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Abstract

We introduces LLaST, a framework for build-001
ing high-performance Large Language model002
based Speech-to-text Translation systems.We003
address the limitations of end-to-end speech004
translation (E2E ST) models by exploring005
model architecture design and optimization006
techniques tailored for LLMs. Our approach007
includes LLM-based speech translation archi-008
tecture design, ASR-augmented training, mul-009
tilingual data augmentation, and dual-LoRA010
optimization. Our approach demonstrates su-011
perior performance on the CoVoST-2 bench-012
mark and showcases exceptional scaling capa-013
bilities powered by LLMs. We believe this014
effective method will serve as a strong baseline015
for speech translation and provide insights for016
future improvements of the LLM-based speech017
translation framework.018

1 Introduction019

The speech-to-text translation (ST) task, which020

transcribes spoken language into written text in021

a different language, is pivotal for bridging com-022

munication barriers. This capability has a wide023

array of applications, including facilitating global024

communication, enabling automatic subtitling, and025

aiding in language learning.026

Conventional ST systems are typically com-027

posed of two distinct components: an automatic028

speech recognition (ASR) module that transcribes029

spoken speech into written text in the source lan-030

guage, and a machine translation (MT) module that031

subsequently translates this text into the target lan-032

guage. These modules can be trained using paired033

ASR and text-to-text translation data, significantly034

enhancing the overall performance of ST systems.035

Despite their modular design, cascade systems are036

prone to error accumulation, where inaccuracies037

from the ASR stage are compounded in the MT038

phase, often leading to sub-optimal translations.039

Recently, the focus has shifted towards the devel-040

opment of end-to-end speech translation (E2E ST) 041

models that bypass the need for separate automatic 042

speech recognition (ASR) and machine translation 043

(MT) modules by directly converting spoken in- 044

put into text in the target language. Nonetheless, 045

these approaches often necessitate extensive train- 046

ing datasets and are contingent upon sophisticated 047

model architectures to achieve strong performance. 048

Speech translation is intrinsically linked to nat- 049

ural language processing (NLP), as it involves the 050

conversion of spoken language into written text in a 051

target language, necessitating a deep understanding 052

of both the source and target languages’ linguistic 053

structures and semantics. The unprecedented ca- 054

pabilities that large language models (LLMs) have 055

demonstrated across a variety of NLP tasks (Tou- 056

vron et al., 2023a,b; Achiam et al., 2023) have 057

opened up new possibilities to construct potent 058

speech translation systems by leveraging these 059

LLMs as a foundation. Recent research has seen 060

some preliminary attempts exploring this direc- 061

tion (Chu et al., 2023; Wu et al., 2023; Huang et al., 062

2023). Despite these advancements, the question 063

remains on how to most effectively harness the vast 064

potential of LLMs to develop a high-performance 065

ST system in an efficient manner, without compro- 066

mising on quality or scalability. 067

In this study, we focus on the exploration of best 068

practices for constructing an effective speech trans- 069

lation system powered by Large Language Models 070

(LLMs), which we term LLaST. The paper delves 071

into the core aspects of the development process, 072

specifically the model architecture design and opti- 073

mization techniques. Our exploration begins with 074

the creation of a minimalist model architecture, ex- 075

amining the selection of key modules such as the 076

speech encoder and LLMs. Subsequently, we inves- 077

tigate training strategies, including ASR-augmented 078

training and dual-LoRA optimization. Moreover, to 079

deepen our understanding of scaling laws in LLM- 080

based ST, we also scrutinize the impact of model 081
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size variations. Through these concerted efforts,082

