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Abstract

Hyperbolic representation learning has shown compelling001
advantages over conventional Euclidean representation002
learning in modeling hierarchical relationships in data.003
In this work, we evaluate its potential to capture bio-004
logical relations between cell types in highly multiplexed005
imaging data, where capturing subtle, hierarchical rela-006
tionships between cell types is crucial to understand tis-007
sue composition and functionality. Using a recent and008
thoroughly validated 42-marker Imaging Mass Cytometry009
(IMC) dataset of breast cancer tissue, we embed cells into010
both Euclidean and Lorentzian latent spaces via a fully hy-011
perbolic variational autoencoder. We then introduce an012
information-theoretic framework based on k-nearest neigh-013
bor estimators to rigorously quantify the clustering per-014
formance in each geometry using mutual information and015
conditional mutual information. Our results reveal that hy-016
perbolic embeddings retain significantly more biologically017
relevant information than their Euclidean counterparts.018
We further provide open-source tools to extend Kraskov-019
Stögbauer-Grassberger based mutual information estima-020
tion to Lorentzian geodesic spaces, and to enable UMAP021
visualizations with hyperbolic distance metrics. This work022
contributes a principled evaluation method for geometry-023
aware learning and supports the growing evidence of hy-024
perbolic geometry’s benefits in spatial biology.025

1. Introduction026

The encoding of multiscale and hierarchical structure in027
representation learning has long been a goal in both su-028
pervised and unsupervised frameworks. Previous works,029
such as [36], emphasized the importance of representing030
and disentangling concepts at different levels of abstraction.031
Hyperbolic representation learning has recently emerged as032
a powerful paradigm in geometric deep learning, particu-033
larly for tasks involving hierarchical, multiscale, or tree-034
like structures [3, 24, 31, 36]. Its ability to embed data035
into spaces of negative curvature has shown substantial036
benefits across a range of applications, from natural lan-037

guage processing and knowledge graphs to recommender 038
systems and computer vision [20, 27, 38]. A growing body 039
of work has demonstrated that embeddings in hyperbolic 040
spaces can significantly outperform their Euclidean coun- 041
terparts in tasks such as clustering and classification, partic- 042
ularly when the underlying data exhibits hierarchical rela- 043
tionships [12, 14, 28]. 044

This geometric advantage becomes especially relevant in 045
the context of biological data, where hierarchy is often in- 046
herent but difficult to model in traditional Euclidean frame- 047
works. One particularly impactful application is its poten- 048
tial to capture biological relations between cell types from 049
multiplexed imaging data, such as Imaging Mass Cytome- 050
try (IMC). IMC enables the simultaneous measurement of 051
dozens of protein markers at subcellular resolution through 052
metal-conjugated antibody staining and time-of-flight mass 053
spectrometry. Since different cell types can be characterized 054
by distinct combinations of protein co-expression, identi- 055
fying these patterns—particularly in an unsupervised set- 056
ting—is essential for discovering new cellular subtypes and 057
functional states in tissues [21]. The biological systems un- 058
der investigation are inherently complex and often hierar- 059
chical, making them a natural candidate for embedding in 060
hyperbolic spaces to preserve meaningful relational struc- 061
ture and improve downstream machine learning tasks in 062
spatial biology [29]. 063

Despite the intuitive and visual appeal of hyperbolic em- 064
beddings for biological clustering, rigorously analyzing 065
that they outperform Euclidean alternatives remains a chal- 066
lenge. Most works rely on qualitative results, with quantita- 067
tive comparisons often limited or entirely omitted due to the 068
lack of geometry-agnostic evaluation metrics. In this work, 069
we address this gap by proposing an information-theoretic 070
evaluation framework to compare the clustering perfor- 071
mance of embeddings across geometric spaces, leveraging 072
mutual information (MI) and conditional mutual informa- 073
tion (CMI) to quantify the relationship between geometric 074
distance and cell type labels, enabling principled evalua- 075
tion independent of clustering assumptions. We show that 076
hyperbolic (specifically Lorentzian) embeddings better cap- 077
ture the underlying structure of single-cell IMC data com- 078
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pared to Euclidean embeddings. To support further research079
in this area, we also release a software package extending080
the Kraskov-Stögbauer-Grassberger (KSG) MI estimator to081
operate on Lorentzian geodesic distances, and provide tools082
to integrate hyperbolic distances into UMAP visualizations.083

In Summary, our main contributions are:084

• We introduce an information-theoretic evaluation frame-085
work for comparing clustering performance across non-086
Euclidean and Euclidean geometries, based on a general-087
ized kNN-based mutual information estimator.088

• We extend the KSG estimator to work with Lorentzian089
geodesic distances, enabling mutual information estima-090
tion in hyperbolic space.091

