fit to this data learns dynamics that
form an approximate line attractor corresponding to an aggressive internal state (fig. 3A). Here, we
supplement this analysis by using the gpSLDS to directly assess model confidence about this finding.

For our experiments, we z-score and then split the data into two trials, one for each distinct intruder
interacting with the mouse. Following Nair et al. [27], we choose J = 4 linear regimes to compare
the gpSLDS and rSLDS. We choose K = 2 latent dimensions to aid the visualization of the resulting
model fits; we find that even in such low dimensions, both models still recover line attractor-like
dynamics. We model the calcium imaging traces as Gaussian emissions on an evenly spaced time
grid and initialize C and d using principal component analysis. We fit models with 5 different
initializations for 50 vEM iterations and display the runs with highest forward simulation accuracy
(as described in the caption of fig. 3).

In fig. 3A-B, we find that both methods infer similar latent trajectories and find plausible flow fields
that are parsed in terms of simpler linear components. We further demonstrate the ability of the
gpSLDS to more precisely identify the line attractor from Nair et al. [27]. To do this, we use the
learned q(f) to compute the posterior probability of slow dynamics on a dense (80×80) grid of points
in the latent space using the procedure in Section 3.4. The gpSLDS finds a high-probability region of
slow points corresponding to the approximate line attractor found in Nair et al. [27] (fig. 3C). This
demonstrates a key advantage of the gpSLDS over the rSLDS: by modeling dynamics probabilistically
using a structured GP prior, we can validate the finding of a line attractor with further statistical
rigor. Finally, we compare the gpSLDS, rSLDS, and GP-SDE with RBF kernel using an in-sample
forward simulation metric (fig. 3D). All three methods retain similar predictive power 500 steps into
the future. After that, the gpSLDS performs slightly worse than the RBF kernel; however, it gains
interpretability by imposing piecewise linear structure while still outperforming the rSLDS.

4.3 Application to lateral intraparietal neural recodings during decision making

In neuroscience, there is considerable interest in understanding how neural dynamics during decision
making tasks support the process of making a choice [26, 34, 42–47]. In this section, we use the
gpSLDS to infer latent dynamics from spiking activity in the lateral intraparietal (LIP) area of monkeys
reporting decisions about the direction of motion of a random moving dots stimulus with varying
degrees of motion coherence [42, 43]. The animal indicated its choice of net motion direction (either
left or right) via a saccade. On some trials, a 100ms pulse of weak motion, randomly oriented to the
left or right, was also presented to the animal. Here, we model the dynamics of 58 neurons recorded
across 50 trials consisting of net motion coherence strengths in {−.512,−.128, 0.0, .128, .512},
where the sign corresponds to the net movement direction of the stimulus. We only consider data
200ms after motion onset, corresponding to the start of decision-related activity.

8

A B

D

C

pr
oj

ec
tio

n
on

to
 le

ar
ne

d
in

pu
t d

ir.

time until saccade (s)

time since motion onset (s)

in
pu

t

𝑥! 𝑥!

𝑥 "

𝑥 "
posterior var.input

effect

𝑥!(𝑡)

𝑥"(𝑡)

la
te

nt
s

Figure 4: Results on LIP spiking data from a decision-making task in Stine et al. [42]. A. gpSLDS
inferred latents colored by coherence, inferred dynamics with background colored by most likely
linear regime, and the learned input-driven direction depicted by an orange arrow. B. Projection of
latents onto the 1D input-driven axis from Panel A, colored by coherence (top) and choice (bottom).
C. Inferred latents with 95% credible intervals and corresponding 100ms pulse input for an example
trial. D. Posterior variance of dynamics produced by the gpSLDS.

To capture potential input-driven effects, we fit a version of the gpSLDS described in eq. (8) with
K = 2 latent dimensions and J = 2 linear regimes over 50 vEM iterations. We encoded the input
signal as ±1 with sign corresponding to pulse direction. In Figure 4A, we find that not only does the
gpSLDS capture a distinct visual separation between trials by motion coherence, but it also learns a
precise separating decision boundary between the two linear regimes. Our finding is consistent with
previous work on a related task, which found that average LIP responses can be represented by a 2D
curved manifold [48], though here we take a dynamical systems perspective. Additionally, our model
learns an input-driven effect which appears to define a separating axis. To verify this, we project
the inferred latent states onto the 1D subspace spanned by the input effect vector. Figure 4B shows
that the latent states separate by coherence (top) and by choice (bottom), further suggesting that the
pulse input relates to meaningful variation in evidence accumulation for this task. Fig. 4C shows an
example latent trajectory aligned with pulse input; during the pulse there is a noticeable change in the
latent trajectory. Lastly, in Fig. 4D we find that the gpSLDS expresses high confidence in learned
dynamics where latent trajectories are present and low confidence in areas further from this region.

5 Related work

There are several related approaches to learning nonlinear latent dynamics in discrete or continuous
time. Gaussian process state-space models (GP-SSMs) [49–53] can be considered a discrete-time
analogue to GP-SDEs. In a GP-SSM, observations are assumed to be regularly sampled and latent
states evolve according to a discretized dynamical system with a GP prior. Wang et al. [49] and Turner
et al. [50] learned the dynamics of a GP-SSM using maximum a posteriori estimation. Frigola et al.
[51] and Eleftheriadis et al. [52] employed a variational approximation with sparse inducing points to
infer the latent states and dynamics in a fully Bayesian fashion. In our work, we use a continuous-time
framework that more naturally handles irregularly sampled data, such as point-process observations
commonly encountered in neural spiking data. Neural ODEs and SDEs [54, 55] use deep neural
networks to parametrize the dynamics of a continuous-time system, and have emerged as prominent
tools for analyzing large datasets, including those in neuroscience [33, 56–58]. While these methods
can represent flexible function classes, they are likely to overfit to low-data regimes and may be
difficult to interpret. In addition, unlike the gpSLDS, neural ODEs and SDEs do not typically quantify
uncertainty of the learned dynamics.

In the context of dynamical mixture models, Köhs et al. [59, 60] proposed a continuous-time switching
model in a GP-SDE framework. This model assumes a latent Markov jump process over time which
controls the system dynamics by switching between different SDEs. The switching process models
dependence on time, but not location in latent space. In contrast, the gpSLDS does not explicitly
represent a latent switching process and rather models switching probabilities as part of the kernel

9

function. The dependence of the kernel on the location in latent space allows for the gpSLDS to
partition the latent space into different linear regimes.

