INFIMED: LOW-RESOURCE MEDICAL MLLMS WITH ADVANCING UNDERSTANDING AND REASONING

Anonymous authorsPaper under double-blind review

000

001

002 003 004

010 011

012

013

014

016

017

018

019

021

023

025

026

028

029

031

032

034

037

040

041

042

043

044

046

047

048

051

052

ABSTRACT

Multimodal Large Language Models (MLLMs) have achieved remarkable progress in domains such as visual understanding and mathematical reasoning. However, their application in the medical domain is constrained by two key challenges: (1) multimodal medical datasets are scarce and often contain sparse information, limiting reasoning depth; and (2) Reinforcement Learning with Verifiable Rewards (RLVR), though effective in general domains, cannot reliably improve model performance in the medical domain. To overcome these challenges, during the supervised fine-tuning (SFT) stage, we incorporate high-quality textual reasoning data and general multimodal data alongside multimodal medical data to efficiently enhance foundational medical capabilities and restore the base model's reasoning ability. Moreover, considering that there are some multimodal medical datasets with sparse information, we further synthesize reflective-pattern-injected chain-ofthought (CoT) in addition to general CoT samples, equipping the model with initial reflective reasoning capabilities that provide a structured foundation for subsequent RLVR training. Finally, we introduce our InfiMed-Series models, InfiMed-SFT-3B and InfiMed-RL-3B, both of which deliver state-of-the-art performance across seven multimodal medical benchmarks. Notably, InfiMed-RL-3B achieves an average accuracy of 59.2%, outperforming even larger models like InternVL3-8B, which achieves 57.3% Specifically, during the SFT phase, we utilized 188K samples, while the RLVR phase incorporated 36K samples, demonstrating the efficacy of both training strategies in achieving superior performance. We also conducted a series of extensive experiments, which provide valuable insights that contribute to advancing the performance of MLLMs in medical scenarios.

1 Introduction

The rapid development of multimodal large language models (MLLMs) in recent years has marked a transformative phase in artificial intelligence, driving substantial progress across diverse domains. Notably, MLLMs have achieved significant breakthroughs in areas such as object recognition (Yin et al., 2025; Liu et al., 2025d), mathematical reasoning (Zhuang et al., 2025; Peng et al., 2024; Liu et al., 2025b), and graphical user interface (GUI) interaction (Liu et al., 2025a; Luo et al., 2025; Qin et al., 2025), largely attributable to the availability of abundant high-quality multimodal datasets. In contrast, the medical domain remains particularly challenging due to the scarcity of high-quality multimodal data, which severely limits the performance of MLLMs in medical scenarios.

To enhance the medical reasoning capabilities of MLLMs, prior work has primarily relied on large-scale, domain-specific supervised fine-tuning (SFT). For instance, LLaVA-Med (Li et al., 2023) directly utilizes the PMC-15M (Zhang et al., 2023b) dataset for medical concept alignment and instruction following. However, its performance is constrained by the inherent noise of the dataset and the limited amount of reasoning information it provides. Recent studies, such as MedGemma (Sellergren et al., 2025), collect larger and higher-quality medical datasets that cover both textual and multimodal modalities, aiming to further enhance the general medical capabilities of MLLMs. While SFT can be effective, it is highly data-intensive and mainly focuses on memorizing training data (Chu et al., 2025). Building on the success of DeepSeek-R1 (Guo et al., 2025), Reinforcement Learning with Verifiable Rewards (RLVR) has shown significant improvements in exploration and generalization for multimodal tasks (Zhang et al., 2025; Liu et al., 2025; C. RLVR, which often includes a "cold-start" phase in (MLLMs)(Huang et al., 2025; Peng et al., 2025; Liu et al., 2025a), is also

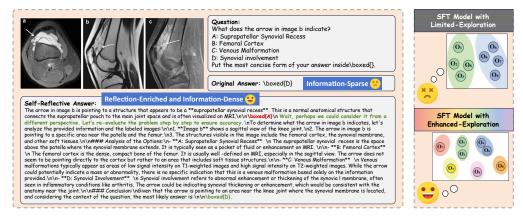


Figure 1: **Left:** Comparison of information-sparse and reflection-enriched, information-dense outputs. **Right:** A model with Enhanced Exploration (bottom) generates a broader, more effective search space, while Limited Exploration (top) results in a narrower, less efficient search.

beginning to find notable applications in medical scenarios (Su et al., 2025; Xu et al., 2025; Pan et al., 2025).

Despite these ongoing efforts, existing approaches still exhibit notable limitations, which can be summarized into two key challenges. First, the scarcity of high-quality multimodal medical datasets remains a bottleneck: most existing datasets suffer from sparse information and contain limited explanatory information, which hinders effective model training and results in poor reasoning performance, as shown in Figure 1. Second, although RLVR has been shown to substantially enhance model performance in other domains, its application in medical scenarios remains underexplored. Existing work either lacks extensive exploration across broad benchmarks (Pan et al., 2025; Su et al., 2025) or fails to effectively improve model performance (Xu et al., 2025).

To address the challenges mentioned above, during the SFT stage, we leverage not only multimodal medical data but also general multimodal data to preserve the model's visual perception capabilities, while integrating medical textual data to enhance its domain-specific knowledge. Additionally, we introduce a novel synthesis of reflective-pattern-injected chain-of-thought (CoT) data, effectively addressing the information sparsity present in certain multimodal medical datasets. This approach could also provide a more robust exploratory foundation for subsequent RLVR, enabling a cold-start method with limited resources. Building upon this, we train our InfiMed-SFT-3B model on 188K samples, equipping it with both fundamental reasoning and reflective patterns. We then apply RLVR on top of InfiMed-SFT-3B using 36K samples to obtain InfiMed-RL-3B, further enhancing its exploration capabilities and generalization performance. Extensive experiments show that our InfiMed-series models set new SOTA performance across multiple multimodal medical benchmarks, outperforming similarly-sized models like MedGemma-4B-IT and larger models such as InternVL3-8B, demonstrating the effectiveness of our reflective SFT and RLVR approach. We also investigated the impact of data composition and reasoning strategies through a series of exploratory experiments, yielding valuable insights for the advancement of medical MLLM applications.

In summary, the key contributions of our work are as follows: (1) We synthesize reflective-pattern-injected CoT data, equipping the model with initial reflective capabilities and a stronger cold-start foundation for subsequent RLVR. (2) We employ a low-resource SFT with 188K samples, enabling the model to develop robust reasoning, comprehension, and reflective patterns. Subsequently, RLVR is applied with 36K samples, effectively boosting the model's exploration capabilities and performance. (3) We introduce the InfiMed-series models, InfiMed-SFT-3B and InfiMed-RL-3B, which achieve SOTA performance among 3B-level MLLMs, with InfiMed-RL-3B outperforming models like MedGemma-4B-IT by 7.64%, and remain competitive even against 7B-level models.

2 RELATED WORK

2.1 MEDICAL MULTIMODAL LARGE LANGUAGE MODELS

In recent years, MLLMs have evolved rapidly and achieved remarkable progress across a wide range of domains, attracting increasing interest in their potential applications within the medical

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125 126 127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150 151 152

153 154

155

156

157

158

159

160

161

field (AlSaad et al., 2024). Extensive research efforts have been devoted to enhancing MLLMs' ability to integrate heterogeneous medical data to support critical dimensions in healthcare. Inspired by the success of medical LLMs like HuatuoGPT (Zhang et al., 2023a), Apollo (Wang et al., 2024), and Med-PaLM series (Singhal et al., 2023; 2025), recent efforts have increasingly focused on extending LLM capabilities to multimodal medical. LLaVA-Med (Li et al., 2023) introduces a biomedical-specialized large language-and-vision model trained on a curated figure-caption dataset with self-instructed instruction-following data. The model highlights the potential of cost-efficient training strategies for domain-specific MLLMs. MedGemma (Sellergren et al., 2025) has shown strong generalization across medical vision-language and text-only tasks, demonstrating advanced medical understanding and reasoning on multimodal data. Lingshu (Xu et al., 2025) proposed a domain-specialized multimodal foundation model for medical, supported by a curated dataset enriched with medical VQA, CoT reasoning, and report annotations. And they also introduced a unified evaluation framework (MedEvalKit) for standardized benchmarking across medical tasks. While prior work has made notable progress in adapting MLLMs to the medical domain, many approaches depend on large model sizes and substantial computational resources, which limit their accessibility and scalability. In contrast, our work focuses on developing lightweight medical MLLMs that achieve strong performance with significantly fewer resources. By integrating highquality multimodal SFT and RLVR, we show that smaller models can outperform larger counterparts across a wide range of medical benchmarks.

2.2 REASONING IN MEDICAL LARGE LANGUAGE MODELS

Interpretable reasoning remains a central desideratum in medical AI, with recent efforts exploring CoT prompting (Wei et al., 2022) and program-based logic (Chen et al., 2022) modeling. Although these approaches have shown potential, they typically rely on costly expert-curated annotations (Li et al., 2024b), which limits their scalability in real-world clinical settings. RL offers a compelling alternative by enabling emergent reasoning capabilities without requiring explicit supervision, as demonstrated by recent models such as DeepSeek-R1 (Guo et al., 2025), which achieve notable improvements in reasoning with rule-based reward. Building on this paradigm, RLVR has been used to improve reasoning reliability, with Group Relative Policy Optimization (Shao et al., 2024) known for its efficiency and good performance. This method is now increasingly used to train MLLMs to improve their reasoning ability (Meng et al., 2025; Wang et al., 2025; Tan et al., 2025). With the success of RLVR, several work leverages it on medical MLLMs. MedVLM-R1 (Pan et al., 2025) employs RLVR to explicit reasoning in medical VQA, achieving strong performance and generalization. Its emphasis on reasoning highlights the role of RL in enhancing transparency and trustworthiness in clinical AI systems. GMAI-VL-R1 (Su et al., 2025) explores RLVR to enhance reasoning and reflection in multimodal medical models. By introducing a multi-agent reasoning data synthesis framework, the model outperforms prior models on some complex tasks. Lingshu (Xu et al., 2025) also leverages an RLVR paradigm, achieving strong performance across medical VQA, report generation, and text-only QA. Despite these promising advances, prior work has been limited in its exploration of the RLVR stage. Existing studies either focus on a narrow set of benchmarks or fail to consistently improve the performance of the SFT model. In contrast, our work not only successfully enhances model performance during the RLVR stage but also conducts extensive experiments to analyze the improvements brought by RLVR. Additionally, we perform case studies comparing the outputs of the SFT and RLVR models, aiming to provide new insights into this stage for multimodal medical large language models.