• We demonstrate that hyperbolic latent spaces, specifically092
Lorentzian variational autoencoders, better capture hier-093
archical cell taxonomies identified by IMC.094

• We provide quantitative and statistical analysis, includ-095
ing McNemar tests and confusion matrix difference visu-096
alizations, to show the superiority of hyperbolic embed-097
dings over their Euclidean counterparts.098

• We release our implementation, including extensions to099
UMAP for hyperbolic distance inputs, to support further100
research in geometric deep learning for spatial biology.101

2. Related work102

2.1. Hyperbolic Representation Learning103

Hyperbolic spaces, particularly those of constant negative
curvature K < 0, have emerged as a powerful alternative to
Euclidean embedding spaces due to their exponential vol-
ume growth, which allows efficient encoding of hierarchical
and tree-like data structures [3, 24, 31, 36]. The Poincaré
ball model [7, 12, 37], defined as the Riemannian manifold
Bn = {x ∈ Rn : −K∥x∥2 < 1} with metric tensor

gx =

(
2

1− ∥x∥2

)2

In

where In is the n× n identity matrix, ∥x∥ is the Euclidean104
norm of x, and gx is a conformal scaling of the Euclidean105
metric by a factor that depends on the distance from the106
origin.107

This has been widely used in deep learning due to its108
conformality and closed-form geodesics. More recently, an-109
other hypoerbolic model - the Lorentz model [1, 3, 11] -110
has gained traction due to its better principled optimization111
frameworks [22]. It embeds points on the upper sheet of the112
two-sheeted hyperboloid in Minkowski space Rn+1, where113
distances are defined via the Lorentzian scalar product114

⟨x, y⟩L = −x0y0 +
n∑

i=1

xiyi,

and geodesic distance is given by

dL(x, y) = |K| arcosh
(
−⟨x, y⟩L

|K|

)
.

3. Methodology 115

While interest in hyperbolic representation learning con- 116
tinues to grow, quantitatively evaluating clustering perfor- 117
mance across different geometries remains an open chal- 118
lenge. Traditional clustering metrics and visualization tech- 119
niques were designed with Euclidean assumptions, thus of- 120
ten misrepresent the structure and quality of embeddings in 121
hyperbolic spaces. In this work, we tackle this problem by 122
introducing an MI-based, geometry-agnostic methodology. 123

In the following, we first introduce the Hyperbolic Vari- 124
ational Autoencoder, which enables learning latent repre- 125
sentations in Lorentzian space; next, we discuss the limi- 126
tations of conventional evaluation techniques when applied 127
to non-Euclidean embeddings; finally, we present fully ag- 128
nostic evaluation metrics, which provide a robust basis for 129
comparing embeddings across geometries without relying 130
on space-specific assumptions. 131

3.1. Hyperbolic Variational Autoencoder 132

We adopt the fully hyperbolic convolutional neural network 133
(HCNN) introduced by [1] as a recent hyperbolic CNN, 134
benchmarking it against an equivalent Euclidean architec- 135
ture. Our approach to evaluate their performance to learn 136
representations that capture underlying biological relation- 137
ships between cells is completely model agnostic, at the cost 138
of requiring class labels for evaluation on the test set. For a 139
controlled comparison, each Euclidean baseline is adapted 140
to the hyperbolic setting by systematically substituting cor- 141
responding modules with their hyperbolic counterparts. 142

The encoder network outputs parameters of a wrapped 143
normal distribution on the hyperboloid Hn, and latent sam- 144
pling is done using gyrovector analogues of the reparame- 145
terization trick. The decoder operates in hyperbolic space 146
using Lorentz-equivariant convolutions to map from Hn 147
back to Euclidean observation space. 148

The loss function consists of a hyperbolic reconstruc-
tion term and a Kullback-Leibler divergence between
the learned posterior and a hyperbolic prior (typically a
wrapped normal centered at the hyperboloid origin). For-
mally, the evidence lower bound (ELBO) [23] L is given
by

L = Eqϕ(z|x) [log pθ(x|z)]−DKL (qϕ(z|x) ∥ p(z)) ,

with all distributions and distances defined on Hn. How- 149
ever, in this work, we observed that setting the DKL’s coef- 150
ficent to 0 lead to a more stable model training. 151

Variational Autoencoders (VAEs) have been extensively 152
utilized in hyperbolic neural network (HNN) research to 153
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model latent representations in non-Euclidean spaces [9,154
18, 23, 25]. Prior work has demonstrated that HNNs can155
produce more expressive embeddings in low-dimensional156
regimes [1], making them particularly well-suited for in-157
tegration with VAEs. However, to the best of our knowl-158
edge, we introduce the first principled approach for quanti-159
tatively comparing Euclidean and hyperbolic latent spaces160
using standardized metrics.161