While our work has followed the inference approach of Archambeau et al. [61] and Duncker et al. [10],
other methods for latent path inference in nonlinear SDEs have been proposed [32, 41, 62, 63]. Verma
et al. [41] parameterized the posterior SDE path using an exponential family-based description. The
resulting inference algorithm showed improved convergence of the E-step compared to Archambeau
et al. [39]. Course and Nair [32, 62] proposed an amortization strategy that allows the variational
update of the latent state to be parallelized over sequence length. In principle, any of these approaches
could be applied to inference in the gpSLDS and would be an interesting direction for future work.

6 Discussion

In this paper, we introduced the gpSLDS to infer low-dimensional latent dynamical systems from
high-dimensional, noisy observations. By developing a novel kernel for GP-SDE models that
defines distributions over smooth locally-linear functions, we were able to relate GP-SDEs to rSLDS
models and address key limitations of the rSLDS. Using both simulated and real neural datasets, we
demonstrated that the gpSLDS can accurately infer true generative parameters and performs favorably
in comparison to rSLDS models and GP-SDEs with other kernel choices. Moreover, our real data
examples illustrate the variety of potential practical uses of this method. On calcium imaging traces
recorded during aggressive behavior, the gpSLDS reveals dynamics consistent with the hypothesis of
a line attractor put forward based on previous rSLDS analyses [27]. On a decision making dataset,
the gpSLDS finds latent trajectories and dynamics that clearly separate by motion coherence and
choice, providing a dynamical systems view consistent with prior studies [42, 48].

In our experiments, we demonstrated the ability of the gpSLDS to recover ground-truth dynamical
systems and key dynamical features using fixed settings of hyperparameters: the latent dimensionality
K and the number of regimes J . For simulated data, we set hyperparameters to their true values; for
real data, we chose hyperparameters based on prior studies and did not further optimize these values.
However, for most real neural datasets, we do not know the true underlying dimensionality or optimal
number of regimes. To tune these hyperparameters, we can resort to standard techniques for model
comparison in the neural latent variable modeling literature. Two common evaluation metrics are
forward simulation accuracy [23, 27] and co-smoothing performance [6, 64, 65].

While these results are promising, we acknowledge a few limitations of the gpSLDS. First, the
memory cost scales exponentially with the size of the latent dimension due to using quadrature
methods to approximate expectations of the SSL kernel, which are not available in closed form. This
computational limitation renders it difficult to fit the gpSLDS with many (i.e. greater than 3) latent
dimensions. One potential direction for future work would be to instead use Monte Carlo methods to
approximate kernel expectations for models with larger latent dimensionality. In addition, while both
the gpSLDS and rSLDS require choosing a discretization timestep for solving dynamical systems,
in practice we find that the gpSLDS requires smaller steps for stable model inference. This allows
the gpSLDS to more accurately approximate dynamics with continuous-time likelihoods, at the cost
of allocating more time bins during inference. Finally, we acknowledge that traditional variational
inference approaches – such as those employed by the gpSLDS– tend to underestimate posterior
variance due to the KL-divergence-based objective [38]. Carefully assessing biases introduced by our
variational approximation to the posterior would be an important topic for future work.

Overall, the gpSLDS provides a general modeling approach for discovering latent dynamics of noisy
measurements in an intepretable and fully probabilistic manner. We expect that our model will be a
useful addition to the rSLDS and related methods on future analyses of neural data.

Acknowledgments and Disclosure of Funding

This work was supported by grants from the NIH BRAIN Initiative (U19NS113201, R01NS131987,
& RF1MH133778) and the NSF/NIH CRCNS Program (R01NS130789), as well as fellowships from
the Simons Collaboration on the Global Brain, the Wu Tsai Neurosciences Institute, the Alfred P.
Sloan Foundation, and the McKnight Foundation. We thank Barbara Engelhardt, Julia Palacios, and
the members of the Linderman Lab for helpful feedback throughout this project. The authors have no
competing interests to declare.

10

References
[1] Peiran Gao and Surya Ganguli. On simplicity and complexity in the brave new world of

large-scale neuroscience. Current Opinion in Neurobiology, 32:148–155, 2015.

[2] John P Cunningham and Byron M Yu. Dimensionality reduction for large-scale neural record-
ings. Nature Neuroscience, 17(11):1500–1509, 2014.

[3] Shreya Saxena and John P Cunningham. Towards the neural population doctrine. Current
Opinion in Neurobiology, 55:103–111, 2019.

[4] Anne C Smith and Emery N Brown. Estimating a state-space model from point process
observations. Neural Computation, 15(5):965–991, 2003.

[5] Liam Paninski, Yashar Ahmadian, Daniel Gil Ferreira, Shinsuke Koyama, Kamiar Rahnama Rad,
Michael Vidne, Joshua Vogelstein, and Wei Wu. A new look at state-space models for neural
data. Journal of Computational Neuroscience, 29:107–126, 2010.

[6] Jakob H Macke, Lars Buesing, John P Cunningham, Byron M Yu, Krishna V Shenoy, and
Maneesh Sahani. Empirical models of spiking in neural populations. Advances in Neural
Information Processing Systems, 24, 2011.

[7] Evan Archer, Il Memming Park, Lars Buesing, John Cunningham, and Liam Paninski. Black
box variational inference for state space models. arXiv preprint arXiv:1511.07367, 2015.

[8] Scott Linderman, Matthew Johnson, Andrew Miller, Ryan Adams, David Blei, and Liam
Paninski. Bayesian learning and inference in recurrent switching linear dynamical systems. In
Artificial Intelligence and Statistics, pages 914–922. PMLR, 2017.

[9] Chethan Pandarinath, Daniel J O’Shea, Jasmine Collins, Rafal Jozefowicz, Sergey D Stavisky,
Jonathan C Kao, Eric M Trautmann, Matthew T Kaufman, Stephen I Ryu, Leigh R Hochberg,
et al. Inferring single-trial neural population dynamics using sequential auto-encoders. Nature
Methods, 15(10):805–815, 2018.

[10] Lea Duncker, Gergo Bohner, Julien Boussard, and Maneesh Sahani. Learning interpretable
continuous-time models of latent stochastic dynamical systems. In International Conference on
Machine Learning, pages 1726–1734. PMLR, 2019.

[11] Marine Schimel, Ta-Chu Kao, Kristopher T Jensen, and Guillaume Hennequin. ilqr-vae: control-
based learning of input-driven dynamics with applications to neural data. In International
Conference on Learning Representations, 2021.

[12] Mikhail Genkin, Owen Hughes, and Tatiana A Engel. Learning non-stationary langevin
dynamics from stochastic observations of latent trajectories. Nature Communications, 12(1):
5986, 2021.