3 METHODOLOGY

In this section, we outline our methodology for advancing multimodal medical understanding and reasoning through RLVR with a self-reflective cold start, which is depicted in Figure 2. Our approach unfolds in two stages: (1) A cold start phase, in which we uniquely integrate general multimodal data with medical text reasoning data to simultaneously enhance image understanding and restore fundamental reasoning skills. Crucially, to address the information sparsity of existing medical datasets, we further synthesize both distilled CoT and self-reflective CoT for SFT, thereby establishing a richer and more exploratory reasoning foundation. (2) A RLVR phase, which enables the model to explore a wider spectrum of reasoning trajectories, thereby producing more robust and clinically faithful multimodal reasoning.

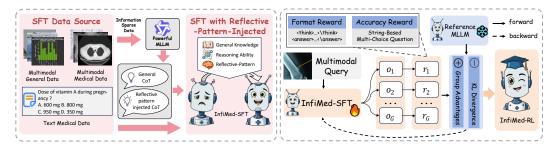


Figure 2: The overall training process of InfiMed-Series models.

3.1 Reflective-Injected Supervised Fine-Tuning

As mentioned above, since SFT constitutes the foundation for subsequent RLVR, we incorporated not only general multimodal data but also text-based medical reasoning data during SFT to strengthen the model's fundamental multimodal understanding and reasoning capabilities (Sellergren et al., 2025; Xu et al., 2025). However, several existing multimodal medical SFT datasets suffer from insufficient informational richness. For instance, multiple-choice question datasets often only provide the final choice and always lack explicit explanation. To address this limitation, in addition to only generating conventional CoT data to supplement the missing information, we further construct reflective-pattern-injected CoT data, enabling the model to develop more comprehensive and self-corrective reasoning capabilities (Cheng et al., 2024).

The core premise of reflective-pattern-injected is that directly exposing the model to a spectrum of reasoning trajectories, including correct, partially inconsistent, and subtly flawed chains, encourages the development of self-evaluation and error-correction mechanisms.

Formally, given a multimodal medical question q, whose original response consists of insufficient information, consisting of a textual task instruction x and one or more images \mathcal{I} , i.e. $q = \{x, \mathcal{I}\}$. We utilize a powerful MLLM (e.g., Qwen2.5-VL-32B (Bai et al., 2025)) to generate a batch of candidate responses $\{y_i\}$. Subsequently, leveraging rejection sampling, we partition these candidates into two disjoint subsets: $\{y_i^+\}$, corresponding to correct responses, and $\{y_i^-\}$, corresponding to incorrect responses. For the correct responses $\{y_i^+\}$, we further engage a more advanced MLLM (e.g., Qwen2.5-VL-72B (Bai et al., 2025)) to evaluate each response across multiple dimensions, including clinical accuracy, logical reasoning, factual correctness, and completeness.

Finally, we synthesize a reflective-pattern-injected CoT by combining one of the highest-quality responses from $\{y_i^+\}$ with a randomly selected response from $\{y_i^-\}$, thereby creating a novel training instance that emphasizes both reasoning and error-awareness. More details of the reflective-pattern-injected CoT synthesis can be found in the Appendix A.2.

3.2 Reinforcement Learning with Verifiable rewards

3.2.1 OVERALL PROCESS OF RLVR

After the SFT stage with reflective-pattern injection, we use Group Relative Policy Optimization (GRPO) in the RLVR phase to improve stability, building on the method from Deepseek-R1 (Guo et al., 2025). GRPO computes advantages by generating multiple responses for the same query, removing the need for an explicit critic model.

We formally denote the model after the SFT stage with reflective-pattern injection as π_{θ} , the policy model in RLVR. Given a multimodal medical query q, the policy model $\pi_{\theta_{old}}$ (prior to parameter updates) generates a set of G candidate responses $\{o_i\}_{i=1}^G$. For each response o_i , a rule-based reward function $R(o, \operatorname{gt})$ is used to evaluate its quality and assign a score r_i , where gt denotes the ground-truth answer. Based on the collection of rewards $\{r_i\}_{i=1}^G$, the group-relative advantages $\{A_i\}_{i=1}^G$, which quantify the relative quality of responses within the batch, can be calculated as:

$$A_i = \frac{r_i - mean(\{r_1, r_2, \dots, r_G\})}{std(\{r_1, r_2, \dots, r_G\})},$$
(1)

where $mean(\cdot)$ indicates the average value, and $std(\cdot)$ refers to the standard deviation.

Based on the above group-relative advantages, GRPO updates the policy by maximizing the expected advantage-weighted likelihood ratio. The optimization objective can be formulated as:

$$\mathcal{J}_{GRPO}(\theta) = \mathbb{E}_{[q \sim P(Q), \{o_i\}_{i=1}^G \sim \pi_{\theta_{\text{old}}}(O|q)]} \frac{1}{G} \sum_{i=1}^G \frac{1}{|o_i|}$$

$$\sum_{i=1}^{|o_i|} \left\{ \min \left[\frac{\pi_{\theta}(o_i|q)}{\pi_{\theta_{\text{old}}}(o_i|q)} A_i, \operatorname{clip} \left(\frac{\pi_{\theta}(o_i|q)}{\pi_{\theta_{\text{old}}}(o_i|q)}, 1 - \epsilon, 1 + \epsilon \right) A_i \right] - \beta D_{\text{KL}} \left[\pi_{\theta} \| \pi_{\text{ref}} \right] \right\}, \tag{2}$$

where the additional Kullback–Leibler term $D_{\text{KL}}\left[\pi_{\theta} \| \pi_{\text{ref}}\right]$ is applied to penalize divergence from the reference policy model π_{ref} , thereby helping to maintain training stability.

3.2.2 Rule-based Reward Construction

Considering the reward function R(o, gt) aims to guide the policy model to learn a suitable and correct reasoning trajectory, we design our total reward R_{total} , which integrates assessments of both output format correctness and accuracy:

$$R_{\text{total}}(o, gt) = w_{\text{format}} \cdot R_{\text{format}}(o) + w_{\text{acc}} \cdot R_{\text{accuracy}}(o, gt), \tag{3}$$

where $R_{\rm format}(o)$ denotes the reward for the correctness of the output format and c denotes the reward for the accuracy of the output o_i relative to the ground-truth result. The non-negative coefficients $w_{\rm format}$ and $w_{\rm acc}$ serve as hyperparameters weighting the relative contribution of the two components, with $w_{\rm format}+w_{\rm acc}=1$.

The format reward $R_{\text{format}}(o)$ assesses whether the output of the policy model π_{θ} satisfies the predefined format. Notably, $R_{\text{format}}(o) \in \{0,1\}$, where $R_{\text{format}}(o) = 1$ if all specified format requirements are satisfied; otherwise, $R_{\text{format}}(o) = 0$. Specifically, it verifies two primary aspects:

- **Thinking Progress:** We evaluate whether the model correctly presents its reasoning process according to a predefined format. Specifically, the model may be required to encapsulate its reasoning process and final answer within designated tags.
- **Final Answer Format:** We examine whether the model outputs an explicit final answer, with particular attention to cases where the instructions related to query q require such a response.

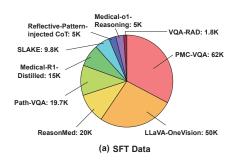
The accuracy reward $R_{\rm accuracy}(o,{\rm gt})$ evaluates the correctness of the model output o relative to the ground truth of query q. Importantly, $R_{\rm accuracy}(o,{\rm gt})$ is defined only when the output meets the format constraint, i.e., $R_{\rm format}(o)=1$; otherwise, it is zero. This design ensures that the model generates well-structured outputs before being evaluated for correctness. When $R_{\rm format}(o)=1$, the computation of $R_{\rm accuracy}(o,{\rm gt})$ depends on the task-specific ground-truth format. The two main tasks' reward functions are as follows; others are presented in the Appendix A.3.

- String-based Tasks: For textual answers, $R_{\rm accuracy}(o, {\rm gt})$ is computed by normalizing both the model output and the ground truth (e.g., lowercasing, removing redundant spaces). This function evaluates the extracted answer from the output o, denoted as $o_{\rm ans}$, by comparing it to the ground truth answer gt. We use the Jaccard function to measure the similarity between o_{ans} and gt. The Jaccard function can be formulated as: $Jaccard(o_{\rm ans}, {\rm gt}) = \frac{|o_{\rm ans} \cap {\rm gt}|}{|o_{\rm ans} \cup {\rm gt}|}$.
- Multiple-Choice Questions: For tasks that require selecting an option from a predefined set, $R_{\rm accuracy}(o, {\rm gt})$ is calculated by directly comparing the model's extracted predicted answer, $o_{\rm ans}$, with the correct ground truth option, gt. A match results in a reward of 1, while a mismatch yields a reward of 0.

4 EXPERIMENT

In this section, we present the experimental setup used to train and evaluate our proposed InfiMedseries models, which are built upon Qwen2.5-VL-3B-Instruct (Bai et al., 2025). We detail the implementation process, outline the evaluation benchmarks, and provide a comprehensive comparison with SOTA models. Furthermore, we analyse the impact of our training recipe to better understand its contributions to overall performance. We also aim to address the following research questions.

 RQ1: How do the InfiMed-Series models perform compared with other MLLMs across various medical benchmarks?



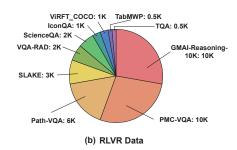


Figure 3: Overview of the training samples for the InfiMed series models in the reflective-injected SFT and RLVR stages.

- RQ2: How different data types influence SFT and RLVR performance?
- **RQ3:** Does reasoning really enhance performance in medical tasks?
- **RQ4:** How do models trained with self-reflection via SFT compare to RLVR-optimized models in their quality and reliability of medical responses?

4.1 EXPERIMENTAL SETUP

Models. We conduct a comprehensive comparison across a wide range of models. The models include: (1) Proprietary models: GPT-series models (Achiam et al., 2023), Claude Sonnet 4 (Anthropic, 2025), and Gemini-2.5-Flash (Comanici et al., 2025); (2) General open-source models: Qwen2.5-VL series models (Bai et al., 2025) and InternVL series models (Chen et al., 2024c; Zhu et al., 2025); (3) Medical open-source models: MedVLM-R1-2B (Pan et al., 2025), MedGemma-4B-IT (Sellergren et al., 2025), LLaVa-Med-7B (Li et al., 2023), HuatuoGPT-V-7B (Chen et al., 2024b), Lingshu-7B (Xu et al., 2025), BioMediX2-8B (Mullappilly et al., 2024).