we aim to uncover insights that can significantly083

enhance the performance and training efficiency of084

LLaST.085

Our contributions are listed as follows.086

• We explore the LLMs-based speech translation087

method, including model architecture design, train-088

ing strategies, and data recipe.089

• Extensive evaluations demonstrate the superiority090

of our approach, surpassing the previous SOTA091

methods (Barrault et al., 2023) and achieving 45.1092

BLEU on the fr→en test set of CoVoST-2.093

• We are dedicated to making all data recipes, train-094

ing methodologies, and model weights associated095

with LLaST openly accessible to the community.096

By doing so, we foster transparency, collaboration,097

and advancement in the field of LLM-based speech098

translation technology.099

2 Related Work100

2.1 Cascaded Speech Translation101

Historically, the construction of speech translation102

systems has been approached in a cascading fash-103

ion, incorporating both an ASR and an MT subsys-104

tem (Stentiford and Steer, 1988; Ney, 1999; Naka-105

mura et al., 2006). The procedure involves initially106

converting the input speech into text in the source107

language, which is subsequently translated into108

the target language. The primary objective of this109

line of research has been to mitigate error accumu-110

lation, including the use of multiple recognition111

outputs and the development of robust MT mod-112

els (Casacuberta et al., 2008; Kumar et al., 2014;113

Sperber et al., 2017). Sperber et al. (2019b) in-114

troduces a self-attention mechanism to handle the115

lattice inputs, and Zhang et al. (2019) proposes a116

lattice transformer, equipped with a controllable117

lattice attention mechanism, to derive latent repre-118

sentations. Lam et al. (2021) establishes a feedback119

cycle in which the downstream performance of the120

MT system serves as a signal to enhance the ASR121

system via self-training.122

2.2 End-to-End Speech Translation123

The development of end-to-end speech translation124

(E2E ST) models, which bypass the requirement125

for intermediary stages such as ASR outputs and126

lattices, has been a significant stride in mitigating127

error propagation. Research indicates that these128

E2E ST models demonstrate encouraging results129

and offer performance on par with cascaded mod-130

els (Sperber et al., 2019a; Ansari et al., 2020; Ben- 131

tivogli et al., 2021; Ye et al., 2021). Moreover, 132

these models present additional benefits such as 133

lower latency and the potential to be applied to 134

languages that lack a written form (Bérard et al., 135

2016). 136

Data scarcity and the modeling burden are recog- 137

nized as two significant obstacles impeding the per- 138

formance of E2E ST (Xu et al., 2023). Firstly, the 139

intrinsic complexity of speech translation, which 140

integrates transcription and translation, presents a 141

challenge in optimizing a single model to accom- 142

plish these cross-modal and cross-lingual tasks in 143

one step. Secondly, ASR datasets are typically less 144

extensive than MT datasets, and the extension to ST 145

datasets further exacerbates this size discrepancy. 146

To address this issue of data scarcity, researchers 147

have employed strategies such as data augmenta- 148

tion (Tsiamas et al., 2023; Lam et al., 2022), pre- 149

training (Wang et al., 2020c; Ao et al., 2022), and 150

knowledge distillation (Liu et al., 2019), which 151

leverage external datasets. 152

To alleviate the modeling burden, a variety of 153

multi-task learning strategies have been investi- 154

gated (Zhang and Yang, 2018). Originating from 155

the multi-task encoder-decoder architecture (Weiss 156

et al., 2017), some researchers have chosen to split 157

the decoder into two separate components (Liu 158

et al., 2020a; Anastasopoulos and Chiang, 2018): 159

one dedicated to transcription and the other to trans- 160

lation. Parallel research efforts (Liu et al., 2020b; 161

Cheng et al., 2023) have similarly decoupled the 162

encoder, with further work showing that a shared 163

encoder can be independently partitioned (Tang 164

et al., 2021; Ye et al., 2022) to make better use of 165

ASR data. In addition, non-autoregressive (NAR) 166