The authors in [1] provide a HCNN Variational Autoen-162
coder (HCNN-VAE) which we use in this work.163

3.2. Evaluating Clustering Quality and Visualiza-164
tion Across Geometries165

Conventional clustering metrics like the Silhouette Score166
or Average Distortion Index (ADI) [4, 30, 34] assume167
Euclidean properties—linear distances, convexity, and168
isotropic neighborhoods. These assumptions fail in hy-169
perbolic spaces, where distances grow exponentially and170
neighborhoods are curvature-dependent. Even substituting171
Euclidean distances with geodesics does not resolve incom-172
parability issues due to the indefinite nature of the inner173
product and the mismatch with underlying geometric intu-174
itions. Lorentzian inner products are indefinite, leading to175
undefined or non-interpretable values in some cases. More-176
over, many clustering measures rely on uniform notions of177
”spread” or proximity that are inconsistent with the geom-178
etry of curved spaces. As a result, direct metric compar-179
isons between hyperbolic and Euclidean embeddings often180
fail to capture meaningful structural differences. To over-181
come this challenge and directly compare if learned repre-182
sentation align better with biological knowledge in a Eu-183
clidean or Lorentzian space, we propose to use kNN based184
mutual information estimation as a geometry-agnostic tool185
for clustering evaluation. Likewise, visualization tools such186
as UMAP [19] and t-SNE [35] are formulated under Eu-187
clidean assumptions and often introduce artifacts when ap-188
plied to hyperbolic data.189

3.3. Fully Agnostic Evaluation Metrics190

To circumvent these problems, we adopt a non-parametric191
information-theoretic and geometry-agnostic estimator for192
mutual information based on k-nearest neighbors (kNN).193
Specifically, we use the KSG estimator [17], extended to194
operate on general metric spaces — including those induced195
by Lorentzian geodesics. This has several advantages:196

Geometry-Agnostic MI estimators (e.g., KSG, Local197
Non-Uniformity Correction or nearest-neighbor entropy es-198
timates) [8, 15, 17] work directly with distances or densi-199
ties, not assuming the underlying space is Euclidean. As200
long as a distance measure is defined, MI estimation pro-201
ceeds without requiring the geometry to be flat, convex,202
or isotropic. In particular, we can: (i) Define kNNs based203
on Lorentzian or geodesic distance; (ii) Estimate entropies204

and conditional entropies directly; (iii) Evaluate depen- 205
dency structure between Euclidean and hyperbolic repre- 206
sentations. This allows us to quantify how much infor- 207
mation one representation preserves about the other, with- 208
out requiring clustering assumptions or metric preservation 209
[17]. 210

Local Structure Sensitive Unlike Silhouette or ADI, 211
which summarize global structure, MI estimation via kNN 212
is local and distribution-sensitive. Because kNN adapts to 213
the local density, it can more robustly compare represen- 214
tations where neighborhood consistency is key — such as 215
checking whether semantic neighbors in Euclidean space 216
remain close in hyperbolic embeddings. 217

Alignment Across Representations Our goal is not 218
merely to assess clustering, but to compare structural fi- 219
delity between two spaces. MI offers a principled way to do 220
this: by estimating I(X;Y ), where X is the Euclidean rep- 221
resentation and Y is the hyperbolic one, we can determine 222
how much information one retains about the other. This 223
is especially valuable for validating learned representations 224
or dimensionality reduction pipelines between different ge- 225
ometries. 226

3.3.1. Kraskov-Stögbauer-Grassberger (KSG) estimator 227

Given random variables X , Y , and a joint sample 228
{(xi, yi)}Ni=1, the KSG estimator is defined as 229

230
I(X;Y ) ≈ ψ(k) + ψ(N) 231

− 1

N

N∑
i=1

[
ψ(n(i)x + 1) + ψ(n(i)y + 1)

]
, (1) 232

where ψ(·) is the digamma function, n(i)x and n(i)y are the 233
number of neighbors within the εi-ball around xi and yi 234
respectively, excluding the query point. The radius εi is de- 235
fined as the maximum distance to the k-th nearest neighbor 236
in the joint space. 237

To adapt KSG for this setting, we introduce a general- 238
ized, tensorized implementation that operates on a precom- 239
puted 3D pairwise distance array D ∈ Rp×N×N , where p 240
is the number of variables, and Dv,i,j denotes the distance 241
between samples i and j along variable v. Crucially, all 242
distances are computed using the geometry under evalua- 243
tion: Euclidean norm for baseline model, and Lorentzian 244
geodesics for hyperbolic one. As all terms are computed 245
directly from distances, our evaluation is invariant to coor- 246
dinate charts and dimensionality, making it a robust tool for 247
comparing clustering quality across geometric embeddings. 248
Moreover, our implementation supports CMI estimation of 249
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the form250