[13] Christopher Langdon and Tatiana A Engel. Latent circuit inference from heterogeneous neural
responses during cognitive tasks. bioRxiv, pages 2022–01, 2022.

[14] Matthew Dowling, Yuan Zhao, and Il Memming Park. Large-scale variational gaussian state-
space models. arXiv preprint arXiv:2403.01371, 2024.

[15] Saurabh Vyas, Matthew D Golub, David Sussillo, and Krishna V Shenoy. Computation through
neural population dynamics. Annual Review of Neuroscience, 43:249–275, 2020.

[16] Lea Duncker and Maneesh Sahani. Dynamics on the manifold: Identifying computational
dynamical activity from neural population recordings. Current Opinion in Neurobiology, 70:
163–170, 2021.

[17] David Sussillo and Omri Barak. Opening the black box: low-dimensional dynamics in high-
dimensional recurrent neural networks. Neural Computation, 25(3):626–649, 2013.

[18] Daniel J O’Shea, Lea Duncker, Werapong Goo, Xulu Sun, Saurabh Vyas, Eric M Trautmann,
Ilka Diester, Charu Ramakrishnan, Karl Deisseroth, Maneesh Sahani, et al. Direct neural
perturbations reveal a dynamical mechanism for robust computation. bioRxiv, pages 2022–12,
2022.

11

[19] Joana Soldado-Magraner, Valerio Mante, and Maneesh Sahani. Inferring context-dependent
computations through linear approximations of prefrontal cortex dynamics. Science Advances,
10(51):eadl4743, 2024.

[20] Amit Vinograd, Aditya Nair, Joseph Kim, Scott W Linderman, and David J Anderson. Causal
evidence of a line attractor encoding an affective state. Nature, pages 1–3, 2024.

[21] George Mountoufaris, Aditya Nair, Bin Yang, Dong-Wook Kim, Amit Vinograd, Samuel Kim,
Scott W Linderman, and David J Anderson. A line attractor encoding a persistent internal state
requires neuropeptide signaling. Cell, 187(21):5998–6015, 2024.

[22] Biljana Petreska, Byron M Yu, John P Cunningham, Gopal Santhanam, Stephen Ryu, Krishna V
Shenoy, and Maneesh Sahani. Dynamical segmentation of single trials from population neural
data. Advances in Neural Information Processing Systems, 24, 2011.

[23] Josue Nassar, Scott Linderman, Monica Bugallo, and Il Memming Park. Tree-structured recur-
rent switching linear dynamical systems for multi-scale modeling. In International Conference
on Learning Representations, 2018.

[24] Jalil Taghia, Weidong Cai, Srikanth Ryali, John Kochalka, Jonathan Nicholas, Tianwen Chen,
and Vinod Menon. Uncovering hidden brain state dynamics that regulate performance and
decision-making during cognition. Nature Communications, 9(1):2505, 2018.

[25] Antonio C Costa, Tosif Ahamed, and Greg J Stephens. Adaptive, locally linear models of
complex dynamics. Proceedings of the National Academy of Sciences, 116(5):1501–1510,
2019.

[26] David Zoltowski, Jonathan Pillow, and Scott Linderman. A general recurrent state space
framework for modeling neural dynamics during decision-making. In International Conference
on Machine Learning, pages 11680–11691. PMLR, 2020.

[27] Aditya Nair, Tomomi Karigo, Bin Yang, Surya Ganguli, Mark J Schnitzer, Scott W Linderman,
David J Anderson, and Ann Kennedy. An approximate line attractor in the hypothalamus
encodes an aggressive state. Cell, 186(1):178–193, 2023.

[28] Mengyu Liu, Aditya Nair, Nestor Coria, Scott W Linderman, and David J Anderson. Encoding
of female mating dynamics by a hypothalamic line attractor. Nature, pages 1–3, 2024.

[29] Jimmy Smith, Scott Linderman, and David Sussillo. Reverse engineering recurrent neural
networks with Jacobian switching linear dynamical systems. Advances in Neural Information
Processing Systems, 34:16700–16713, 2021.

[30] Noga Mudrik, Yenho Chen, Eva Yezerets, Christopher J Rozell, and Adam S Charles. Decom-
posed linear dynamical systems (dlds) for learning the latent components of neural dynamics.
Journal of Machine Learning Research, 25(59):1–44, 2024.

[31] Christopher KI Williams and Carl Edward Rasmussen. Gaussian processes for machine learning,
volume 2. MIT press Cambridge, MA, 2006.

[32] Kevin Course and Prasanth B Nair. State estimation of a physical system with unknown
governing equations. Nature, 622(7982):261–267, 2023.

[33] Timothy Doyeon Kim, Thomas Zhihao Luo, Tankut Can, Kamesh Krishnamurthy, Jonathan W
Pillow, and Carlos D Brody. Flow-field inference from neural data using deep recurrent networks.
bioRxiv, 2023.

[34] Thomas Zhihao Luo, Timothy Doyeon Kim, Diksha Gupta, Adrian G Bondy, Charles D Kopec,
Verity A Elliot, Brian DePasquale, and Carlos D Brody. Transitions in dynamical regime and
neural mode underlie perceptual decision-making. bioRxiv, pages 2023–10, 2023.

[35] David Duvenaud. Automatic model construction with Gaussian processes. PhD thesis, 2014.

[36] Tobias Pfingsten, Malte Kuss, and Carl Edward Rasmussen. Nonstationary gaussian process re-
gression using a latent extension of the input space. In Eighth World Meeting of the International
Society for Bayesian Analysis (ISBA 2006), 2006.

12

[37] Michalis Titsias. Variational learning of inducing variables in sparse gaussian processes. In
Artificial Intelligence and Statistics, pages 567–574. PMLR, 2009.

[38] David M Blei, Alp Kucukelbir, and Jon D McAuliffe. Variational inference: A review for
statisticians. Journal of the American Statistical Association, 112(518):859–877, 2017.

[39] Cedric Archambeau, Dan Cornford, Manfred Opper, and John Shawe-Taylor. Gaussian process
approximations of stochastic differential equations. In Gaussian Processes in Practice, pages
1–16. PMLR, 2007.

[40] Vincent Adam, Paul Chang, Mohammad Emtiyaz E Khan, and Arno Solin. Dual parameteri-
zation of sparse variational gaussian processes. Advances in Neural Information Processing
Systems, 34:11474–11486, 2021.

[41] Prakhar Verma, Vincent Adam, and Arno Solin. Variational gaussian process diffusion processes.
In International Conference on Artificial Intelligence and Statistics, pages 1909–1917. PMLR,
2024.