Datasets. During the reflective-injected SFT stage, we utilize a total of **188K** samples from three categories: (1) multimodal general data, (2) multimodal medical data, and (3) text-based medical data. In the RLVR stage, we utilize **36K** multimodal medical datasets and multimodal general datasets. An overview of the training datasets is provided in Figure 3. The detailed description of the datasets is provided in the Appendix A.4.

Evaluation Benchmark We adopt seven widely used multimodal medical benchmarks: MMMU-Health&Medicine (MMMU-H&M) (Yue et al., 2024), VQA-RAD (Lau et al., 2018), SLAKE (Liu et al., 2021), PathVQA (He et al., 2020), PMC-VQA (Zhang et al., 2023c), OmniMedVQA (Hu et al., 2024), and MedXpertQA (Zuo et al., 2025). These benchmarks span a wide range of imaging modalities, including X-ray, CT, MRI, PET, ultrasound, and pathology. Collectively, they form a comprehensive evaluation framework for assessing both reasoning ability and proficiency in general medical knowledge. A detailed description of these benchmarks is provided in Appendix A.4.

Additional experimental setup details are provided in Appendix A.4.

4.2 RESULTS ON VARIOUS MEDICAL BENCHMARKS (RQ1)

Table 1 presents a comprehensive comparison of different MLLMs across seven diverse medical vision-language benchmarks. Among all models, proprietary closed-source models (e.g., GPT-5, Gemini-2.5, Claude) consistently outperform both general-purpose and medical-domain open-source models, achieving the highest average accuracy (e.g., 70.0% for GPT-5). These models set a strong upper bound, particularly excelling on complex benchmarks such as MMMU-H&M and MedXpertQA, indicating their superior reasoning and image understanding capabilities.

Furthermore, comparisons with existing open-source models show that the InfiMed-series models offer significant performance advantages. Both InfiMed-SFT-3B and InfiMed-RL-3B notably outperform other models of similar scale, achieving average accuracies of 57.1% and 59.2%, respectively, across seven multimodal medical benchmarks. We also notice that MedVLM-R1-2B achieves 77.7% on OmniMedVQA, primarily because its training dataset may overlap with a portion of the OmniMedVQA benchmark.

Table 1: **Performance comparison of different MLLMs across various medical vision-language benchmarks.** Results of comparison of InfiMed-series models with other MLLMs on medical multimodal benchmarks. MMMU-H&M, OMVQA, and MedXQA denote MMMU-Health&Medicine, OmniMedVQA, and MedXpertQA-Multimodal, respectively. The best results among models in the 2-4B parameter are **bolded**.

Model	Size	Accuracy (%)								
		MMMU-H&M	VQA-RAD	SLAKE	PathVQA	PMC-VQA	OMVQA	MedXQA	Avg.	
Proprietary Models										
GPT-5	-	83.6	67.8	78.1	52.8	60.0	76.4	71.0	70.0	
GPT-5-mini	-	80.5	66.3	76.1	52.4	57.6	70.9	60.1	66.3	
GPT-5-nano	-	74.1	55.4	69.3	45.4	51.3	66.5	45.1	58.2	
GPT-4.1	-	75.2	65.0	72.2	55.5	55.2	75.5	45.2	63.4	
Claude Sonnet 4	-	74.6	67.6	70.6	54.2	54.4	65.5	43.3	61.5	
Gemini-2.5-Flash	-	76.9	68.5	75.8	55.4	55.4	71.0	52.8	65.1	
General Open-source	e Model	S								
Qwen2.5VL-3B	3B	51.3	56.8	63.2	37.1	50.6	64.5	20.7	49.2	
Qwen2.5VL-7B	7B	54.0	65.0	67.6	44.6	51.3	63.5	21.7	52.5	
InternVL2.5-8B	8B	53.5	59.4	69.0	42.1	51.3	81.3	21.7	54.0	
InternVL3-8B	8B	59.2	65.4	72.8	48.6	53.8	79.1	22.4	57.3	
Medical Open-source	e Model	S								
MedVLM-R1-2B	2B	35.2	48.6	56.0	32.5	47.6	77.7	20.4	45.4	
MedGemma-4B-IT	4B	43.7	49.9	76.4	48.8	49.9	69.8	22.3	51.5	
LLaVA-Med-7B	7B	29.3	53.7	48.0	38.8	30.5	44.3	20.3	37.8	
HuatuoGPT-V-7B	7B	47.3	67.0	67.8	48.0	53.3	74.2	21.6	54.2	
Lingshu-7B	7B	54.0	67.9	83.1	61.9	56.3	82.9	26.7	61.8	
BioMediX2-8B	8B	39.8	49.2	57.7	37.0	43.5	63.3	21.8	44.6	
Ours (InfiMed-Series	i)									
InfiMed-SFT-3B	3B	54.7	58.1	82.0	60.6	53.2	67.0	23.5	57.1	
InfiMed-RL-3B	3B	55.3	60.5	82.4	62.0	58.7	71.7	23.6	59.2	

Table 2: **Ablation study examining data composition during the SFT stage.** $\Delta | \text{Data} |$ denotes the reduction of the training dataset. w/o-general, w/o-text, and w/o-refcot denote versions of the training dataset without the multimodal general data, textual medical data, and reflective-pattern-injected CoT data, respectively.

Model	$\Delta \mathbf{Data} $	Accuracy (%)							
Model		MMMU-H&M	VQA-RAD	SLAKE	PathVQA	PMC-VQA	OMVQA	MedXQA	Avg.
Base Model									
Qwen2.5VL-3B	-	51.3	56.8	63.2	37.1	50.6	64.5	20.7	49.2
Ablation Study in SFT Stage									
InfiMed-SFT-3B	-	54.7	58.1	82.0	60.6	53.2	67.0	23.5	57.1
InfiMed-SFT-3B-w/o-general	50k	50.0	60.5	80.5	60.4	51.6	59.7	22.6	55.1
InfiMed-SFT-3B-w/o-text	40k	44.0	61.0	81.6	60.4	51.1	64.7	21.9	54.9
InfiMed-SFT-3B-w/o-refcot	5k	50.0	60.1	81.3	60.5	53.1	64.7	22.8	56.1
Ablation Study in RLVR Stage									
InfiMed-RL-3B	-	55.3	60.5	82.4	62.0	58.7	71.7	23.6	59.2
InfiMed-RL-3B-w/o-general	10k	53.3	60.7	81.9	61.6	58.3	70.0	23.6	58.4

Notably, our 3B models outperform some larger 7B and 8B models, such as HuatuoGPT-V-7B and InternVL2.5-8B, despite their greater scale. Although a gap remains between InfiMed-RL-3B and Lingshu-7B, our model achieves competitive performance with fewer parameters and using a low-resource dataset (188K for SFT and 36K for RLVR), compared to Lingshu-7B's 12M samples, HuatuoGPT-V-7B's 1.3M samples, highlighting the efficiency and effectiveness of our training.

Although models such as MedVLM-R1-2B, GMAI-VL-R1-7B (not open-sourced), and Lingshu-7B provide some evidence that RLVR can be effective after SFT, they either target only a narrow range of benchmarks or fail to achieve consistent overall gains. By contrast, the 2.1% overall improvement of InfiMed-RL-3B over InfiMed-SFT-3B, along with consistent gains across seven medical benchmarks, clearly demonstrates that RLVR not only could enhance model performance in the medical domain but also complements our SFT phase training, thereby substantiating the effectiveness of RLVR.

4.3 ABLATION STUDY ON DATA COMPOSITION (RQ2)

For the SFT and RLVR stage, we assessed the contribution of each component in our dataset by conducting an ablation study. For the SFT, we systematically remove specific types of training data, including general multimodal data, textual medical data, and reflective-pattern-injected CoT data. The overall detailed results are presented in Table 2. Based on these experiments, we draw the fol-

Figure 4: Comparison of direct-answer and reasoning-based prompts on medical benchmarks.

lowing conclusion: Unlike general multimodal tasks, medical multimodal problems are inherently comprehensive, requiring the integration of textual, visual, and domain-specific knowledge. As a result, medical training datasets alone are insufficient to ensure robust MLLM performance. A detailed analysis is provided below:

During the SFT stage, we observe that each data component serves a distinct function. Removing general multimodal data has a pronounced negative effect on benchmarks like OmniMedVQA, which require nuanced visual understanding. This suggests that general-domain multimodal examples help the model interpret complex visual patterns, align visual and textual features, and handle diverse image information in medical-specific datasets. Excluding textual medical data severely degrades performance on MMMU-H&M, indicating that such data provides critical domain-specific knowledge, including medical terminology, clinical reasoning strategies, and structured question-answering patterns essential for accurate interpretation and reasoning. Even though reflective-pattern-injected CoT data contains only 5K examples, its removal leads to noticeable declines across most benchmarks, highlighting its role in enhancing multi-step reasoning and self-reflection for complex or ambiguous medical questions. Interestingly, VQA-RAD performance slightly increases after removing certain data, as this older benchmark emphasizes memorization; reducing other data effectively increases the relative proportion of VQA-RAD examples, yielding a modest gain.

The lower half of Table 2 reports the RLVR ablation, focusing on variants excluding general multimodal data. When removed, performance on MMMU-H&M drops below InfiMed-SFT-3B, suggesting that RLVR relying solely on medical multimodal data, which is typically less reasoning-intensive, reduces overall reasoning capability, leading to lower performance. More ablation studies are presented in the Appendix A.5.

4.4 Analysis of reasoning effectiveness in Medical Scenarios (RQ3)

To assess reasoning effectiveness in medical scenarios, we evaluated the model using two prompts: (1) a direct-answer prompt, where the model is asked to output only the final prediction; (2) a reasoning-augmented prompt, where the model is encouraged to generate intermediate reasoning steps before providing the answer. This setup allows us to examine the impact of explicit reasoning. Results are shown in Figure 4.

Our experiments reveal a consistent trend: explicit reasoning prompts tend to reduce performance on most medical benchmarks, with two exceptions. First, both InfiMed-SFT and InfiMed-RL benefit from reasoning on MMMU-H&M. Second, the general-purpose Qwen2.5-VL-3B benefits on both MMMU-H&M and MedXpertQA-MM. This indicates that explicit reasoning alone does not universally improve medical-focused MLLMs, even with additional optimization like RLVR. We attribute the gains on MMMU-H&M and MedXpertQA-MM (for Qwen2.5-VL-3B) to their reasoning-intensive design requiring multi-step logical deduction and cross-modal integration. For Qwen2.5-VL-3B, reasoning prompts structure latent knowledge, reduce uncertainty, and guide coherent intermediate steps. In contrast, InfiMed models have learned efficient, domain-specific strategies for direct medical answering, and enforcing explicit reasoning can disrupt these pathways, lowering performance on MedXpertQA-MM. Meanwhile, many other benchmarks are knowledge-driven, where answers can often be derived directly from visual information or domain expertise. For such tasks, step-by-step reasoning introduces redundant steps, increases hallucination risk, and interferes with the streamlined strategies of medically optimized models.