251

I(X;Y |Z) ≈ ψ(k) + ψ(N)252

− 1

N

N∑
i=1

[
ψ(n(i)x + 1) + ψ(n(i)y + 1)− ψ(n(i)z + 1)

]
(2)

253

This enables information-theoretic analysis not only of254
mutual dependence between variables, but also of how255
that dependence is modulated by auxiliary variables—an256
important aspect when studying hierarchical structures in257
Lorentzian spaces.258

4. Experiments259

4.1. Datasets260

4.1.1. IMC261

We use the imaging mass cytometry (IMC) dataset intro-262
duced in the recent work by [29]. The study presents a263
meticulously curated 42-marker antibody panel optimized264
for the phenotypic and spatial characterization of the tu-265
mor microenvironment (TME), with a particular emphasis266
on cancer-associated fibroblasts (CAFs) in breast cancer.267

The IMC technique enables simultaneous measurement268
of protein markers at subcellular resolution by labeling an-269
tibodies with metal isotopes and quantifying them via time-270
of-flight mass spectrometry. In this dataset, tissue sections271
from breast cancer patients were stained and imaged, pro-272
ducing spatially resolved, single-cell data with high dimen-273
sionality and minimal signal overlap—critical for capturing274
complex phenotypic landscapes within the TME.275

The dataset comprises data from 10 patients, with 3 im-276
ages per patient, resulting in a total of 84,852 single-cell277
instances. We partitioned the dataset into training, valida-278
tion, and test subsets using an 80/10/20 stratified split at the279
cell level: 67,881 cells for training, 6,788 for validation, and280
16,971 for testing.281

To support multiscale analyses, the dataset includes hier-282
archical cell type annotations across 4 levels of granularity,283
however, we only use the first 3. Level 1 categorizes cells284
into broad functional groups: Cancer cells, Immune cells,285
Endothelial cells, and Fibroblasts. Level 2 further subdi-286
vides Immune cells into finer subtypes, including B cells,287
T cells, Macrophages (M cells), NK cells, Other immune288
cells, Pericytes, CD16+, CD3+CD16+, CD3+CD20+, and289
CD3+CD68+. Level 3 provides an even more detailed view290
by resolving Macrophages into M0, M1, M2, and MDP,291
and T cells into MemoryT CD4+, MemoryT CD8+, Tcyto292
(cytotoxic T cells), Th (T helper cells), Treg (regulatory T293
cells), Other T cells, CD8+CD4+, and CD8-CD4-.294

4.1.2. MNIST 295

To complement our analysis on biologically complex data, 296
we also evaluate our method on the widely-used MNIST 297
dataset of handwritten digits in a more controllable environ- 298
ment. MNIST [5] serves as a canonical benchmark in rep- 299
resentation learning and clustering tasks, providing a well- 300
understood, high-signal testbed for validating geometry- 301
aware embedding methods. 302

4.2. Implementation Details 303

All experiments are conducted using PyTorch [26], and the 304
hyperbolic models are trained using adaptive Riemannian 305
optimization techniques [2], as implemented in the Geoopt 306
library [13], with computations carried out in 32-bit floating 307
point precision as in [1]. 308

We evaluate vanilla VAEs on our own dataset IMC. 309
Our comparisons include the HCNN-VAE and Euclidean- 310
VAE. Specifically, we evaluate the HCNN models using the 311
wrapped normal distribution in the Lorentz model [23]. Ad- 312
ditionally, we evaluated our methods on the MNIST dataset, 313
which exhibited consistent patterns with those observed in 314
the IMC dataset. 315

The input to the VAE consisted of individual cells seg- 316
mented from tissue images, with each of the 35 channels 317
representing a constant expression value summarizing the 318
activity of a specific protein marker within that cell. All 319
analyses are done on the test set. 320

4.3. Analysis of latent embeddings 321

To obtain comparable latent representations in both hyper- 322
bolic and Euclidean geometries, we train the HCNN-VAE 323
and the Euclidean-VAE independently using reconstruction 324
loss as a common objective. By aligning the training objec- 325
tive across both models, we ensure that any observed dif- 326
ferences in representation quality can be attributed to the 327
geometry of the latent space rather than differences in opti- 328
mization. This setup allows us to derive latent embeddings 329
in hyperbolic and Euclidean spaces under consistent recon- 330
struction constraints, facilitating a fair and meaningful com- 331
parison between the two geometries. 332

