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Abstract

Hyperbolic representation learning has shown compelling
advantages over conventional Euclidean representation
learning in modeling hierarchical relationships in data.
In this work, we evaluate its potential to capture bio-
logical relations between cell types in highly multiplexed
imaging data, where capturing subtle, hierarchical rela-
tionships between cell types is crucial to understand tis-
sue composition and functionality. Using a recent and
thoroughly validated 42-marker Imaging Mass Cytometry
(IMC) dataset of breast cancer tissue, we embed cells into
both Euclidean and Lorentzian latent spaces via a fully hy-
perbolic variational autoencoder. We then introduce an
information-theoretic framework based on k-nearest neigh-
bor estimators to rigorously quantify the clustering per-
formance in each geometry using mutual information and
conditional mutual information. Our results reveal that hy-
perbolic embeddings retain significantly more biologically
relevant information than their Euclidean counterparts.
We further provide open-source tools to extend Kraskov-
Stogbauer-Grassberger based mutual information estima-
tion to Lorentzian geodesic spaces, and to enable UMAP
visualizations with hyperbolic distance metrics. This work
contributes a principled evaluation method for geometry-
aware learning and supports the growing evidence of hyper-
bolic geometry’s benefits in spatial biology. Code is avail-
able at: https://github.com/youssefwally/
FlatlandandBeyond

1. Introduction

The encoding of multiscale and hierarchical structure in
representation learning has long been a goal in both su-
pervised and unsupervised frameworks. Previous works,
such as [36], emphasized the importance of representing
and disentangling concepts at different levels of abstraction.
Hyperbolic representation learning has recently emerged as
a powerful paradigm in geometric deep learning, particu-
larly for tasks involving hierarchical, multiscale, or tree-
like structures [3, 24, 31, 36]. Its ability to embed data into
spaces of negative curvature has shown substantial benefits
across a range of applications, from natural language pro-
cessing and knowledge graphs to recommender systems and
computer vision [20, 27, 38]. A growing body of work has
demonstrated that embeddings in hyperbolic spaces can sig-
nificantly outperform their Euclidean counterparts in tasks
such as clustering and classification, particularly with data
that exhibits hierarchical relationships [12, 14, 28].

This geometric advantage becomes especially relevant in
the context of biological data, where hierarchy is often in-
herent but difficult to model in traditional Euclidean frame-
works. One particularly impactful application is its poten-
tial to capture biological relations between cell types from
multiplexed imaging data, such as Imaging Mass Cytome-
try (IMC). IMC enables the simultaneous measurement of
dozens of protein markers at subcellular resolution through
metal-conjugated antibody staining and time-of-flight mass
spectrometry. Since different cell types can be characterized
by distinct combinations of protein co-expression, identi-
fying these patterns—particularly in an unsupervised set-
ting—is essential for discovering new cellular subtypes and
functional states in tissues [21]. The biological systems un-
der investigation are inherently complex and often hierar-



chical, making them a natural candidate for embedding in

hyperbolic spaces [29].

Despite the intuitive and visual appeal of hyperbolic em-
beddings for biological clustering, rigorously analyzing
that they outperform Euclidean alternatives remains a chal-
lenge. Most works rely on qualitative results, with quantita-
tive comparisons often limited or entirely omitted due to the
lack of geometry-agnostic evaluation metrics. In this work,
we address this gap by proposing an information-theoretic
evaluation framework to compare the clustering perfor-
mance of embeddings across geometric spaces, leveraging
mutual information (MI) and conditional mutual informa-
tion (CMI) to quantify the relationship between geometric
distance and cell type labels, enabling principled evalua-
tion independent of clustering assumptions. We show that
hyperbolic (specifically Lorentzian) embeddings better cap-
ture the underlying structure of single-cell IMC data com-
pared to Euclidean embeddings. To support further research
in this area, we also release a software package extending
the Kraskov-Stogbauer-Grassberger (KSG) MI estimator to
operate on Lorentzian geodesic distances, and provide tools
to integrate hyperbolic distances into UMAP visualizations.

In Summary, our main contributions are:

* We introduce an information-theoretic evaluation frame-
work for comparing clustering performance across non-
Euclidean and Euclidean geometries, based on a general-
ized kNN-based mutual information estimator.

* We extend the KSG estimator to work with Lorentzian
geodesic distances, enabling mutual information estima-
tion in hyperbolic space.

* We demonstrate that hyperbolic latent spaces, specifically
Lorentzian variational autoencoders, better capture hier-
archical cell taxonomies identified by IMC.

e We provide quantitative and statistical analysis, includ-
ing McNemar tests and confusion matrix difference visu-
alizations, to show the superiority of hyperbolic embed-
dings over their Euclidean counterparts.

* We release our implementation, including extensions to
UMAP for hyperbolic distance inputs, to support further
research in geometric deep learning for spatial biology.

2. Related work

2.1. Hyperbolic Representation Learning

Hyperbolic spaces, particularly those of constant negative
curvature K < 0, have emerged as a powerful alternative to
Euclidean embedding spaces due to their exponential vol-
ume growth, which allows efficient encoding of hierarchical
and tree-like data structures [3, 24, 31, 36]. The Poincaré
ball model [7, 12, 37], defined as the Riemannian manifold
B" = {z € R" : —K||2||? < 1} with metric tensor
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where T, is the n X n identity matrix, ||z|| is the Euclidean
norm of x, and g, is a conformal scaling of the Euclidean
metric, a factor that depends on the distance from the origin.
This has been widely used in deep learning due to its
conformality and closed-form geodesics. More recently, an-
other hypoerbolic model - the Lorentz model [1, 3, 11] -
has gained traction due to its better principled optimization
frameworks [22]. It embeds points on the upper sheet of the
two-sheeted hyperboloid in Minkowski space R™+!, where
distances are defined via the Lorentzian scalar product

n
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and geodesic distance is given by

dy(z,y) = | K| arcosh <_ <”“°’Ig|>L> .