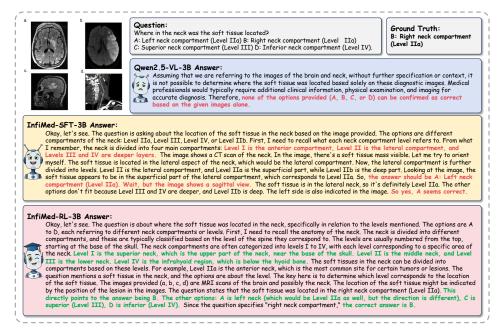


Figure 5: Case study on Qwen2.5-VL-3B, InfiMed-Series models in medical VQA. Red denotes errors or irrelevant content, whereas Green denotes correct or important information.

In summary, these results suggest that *the effectiveness of explicit reasoning depends on both task type and model*. It may benefit reasoning-intensive tasks and general-purpose models on medical tasks requiring light reasoning, but can hinder performance on recognition-oriented benchmarks where direct factual or visual knowledge suffices.

4.5 CASE STUDY (RQ4)

Beyond benchmark evaluations, we conduct a case study to examine the qualitative differences between the Qwen2.5-VL-3B, reflective-pattern-injected InfiMed-SFT-3B, and the RLVR-optimized InfiMed-RL-3B, as illustrated in Figure 5. Our case study highlights distinct response behaviours across models. The general-purpose Qwen2.5-VL-3B adopts a conservative strategy, emphasizing its lack of sufficient medical knowledge and ultimately failing to produce a definitive answer. InfiMed-SFT-3B, by contrast, can generate a reasoning chain and reproduce a reflective pattern. However, despite this reflection, it still converges on the same incorrect answer. This suggests that SFT primarily teaches the model to mimic the form of reflection, yet falls short of enabling genuine understanding or effective application of reflective reasoning. InfiMed-RL-3B, on the other hand, demonstrates a more structured reasoning process. In addition to identifying the correct option, it actively explores and evaluates the other options, reflecting the impact of RLVR in pushing the model beyond memorized patterns toward deliberate and systematic reasoning. More case studies are presented in the Appendix A.6.

5 Conclusion

In this work, we introduce the InfiMed-Series models, including InfiMed-SFT-3B and InfiMed-RL-3B, a set of multimodal large language models (MLLMs) specialized for medical tasks. To address the scarcity and sparsity of multimodal medical data, we augmented the training sets with general multimodal and textual medical data and synthesized reflective-pattern-injected chain-of-thought data, enabling the models to acquire initial exploratory capabilities and providing a structured foundation for subsequent Reinforcement Learning with Verifiable Rewards (RLVR) training. Experimental results across diverse medical benchmarks, covering both reasoning-intensive and understanding-oriented tasks, show that the InfiMed-Series models achieve state-of-the-art accuracy among models with similar parameter counts and even surpass some larger models. Beyond performance gains, our analysis provides new insights into the behavior and potential of MLLMs in medical scenarios.

ETHICS STATEMENT

This work adheres to the ICLR Code of Ethics. Our study is purely empirical in nature, focused on advancing the field of medical multimodal large language models. We have exclusively used standard and publicly available medical datasets and open-source models, which were accessed and applied in strict accordance with their licenses.

We acknowledge the significant potential broader impacts and risks associated with the use of MLLMs in healthcare. This includes concerns related to patient safety, clinical accuracy, and the potential for misuse. Our work recognizes these challenges and aims to develop more powerful medical MLLMs that can contribute to society and human well-being. Importantly, our research does not introduce any new, unproven clinical applications. Instead, we focus on the ethical implications and underlying principles of utilizing MLLMs in healthcare settings, and we are committed to ensuring that future developments in this area are guided by a careful consideration of these ethical concerns.

Reproducibility statement

To ensure the reproducibility of the results in this work, all models and synthetic datasets will be made publicly available. We also describe the data sources and detailed experimental setup in Section 4.1 and Appendix A.4.

REFERENCES

- Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical report. arXiv preprint arXiv:2303.08774, 2023.
- Rawan AlSaad, Alaa Abd-Alrazaq, Sabri Boughorbel, Arfan Ahmed, Max-Antoine Renault, Rafat Damseh, and Javaid Sheikh. Multimodal large language models in health care: applications, challenges, and future outlook. <u>Journal of medical Internet research</u>, 26:e59505, 2024.
- Anthropic. Introducing Claude 4. https://www.anthropic.com/news/claude-4, may 2025.
- Shuai Bai, Keqin Chen, Xuejing Liu, Jialin Wang, Wenbin Ge, Sibo Song, Kai Dang, Peng Wang, Shijie Wang, Jun Tang, et al. Qwen2. 5-vl technical report. <u>arXiv preprint arXiv:2502.13923</u>, 2025.
- Junying Chen, Zhenyang Cai, Ke Ji, Xidong Wang, Wanlong Liu, Rongsheng Wang, Jianye Hou, and Benyou Wang. Huatuogpt-o1, towards medical complex reasoning with llms, 2024a. URL https://arxiv.org/abs/2412.18925.
- Junying Chen, Ruyi Ouyang, Anningzhe Gao, Shunian Chen, Guiming Hardy Chen, Xidong Wang, Ruifei Zhang, Zhenyang Cai, Ke Ji, Guangjun Yu, Xiang Wan, and Benyou Wang. Huatuogptvision, towards injecting medical visual knowledge into multimodal llms at scale, 2024b. URL https://arxiv.org/abs/2406.19280.
- Wenhu Chen, Xueguang Ma, Xinyi Wang, and William W Cohen. Program of thoughts prompting: Disentangling computation from reasoning for numerical reasoning tasks. <u>arXiv preprint</u> arXiv:2211.12588, 2022.
- Zhe Chen, Jiannan Wu, Wenhai Wang, Weijie Su, Guo Chen, Sen Xing, Muyan Zhong, Qinglong Zhang, Xizhou Zhu, Lewei Lu, et al. Internvl: Scaling up vision foundation models and aligning for generic visual-linguistic tasks. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 24185–24198, 2024c.
- Kanzhi Cheng, Yantao Li, Fangzhi Xu, Jianbing Zhang, Hao Zhou, and Yang Liu. Vision-language models can self-improve reasoning via reflection. arXiv preprint arXiv:2411.00855, 2024.
- Tianzhe Chu, Yuexiang Zhai, Jihan Yang, Shengbang Tong, Saining Xie, Dale Schuurmans, Quoc V Le, Sergey Levine, and Yi Ma. Sft memorizes, rl generalizes: A comparative study of foundation model post-training. arXiv preprint arXiv:2501.17161, 2025.

- Gheorghe Comanici, Eric Bieber, Mike Schaekermann, Ice Pasupat, Noveen Sachdeva, Inderjit
 Dhillon, Marcel Blistein, Ori Ram, Dan Zhang, Evan Rosen, et al. Gemini 2.5: Pushing the frontier
 with advanced reasoning, multimodality, long context, and next generation agentic capabilities.
 arXiv preprint arXiv:2507.06261, 2025.
 - Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu, Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms via reinforcement learning. arXiv preprint arXiv:2501.12948, 2025.
 - Xuehai He, Yichen Zhang, Luntian Mou, Eric Xing, and Pengtao Xie. Pathvqa: 30000+ questions for medical visual question answering. arXiv preprint arXiv:2003.10286, 2020.
 - Yutao Hu, Tianbin Li, Quanfeng Lu, Wenqi Shao, Junjun He, Yu Qiao, and Ping Luo. Omnimedvqa: A new large-scale comprehensive evaluation benchmark for medical lvlm. In <u>Proceedings of the IEEE/CVF</u> Conference on Computer Vision and Pattern Recognition, pp. 22170–22183, 2024.
 - Wenxuan Huang, Bohan Jia, Zijie Zhai, Shaosheng Cao, Zheyu Ye, Fei Zhao, Zhe Xu, Yao Hu, and Shaohui Lin. Vision-r1: Incentivizing reasoning capability in multimodal large language models. arXiv preprint arXiv:2503.06749, 2025.
 - Jason J Lau, Soumya Gayen, Asma Ben Abacha, and Dina Demner-Fushman. A dataset of clinically generated visual questions and answers about radiology images. Scientific data, 5(1):1–10, 2018.
 - Bo Li, Yuanhan Zhang, Dong Guo, Renrui Zhang, Feng Li, Hao Zhang, Kaichen Zhang, Peiyuan Zhang, Yanwei Li, Ziwei Liu, et al. Llava-onevision: Easy visual task transfer. <u>arXiv:2408.03326</u>, 2024a.
 - Chunyuan Li, Cliff Wong, Sheng Zhang, Naoto Usuyama, Haotian Liu, Jianwei Yang, Tristan Naumann, Hoifung Poon, and Jianfeng Gao. Llava-med: Training a large language-and-vision assistant for biomedicine in one day. arXiv preprint arXiv:2306.00890, 2023.
 - Wenxuan Li, Chongyu Qu, Xiaoxi Chen, Pedro RAS Bassi, Yijia Shi, Yuxiang Lai, Qian Yu, Huimin Xue, Yixiong Chen, Xiaorui Lin, et al. Abdomenatlas: A large-scale, detailed-annotated, & multi-center dataset for efficient transfer learning and open algorithmic benchmarking. Medical Image Analysis, 97:103285, 2024b.
 - Bo Liu, Li-Ming Zhan, Li Xu, Lin Ma, Yan Yang, and Xiao-Ming Wu. Slake: A semantically-labeled knowledge-enhanced dataset for medical visual question answering. In <u>2021 IEEE 18th</u> international symposium on biomedical imaging (ISBI), pp. 1650–1654. IEEE, 2021.
 - Yuhang Liu, Pengxiang Li, Congkai Xie, Xavier Hu, Xiaotian Han, Shengyu Zhang, Hongxia Yang, and Fei Wu. Infigui-r1: Advancing multimodal gui agents from reactive actors to deliberative reasoners. arXiv preprint arXiv:2504.14239, 2025a.
 - Zeyu Liu, Yuhang Liu, Guanghao Zhu, Congkai Xie, Zhen Li, Jianbo Yuan, Xinyao Wang, Qing Li, Shing-Chi Cheung, Shengyu Zhang, et al. Infi-mmr: Curriculum-based unlocking multimodal reasoning via phased reinforcement learning in multimodal small language models. <u>arXiv:2505.23091</u>, 2025b.
 - Zihan Liu, Zhuolin Yang, Yang Chen, Chankyu Lee, Mohammad Shoeybi, Bryan Catanzaro, and Wei Ping. Acereason-nemotron 1.1: Advancing math and code reasoning through sft and rl synergy. arXiv preprint arXiv:2506.13284, 2025c.
 - Ziyu Liu, Zeyi Sun, Yuhang Zang, Xiaoyi Dong, Yuhang Cao, Haodong Duan, Dahua Lin, and Jiaqi Wang. Visual-rft: Visual reinforcement fine-tuning. arXiv:2503.01785, 2025d.
 - Ziyu Liu, Yuhang Zang, Yushan Zou, Zijian Liang, Xiaoyi Dong, Yuhang Cao, Haodong Duan, Dahua Lin, and Jiaqi Wang. Visual agentic reinforcement fine-tuning, 2025e. URL https://arxiv.org/abs/2505.14246.
 - Pan Lu, Liang Qiu, Jiaqi Chen, Tony Xia, Yizhou Zhao, Wei Zhang, Zhou Yu, Xiaodan Liang, and Song-Chun Zhu. Iconqa: A new benchmark for abstract diagram understanding and visual language reasoning. In The 35th Conference on Neural Information Processing Systems (NeurIPS) Track on Datasets and Benchmarks, 2021.