modeling has been explored as a means to decrease 167

latency (Inaguma et al., 2021; Chuang et al., 2021). 168

Significantly, recent advancements have also 169

delved into multi-tasking within the context of 170

large-scale training, leading to impressive results 171

on ST benchmarks. For instance, Whisper (Rad- 172

ford et al., 2023) and SeamlessM4T (Barrault et al., 173

2023) have incorporated 680k and 470k hours of 174

multilingual speech data in their training. 175

2.3 LLM-based Speech Translation 176

Inspired by the robust linguistic capabilities of 177

LLMs (Brown et al., 2020; Touvron et al., 2023b), 178

recent initiatives have sought to harness the 179

power of LLMs to address various speech tasks, 180

aided mainly by instruction tuning. The prevail- 181
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Figure 1: Model Architecture of LLaST We introduce dual-LoRA in the optimization, and keep weights of the
speech encoder and LLM frozen. We use a 3-layer MPLs for adaptor and fine-tune its parameters together with
dual-LoRA.

ing method involves integrating an LLM (back-182

end) with a speech encoder (frontend). Models183

like LauraGPT (Chen et al., 2023) and Qwen-184

audio (Chu et al., 2023) support a range of multi-185

modal speech tasks, demonstrating performance186

comparable to task-specific E2E ST models. Vi-187

oLA (Wang et al., 2023) employs a neural codec188

model (Défossez et al., 2022) to discretize the189

speech input while tuning the LLM. Similarly, Au-190

dioPaLM (Rubenstein et al., 2023) discretizes the191

speech input and achieves commendable results on192

CoVoST-2 (Wang et al., 2020b).193

Salmonn (Tang et al., 2023) employs two en-194

coders as the frontend and uses LoRA (Hu et al.,195

2021) for efficient fine-tuning. However, the extent196

of its performance improvement on ST remains197

largely unexplored. Some recent studies (Wu et al.,198

2023; Zhang et al., 2023a) specifically target the ST199

task and delve into efficient tuning strategies, but200

their performance enhancements have been some-201

what limited. In an industrial study focusing on202

translation between Chinese and English, Huang203

et al. (2023) additionally incorporates the Chain-204

of-Thought (CoT) technique (Wei et al., 2022), en-205

abling a step-by-step approach using LLMs.206

3 Method207

This section presents our method in detail. We208

begin by introducing the problem setting of the209

speech-to-text translation task in Sec. 3.1. Then,210

we explain the structure of the proposed model in211

Sec. 3.2, followed by the description of the training212

and inference processes in Sec. 3.3.213

3.1 Problem Setting 214

We now present the problem setting of speech trans- 215

lation. Given a speech translation dataset D = 216

{(S,Ysrc,Ytgt)}, the source language speech S’s 217

acoustic features (e.g., mel-spectrogram) are de- 218

noted as Xs, and we have: 219

Xs = Fa(S), Xs = {x1, x2, . . . , xT } 220

where Fa is the acoustic feature extraction opera- 221

tion, and T is the timesteps of the input features. 222

Ysrc and Ytgt are the transcripts of S in the source 223

and target languages, respectively. The goal of 224

speech translation is to generate the prediction text 225

of target language Ŷtgt from the source speech S. 226

We can formulate the whole process as: 227

Ŷtgt = F(S) 228

and F represents the entire ST system. Perfor- 229

mance of ST system is typically assessed by com- 230

paring the predicted output Ŷtgt with the ground 231

truth Ytgt using metrics like BLEU (Papineni et al., 232

2002). 233

3.2 Model Architecture 234

Our objective is to develop the LLaST model with 235

a simple architecture, as depicted in Figure 1. The 236

design of LLaST comprises three key components: 237

a speech encoder to process the input speech, an 238

adaptor that projects these speech features into the 239

compatible feature space for Large Language Mod- 240

els (LLMs), and finally, a decoder-only LLM for 241

multi-modality decoding. 242
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Example of Speech-text Prompt for LLaST

Speech Translation Prompt: Expected Output:
<audio><AudioTokens></audio> Translate the French sentence to English. Hello world.
Transcripts of AudioTokens is "Bonjour le monde."