The structure of the latent embedding space plays a cen- 333
tral role in VAEs, as it determines how input features are 334
encoded and subsequently utilized for generation. To better 335
understand the geometry of the learned representations, we 336
perform a qualitative and quantitative analysis of the latent 337
embeddings inferred by the trained VAEs. Specifically, we 338
encode the test set images and project the resulting embed- 339
dings for visualization. 340

4.3.1. Qualitative Analysis 341

To visualise the structure of the learned latent represen- 342
tations, we extract embeddings from both Euclidean and 343
hyperbolic VAEs, originally 128 space dimensions and 1 344
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time dimension, and project them into two dimensions us-345
ing UMAP [19]. For each trained model, we pass the test346
set through the encoder to obtain latent vectors, which are347
subsequently visualized. While UMAP is a widely used348
tool for visualizing high-dimensional data, its application349
to Lorentzian (hyperboloid) spaces is inherently limited due350
to its underlying Euclidean assumptions. Specifically, stan-351
dard UMAP operates under the premise that input data re-352
sides in a Euclidean space and relies on Euclidean dis-353
tance metrics to construct neighborhood graphs. This poses354
a mismatch when applied directly to embeddings in the355
Lorentz model, where distances are defined with respect356
to a pseudo-Riemannian geometry. As a result, applying357
UMAP to Lorentzian embeddings can distort the geomet-358
ric relationships among points, leading to misleading vi-359
sualizations. Unlike previous work, to address this issue,360
we manually compute normalised pairwise Lorentzian dis-361
tances between latent embeddings and leverage UMAP’s362
precomputed distance mode, allowing us to preserve the in-363
trinsic geometry of the hyperbolic space during dimension-364
ality reduction.365

4.3.2. Quantitative Analysis366

While qualitative analysis through embedding visualiza-367
tions provides intuitive insights into structural differences368
between Euclidean and Lorentzian spaces, it remains inher-369
ently subjective and limited by human interpretation. In370
contrast, quantitative analysis offers a robust and objec-371
tive framework for evaluating representational quality, us-372
ing well-defined statistical and geometric measures. These373
metrics enable reproducible, data-driven comparisons that374
can generalize across datasets and experimental settings.375

To compute MI and CMI using the kNN approach, we376
rely on identifying local neighborhoods for each observa-377
tion in the dataset based on a user-defined distance met-378
ric. For a given point, we calculate the ℓ∞ (maximum379
coordinate-wise) distance to all other points across the rel-380
evant subset of variables v, whether from X , Y , or Z,381
using a precomputed pairwise distance array. The k-th382
smallest such distance defines a radius ρ around the point,383
which is then used to count the number of neighbors ly-384
ing within this radius in the joint space (XY Z), and in385
the marginal subspaces (XZ, Y Z, and Z). These counts386
are then plugged into the previous mentioned equations387
I(X;Y ) and I(X;Y | Z). Importantly, this procedure is388
fully agnostic to the ambient geometry because it relies only389
on the distance matrix: we can define neighborhoods us-390
ing Euclidean distances, Lorentzian distances, or any other391
valid metric, allowing for a direct comparison of informa-392
tion content across different geometrical representations.393

To incorporate categorical variables, such as class la-394
bels, into the MI and CMI estimation framework, we de-395
fine a discrete distance metric that assigns a fixed, nonzero396
distance when two values differ and zero when they are397

equal. Specifically, for any categorical variable, we con- 398
struct a pairwise distance matrix where each entry is either 399
0 (if the two observations belong to the same category) or 400
a fixed scalar (typically 1) if they differ. This binary dis- 401
tance captures label similarity without imposing an artifi- 402
cial ordering or metric structure on the categories. When 403
computing neighborhoods for MI or CMI estimation, these 404
categorical distances are treated on the same footing as con- 405
tinuous distances: they contribute to the ℓ∞ distance used 406
to determine the local radius ρ for kNN counting. This 407
approach allows categorical variables to be integrated nat- 408
urally into the neighborhood-based estimation framework 409
while preserving their non-metric nature, ensuring accurate 410
and geometry-agnostic information estimates. Therefore, 411
the distances fed should be normalised between 0 and the 412
assigned nonzero distance. 413

Finally, by reusing the kNN structure, we can de- 414
rive empirical neighborhood-based confusion matrices, en- 415
abling classification-based evaluations that are intrinsically 416
aligned with the MI estimation process. This unified frame- 417
work provides a robust and geometrically agnostic founda- 418
tion for evaluating and interpreting embedding quality in 419
both Euclidean and hyperbolic settings. 420