- Pan Lu, Swaroop Mishra, Tony Xia, Liang Qiu, Kai-Wei Chang, Song-Chun Zhu, Oyvind Tafjord, Peter Clark, and Ashwin Kalyan. Learn to explain: Multimodal reasoning via thought chains for science question answering. In The 36th Conference on Neural Information Processing Systems (NeurIPS), 2022a.
 - Pan Lu, Liang Qiu, Kai-Wei Chang, Ying Nian Wu, Song-Chun Zhu, Tanmay Rajpurohit, Peter Clark, and Ashwin Kalyan. Dynamic prompt learning via policy gradient for semi-structured mathematical reasoning. arXiv preprint arXiv:2209.14610, 2022b.
 - Run Luo, Lu Wang, Wanwei He, and Xiaobo Xia. Gui-r1: A generalist r1-style vision-language action model for gui agents. arXiv preprint arXiv:2504.10458, 2025.
 - Fanqing Meng, Lingxiao Du, Zongkai Liu, Zhixiang Zhou, Quanfeng Lu, Daocheng Fu, Tiancheng Han, Botian Shi, Wenhai Wang, Junjun He, et al. Mm-eureka: Exploring the frontiers of multimodal reasoning with rule-based reinforcement learning. arXiv preprint arXiv:2503.07365, 2025.
 - Sahal Shaji Mullappilly, Mohammed Irfan Kurpath, Sara Pieri, Saeed Yahya Alseiari, Shanavas Cholakkal, Khaled Aldahmani, Fahad Khan, Rao Anwer, Salman Khan, Timothy Baldwin, and Hisham Cholakkal. Bimedix2: Bio-medical expert lmm for diverse medical modalities, 2024. URL https://arxiv.org/abs/2412.07769.
 - Jiazhen Pan, Che Liu, Junde Wu, Fenglin Liu, Jiayuan Zhu, Hongwei Bran Li, Chen Chen, Cheng Ouyang, and Daniel Rueckert. Medvlm-r1: Incentivizing medical reasoning capability of vision-language models (vlms) via reinforcement learning. arXiv preprint arXiv:2502.19634, 2025.
 - Shuai Peng, Di Fu, Liangcai Gao, Xiuqin Zhong, Hongguang Fu, and Zhi Tang. Multimath: Bridging visual and mathematical reasoning for large language models. arXiv:2409.00147, 2024.
 - Yingzhe Peng, Gongrui Zhang, Miaosen Zhang, Zhiyuan You, Jie Liu, Qipeng Zhu, Kai Yang, Xingzhong Xu, Xin Geng, and Xu Yang. Lmm-r1: Empowering 3b lmms with strong reasoning abilities through two-stage rule-based rl. arXiv preprint arXiv:2503.07536, 2025.
 - Yujia Qin, Yining Ye, Junjie Fang, Haoming Wang, Shihao Liang, Shizuo Tian, Junda Zhang, Jiahao Li, Yunxin Li, Shijue Huang, et al. Ui-tars: Pioneering automated gui interaction with native agents. arXiv preprint arXiv:2501.12326, 2025.
 - Andrew Sellergren, Sahar Kazemzadeh, Tiam Jaroensri, Atilla Kiraly, Madeleine Traverse, Timo Kohlberger, Shawn Xu, Fayaz Jamil, Hughes, Charles Lau, et al. Medgemma technical report. arXiv preprint arXiv:2507.05201, 2025.
 - Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang, Mingchuan Zhang, YK Li, Yang Wu, et al. Deepseekmath: Pushing the limits of mathematical reasoning in open language models. arXiv:2402.03300, 2024.
 - Guangming Sheng, Chi Zhang, Zilingfeng Ye, Xibin Wu, Wang Zhang, Ru Zhang, Yanghua Peng, Haibin Lin, and Chuan Wu. Hybridflow: A flexible and efficient rlhf framework. arXiv preprint arXiv 2409.19256, 2024.
 - Karan Singhal, Shekoofeh Azizi, Tao Tu, S Sara Mahdavi, Jason Wei, Hyung Won Chung, Nathan Scales, Ajay Tanwani, Heather Cole-Lewis, Stephen Pfohl, et al. Large language models encode clinical knowledge. Nature, 620(7972):172–180, 2023.
 - Karan Singhal, Tao Tu, Juraj Gottweis, Rory Sayres, Ellery Wulczyn, Mohamed Amin, Le Hou, Kevin Clark, Stephen R Pfohl, Heather Cole-Lewis, et al. Toward expert-level medical question answering with large language models. Nature Medicine, 31(3):943–950, 2025.
 - Yanzhou Su, Tianbin Li, Jiyao Liu, Chenglong Ma, Junzhi Ning, Cheng Tang, Sibo Ju, Jin Ye, Pengcheng Chen, Ming Hu, et al. Gmai-vl-r1: Harnessing reinforcement learning for multimodal medical reasoning. arXiv preprint arXiv:2504.01886, 2025.
 - Yu Sun, Xingyu Qian, Weiwen Xu, Hao Zhang, Chenghao Xiao, Long Li, Yu Rong, Wenbing Huang, Qifeng Bai, and Tingyang Xu. Reasonmed: A 370k multi-agent generated dataset for advancing medical reasoning, 2025. URL https://arxiv.org/abs/2506.09513.

- Huajie Tan, Yuheng Ji, Xiaoshuai Hao, Minglan Lin, Pengwei Wang, Zhongyuan Wang, and Shanghang Zhang. Reason-rft: Reinforcement fine-tuning for visual reasoning. <u>arXiv preprint</u> arXiv:2503.20752, 2025.
 - Haozhe Wang, Chao Qu, Zuming Huang, Wei Chu, Fangzhen Lin, and Wenhu Chen. Vl-rethinker: Incentivizing self-reflection of vision-language models with reinforcement learning. <u>arXiv:preprint</u> arXiv:2504.08837, 2025.
 - Xidong Wang, Nuo Chen, Junyin Chen, Yidong Wang, Guorui Zhen, Chunxian Zhang, Xiangbo Wu, Yan Hu, Anningzhe Gao, Xiang Wan, et al. Apollo: A lightweight multilingual medical llm towards democratizing medical ai to 6b people. arXiv preprint arXiv:2403.03640, 2024.
 - Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. <u>Advances in</u> neural information processing systems, 35:24824–24837, 2022.
 - Weiwen Xu, Hou Pong Chan, Long Li, Mahani Aljunied, Ruifeng Yuan, Jianyu Wang, Chenghao Xiao, Guizhen Chen, Chaoqun Liu, Zhaodonghui Li, et al. Lingshu: A generalist foundation model for unified multimodal medical understanding and reasoning. <u>arXiv:2506.07044</u>, 2025.
 - Heng Yin, Yuqiang Ren, Ke Yan, Shouhong Ding, and Yongtao Hao. Rod-mllm: Towards more reliable object detection in multimodal large language models. In <u>Proceedings of the Computer</u> Vision and Pattern Recognition Conference, pp. 14358–14368, 2025.
 - Xiang Yue, Yuansheng Ni, Kai Zhang, Tianyu Zheng, Ruoqi Liu, Ge Zhang, Samuel Stevens, Dongfu Jiang, Weiming Ren, Yuxuan Sun, et al. Mmmu: A massive multi-discipline multimodal understanding and reasoning benchmark for expert agi. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9556–9567, 2024.
 - Hongbo Zhang, Junying Chen, Feng Jiang, Fei Yu, Zhihong Chen, Guiming Chen, Jianquan Li, Xiangbo Wu, Zhang Zhiyi, Qingying Xiao, et al. Huatuogpt, towards taming language model to be a doctor. In <u>Findings of the Association for Computational Linguistics: EMNLP 2023</u>, pp. 10859–10885, 2023a.
 - Jingyi Zhang, Jiaxing Huang, Huanjin Yao, Shunyu Liu, Xikun Zhang, Shijian Lu, and Dacheng Tao. R1-vl: Learning to reason with multimodal large language models via step-wise group relative policy optimization. arXiv preprint arXiv:2503.12937, 2025.
 - Sheng Zhang, Yanbo Xu, Naoto Usuyama, Hanwen Xu, Jaspreet Bagga, Robert Tinn, Sam Preston, Rajesh Rao, Mu Wei, Naveen Valluri, et al. Biomedclip: A multimodal biomedical foundation model pretrained from fifteen million scientific image-text pairs. arxiv 2023. <u>arXiv preprint</u> arXiv:2303.00915, 2023b.
 - Xiaoman Zhang, Chaoyi Wu, Ziheng Zhao, Weixiong Lin, Ya Zhang, Yanfeng Wang, and Weidi Xie. Pmc-vqa: Visual instruction tuning for medical visual question answering. <u>arXiv preprint</u> arXiv:2305.10415, 2023c.
 - Yaowei Zheng, Richong Zhang, Junhao Zhang, Yanhan Ye, Zheyan Luo, Zhangchi Feng, and Yongqiang Ma. Llamafactory: Unified efficient fine-tuning of 100+ language models. In Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 3: System Demonstrations), Bangkok, Thailand, 2024. Association for Computational Linguistics. URL http://arxiv.org/abs/2403.13372.
 - Zijie Zhou. The table qa dataset distilled from deepseek-r1. https://huggingface.co/datasets/jared-zhou/TQA-Distill-R1, 2025.
 - Jinguo Zhu, Weiyun Wang, Zhe Chen, Zhaoyang Liu, Shenglong Ye, Lixin Gu, Hao Tian, Yuchen Duan, Weijie Su, Jie Shao, et al. Internvl3: Exploring advanced training and test-time recipes for open-source multimodal models. arXiv preprint arXiv:2504.10479, 2025.
 - Wenwen Zhuang, Xin Huang, Xiantao Zhang, and Jin Zeng. Math-puma: Progressive upward multimodal alignment to enhance mathematical reasoning. In <u>Proceedings of the AAAI Conference</u> on Artificial Intelligence, volume 39, pp. 26183–26191, 2025.