Automatic Speech Recognition Prompt: Expected Output:
<audio><AudioTokens></audio> Transcribe the French sentence to French. Bonjour le monde.
Transcripts of AudioTokens is "Bonjour le monde."

Figure 2: An example for training data.

Speech Encoder Acoustic features Xs encap-
sulate a wealth of information, including speaker
traits, emotions, prosody, background noise, and
more. The role of the speech encoder is to disentan-
gle these variabilities and generate robust linguistic
representations, denoted as Zs. We define this pro-
cess mathematically:

Zs = Fse(Xs)

where Fse represents the speech encoder func-243

tion. Our work investigates various options for244

the speech encoder, with a focus on mHubert (Hsu245

et al., 2021; Lee et al., 2021) and Whisper (Radford246

et al., 2023). For an in-depth analysis and discus-247

sion on the speech encoder selection, please refer248

to Sec. 5.1.249

Adaptor The adaptor acts as a bridge between
the speech encoder and the Large Language Model
(LLM), consisting of a lightweight set of trainable
parameters. Fine-tuning these parameters aligns
speech features more effectively with the LLM’s
representation space. Its function is to project the
extracted linguistic representations, Zs, into the
embedding realm of the LLM, thus yielding Hs:

Hs = Fada(Zs)

This transformation process facilitates a smooth in-250

tegration of speech data into the LLM’s text-based251

context. We adopt a 3-layer multilayer percep-252

trons(MLPs) for adaptor.253

Large Language Model Equipped with the pro-
jected speech feature Hs, our objective is to utilize
the Large Language Model (LLM) for generating
the translated text of the original speech. To facili-
tate this, we construct a speech-text prompt input
for the LLM. The text component of this prompt,
denoted as Xq, conveys the specific translation

task instruction, such as "Translate the French
sentence into English". Post-tokenization and
embedding, Xq is transformed into the LLM’s in-
put representation, Hq. Subsequently, the LLM
generates translation predictions based on the con-
catenated speech-text features (for simplicity, we
omit bos and eos tokens in the equation below):

Ŷtgt = Fllm([Hs,Hq])

This process allows the model to fuse speech and 254

textual information effectively to produce transla- 255

tions. 256

In summary, the entire process can be expressed
as:

Ŷtgt = F(S) = Fllm([Fada(Fse(Fa(S))),Hq])

3.3 Training and Inference 257

This section delves into the optimization techniques 258

employed in LLaST and elucidates its inference 259

methodology. 260

Optimization with Dual-LoRA Fintuning To 261

enhance training efficiency, we employ the 262

LoRA (Hu et al., 2021) tuning method for model 263

optimization. This technique significantly reduces 264

trainable parameters by introducing trainable rank 265

decomposition matrices to each Transformer layer, 266

while keeping the pre-trained weights frozen. 267

In LLaST, we introduce the dual-LoRA fine-
tuning, applying LoRA separately to both the
speech encoder (S-LoRA) and the Large Language
Model (L-LoRA). This approach ensures effective
adaptation to speech translation tasks with mini-
mal parameter updates. Specifically, we perform
instruction-tuning on prediction tokens using the
original auto-regressive training objective of LLM.
For a target translation result Ytgt of length N , its
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Model Speech Encoder Adaptor LLM

LLaST-2B Whisper-large-v2 MLPs TinyLlama-1.1B-Chat
LLaST-8B Whisper-large-v2 MLPs Llama2-7B-Chat
LLaST-14B Whisper-large-v2 MLPs Llama2-13B-Chat

Table 1: Configurations of LLaST models. We use Whisper(large-v2) and 3 layers MLPs for all LLaST models.

probability is calculated as:

P (Ytgt|Xs,Xq) =

N∏
i=0

Pθ(yi|Xs,Xq,Ytgt,<i)