5. Results 421

5.1. Qualitative Results 422

A visual comparison of embeddings in Lorentzian and Eu- 423
clidean spaces computed using neighborhood graphs con- 424
structed based on geodesic distances or euclidean distances 425
depending on the space geometry, as seen in Fig. 1, reveals 426
notable structural differences that underscore the represen- 427
tational advantages of hyperbolic geometry. In Lorentz 428
space, clusters are consistently more compact, reflecting 429
the space’s exponential volume growth. This is particu- 430
larly evident in the IMC dataset, where the minority class 431
of Endothelial Cells —comprising only 8.40% of the total 432
data—is more distinctly and tightly clustered in Lorentzian 433
embeddings, whereas it is more diffuse and harder to sepa- 434
rate in Euclidean space. This suggests that the Lorentzian 435
geometry better captures subtle, semantically meaningful 436
differences even for underrepresented classes. 437

Additionally, in the MNIST dataset, we observe that cer- 438
tain instances of the digit ”3” occupy a “higher level” in the 439
Lorentzian embedding space—appearing scattered above 440
clusters corresponding to digits ”0”, ”6”, and ”8”. This 441
behavior highlights Lorentz space’s capacity to encode se- 442
mantic ambiguity: some ”3”s share more visual similarity 443
with these digits, and hyperbolic embeddings naturally re- 444
flect this by positioning them in intermediary regions, in 445
contrast to the flatter separation seen in Euclidean projec- 446
tions. Moreover, we observe that MNIST Lorentzian em- 447
beddings are closer to the boundary since they follow a less 448
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Figure 1. Embeddings in 2D latent space of VAEs. Colors represent ground truth labels.

Table 1. Estimated MI and CMI on IMC and MNIST test sets.

Quantity IMC MNIST
MI(DL;C) 1.07 1.86
MI(DE ;C) 0.96 1.78
MI(DL;DE) 0.01 4.03
CMI(DL;C | DE) 1.06 0.16
CMI(DE ;C | DL) 0.00 0.09

hierarchal structure.449

5.2. Quantitative Results450

We quantitatively assess how each geometry—Euclidean451
and Lorentzian—captures class-relevant structure in the452
embedding space. Specifically, we estimate the MI be-453
tween the Lorentzian distance matrix and the class labels,454
I(DL;C), and between the Euclidean distance matrix and455
the class labels, I(DE ;C), where DL and DE are the pair-456
wise distance matrices computed under Lorentzian and Eu-457
clidean metrics, respectively, and C denotes the discrete458
class labels. Additionally, we compute the MI between the459
two distance matrices themselves, I(DL;DE), to under-460
stand how much geometric information is shared between461
the two representations. To further probe the complemen-462
tarity of the geometries, we compute two conditional MI463
quantities: I(DL;C | DE), which captures the incremental464
information that Lorentz geometry provides about the labels465
beyond what is already explained by Euclidean structure,466
and I(DE ;C | DL), which evaluates the converse. These467
quantities provide a more nuanced, information-theoretic468
view of the expressive power of each space, revealing not469
just which geometry encodes class information more effi-470
ciently, but also whether either provides non-redundant sig-471
nal beyond the other. The results are shown in Table 1.472

The MI results quantitatively confirm the qualitative473
observations. The MI between Lorentzian distances and474
class labels, I(DL;C) = 1.07, is considerably higher475
than the Euclidean counterpart, I(DE ;C) = 0.96, indi-476
cating that the Lorentzian geometry encodes more class-477

relevant information. This aligns closely with visual ob- 478
servations—particularly the greater compactness of clusters 479
and improved separation of minority classes like the en- 480
dothelial cells. Furthermore, the MI between Lorentzian 481
and Euclidean distances is negligible, I(DL;DE) = 0.01, 482
suggesting that the two geometries capture fundamentally 483
different structural aspects of the data rather than being re- 484
dundant encodings. The CMI results reinforce this interpre- 485
tation: conditioning on Euclidean distances does not sig- 486
nificantly reduce the MI between Lorentzian distances and 487
class labels, I(DL;C | DE) = 1.06, while the reverse 488
I(DE ;C | DL) = 0.00 indicates that Euclidean distances 489
contribute no additional class information beyond what is 490
already captured by the Lorentzian geometry. Together, 491
these results underscore the greater expressive power and 492
discriminative capacity of the Lorentzian space, providing 493
a robust theoretical foundation for its observed empirical 494
advantages in embedding structure and cluster quality. 495