Yuxin Zuo, Shang Qu, Yifei Li, Zhang-Ren Chen, Xuekai Zhu, Ermo Hua, Kaiyan Zhang, Ning Ding, and Bowen Zhou. Medxpertqa: Benchmarking expert-level medical reasoning and understanding. In Forty-second International Conference on Machine Learning, 2025.

A APPENDIX

A.1 THE USE OF LARGE LANGUAGE MODELS

We used a Large Language Model (LLM) **exclusively for editing purposes**, focusing on correcting grammar and typing errors. It's crucial to clarify that **the LLMs were not involved in the core aspects of the research**, including the development or revision of key ideas and experimental design.

A.2 CONSTRUCTION OF REFLECTIVE-PATTERN-INJECTED COT

In this section, we present the detailed construction process of the reflective-pattern-injected CoT.

For multimodal datasets with sparse information (e.g., multiple-choice questions), each query is defined as $q=\{x,\mathcal{I}\}$, where x denotes the textual task instruction and \mathcal{I} represents one or more images. We first employ Qwen2.5-VL-32B (Bai et al., 2025) to generate 10 candidate responses $\{y_i\}_{i=1}^{10}$ for each query q. Through rejection sampling, we divide these into two subsets: $\{y_i^+\}_{i=1}^m$ and $\{y_i^-\}_{i=1}^n$, where m+n=10.

For each response in $\{y_i^+\}_{i=1}^m$, we apply the following prompt to generate a score:

Prompt for CoT Quality Evaluation

You are a medical reasoning evaluator. Assess the following response based on these criteria:

- **1. Clinical accuracy:** Correct incorporation of medical facts, clinical guidelines, and evidence-based practices. Accuracy, relevance, and appropriateness of clinical details.
- **2. Logical reasoning:** Coherent reasoning process, logically leading to the answer, well-supported by clinical knowledge.
- **3. Factual correctness:** All statements are factually correct and consistent with established medical knowledge.
- **4. Completeness:** Thorough coverage of all necessary aspects without missing critical information.

Question: $\{q\}$ Response: $\{y_i^+\}$

Please evaluate the response on the above criteria and ONLY provide the Dict object with two keys:

 $\{ \text{'score': integer between 1 and 10, 'justification': concise explanation of the score.} \}$

After that, we compute the pass@10 for each query q, which corresponds to the number of correct responses among the 10 generated candidates, i.e., m. For $m \ge 6$, we directly select the y_i^+ with the highest score as the generated CoT. If multiple y_i^+ share the highest score, we randomly choose one.

For queries with $1 \le m \le 5$, we synthesize a reflective-pattern-injected CoT. Specifically, we first select one of the correct responses y_i^+ with the highest score and then randomly select one of the incorrect responses y_i^- . The reflective-pattern-injected CoT is subsequently synthesized through the following operation:

Synthesis of the reflective-pattern-injected CoT

 $\{y_i^-\}$ Wait, perhaps we could consider it from a different perspective. Let's re-evaluate the problem step by step to ensure accuracy. $\{y_i^+\}$

Finally, we obtain CoT data enriched with reflective patterns through the integration of the aforementioned data, and we will release it once it is ready.

A.3 REWARD FUNCTION

The other tasks' reward functions are as follows:

- Mathematical Tasks: For tasks involving mathematical expressions or numerical answers, $R_{\rm accuracy}(o, {\rm gt})$ is determined by a specialized verification function, denoted math_verify $(o_{\rm ans}, {\rm gt})$. This function evaluates the extracted answer from the output o, denoted $o_{\rm ans}$, against the ground truth answer gt. The math_verify function is designed to handle nuances of mathematical evaluation, potentially allowing for symbolic equivalence or specified numerical tolerances. A successful verification yields a reward of 1; otherwise, 0.
- **Grounding Tasks:** For tasks where a model predicts a bounding box, we use the Intersection over Union (IoU) as the reward. This score measures the overlap between the predicted and ground-truth bounding boxes.

A.4 DETAILS OF THE EXPERIMENTAL SETUP

Training Datasets. In the SFT stage, we use a total of **188K** training samples from three categories: (1) multimodal general data (LLaVA-OneVision (Li et al., 2024a)), (2) multimodal medical data (VQA-RAD (Lau et al., 2018), SLAKE (Liu et al., 2021), PathVQA (He et al., 2020), PMC-VQA (Zhang et al., 2023c), and our synthetic reflective-pattern-injected CoT), and (3) text-based medical data (ReasonMed (Sun et al., 2025), Medical-R1-Distill (Chen et al., 2024a), and Medical-o1-Reasoning (Chen et al., 2024a)). During the RLVR stage, we employ **36K** samples from multimodal general and medical datasets, including VQA-RAD, SLAKE, PathVQA, PMC-VQA, GMAI-Reasoning (Su et al., 2025), IconQA (Lu et al., 2021), ScienceQA (Lu et al., 2022a), TabMWP (Lu et al., 2022b), TQA (Zhou, 2025), and ViRFT_COCO (Liu et al., 2025e).

A detailed description of each dataset is provided as follows:

- LLaVA-OneVision (Li et al., 2024a): LLaVA-OneVision is a large-scale multimodal dataset comprising 4.8 million samples collected from diverse sources. It includes single-image, multimage, and video modalities, and is specifically designed to train vision-language models for unified visual and textual understanding.
- VQA-RAD (Lau et al., 2018): VQA-RAD is a medical visual question answering dataset constructed for assessing multimodal understanding of radiology. It consists of radiological images paired with manually curated question-answer pairs authored by clinical experts. The dataset includes both open-ended and binary (yes/no) questions.
- SLAKE (Liu et al., 2021): SLAKE is a medical visual question answering dataset comprising 642 annotated radiological images spanning 39 anatomical structures and 12 disease categories. The dataset includes conditions such as various cancers (e.g., brain, liver, kidney, lung) and thoracic diseases (e.g., atelectasis, pleural effusion, pulmonary masses, and pneumothorax).
- PathVQA (He et al., 2020): PathVQA is a large-scale dataset developed for medical visual question answering tasks in the domain of pathology. It comprises 32,799 expert-annotated question-answer pairs spanning seven question categories, grounded in 4,998 high-resolution pathology images. The dataset includes both binary (yes/no) and open-ended questions.
- PMC-VQA (Zhang et al., 2023c) PMC-VQA is a large-scale medical visual question answering dataset designed to facilitate research on multimodal understanding in the medical domain. It comprises 227K VQA pairs grounded in 149K medical images, covering a wide range of imaging modalities and disease types.
- ReasonMed (Sun et al., 2025): ReasonMed is the largest open-source medical textual reasoning dataset containing 370K QA examples, which is distilled and filtered from three competitive large-language models (Qwen-2.5-72B, DeepSeek-R1-Distill-Llama-70B, and HuatuoGPT-01-70B).
- Medical-R1-Distill (Chen et al., 2024a): Medical-R1-Distill-Data is an SFT dataset distilled from the DeepSeek-R1, constructed on verifiable medical questions from HuaTuoGPT-o1. It provides reasoning chains for medical problems, enabling the initialization and supervision of models' reasoning processes in the medical domain.
- Medical-o1-Reasoning (Chen et al., 2024a): medical-o1-reasoning-SFT is a SFT dataset focused
 on verifiable medical problems, where candidate solutions are generated by GPT-40 and validated
 by a medical verifier, providing high-quality reasoning chains and answers for training medical
 reasoning models.
- GMAI-Reasoning (Su et al., 2025): GMAI-Reasoning10K is a high-quality medical visual reasoning dataset comprising 10K curated multiple-choice questions constructed from 95 publicly available medical datasets spanning 12 imaging modalities (e.g., X-ray, CT, MRI). Each question is paired with standardized visual inputs and metadata, and generated using GPT-based prompting, following rigorous preprocessing and quality control procedures.

- IconQA (Lu et al., 2021): IconQA is a large-scale dataset containing 107,439 questions designed to assess abstract icon image understanding and visual language reasoning abilities.
- ScienceQA (Lu et al., 2022a): ScienceQA contains 21k multimodal questions, which align with California Common Core Content Standards, covering diverse science domains, many enriched with images, lectures, and explanations to support reasoning-oriented training.
- TabMWP (Lu et al., 2022b): Tabular Math Word Problems (TabMWP) is a multimodal dataset designed for training models to solve math word problems using both textual and tabular data. It contains 38,431 problems spanning elementary to high school levels, including both free-text and multiple-choice questions.
- TQA (Zhou, 2025): Textbook Question Answering (TQA) is a multimodal dataset designed for training models to answer questions using both textual and visual content from middle school science textbooks. Each sample provides a question, relevant textual context, and associated images, enabling models to learn to reason over multimodal inputs and generate accurate answers.
- ViRFT_COCO (Liu et al., 2025e): ViRFT_COCO is a vision-language dataset derived from COCO, containing around 6,000 samples. It aims to enhance models' ability to detect all instances of a given category within an image and output the corresponding bounding boxes with confidences under strict formatting constraints.

Implementation Details. Our InfiMed-Series models include InfiMed-SFT-3B and InfiMed-RL-3B.

- InfiMed-SFT-3B, which is built upon Qwen2.5-VL-3B (Bai et al., 2025), is trained using LLaMA-Factory (Zheng et al., 2024). We utilize 8 NVIDIA H800 GPUs. The vision tower and multimodal projector are frozen during training, while the language model remains fully trainable. We use a cosine learning rate scheduler with an initial learning rate of 5×10^{-6} , a warmup ratio of 0.1, and train for 5 epochs. The batch size is set to 4 per device. Furthermore, we set the maximum input resolution to 262,144 pixels for images, while text inputs are truncated to a maximum length of 4,096 tokens.
- InfiMed-RL-3B is built upon InfiMed-SFT-3B via EasyR1 (Sheng et al., 2024). For the RLVR reward function $R_{\text{total}}(o, \text{gt}) = w_{\text{format}} \cdot R_{\text{format}}(o) + w_{\text{acc}} \cdot R_{\text{accuracy}}(o, \text{gt})$, we set the weights $w_{\text{format}} = 0.1$ and $w_{\text{acc}} = 0.9$. All experiments were conducted using 16 NVIDIA H800 GPUs. For each phase, we used a learning rate of 1.0×10^{-6} , a batch size of 256 for training updates, a rollout batch size of 256, and generated 16 rollouts per sample during policy exploration.