This strategy allows us to efficiently tune LLaST268

without extensive retraining, maintaining both com-269

putational efficiency and task-specific effective-270

ness.271

Training with ASR-augmentation To enhance272

the performance of LLaST, we adopt the strat-273

egy from prior work (Barrault et al., 2023; Rad-274

ford et al., 2023) to incorporate Automatic Speech275

Recognition (ASR) tasks for data augmentation276

during training. Given the structural similarity277

between ASR and ST tasks—both involve con-278

verting speech to text, we can simply modify279

the ASR prompt to match ST objectives, such280

as "Transcribe the French sentence into281

English". The examples of prompts are listed in282

Fig. 2. This ASR-augmentation significantly boosts283

the effectiveness of LLaST across various language284

pairs, as detailed in Sec. 5.2.285

Inference Methodology During inference, we286

construct prompts in the same format as depicted287

in Fig. 1. To generate translation text sequences288

Ŷtgt, we employ a beam search algorithm with a289

beam size of 5.290

4 Experiments291

In this section, we conduct a series of experiments292

to validate the effectiveness of our method. We293

start by detailing experimental configurations in294

Sec. 4.1, followed by an overview of quantitative295

results in Sec. 4.2.296

4.1 Configurations297

Datasets Our speech translation models are298

trained and evaluated on CoVoST-2 (Wang et al.,299

2020b), a large-scale multilingual dataset that sup-300

ports translations between English and 15 other301

languages, as well as from 21 languages into En- 302

glish. For monolingual experiments, we utilize 303

six subsets with source languages translating to 304

English, focusing on French-English for training 305

and testing. In the multilingual setup, we em- 306

ploy Fr→En, Es→En, De→En, It→En, Zh→En, 307

and Ja→En subsets and three English-to-X sub- 308

sets: En→Zh, En→Ja, and En→De . Audio sam- 309

ples are downsampled from 48kHz to 16kHz in all 310

experiments. 311

Model Architecture Tab. 1 presents the three 312

LLaST model configurations. Each model utilizes 313

a Whisper-large-v2 speech encoder, contributing 314

approximately 1B parameters. The adaptor is a 315

compact multilayer perceptron with three layers, 316

ingesting 1280-dimensional inputs and adjusting its 317

output dimensions to match those of the subsequent 318

LLMs. Consequently, the overall parameter count 319

is predominantly influenced by the LLM compo- 320

nent. Hence, we denote our models as LLaST-2B, 321

LLaST-8B, and LLaST-14B. 322

Hyperparameters All models are optimized 323

with AdamW, setting β1 = 0.9 and β2 = 0.98. 324

A warmup-then-linear decay learning rate sched- 325

ule is adopted, peaking at 0.0002. Training spans 326

one epoch for each model. By default, the rank 327

of S-LoRA (Whisper LoRA) is set to 128, while 328

L-LoRA (LLM LoRA) rank is 512 unless specified 329

otherwise. The LLaST-8B and LLaST-14B models 330

are trained using 32 NVIDIA A100 GPUs, each 331

with a batch size of 32, while the smaller LLaST- 332

2B model is trained on a setup consisting of 8 A100 333

GPUs, maintaining the same batch size per GPU. 334

4.2 Main Results 335

Comparisons with Other Models Tab. 2 336

presents a comparison between our proposed 337

LLaST models and previous methods, with Sacre- 338

BLEU scores evaluated across six language pairs: 339

Fr→En, Ja→En, De→En, Zh→En, Es→En, and 340

It→En. Notably, LLaST-2B outperforms Seam- 341

lessM4T(medium) and demonstrates competi- 342

5



Model X→ English
French Japanese German Chinese Spanish Italian

Baseline Models
S2T_Transformer (Wang et al., 2020a) 27.2 N/A 18.2 N/A 25.1 N/A