Furthermore, we can leverage the pairwise distance ma- 496
trices—computed using the appropriate geometry—to train 497
a k-nearest neighbors (kNN) classifier. This enables us to 498
evaluate the clustering quality that is agnostic to the embed- 499
ding space, allowing for a direct comparison between hy- 500
perbolic and Euclidean representations. Moreover, because 501
kNN relies solely on local neighborhood structure without 502
learning additional parameters, this evaluation isolates the 503
quality of the embeddings themselves, avoiding confound- 504
ing effects from downstream model capacity. By applying 505
the same classification framework across geometries, we 506
obtain comparable accuracy scores, adjusted rand indices 507
(ARI) [10], and confusion matrices that further quantify the 508
discriminative structure captured in each latent space. 509

The confusion matrices and derived metrics, shown in 510
Fig. 2, support the claim that kNN-based MI estimation 511
effectively captures the alignment between local distance 512
distributions and class labels. When evaluating the kNN 513
classifier on the Euclidean embeddings of the test set, the 514
overall classification performance is moderate, with an ac- 515
curacy of 81.01% on level 1 and 64.59% on level 3 and 516
an ARI of 0.565 and 0.505, respectively. Most notably, 517
the classifier struggles significantly with the minority En- 518
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dothelial Cells, correctly identifying only 34% of instances,519
with 56% misclassified as Fibroblasts. In contrast, when520
the same classifier is trained and evaluated using distances521
from the Lorentzian space, we observe substantial improve-522
ments. The accuracy increases to 86.54% on level 1 and523
70.11% on level 3 and the ARI to 0.687 on level 1 and524
0.637 on level 3. The most dramatic enhancement is again525
seen in the minority Endothelial Cells, with correct iden-526
tification improving to 51% and misclassification reducing527
to 41%. This aligns well with our qualitative observations528
where the Lorentzian embeddings produced more compact529
and geometrically meaningful clusters, especially benefit-530
ing underrepresented categories like Endothelial Cells. The531
Lorentzian space appears to better capture the subtle re-532
lational structure of the data, which allows the classifier533
to make more confident and accurate decisions even with534
sparse class examples.535

Further results and statistical tests can be found in the536
supplementary material.537

6. Discussion538

Our findings demonstrate that hyperbolic embedding mod-539
els, particularly those trained in Lorentzian space, are not540
only effective at capturing clustering structure in high-541
dimensional biological data but also align remarkably well542
with current medical understanding of cell identities and543
phenotypic transitions. The use of Lorentzian geometry al-544
lows for a more natural encoding of biological hierarchies,545
as reflected in the qualitative inspection of model outputs546
and confirmed by domain experts in translation medicine547
and IMC imaging. Crucially, these insights are enabled by548
our proposed information-theoretic evaluation framework,549
which allows for principled, geometry-agnostic comparison550
of clustering performance and reveals the superiority of hy-551
perbolic embeddings that would otherwise be obscured by552
traditional Euclidean-based metrics.553

Several apparent misclassifications in our results are in554
fact biologically meaningful. Both cell types express high555
levels of vimentin, particularly in regions where they are556
spatially co-located, making them difficult to distinguish557
with current marker panels. Compounding this, CD34 is558
also known to be expressed in some type of cancer asso-559
ciated fibroblasts [6, 33], which can result in both classifi-560
cation ambiguity and protein signal spillover. The model’s561
tendency to conflate endothelial cells and fibroblast popu-562
lations is thus not a failure of representation but rather a563
reflection of biological and technical uncertainty.564

A similar observation holds for immune cell types. Im-565
mune subtypes such as T cells, NK cells, and macrophages566
are known to express overlapping markers in varying de-567
grees, and they often occupy shared tissue niches, con-568
tributing to lateral signal spillover. For instance, CD16 is569
a marker present in both NK cells and monocytes, while570

granzyme B expression — necessary for defining NK cells 571
— can be minimal. These subtleties often challenge both 572
manual annotation and automated clustering. Our model 573
reflects this ambiguity, but crucially, the Lorentzian version 574
tends to organize immune subtypes according to functional 575
and developmental relationships, rather than merely spa- 576
tial proximity or surface-level marker expression. Notably, 577
Memory CD8+ T cells are embedded more closely to other 578
T cell types, rather than being erroneously pulled toward 579
CD8+CD4+ double-positive regions [32]. 580

In fact, one of the most striking advantages of hyperbolic 581
embeddings lies in their capacity to preserve such hierar- 582
chical relationships. Unlike Euclidean embeddings, which 583
impose an isotropic geometry ill-suited for tree-like or tax- 584
onomic structures, hyperbolic spaces naturally accommo- 585
date such topologies. The Lorentzian model, with its ca- 586
pacity to represent indefinite inner products and exponen- 587
tial volume growth, models the nested and branching lin- 588
eage structure of immune and stromal compartments more 589
accurately. For example, ambiguous macrophage states 590
such as M0 and MDP are embedded near M1 and M2 591
macrophages, not with unrelated fibroblast populations — 592
also a misclassification more commonly observed in Eu- 593
clidean space. This structural consistency is particularly 594
important for downstream tasks such as subtype discovery 595
or treatment response modeling, where the preservation of 596
biological topology directly impacts interpretability. 597