[42] Gabriel M Stine, Eric M Trautmann, Danique Jeurissen, and Michael N Shadlen. A neural
mechanism for terminating decisions. Neuron, 111(16):2601–2613, 2023.

[43] Jamie D Roitman and Michael N Shadlen. Response of neurons in the lateral intraparietal area
during a combined visual discrimination reaction time task. Journal of Neuroscience, 22(21):
9475–9489, 2002.

[44] Jochen Ditterich. Stochastic models of decisions about motion direction: behavior and physiol-
ogy. Neural Networks, 19(8):981–1012, 2006.

[45] Joshua I Gold and Michael N Shadlen. The neural basis of decision making. Annu. Rev.
Neurosci., 30:535–574, 2007.

[46] Kenneth W Latimer, Jacob L Yates, Miriam LR Meister, Alexander C Huk, and Jonathan W
Pillow. Single-trial spike trains in parietal cortex reveal discrete steps during decision-making.
Science, 349(6244):184–187, 2015.

[47] Mikhail Genkin, Krishna V Shenoy, Chandramouli Chandrasekaran, and Tatiana A Engel. The
dynamics and geometry of choice in premotor cortex. bioRxiv, 2023.

[48] Gouki Okazawa, Christina E Hatch, Allan Mancoo, Christian K Machens, and Roozbeh Kiani.
Representational geometry of perceptual decisions in the monkey parietal cortex. Cell, 184(14):
3748–3761, 2021.

[49] Jack Wang, Aaron Hertzmann, and David J Fleet. Gaussian process dynamical models. Advances
in Neural Information Processing Systems, 18, 2005.

[50] Ryan Turner, Marc Deisenroth, and Carl Rasmussen. State-space inference and learning with
gaussian processes. In Artificial Intelligence and Statistics, pages 868–875. JMLR Workshop
and Conference Proceedings, 2010.

[51] Roger Frigola, Yutian Chen, and Carl Edward Rasmussen. Variational gaussian process state-
space models. Advances in Neural Information Processing Systems, 27, 2014.

[52] Stefanos Eleftheriadis, Tom Nicholson, Marc Deisenroth, and James Hensman. Identification of
gaussian process state space models. Advances in Neural Information Processing Systems, 30,
2017.

[53] Gergo Bohner and Maneesh Sahani. Empirical fixed point bifurcation analysis. arXiv preprint
arXiv:1807.01486, 2018.

[54] Ricky TQ Chen, Yulia Rubanova, Jesse Bettencourt, and David K Duvenaud. Neural ordinary
differential equations. Advances in Neural Information Processing Systems, 31, 2018.

[55] Yulia Rubanova, Ricky TQ Chen, and David K Duvenaud. Latent ordinary differential equations
for irregularly-sampled time series. Advances in Neural Information Processing Systems, 32,
2019.

13

[56] Timothy D Kim, Thomas Z Luo, Jonathan W Pillow, and Carlos D Brody. Inferring latent
dynamics underlying neural population activity via neural differential equations. In International
Conference on Machine Learning, pages 5551–5561. PMLR, 2021.

[57] Timothy Doyeon Kim, Tankut Can, and Kamesh Krishnamurthy. Trainability, expressivity and
interpretability in gated neural odes. In International Conference on Machine Learning, pages
16393–16423, 2023.

[58] Christopher Versteeg, Andrew R Sedler, Jonathan D McCart, and Chethan Pandarinath. Ex-
pressive dynamics models with nonlinear injective readouts enable reliable recovery of latent
features from neural activity. arXiv preprint arXiv:2309.06402, 2023.

[59] Lukas Köhs, Bastian Alt, and Heinz Koeppl. Variational inference for continuous-time switching
dynamical systems. Advances in Neural Information Processing Systems, 34:20545–20557,
2021.

[60] Lukas Köhs, Bastian Alt, and Heinz Koeppl. Markov chain monte carlo for continuous-time
switching dynamical systems. In International Conference on Machine Learning, pages 11430–
11454. PMLR, 2022.

[61] Cédric Archambeau, Manfred Opper, Yuan Shen, Dan Cornford, and John Shawe-Taylor.
Variational inference for diffusion processes. Advances in Neural Information Processing
Systems, 20, 2007.

[62] Kevin Course and Prasanth Nair. Amortized reparametrization: Efficient and scalable variational
inference for latent sdes. Advances in Neural Information Processing Systems, 36, 2024.

[63] Botond Cseke, David Schnoerr, Manfred Opper, and Guido Sanguinetti. Expectation propagation
for continuous time stochastic processes. Journal of Physics A: Mathematical and Theoretical,
49(49):494002, 2016.

[64] Anqi Wu, Stan Pashkovski, Sandeep R Datta, and Jonathan W Pillow. Learning a latent
manifold of odor representations from neural responses in piriform cortex. Advances in Neural
Information Processing Systems, 31, 2018.

[65] Stephen Keeley, Mikio Aoi, Yiyi Yu, Spencer Smith, and Jonathan W Pillow. Identifying signal
and noise structure in neural population activity with gaussian process factor models. Advances
in Neural Information Processing Systems, 33:13795–13805, 2020.

14

Supplementary Material

Table of Contents

– Appendix A: Relationship between linear kernel and linear dynamical systems
– Appendix B: Inference and learning
– Appendix C: Empirical results for new learning objective
– Appendix D: Additional synthetic data results

15

A Relationship between linear kernel and linear dynamical systems

Here, we draw a mathematical connection between functions sampled from a GP with a linear kernel,

f(·) ∼ GP(0, κlin(·, ·)), κlin(x,x
′) = (x− c)TM(x− c) + σ2

0 (11)

and functions of the form
f(x) = βTx+ β0. (12)

This connection is useful for understanding the relationship between our model formulation and the
typical linear dynamical systems formulation as in the rSLDS. In particular, we will show that the
linear kernel in eq. (11) equivalently places a prior on β and β0 in eq. (12), in a similar manner to
Bayesian linear regression.

By definition of a GP, for any finite set of input locations {xi}Ni=1, we have

[f(x1) f(x2) . . . f(xN)]
T ∼ N (0,Φ) (13)

where Φij = κlin(xi,xj). Equivalently, for every pair i, j = 1, . . . , N ,

Cov(f(xi), f(xj)) = (xi − c)TM(xj − c) + σ2
0 (14)

= xT
i Mxj − cTM(xi + xj) + cTc+ σ2

0 (15)

Under eq. (12), treating β and β0 as random, this would become

Cov(βTxi + β0,β
Txj + β0) = xT

i Cov(β,β)xj + Cov(β0,β)(xi + xj) + Var(β0) (16)

Equation (15) and eq. (16) are equivalent and eq. (13) is satisfied if and only if[
β
β0

]
∼ N

(
0,

[
M −Mc

−cTM cTc+ σ2
0

])
(17)

This shows that a GP with a linear kernel is equivalent to a Bayesian linear regression model with a
prior on coefficients of the form in eq. (17).