SpeechLLaMA (Wu et al., 2023) 25.2 19.9 27.1 12.3 27.9 25.9
Whisper-small (Radford et al., 2023) 27.3 17.3 25.3 6.8 33.0 24.0
Whisper-large-v2 (Radford et al., 2023) 36.4 26.1 36.3 18.0 40.1 30.9
Qwen-audio (Chu et al., 2023) 38.5 N/A 33.9 15.7 39.7 36.0
SeamlessM4T(medium) (Barrault et al., 2023) 38.4 15.2 34.7 18.0 38.7 36.5
SeamlessM4T(large-v2) (Barrault et al., 2023) 42.1 23.8 39.9 22.2 42.9 40.0

Our Models
LLaST-2B 41.2 24.2 36.8 19.2 43.2 39.3
LLaST-8B 44.1 24.4 40.8 23.3 45.3 42.1
LLaST-14B 45.1 28.8 41.2 24.8 46.1 43.0

Table 2: Performance comparison on CoVoST-2 X→ English test set. We use ScareBLEU scores as metrics for
all experiments.

Speech Encoder LLM BLEU

mHuBERT TinyLlama 24.4
Whisper-base TinyLlama 28.7

Table 3: Influence of different speech encoders. For
speech encoder, mHuBERT-base(95M) and Whisper-
base(74M) share the similar model size. We use
TinyLlama-1.1B-Chat (Zhang et al., 2024) in this study.
We report ScareBLEU scores on CoVoST-2 fr→ en test
set for all experiments.

tive performance against SeamlessM4T(large-v2).343

LLaST-8B significantly excels by improving upon344

the Qwen-audio model of similar scale with an345

impressive 5.6 BLEU point gain on the Fr→En346

task. Furthermore, LLaST-14B achieves state-of-347

the-art (SOTA) results, attaining a BLEU score348

of 45.1 on CoVoST-2’s Fr→En subset, surpass-349

ing SeamlessM4T(large-v2) by 3.0 BLEU points.350

These results convincingly demonstrate the supe-351

riority of LLaST and highlight the promising po-352

tential of exploring LLMs for speech translation353

tasks.354

5 Ablation Analysis355

In this section, we delve into a meticulous ablation356

study and analysis of LLaST. We begin by examin-357

ing the impact of model architecture in Sec. 5.1, fol-358

lowed by an exploration of optimization strategies359

in Sec. 5.2. Finally, we investigate the relationship360

between model scale and performance in Sec. 5.3.361

5.1 Model Architecture Design 362

Choice of Speech Encoder We experiment with 363

various speech encoder architectures, including 364

mHuBERT (Hsu et al., 2021; Lee et al., 2021) and 365

Whisper (Radford et al., 2023) model. For the mHu- 366

BERT, we adhere to the preprocessing approach 367

from (Dong et al., 2023; Lee et al., 2021) to extract 368

semantic units. For a fair comparison, we select the 369

Whisper-base model, which is comparable in size 370

to the mHuBERT model. Performances reported in 371

Tab. 3 indicate that the Whisper model yields supe- 372

rior performance, demonstrating a 4.3 BLEU score 373

improvement over mHuBERT. This improved per- 374

formance can be attributed to the fact that Whisper 375

has been trained on significantly more data, thus 376

generating more representative linguistic features. 377

Choice of Large Language Models We exam- 378

ine the impact of different large language models 379

within LLaST to discern how variations in language 380

modeling performance affect its speech transla- 381

tion capabilities. We present X→en results in Fig- 382

ure 3. Notably, Qwen achieves a score of 47.3 383

on the en→zh test set, outperforming Llama2 by 384

4.9 BLEU points. Similarly, InternLM surpasses 385

Llama2 by 5.0 BLEU points. These findings sug- 386

gest that Chinese-oriented LLMs notably enhance 387

performance on Chinese-related ST tasks, exem- 388

plified by En→Zh and Zh→En. The LLaST model, 389

when coupled with Llama2, demonstrates excep- 390

tional performance particularly in the Fr→En and 391

De→En language pairs. This intriguing observa- 392

tion underscores the potential of LLM-based ST 393

approaches, as they allow for effortless integration 394
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Speech Encode Multi-Ling. BLEU