We also observed improved modeling of fibroblast het- 598
erogeneity, an area of growing importance in tumor mi- 599
croenvironment research. Fibroblast subtypes, including 600
cancer-associated fibroblasts (CAFs) and pericytes, are no- 601
toriously hard to distinguish with current marker panels. In 602
our dataset, pericyte identification was hindered by equivo- 603
cal staining of MCAM, a known limitation acknowledged 604
by the original study [29]. Despite this, the Lorentzian 605
model managed to preserve a degree of distinction between 606
fibroblast-related types and other lineages, while still allow- 607
ing for fluid boundaries in the embedding space. This is cru- 608
cial for modeling uncertain or transitional phenotypes with- 609
out forcing hard, discrete classifications where they may not 610
exist biologically. 611

Overall, while both models inevitably produce some 612
misclassifications due to the complexity and noise inher- 613
ent in biological data, the Lorentzian model consistently 614
makes misclassifications that are mostly medically inter- 615
pretable and aligned with current biological understanding. 616
Its embedding space captures transitional phenotypes, lin- 617
eage proximities, and marker expression overlaps in ways 618
that reflect the known fluidity and hierarchy of cell states. 619
In contrast, the Euclidean model tends to impose artificial 620
boundaries and incorrectly groups unrelated cell types, fail- 621
ing to account for the nuanced relationships that define bi- 622
ological systems. This highlights the critical importance of 623
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(a)

(b)
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Figure 2. k-nearest neighbor (kNN) classifier results on the IMC test set. (a) Euclidean representations with labels at level 1, (b) Lorentz
representations with labels at level 1, (c) Euclidean representations with labels at level 3, and (d) Lorentz representations with labels at
level 3

choosing a geometric representation that reflects the latent624
structure of the data: in our case, the Lorentzian hyper-625
bolic model not only improves clustering metrics, but more626
importantly, produces representations that are semantically627
meaningful to domain experts.628

6.1. Limitations629

Although Lorentzian geometry appears to model hierarchi-630
cal cell type relationships more faithfully, we rely on on631
ground-truth class labels in the test set to estimate MI. This632
dependence constrains the applicability of the approach to633
labeled datasets and may limit its generalizability in unsu-634
pervised or real-world clinical settings where annotations635
are scarce or noisy.636

Another key limitation is our reliance on downstream vi-637
sual inspection and qualitative feedback from domain ex-638
perts to validate this structure. A full biological valida-639
tion—e.g., through targeted experimental follow-up—is be-640
yond the scope of this study and remains an important di-641
rection for future work.642

Additionally, while pairwise distance matrices provide643
interpretable and geometry-consistent basis for downstream644
tasks such as kNN classification, computing them be-645
comes computationally intensive as dataset size grows. For646
larger-scale applications, efficient approximation or sam-647
pling strategies would be necessary to maintain scalability.648

7. Conclusions and Outlook649

In this work, we used information-theoretic measures650
to quantify the clustering of unsupervised representation651

learning techniques across geometric spaces equipped with 652
non-equivalent metrics. Specifically, we investigated the 653
suitability of the KSG formulation of MI, which is based 654
on kNN statistics and does not assume any specific geomet- 655
ric structure. This allowed for a metric-agnostic comparison 656
of learned latent spaces. 657

Our qualitative analysis showed that Lorentzian embed- 658
dings yield more compact and semantically coherent clus- 659
ters, especially benefiting minority classes such as En- 660
dothelial Cells in the IMC dataset. Quantitative results re- 661
inforced these insights: MI and conditional MI revealed 662
that Lorentzian distances carry substantially more informa- 663
tion about class labels than their Euclidean counterparts, 664
even when controlling for geometric overlap. Additionally, 665
confusion matrices from kNN classifiers demonstrated that 666
Lorentzian embeddings improve classification accuracy and 667
clustering robustness, particularly for ambiguous or under- 668
represented samples. 669

To do so, we extended the classical [16] MI estimator 670
into a geometry-agnostic framework that operates on dis- 671
tance matrices, enabling fair comparisons across different 672
latent geometries. This formulation also allowed the inte- 673
gration of KNN-based classification to derive interpretable 674
metrics like confusion matrices, accuracy, and ARI. Taken 675
together, our findings provide strong evidence that hy- 676
perbolic (Lorentzian) geometry offers a more expressive 677
and discriminative embedding space for high-dimensional, 678
structured data, especially in regimes of class minority and 679
subtle feature variations. 680
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