B Inference and learning

We present the full inference and learning details for the gpSLDS with additive inputs,

dx = (f(x) +Bv(t))dt+Σ
1
2 dw, E[y(ti) | x] = g (Cx(ti) + d) . (18)

Our approach primarily follows that of Duncker et al. [10]. We use the following notation from
Duncker et al. [10] throughout this section:

• ⟨h(·)⟩p(·) denotes the expectation of h(·) with respect to the distribution p(·).

• Kxz ∈ RN1×N2 denotes the covariance matrix defined by our kernel κssl(·, ·) for two
batches of points {xi}N1

i=1 and {zi}N2
i=1. Specifically, [Kxz]ij = κssl(xi, zj). If one of these

batches has only one point, e.g. N1 = 1, we denote the corresponding covariance vector as
kxz ∈ R1×N2 . Note, these quantities depend on Θ through the kernel; we omit writing this
dependence for brevity.

B.1 Augmenting the generative model

Following Duncker et al. [10], we first augment our generative model with sparse inducing points
{uk}Kk=1 ⊂ RM at input locations {zm}Mm=1 ⊂ RD. Inducing points can be seen as pseudo-
observations of f(·) at input locations {zm}Mm=1. They allow for tractable inference of f at any new
batch of N input locations by reducing computational complexity from O(N3) to O(NM2), where
typically M is chosen to be much smaller than N [37]. After this augmentation, the joint likelihood
of our model becomes

p(y,x,f ,u | Θ) = p(y | x)p(x | f)
K∏

k=1

p(fk | uk,Θ)p(uk | Θ). (19)

16

Treating uk as pseudo-observations, we assume the following augmented prior:

p(uk | Θ) = N (uk | 0,Kzz). (20)

Then we can view fk(·) | uk as a new GP conditioned on uk,

fk(·) | uk ∼ GP(µfk|uk
(·), κfk|uk

(·, ·)), (21)

where

µfk|uk
(x) = kxzK

−1
zz uk

κfk|uk
(x,x′) = κssl(x,x

′)− kxzK
−1
zz kzx.

B.2 Variational lower bound

As in Duncker et al. [10], we consider a variational approximation to the posterior of the form

q(x,f ,u) = q(x)

K∏
k=1

p(fk | uk,Θ)q(uk). (22)

Using this factorization, we derive the ELBO to the marginal log-likelihood of our model. By Jensen’s
inequality,

log p(y | Θ) = log

∫
p(y | x)p(x | f)p(f | u,Θ)p(u | Θ)dxdfdu

≥
∫

q(x,f ,u) log
p(y | x)p(x | f)p(f | u,Θ)p(u | Θ)

q(x,f ,u)
dxdfdu

=

∫
q(x,f ,u) log

p(y | x)p(x | f)
∏K

k=1 p(uk | Θ)

q(x)
∏K

k=1 q(uk)
dxdfdu

= ⟨log p(y | x)⟩q(x) − ⟨KL[q(x)||p(x | f)]⟩q(f) −
K∑

k=1

KL[q(uk)||p(uk | Θ)]

:= L(q(x), q(u),Θ),

where

q(f) =

K∏
k=1

∫
p(fk | uk,Θ)q(uk)duk. (23)

B.3 Inference of latent paths

To perform inference over the posterior of latent paths q(x), we follow a method first proposed in
Archambeau et al. [39] and extended by Duncker et al. [10].

As in Archambeau et al. [39], we choose a posterior distribution q(x) characterized by a Markov
Gaussian process,

q(x) : {dx = (−A(t)x(t) + b(t))︸ ︷︷ ︸
:=fq(x)

dt+Σ
1
2 dw, x0 ∼ N (m(0),S(0))}. (24)

This distribution satisfies posterior marginals q(xt) = N (xt | mt,St) which satisfy the differential
equations

dm(t)

dt
= −A(t)m(t) + b(t) (25)

dS(t)

dt
= −A(t)S(t)− S(t)A(t)T +Σ. (26)

Archambeau et al. [39] maximize the ELBO with respect to q(x) subject to the constraints in eq. (25)
and eq. (26) using the method of Lagrange multipliers. They show that after applying integration by
parts, the Lagrangian becomes

L̃ = L(q(x), q(u),Θ)− C1 − C2 (27)

17

where

C1 =

∫ T

0

{
λ(t)T(A(t)m(t)− b(t))− dλ(t)

dt

T

m(t)

}
dt+ λ(T)Tm(T)− λ(0)Tm(0) (28)

C2 =

∫ T

0

Tr
[
Ψ(t)(A(t)S(t) + S(t)A(t)T −Σ)− dΨ(t)

dt
S(t)

]
dt (29)

+ Tr[Ψ(T)S(T)]− Tr[Ψ(0)S(0)] (30)

As in Archambeau et al. [39], we assume that λ(T) = 0 and Ψ(T) = 0.

To find the stationary points of the Lagrangian, we first take derivatives of L̃ with respect to
m(0),S(0),m(t),S(t),A(t), b(t) and set them to 0. The derivatives with respect to m(0) and S(0)
lead to the updates

m(0) = µ(0)− V (0)λ(0), S(0) =
(
2Ψ(0) + V (0)−1

)−1
(31)

where we assume a prior on initial conditions p(x0) = N (x0 | µ(0),V (0)).

The derivatives with respect to m(t) and S(t) lead to the stationary equations

dλ(t)

dt
= A(t)Tλ(t)− ∂L

∂m(t)
(32)

dΨ(t)

dt
= A(t)TΨ(t)−Ψ(t)A(t)− ∂L

∂S(t)
⊙ P (33)

with Pij =
1
2 for i ̸= j and 1 otherwise. The inclusion of P was proposed by Duncker et al. [10] to

adjust for taking derivatives with respect to a symmetric matrix.