Whisper-large-v2 % 42.5
Whisper-large-v2 ! 44.1

Table 4: Study of training with multilingual data. We
use Llama2-7B-Chat for LLMs and report ScareBLEU
scores on CoVoST-2 fr→ en test set for all experiments.

of diverse LLM strengths tailored to specific lan-395

guages or tasks.396

5.2 Optimization397

Training with ASR Augmentation Automatic398

Speech Recognition (ASR) is a task akin to speech399

translation, as both involve converting speech into400

text. Prior research has leveraged ASR tasks as401

auxiliary objectives for ST training (Zhang and402

Yang, 2018; Ye et al., 2022; Zhang et al., 2023b),403

or used models pre-trained on ASR data (Wang404

et al., 2020a). In LLaST, we adopt this concept405

and incorporate ASR tasks to optimize LLaST per-406

formance. An example of the speech-text prompt407

structure can be found in Fig. 2, where ST and ASR408

samples are randomly mixed during training, with409

the focus remaining on the ST task at inference410

time. The results presented in Fig. 4 demonstrate411

the efficacy of ASR augmentation in optimizing412

LLaST. We observe across nearly all test sets that413

ASR augmentation improves ST performance, sug-414

gesting that leveraging ASR or multi-task training415

within LLM-based ST frameworks is a promising416

direction with significant potential for future work.417

Multilingual Data Augmentation In our exper-418

iments, we explore both monolingual and multi-419

lingual settings. Specifically, for the monolingual420

setup, we employ the Fr→En language pair. In421

the multilingual scenario, we introduce additional422

language pairs while maintaining the Fr→En data423

identical to that in the monolingual experiment.424

The results presented in Tab. 4 reveal that incor-425

porating other language pairs indeed benefits the426

Fr→En translation task, with a 1.6 BLEU score427

improvement observed upon adding multilingual428

data augmentation. This finding aligns with similar429

phenomena reported in LLM research (Team, 2023;430

Zeng et al., 2022), where exposure to multilingual431

corpora has been shown to enhance the language432

modeling capabilities of these models.433

Dual-LoRA Optimization We investigate the434

impact of employing dual-LoRA for both speech435

Adaptor S-LoRA L-LoRA BLEU

! % % 40.5
! ! % 41.3
! % ! 43.6
! ! ! 44.1

Table 5: Ablation study of dual-LoRA optimization
strategy. S-LoRA means LoRA used in Whisper, and L-
LoRA means the LoRA used in LLM. We use Whisper-
large-v2 and Llama2-7B-Chat for speech encoder and
LLMs, respectively. And we report ScareBLEU scores
on CoVoST-2 fr→ en test set for all experiments.