Evaluation Framework To ensure consistency with prior work and a comprehensive, standardized evaluation, we adopt MedEvalKit (Xu et al., 2025), a systematic framework that integrates mainstream medical benchmarks and task types, supporting a range of question formats, including multiple-choice questions, open-ended questions, and closed-ended questions. We adopt the multimodal evaluation component of the framework, combining rule-based methods with the LLM-as-a-Judge strategy.

Evaluation Benchmarks We evaluate our InfiMed-Series models on seven widely used multimodal medical benchmarks, assessing both their reasoning ability and their understanding of medical knowledge. The detailed description of the benchmarks is as follows:

- MMMU (Yue et al., 2024): MMMU is a benchmark designed to assess the capabilities of multimodal models on large-scale, multidisciplinary tasks. It comprises 11.5K meticulously curated multimodal questions drawn from university exams, quizzes, and textbooks, covering six core disciplines, including Health & Medicine. The Health & Medicine includes 1,752 test questions—accounting for 17% of the entire benchmark—and is further subdivided into five specialized domains: Basic Medical Science, Clinical Medicine, Diagnostics and Laboratory Medicine, Pharmacy, and Public Health.
- VQA-RAD (Lau et al., 2018): VQA-RAD is a dataset consisting of question—answer pairs grounded
 in radiological medical images, intended for training and evaluating medical visual question
 answering systems. It includes both open-ended questions and binary yes/no questions. In total,
 the dataset comprises 2,248 QA pairs linked to 315 medical images, with all annotations manually
 curated by a team of clinicians to ensure clinical relevance and accuracy.
- SLAKE (Liu et al., 2021): SLAKE is a bilingual (Chinese-English) dataset specifically designed for medical visual question answering systems. It consists of 642 medical images paired with 14,028 question-answer instances.
- PathVQA (He et al., 2020): PathVQA is designed for visual question answering in the field of pathology. It comprises 4,998 pathology images collected from two pathology textbooks and the PEIR digital library, accompanied by a total of 32,799 question-answer pairs.

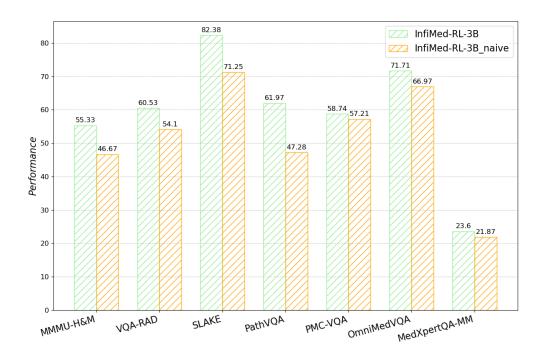


Figure 6: Performance comparison of InfiMed-RL-3B and InfiMed-RL-3B_naive on medical benchmarks. InfiMed-RL-3B_naive denotes directly utilizing RLVR upon Qwen2.5-VL-3B.

- PMC-VQA (Zhang et al., 2023c): PMC-VQA is a large-scale multimodal dataset constructed for medical visual question answering. It contains 227,000 VQA questions grounded in 149,000 medical images spanning a wide range of imaging modalities and disease types.
- OmniMedVQA (Hu et al., 2024): OmniMedVQA is a large-scale and comprehensive visual
 question answering benchmark tailored specifically for the medical domain. It aggregates data
 from 73 distinct medical datasets, comprising 118,010 images and 127,995 question-answer pairs.
 The benchmark encompasses 12 different medical imaging modalities and covers more than 20
 anatomical regions of the human body.
- MedXpertQA (Zuo et al., 2025): MedXpertQA is a benchmark specifically designed to evaluate professional medical knowledge. It comprises 4,460 questions spanning 17 medical specialties and 11 organ systems. In our experiments, we utilize only the multimodal subset of the dataset.

A.5 ABLATION STUDY ON RLVR

In this subsection, we present ablation studies related to RLVR, where we explore training from two different starting points: one from the Qwen2.5-VL-3B model (Bai et al., 2025), and the other from our InfiMed-SFT-3B. The results are presented in Figure 6.

Notably, in tasks requiring the integration of large amounts of domain-specific information, such as VQA-RAD, PathVQA, and SLAKE, the InfiMed-RL-3B_naive model significantly underperforms compared to InfiMed-RL-3B. This suggests that directly applying RLVR to Qwen2.5-VL-3B without incorporating domain-specific data during the SFT phase can lead to much lower performance, especially on tasks that require understanding and memorizing domain-specific knowledge. This underscores the importance of the cold start phase, where injecting relevant, knowledge-rich data during SFT is essential to building a solid foundation for the subsequent RLVR phase.

Additionally, in MMMU-H&M, InfiMed-RL-3B achieves a significantly higher score of 55.33, compared to 46.67 for InfiMed-RL-3B_naive. Given that this benchmark demands both reasoning and comprehensive multimodal understanding (general and medical), this highlights the critical role of the SFT phase in helping the model integrate complex information effectively. The results on PMC-VQA and MedXpertQA-MM further demonstrate that prior domain-specific fine-tuning improves RLVR training outcomes.

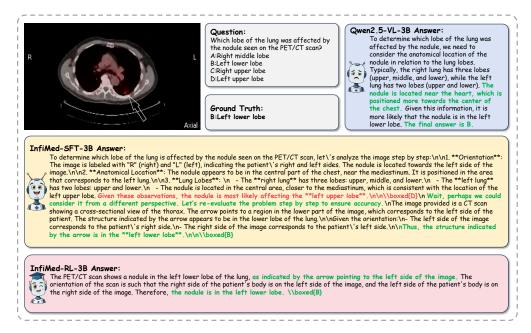


Figure 7: Case study on Qwen2.5-VL-3B, InfiMed-Series models in medical VQA. Red denotes errors or irrelevant content, whereas Green denotes correct or important information. All of the models answered correctly; InfiMed-SFT-3B answered correctly after reflection.

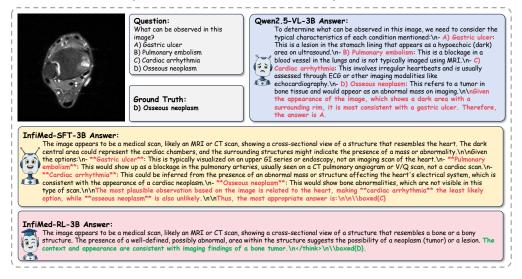


Figure 8: Case study on Qwen2.5-VL-3B, InfiMed-Series models in medical VQA. Red denotes errors or irrelevant content, whereas Green denotes correct or important information. Only InfiMed-RL-3B answered correctly, providing a direct and accurate response by correctly identifying the key visual information and selecting the correct answer with a concise and focused explanation.

A.6 CASE STUDIES ON QWEN2.5-VL-3B, INFIMED-SFT-3B, AND INFIMED-RL-3B

In this section, we present additional case studies to illustrate the distinct responses of Qwen2.5-VL-3B, InfiMed-SFT-3B, and InfiMed-RL-3B. In summary, our analysis reveals that the InfiMed-SFT-3B model already obtains self-reflective ability but is prone to delivering redundant responses, whereas the InfiMed-RL-3B model minimizes verbosity while ensuring accuracy in its answers.

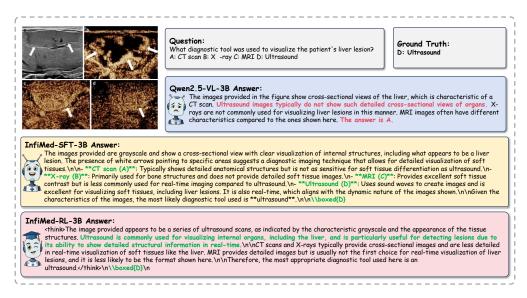


Figure 9: Case study on Qwen2.5-VL-3B, InfiMed-Series models in medical VQA. Red denotes errors or irrelevant content, whereas Green denotes correct or important information. Qwen2.5-VL-3B's response is incorrect because it fundamentally fails to recognize the visual characteristics of an ultrasound scan, leading to a flawed conclusion. InfiMed-SFT-3B provides a detailed, step-by-step reasoning process, while InfiMed-RL-3B offers a more direct and accurate answer, showcasing its improved ability to instantly recognize diagnostic imaging types.

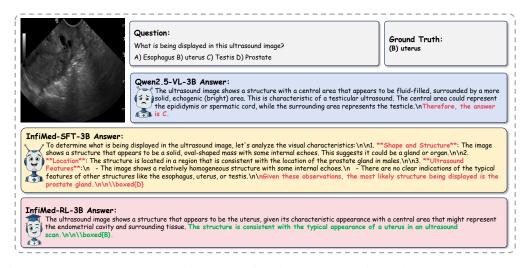


Figure 10: Case study on Qwen2.5-VL-3B, InfiMed-Series models in medical VQA. Red denotes errors or irrelevant content, whereas Green denotes correct or important information. Incorrectly identifies the image and chooses the wrong answer. InfiMed-SFT-3B provides a detailed analysis that correctly rules out most options but ultimately guesses the wrong answer. InfiMed-RL-3B is the only model that correctly identifies the organ shown, providing the most direct and accurate response.

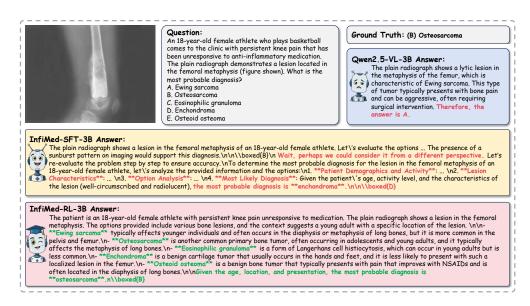


Figure 11: Case study on Qwen2.5-VL-3B, InfiMed-Series models in medical VQA. Red denotes errors or irrelevant content, whereas Green denotes correct or important information. Qwen2.5-VL-3B incorrectly identifies the lesion. InfiMed-SFT-3B initially makes a correct deduction but then overthinks the problem, leading to a self-correction that results in the wrong answer. InfiMed-RL-3B provides a detailed and accurate analysis.