To take derivatives with respect to A(t) and b(t), we first extend a result from Appendix A of
Archambeau et al. [39] to our affine inputs model. This allows us to rewrite the KL-divergence term
between the posterior and prior latent paths in the ELBO as

⟨KL[q(x)||p(x | f)]⟩q(f) =
1

2

∫ T

0

〈
(f +Bv(t)− fq)

T(f +Bv(t)− fq)
〉
q(x),q(f)

dt

=
1

2

∫ T

0

〈
(Bv(t) + ∆f)T(Bv(t) + ∆f)

〉
q(x),q(f)

dt

=
1

2

∫ T

0

〈
(∆f)T(∆f)

〉
q(x),q(f)

dt (34)

+

∫ T

0

v(t)TBT ⟨∆f⟩q(x),q(f) dt+
1

2

∫ T

0

v(t)TBTBv(t)dt

where ∆f := f − fq . The integrand of the first term in eq. (34) can be expanded as〈
(∆f)T(∆f)

〉
q(x),q(f)

=
〈
fTf

〉
q(x),q(f)

+ 2Tr

[
A(t)T

〈
∂f

∂x

〉
q(x),q(f)

S(t)

]
(35)

+ Tr
[
A(t)TA(t)(S(t) +m(t)m(t)T

]
+ 2m(t)TA(t)T ⟨f⟩q(x),q(f)

+ b(t)Tb(t)− 2b(t)T ⟨f⟩q(x),q(f) − 2bTA(t)m(t)

where we have used the identity
〈
⟨f(x)⟩q(f) (x−m)T

〉
q(x)

=
〈

∂f
∂x

〉
q(x),q(f)

S, which can be

derived from Stein’s lemma. Note that computing eq. (35) relies on three quantities,

⟨f⟩q(x),q(f) ,
〈
fTf

〉
q(x),q(f)

,

〈
∂f

∂x

〉
q(x),q(f)

which can be written as terms which depend on expectations of the kernel with respect to q(x). We
derive these as follows:

⟨f⟩q(x),q(f) =
〈
kxzK

−1
zz u

〉
q(u),q(x)

= ⟨kxz⟩q(x) K
−1
zz mu

18

〈
fTf

〉
q(x),q(f)

=

〈
K∑

k=1

〈
fk(x)

2
〉
q(fk)

〉
q(x)

=

〈
K∑

k=1

Varq(fk)[fk(x)] + ⟨fk(x)⟩2q(fk)

〉
q(x)

=

K∑
k=1

〈
Varp(fk|u)[fk(x)]

〉
q(x),q(u)︸ ︷︷ ︸

Term 1

+
〈

Varq(u)[⟨fk(x)⟩p(fk | u)]
〉
q(x)︸ ︷︷ ︸

Term 2

+
〈
⟨fk(x)⟩2p(fk | u),q(u)

〉
q(x)︸ ︷︷ ︸

Term 3

=

K∑
k=1

〈
kxx − kxzK

−1
zz kzx

〉
q(x)︸ ︷︷ ︸

Term 1

+
〈
kxzK

−1
zz Sk

uK
−1
zz kzx

〉
q(x)︸ ︷︷ ︸

Term 2

+
〈
kxzK

−1
zz mk

u(m
k
u)

TK−1
zz kzx

〉
q(x)︸ ︷︷ ︸

Term 3〈
∂f

∂x

〉
q(x),q(f)

=
〈
mT

uK
−1
zz

∂kzx

dx

〉
q(x)

= mT
uK

−1
zz

〈
∂kzx

dx

〉
q(x)

The above three function expectations can thus be expressed in terms of the following four kernel
expectations with respect to q(x) = N (x | m,S):

⟨κ(x,x)⟩q(x) , ⟨κ(x, z)⟩q(x) , ⟨κ(z1,x)κ(x, z2)⟩q(x) ,
〈
∂κ(z,x)

∂x

〉
q(x)

.

For our SSL kernel these kernel expectations are not available in closed form, so in practice we
approximate them using Gauss-Hermite quadrature.

Next, differentiating L̃ with respect to A(t) and b(t) yields the updates

A(t) = −
〈
∂f

∂x

〉
q(x),q(f)

+ 2ΣΨ(t) (36)

b(t) = ⟨f(x)⟩q(x),q(f) +A(t)m(t) +Bv(t)−Σλ(t) (37)

Note that these updates have one key difference from the previously derived updates in Archambeau
et al. [39] and Duncker et al. [10]: the input-dependent term Bv(t) in eq. (37). Intuitively, this is
because the posterior bias term b(t) is fully time-varying, so it captures changes in the latent states
due to input-driven effects in the posterior.

In summary, the inference algorithm for updating q(x) is as follows. In each iteration of vEM, we
repeat the following forward-backward style algorithm:

1. Solve for m(t), S(t) forward in time starting from m(0), S(0) via eq. (25) and eq. (26).
2. Solve for λ(t),Ψ(t) backward in time starting from λ(T),Ψ(T) = 0 via eq. (32) and

eq. (33).
3. Update A(t) and b(t) via eq. (36) and eq. (37).

After solving these stationary equations, we update m(0) and S(0) via eq. (31).

Computational details Solving for m(t), S(t),λ(t), and Ψ(t) requires integrating continuous-
time ODEs. In practice we use Euler integration with a small discretization step ∆t relative to the
sampling rate of the data, though in principle any ODE solver can be used. We found that the ELBO
usually converges within 20 forward-backward iterations.

19

The ODEs for solving λ(t) and Ψ(t) in eq. (32) and eq. (33) depend on evaluating gradients of the
ELBO with respect to m(t) and S(t). We use modern autodifferentiation capabilities in JAX to
compute these gradients.

B.4 Updating dynamics and hyperparameters with a modified learning objective

As we describe in Section 3.3, our gpSLDS inference algorithm uses a modified objective for
hyperparameter learning. In this section, we discuss this objective in detail and present closed-form
updates for the inducing points given the hyperparameters. Then, using the inducing points, we will
derive the posterior distribution over f(·) at any location in the latent space.

After updating the latent paths q(x) as described in Appendix B.3, we update hyperparameters Θ
using a partially optimized ELBO. This update can be written as

Θ∗ = argmax
Θ

{
max
q(u)

L(q(x), q(u),Θ)

}
. (38)

Following Duncker et al. [10], we choose the variational posterior

q(uk) = N (uk |mk
u,S

k
u). (39)

Given q(x) and Θ, this leads to the closed-form updates,

Sk∗
u = Kzz

(
Kzz +

∫ T

0

⟨kzxkxz⟩q(x) dt

)−1

Kzz (40)

m∗
u = Sk∗

u K−1
zz

∫ T

0

(
⟨kzx⟩q(x) (−A(t)m(t) + b(t)−Bv(t))T

−
〈
∂kzx

∂x

〉
q(x)

S(t)A(t)T

)
dt

(41)

In the above equation, m∗
u ∈ RM×K contains mk∗

u ∈ RM in each column. The inside maximization
of eq. (38) can be computed analytically using these closed-form updates. Note that mk∗

u and Sk∗
u

depend on Θ through the prior kernel covariances Kzz and kzx. Therefore, eq. (38) can be understood
as performing joint optimization of the ELBO with respect to Θ through mk∗

u and Sk∗
u , as well as

through the rest of the ELBO. In practice, this allows vEM to circumvent dependencies between q(u)
and Θ, leading to more accurate estimation of both quantities. For our experiments, we use the Adam
optimizer to solve eq. (38).