encoders and large language models. In the ab- 436

lation experiments, we utilize Whisper-large-v2 437

and Llama2-7B. The results from scenarios with- 438

out any LoRA, with LoRA applied only to Whisper, 439

LoRA applied only to Llama2, and dual-LoRA are 440

reported in Table 5. From these outcomes, it is 441

evident that even with a lightweight adaptor, lever- 442

aging a strong speech encoder and LLM can yield 443

commendable performance. We also discover that 444

applying single LoRA to either Whisper or Llama2 445

separately leads to substantial gains, improving 446

scores from 40.5 to 41.3 and 43.6, respectively. 447

More notably, when dual-LoRA is used to jointly 448

optimize both speech encoder and large language 449

model, an additional improvement is achieved, cul- 450

minating in a 44.1 BLEU score on test set. 451

5.3 Impact of Model Scale 452

Different Size of Speech Encoder We maintain 453

a constant language model, Llama2-7B, and vary 454

the size of Whisper models acting as speech en- 455

coders to examine the effect of encoder size on per- 456

formance. The range of encoder sizes spans from 457

40M to 800M parameters. As shown in Table 6, 458

we observe that as the encoder size increases, the 459

BLEU score of the model consistently improves; 460

however, the rate of improvement diminishes with 461

each incremental increase in size. The base en- 462

coder achieves a BLEU score of 37.0, while the 463

large encoder attains a peak score of 44.1. This 464

considerable leap underscores the importance of 465

scaling up speech encoders for better speech-to- 466

text translation. However, future research should 467

consider the trade-offs between model size, com- 468

putational efficiency, and overall performance to 469

strike the right balance for practical applications. 470

Different Size of LLMs We further investigate 471

the impact of varying LLM sizes on speech trans- 472
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Figure 3: Influence of different language models. We use Whisper-large-v2 as speech encoder and report
ScareBLEU scores on CoVoST-2 test set for all experiments.

Figure 4: Influence of different LLMs and ASR-
augmentation. We report ScareBLEU scores on
CoVoST-2 test set for all experiments.

Speech Encoder Encoder Size BLEU

Whisper-base ∼40 M 37.0
Whisper-small ∼120 M 41.2
Whisper-medium ∼390 M 43.1
Whisper-large-v2 ∼800 M 44.1

Table 6: Ablation study of model size of Whisper
model. We use Llama2-7B-Chat for LLM and report
ScareBLEU scores on CoVoST-2 fr→ en test set.

lation performance. With the speech encoder con-473

sistently set as Whisper-large-v2, we assess three474

different scale LLMs: TinyLlama-1B, Llama2-7B,475

and Llama2-13B. The outcomes are presented in476

Tab. 2. Our findings reveal that there is a positive477

correlation between the size of the language model478

and the BLEU scores across all test sets. As the479

capacity of the LLM increases, so does the overall480

performance in terms of translation quality, indicat-481

ing that larger models can capture more nuanced482

linguistic patterns and generate more accurate trans-483

lations.484

6 Limitation 485

While our study has yielded significant findings, 486

it is crucial to recognize the limitations that may 487

impact the interpretation and broad applicability 488

of our results. Although we delved into the ar- 489

chitecture design and optimization strategies, our 490

reliance on a relatively narrow data source and the 491

use of short voice samples could potentially affect 492

the generalizability of our outcomes. To address 493

this, future research will expand to encompass a 494

more diverse array of data. Moreover, due to the 495

constraints of our current resources, we have not 496

ventured into exploring larger language models or 497

a broader range of language pairs in this study. 498

7 Conclusion 499

We presents the development and analysis of 500

LLaST, a novel speech translation model that har- 501

nesses LLM in this work. The study demon- 502

strates that integrating well-tuned speech encoders 503

like Whisper with different sizes of LLMs signifi- 504

cantly improves speech-to-text translation perfor- 505

mance. Through meticulous ablation studies, it is 506

shown that applying dual LoRA optimization to 507

both speech encoders and LLMs leads to substan- 508

tial gains in BLEU scores. Additionally, experi- 509

ments confirm that increasing the scale of either 510

the speech encoder or the LLM positively impacts 511

performance, though the rate of improvement de- 512

creases as size increases. Furthermore, incorporat- 513

ing ASR augmentation and multilingual training 514

further enhances the model’s performance on spe- 515

cific language pairs. Overall, LLaST underscores 516

the potential of large language models for advanc- 517

ing speech translation tasks and offers valuable 518

insights into their effective integration. 519
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Ethical Considerations520

We use the public LLMs to build LLaST, the LLMs521

may produce unexpected outputs due to its size522

and probabilistic generation paradigm. For exam-523

ple, the generated responses may contain biases,524

discrimination, or other harmful content. Addtion-525

ally, we use ChatGPT and Grammarly to polish the526

writing.527
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