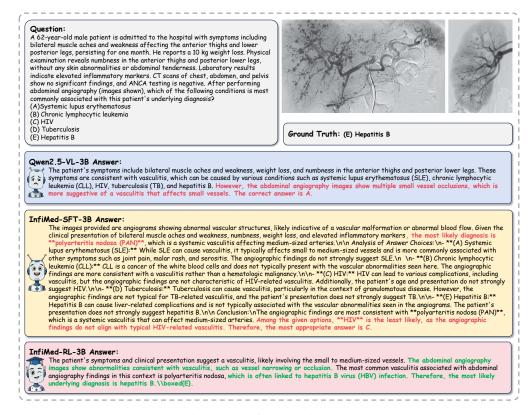


Figure 12: Case study on Qwen2.5-VL-3B, InfiMed-Series models in medical VQA. Red denotes errors or irrelevant content, whereas Green denotes correct or important information. Only InfiMed-RL-3B successfully synthesizes the angiographic findings and patient symptoms to provide the correct diagnosis.

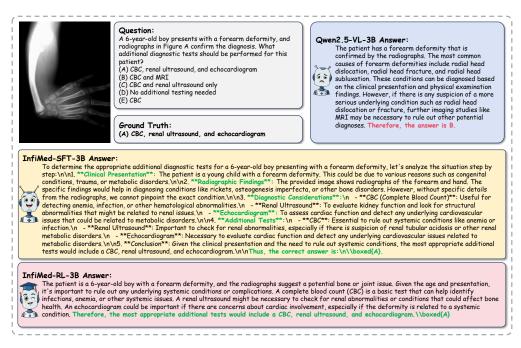


Figure 13: Case study on Qwen2.5-VL-3B, InfiMed-Series models in medical VQA. Red denotes errors or irrelevant content, whereas Green denotes correct or important information. Qwen2.5-VL-3B incorrectly identifies the necessary tests. Both InfiMed-SFT-3B and InfiMed-RL-3B correctly solve this case, but InfiMed-RL-3B provides a more direct and efficient answer.

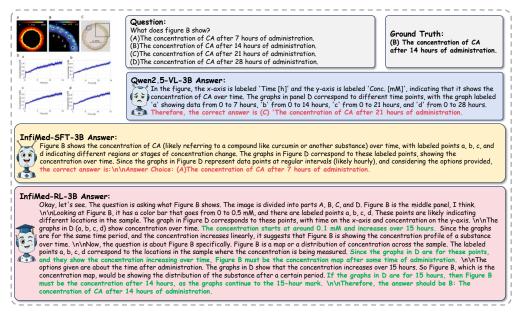


Figure 14: Case study on Qwen2.5-VL-3B, InfiMed-Series models in medical-related VQA (MMMU-H&M). Red denotes errors or irrelevant content, whereas Green denotes correct or important information. Qwen2.5-VL-3B incorrectly identifies the relevant data series. InfiMed-SFT-3B fails to correctly interpret the graphs and provides an incorrect analysis. Only InfiMed-RL-3B correctly synthesizes the information from both the concentration map and the graphs to provide the right answer.

1193

1194

1195

1196

119711981199

1201

1207

1208

1209

1210

1211

1212

1213 1214

1215

1216 1217

1218

1219

1224

1225

1226

1227

1228

1229 1230

1231

1232

1233

1237

1239

1240

Question:

Does this image show any variation from normal?

A. It's difficult to determine if there is an abnormality based on this image.

- ${\bf B}.$ There is a possibility of abnormality, but further tests are needed for confirmation.
- C. I'm not sure, but there might be a slight abnormality.
- D. No, It's normal.

Ground Truth:

D. No, It's normal.

Qwen2.5-VL-3B Answer:

To determine if there is an abnormality in the image, we need to consider the typical appearance of normal tissues and structures. The image shows a cross-sectional view of what appears to be a body part, possibly the neck or throat area, with various structures visible.\n\n1.**Identify Normal Structures**: In a normal CT scan of the neck or throat, you would expect to see structures such as the thyroid gland, larynx, trachea, and other soft tissues. These structures should have specific shapes and densities that are characteristic of their normal state.\n\n2. **Analyze Abnormalities**: If there are any deviations from these expected shapes or densities, it could indicate an abnormality. For example, an enlarged thyroid gland, a mass in the larynx, or changes in the tracheal wall could suggest pathology.\n\n3. **Consider the Image**: Based on the provided image, there are no obvious signs of gross abnormalities like masses, calcifications, or unusual shapes that would typically indicate pathology. However, without a detailed analysis by a radiologist who specializes in interpreting such images, it is challenging to definitively say whether there is an abnormality. \n\n Given the options:\n- Option B implies there is a possibility of abnormality but requires further testing,\n- Option C suggests there might be a slight abnormality, which is less definitive than option A.\n- Option D states it's normal, which is too definitive given the lack of clear indicators of abnormality.\n\n Considering all factors, the most appropriate answer is: A

InfiMed-SFT-3B Answer:

To determine if the image shows any variation from normal, let's analyze the visual characteristics:\n\n1.
Overall Structure: The image appears to show a cross-sectional view of a structure, possibly a part of
the body like the brain or spinal cord. The symmetry and structure seem intact.\n\n2. **Anatomical Features**: There are no obvious structural abnormalities such as holes, irregularities, or unusual shapes that would suggest a pathological condition.\n\n3.**Color and Texture**: The colors and textures appear consistent with what would be expected in a normal anatomical structure. There are no areas that stand out as abnormal in terms of color or texture \n\n4. **Comparison to Normal Expectations**: Without a reference image or additional context, it is challenging to definitively say whether there is an abnormality. However, the image does not show any (ear signs of pathol appropriate answer is: \n\n\boxed{A}. Wait, perhaps we could consider it from a different perspective. appropriate answer is:\n\n\boxed{A}. Walt, pernaps we could consider the image shows any Let's re-evaluate the problem step by step to ensure accuracy.\nTo determine if the image shows any Let's re-evaluate the problem step by step to ensure accuracy.\nTo determine if the image shows any Let's re-evaluate the problem step by step to ensure accuracy.\nTo determine if the image shows any Let's re-evaluate the problem step by step to ensure accuracy.\nTo determine if the image shows any Let's re-evaluate the problem step by step to ensure accuracy.\nTo determine if the image shows any Let's re-evaluate the problem step by step to ensure accuracy.\nTo determine if the image shows any Let's re-evaluate the problem step by step to ensure accuracy.\nTo determine if the image shows any Let's re-evaluate the problem step by step to ensure accuracy.\nTo determine if the image shows any Let's re-evaluate the problem step by step to ensure accuracy.\nTo determine if the image shows any Let's re-evaluate the problem step by step to ensure accuracy.\nTo determine if the image shows any let's re-evaluate the problem step by step to ensure accuracy.\nTo determine if the image shows any let's re-evaluate the problem step by step to ensure accuracy.\nTo determine if the image shows any let's re-evaluate the problem step by step to ensure accuracy.\nTo determine if the image shows any let's re-evaluate the problem step by step to ensure accuracy.\nTo determine if the image shows any let's re-evaluate the problem step by step to ensure accuracy.\nTo determine if the image shows any let's re-evaluate the problem step by step to ensure accuracy.\nTo determine if the image shows any let's re-evaluate the problem step by step to ensure accuracy.\nTo determine if the image shows any let's re-evaluate the problem step by step to ensure accuracy.\nTo determine it is accuracy acc variation from normal, let's analyze the provided MRI scan step by step:\n\n1. **General Observations* The image appears to be an MRI scan of the abdomen or pelvis.\n - There are structures visible, including what looks like the spine, surrounding tissues, and possibly organs.\n\n2. **Specific Features**:\n central area appears to have a relatively uniform structure, which is typical for normal tissue.\n - There are no obvious signs of abnormal masses, lesions, or distortions in the immediate vicinity of the spine or surrounding structures.\n\n3. **Comparison to Normal Anatomy**:\n - Normal anatomy in this region would typically show well-defined structures without significant abnormalities.\n - The image does not show any clear signs of pathology such as tumors, inflammation, or other anomalies.\n\n4. **Conclusion**:\n - Based on the uniform appearance and lack of visible abnormalities, the image does not show any variation from normal.\n\nTherefore, the most appropriate answer is:\n\n\\boxed{D}

InfiMed-RL-3B Answer:

The image appears to be a medical scan, likely an MRI or CT scan, showing a cross-sectional view of the body. The presence of contrast and the structure suggest it could be a diagnostic image. However, without specific medical training or additional context, it's challenging to definitely identify any abnormalities. The appearance could be normal, but the presence of contrast and the complexity of the image might indicate the presence of some structural or physiological changes.\n\boxed{D}

Figure 15: Case study on Qwen2.5-VL-3B, InfiMed-Series models in medical VQA. Red denotes errors or irrelevant content, whereas Green denotes correct or important information. Qwen2.5-VL-3B's response is incorrect, while InfiMed-SFT-3B correctly answers after a detailed analysis and reflection, and InfiMed-RL-3B provides the most direct and accurate correct answer.

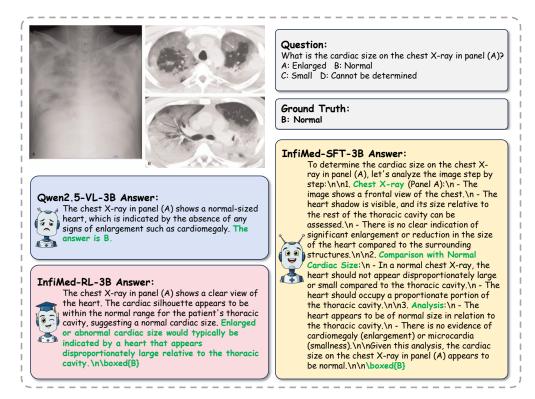


Figure 16: Case study on Qwen2.5-VL-3B, InfiMed-Series models in medical VQA. Red denotes errors or irrelevant content, whereas Green denotes correct or important information. All three models correctly identify the cardiac size as normal, with Qwen2.5-VL-3B providing a concise answer, InfiMed-SFT-3B offering a detailed, step-by-step analysis, and InfiMed-RL-3B giving a direct and well-reasoned response.

A.7 LIMITATIONS AND FUTURE WORKS

Although our InfiMed-Series models achieve state-of-the-art (SOTA) performance among MLLMs with a similar number of parameters, they even outperform some MLLMs with larger parameter counts. However, it is undeniable that open-source medical multimodal data often exhibit low quality, including poor image resolution, non-uniform distribution of modalities, and errors introduced during model synthesis. Consequently, some of the results may lack full confidence, and the models' performance on more complex medical downstream tasks remains to be thoroughly explored. Moreover, how to develop reasoning steps that can be more efficient and accurate in the medical field is a critical issue that needs further study.

Additionally, we want to clarify that our training datasets are sourced exclusively from publicly available datasets, ensuring that no private or sensitive data is involved.