After obtaining Θ∗ in each vEM iteration, we explicitly update q(u) using eq. (41) and eq. (40) for
the next iteration.

Recovering predicted dynamics Given (updated) variational parameters mk
u and Sk

u, it is straight-
forward to compute the posterior distribution of f∗ := f(x∗) at any location x∗ in the latent space.
Recall the variational approximation from eq. (23). If we apply this approximation to f∗, we have

q(f∗) =

K∏
k=1

q(f∗
k) =

K∏
k=1

∫
p(f∗

k | uk,Θ)q(uk)duk. (42)

To evaluate this analytically, we use properties of conditional Gaussian distributions. First note that
by our augmented prior,

p(f∗
k | uk,Θ) = N (f∗

k | kx∗zK
−1
zz uk, κssl(x

∗,x∗)− kx∗zK
−1
zz kzx∗). (43)

Then, by conjugacy of Gaussian distributions,

q(f∗
k) =

∫
N (f∗

k | kx∗zK
−1
zz uk, κssl(x

∗,x∗)− kx∗zK
−1
zz kzx∗)N (uk |mk

u,S
k
u)duk

= N (f∗
k | kx∗zK

−1
zz mk

u, κssl(x
∗,x∗)− kx∗zK

−1
zz kzx∗ + kx∗zK

−1
zz Sk

uK
−1
zz kzx∗). (44)

20

B.5 Learning observation model parameters

For the experiments in this paper, we considered two observation models: Gaussian observations and
Poisson process observations.

Gaussian observations We consider the observation model

p(y | x) =
∏
ti

N (y(ti) | Cx(ti) + d,R). (45)

where R ∈ RD is a diagonal covariance matrix. The expected log-likelihood is available in closed
form and is given by

⟨log p(y | x)⟩q(x) =
∑
ti

(
logN (y(ti) | C(ti) + d,R)− 1

2
Tr
[
S(ti)C

TR−1C
])

(46)

Closed-form updates for C,d and R are also available:

C∗ =

(∑
ti

(y(ti)− d)m(ti)
T

)(∑
ti

(S(ti) +m(ti)m(ti)
T)

)−1

(47)

d∗ =
1

nti

∑
ti

(y(ti)−C∗m(ti)) (48)

R∗
d =

1

nti

∑
ti

(yd(ti)
2 − 2yd(ti)c

T
dm(ti) + (cTdm(ti))

2 + cTdS(ti)cd) (49)

where nti is the number of observed time points, R∗
d is the d-th entry of R, and cd is the d-th row of

C.

Poisson process observations The second observation model we consider is Poisson process
observations of the form

p({ti} | x) = PP(g(Cx(t) + d)), (50)

where either g(a) = exp(a) (exponential inverse link) or g(a) = log(1 + exp(a)) (softplus inverse
link). For the exponential inverse link, the expected log-likelihood is available in closed form and is
given by

⟨log p({ti} | x)⟩q(x) = −
∫ T

0

exp

(
Cm(t) + d+

1

2
diag(CS(t)CT)

)
dt+

∑
ti

(Cm(ti) + d)

(51)

For the softplus inverse link, the expected log-likelihood is not available in closed-form, but can be
approximated by Gauss-Hermite quadrature or a second-order Taylor expansion around m(t).

For both Poisson process models, we update C and d using gradient ascent on the expected log-
likelihood with the Adam optimizer.

B.6 Learning the input effect matrix

Here we derive a closed-form update for B, which linearly maps external inputs to the latent space.
The only term in the ELBO which depends on B is ⟨KL[q(x)||p(x | f)]⟩q(f). We differentiate this
term as written in eq. (34) and arrive at the update

B∗ = −

(∫ T

0

(⟨f⟩q(x),q(f) +A(t)m(t)− b(t))v(t)Tdt

)(∫ T

0

v(t)v(t)Tdt

)−1

. (52)

Note that the term
(∫ T

0
v(t)v(t)Tdt

)−1

can be pre-computed since v(t) is known.

21

𝑥 ! 𝑥 !

𝑥" 𝑥"

Estimation error for
decision boundary Standard vEM Modified vEM

A B C

er
r(
$𝑤
,𝑤

!"
#
$)

Figure 5: Comparison between the standard vEM approach in Duncker et al. [10] and our modified
vEM approach. A. Estimation error between the true and learned decision boundaries, computed as
described in Appendix C. For each vEM approach, we fit 5 gpSLDS models with different random
initializations. The estimation errors are denoted in light blue/purple dots. The runs that we display
in the next two panels are denoted by a solid blue/purple dot. B. The standard vEM approach fails to
learn the true decision boundary of x1 = 0. C. The modified vEM approach precisely learns this
decision boundary.

C Empirical results for new learning objective

In this section, we empirically compare the standard vEM approach from Duncker et al. [10] to our
modified vEM approach in which we learn kernel hyperparameters on a partially optimized ELBO.
For this experiment, we use the same synthetic dataset from our main result in Section 4.1. We fit
the gpSLDS with 5 different random initializations using both standard vEM and modified vEM.
For these fits, we fix the values of C and d throughout learning to ensure that the resulting models
are anchored to the same latent subspace (in general, they are not guaranteed to end up in the same
subspace due to rotational unidentifiability). Each run was fit with 50 total vEM iterations; each
iteration consisted of 15 forward-backward solves to update q(x) and 300 Adam gradient steps with
a learning rate of 0.01 to update kernel hyperparameters.

To compare the quality of the learned hyperparameters, we quantitatively assess the error between
the learned and true decision boundaries. In this simple example with J = 2, the decision boundary
can be parametrized as w0 + w1x1 + w2x2 = 0 for some w = (w0, w1, w2)

T. The true decision
boundary is characterized by wtrue = (0, 1, 0)T. We denote the learned decision boundary as ŵ. Next,
we compute an error metric between the learned and true decision boundaries as follows. We first
normalize the learned decision boundary and define ŵnorm = ŵ

∥ŵ∥2
. We do not need to do this for

wtrue since it is already normalized. Then, we use the error metric

err(ŵ,wtrue) = min (∥ŵnorm −wtrue∥2, ∥ŵnorm +wtrue∥2) . (53)

Including both terms in the minimum is necessary due to unidentifiability of the signs of ŵ.

Figure 5A compares this error metric across the 5 model fits for each vEM method. It is clear that
the modified vEM approach consistently outperforms the standard vEM approach in terms of more
accurately estimating the decision boundary. In addition, the error for standard vEM has much higher
variance, since the algorithm is prone to getting stuck in local maxima of the ELBO. Figures 5B-C
display the learned versus true decision boundaries in the latent space for two selected runs. We
select the run from each vEM approach which achieved the lowest decision boundary error metric,
as denoted by solid dots in fig. 5A. We find that the model fit with standard vEM learns a decision
boundary which noticeably deviates from the true boundary. On the other hand, the model with with
modified vEM recovers the true boundary almost perfectly. This illustrates that our modified approach
dramatically improves kernel hyperparameter estimation in practice and enables the gpSLDS to be
much more interpretable in the latent space.

22

true latents and dynamics observed data inferred latents

learned partition posterior var. of dynamics

A B C

D E

Figure 6: Additional synthetic data results on a 2D limit cycle from a gpSLDS fit with quadratic
decision boundaries. A. True dynamics and true latent trajectories on 3 example trials used to
generate the dataset. Dynamics are an unstable rotation and a stable rotation with fixed points at
(0, 0), separated by x2

1 + x2
2 = 4. B. Poisson process observations for an example trial. C. gpSLDS

inferred latent trajectory with 95% posterior credible intervals for an example trial. D. The learned
π(x) accurately recovers the true circular boundary between the two sets of linear dynamics. E. The
gpSLDS learned posterior variance on dynamics. The posterior variance is low in regions heavily
traversed by the true latent paths, and is high in regions with little to no data.

D Additional synthetic data results

To further demonstrate the expressivity of the gpSLDS over the rSLDS, we apply the gpSLDS to a
synthetic dataset where the true decision boundary between linear regimes is nonlinear. The rSLDS
can only model linear decision boundaries in order for its inference algorithm to remain tractable.

For this example, we generate a synthetic dataset consisting of an unstable linear system and a stable
linear system separated by the decision boundary x2

1 + x2
2 = 4. Both of the linear systems have

fixed points at (0, 0). The smooth combination of these linear systems results in a 2D limit cycle
(fig. 6A). We simulate 30 trials of Poisson process observations from D = 50 neurons over T = 2
seconds (fig. 6B). We initialize the observation model parameters C and d using a Poisson LDS with
data binned at 20ms. Then, we fit a gpSLDS with J = 2 regimes, and with π(x) modeled using the
feature transformation

ϕ(x) =
[
1 x2

1 x2
2

]T
. (54)

The results of this experiment are shown in fig. 6C-E. In fig. 6C we find that the gpSLDS successfully
recovers the the true latent trajectory with accurate posterior credible intervals for an example trial.
Furthermore, fig. 6D demonstrates that by using the quadratic feature transformation in eq. (54), the
gpSLDS accurately learns the true flow field and true decision boundary x2

1 + x2
2 = 4. In addition,

the values of π(x) smoothly transition between 0 and 1 near this boundary, highlighting the ability
of our method to learn smooth dynamics if present. Lastly, in fig. 6E we plot the inferred posterior
variance of our method. We find that the gpSLDS is more confident in regions of the latent space
with more data (e.g. at the decision boundary), and less confident in regions of latent space with little
to no data.

E Computing resources

We fit all of our models on a NVIDIA A100 GPU on an internal computing cluster. A breakdown of
approximate compute times for the main experiments in this paper includes:

23

• Synthetic data results in Section 4.1: 1.5 hours per model fit, ∼40 hours for the entire
experiment.

• Real data results in Section 4.2: 1.5 hours per model fit, ∼8 hours for the entire experiment.
• Real data results in Section 4.3: 1 hour per model fit, ∼5 hours for the entire experiment.

We note that these estimates do not include the full set of experiments we performed while carrying
out this project (such as preliminary or failed experiments).

24

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: In our abstract and introduction, we propose a new method for interpretable
modeling of neural dynamics. In our paper, we apply our method and demonstrate its
interpretability and competitive performance on a synthetic dataset and two real datasets.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discuss limitations of our work in the discussion section of the paper.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate ”Limitations” section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

25

Answer: [NA]

Justification: Our paper does not contain theoretical results.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: For our experiments, we provide detailed descriptions and references to
datasets, as well as descriptions of the models we fit.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

26

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We have made our codebase on GitHub publicly available. We provide both
data and code for our main synthetic data result, and we also provide references to the
dataset and instructions for fitting models to reproduce the second real data result. We do
not provide data or code for the first real data result since that data has not been released to
the public.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We provide all details for the experimental setting that are needed to understand
the results for all three sets of experiments.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: Yes, we report thorough quantitative comparisons with error bars for the
experiments in Section 4.1 and 4.2. Throughout the paper, we fit multiple (i.e. at least 5)
models with different initializations for our experiments.

Guidelines:

• The answer NA means that the paper does not include experiments.

27

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• The authors should answer ”Yes” if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: We provide information on computing resources in Appendix E.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We have reviewed and followed the Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: Our work develops a new statistical modeling tool for the analysis of neu-
roscience data in constrained experiments. We expect that this work will not have broad
societal impacts, positive or negative.

28

https://neurips.cc/public/EthicsGuidelines

Guidelines:
• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: This paper does not involve data or models which have a high risk of misuse.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We cite the original papers which analyzed or produced both of the real datasets
that we consider in Sections 4.2 and 4.3.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.

29

• For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: We provide our codebase on GitHub which comes with clear documentation.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: This paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: This paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

30

paperswithcode.com/datasets

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

31

	Introduction
	Background
	Gaussian process stochastic differential equation models
	Recurrent switching linear dynamical systems

	Gaussian process switching linear dynamical systems
	The smoothly switching linear kernel
	The gpSLDS generative model
	Latent path inference and parameter learning
	Recovering predicted dynamics

	Results
	Synthetic data
	Application to hypothalamic neural population recordings during aggression
	Application to lateral intraparietal neural recodings during decision making

	Related work
	Discussion
	Relationship between linear kernel and linear dynamical systems
	Inference and learning
	Augmenting the generative model
	Variational lower bound
	Inference of latent paths
	Updating dynamics and hyperparameters with a modified learning objective
	Learning observation model parameters
	Learning the input effect matrix

	Empirical results for new learning objective
	Additional synthetic data results
	Computing resources