3. Methodology

While interest in hyperbolic representation learning con-
tinues to grow, quantitatively evaluating clustering perfor-
mance across different geometries remains an open chal-
lenge. Traditional clustering metrics and visualization tech-
niques were designed with Euclidean assumptions, thus of-
ten misrepresent the structure and quality of embeddings in
hyperbolic spaces. In this work, we tackle this problem by
introducing an MI-based, geometry-agnostic methodology.

In the following, we first introduce the Hyperbolic Vari-
ational Autoencoder, which enables learning latent repre-
sentations in Lorentzian space; next, we discuss the limi-
tations of conventional evaluation techniques when applied
to non-Euclidean embeddings; finally, we present fully ag-
nostic evaluation metrics, which provide a robust basis for
comparing embeddings across geometries without relying
on space-specific assumptions.

3.1. Hyperbolic Variational Autoencoder

We adopt the fully hyperbolic convolutional neural network
(HCNN) introduced by [I] as a recent hyperbolic CNN,
benchmarking it against an equivalent Euclidean architec-
ture. Our approach to evaluate their performance to learn
representations that capture underlying biological relation-
ships between cells is completely model agnostic, at the cost
of requiring class labels for evaluation on the test set. For a
controlled comparison, each Euclidean baseline is adapted
to the hyperbolic setting by systematically substituting cor-
responding modules with their hyperbolic counterparts.

The encoder network outputs parameters of a wrapped
normal distribution on the hyperboloid H", and latent sam-
pling is done using gyrovector analogues of the reparame-
terization trick. The decoder operates in hyperbolic space
using Lorentz-equivariant convolutions to map from H"
back to Euclidean observation space.



The loss function consists of a hyperbolic reconstruction
term. Formally, the evidence lower bound (ELBO) [23] £
is given by

L=Eg, (e [log po(z]2)],

with all distributions and distances defined on H".

Variational Autoencoders (VAEs) have been extensively
utilized in hyperbolic neural network (HNN) research to
model latent representations in non-Euclidean spaces [9,
18, 23, 25]. Prior work has demonstrated that HNNs can
produce more expressive embeddings in low-dimensional
regimes [1], making them particularly well-suited for in-
tegration with VAEs. However, to the best of our knowl-
edge, we introduce the first principled approach for quanti-
tatively comparing Euclidean and hyperbolic latent spaces
using standardized metrics.

The authors in [1] provide a HCNN Variational Autoen-
coder (HCNN-VAE) which we use in this work.

3.2. Evaluating Clustering Quality and Visualiza-
tion Across Geometries

Conventional clustering metrics like the Silhouette Score
or Average Distortion Index (ADI) [4, 30, 34] assume
Euclidean properties—linear distances, convexity, and
isotropic neighborhoods. These assumptions fail in hy-
perbolic spaces, where distances grow exponentially and
neighborhoods are curvature-dependent. Even substituting
Euclidean distances with geodesics does not resolve incom-
parability issues due to the indefinite nature of the inner
product and the mismatch with underlying geometric intu-
itions. Lorentzian inner products are indefinite, leading to
undefined or non-interpretable values in some cases. More-
over, many clustering measures rely on uniform notions of
”spread” or proximity that are inconsistent with the geom-
etry of curved spaces. As a result, direct metric compar-
isons between hyperbolic and Euclidean embeddings often
fail to capture meaningful structural differences. To over-
come this challenge and directly compare if learned repre-
sentation align better with biological knowledge in a Eu-
clidean or Lorentzian space, we propose to use kNN based
mutual information estimation as a geometry-agnostic tool
for clustering evaluation. Likewise, visualization tools such
as UMAP [19] and t-SNE [35] are formulated under Eu-
clidean assumptions and often introduce artifacts when ap-
plied to hyperbolic data.

3.3. Fully Agnostic Evaluation Metrics

To circumvent these problems, we adopt a non-parametric
information-theoretic and geometry-agnostic estimator for
mutual information based on k-nearest neighbors (kNN).
Specifically, we use the KSG estimator [17], extended to
operate on general metric spaces — including those induced
by Lorentzian geodesics. This has several advantages:

Geometry-Agnostic MI estimators (e.g., KSG, Local
Non-Uniformity Correction or nearest-neighbor entropy es-
timates) [8, 15, 17] work directly with distances or densi-
ties, agnostic to the underlying space. As long as a dis-
tance measure is defined, MI estimation proceeds without
requiring the geometry to be flat, convex, or isotropic. In
particular, we can: (i) Define kNNs based on Lorentzian or
geodesic distance; (ii) Estimate entropies and conditional
entropies directly; (iii) Evaluate dependency structure be-
tween Euclidean and hyperbolic representations. This al-
lows us to quantify how much information one representa-
tion preserves about the other, without requiring clustering
assumptions or metric preservation [17].

Local Structure Sensitive Unlike Silhouette or ADI,
which summarize global structure, MI estimation via kKNN
is local and distribution-sensitive. Because kNN adapts to
the local density, it can more robustly compare represen-
tations where neighborhood consistency is key — such as
checking whether semantic neighbors in Euclidean space
remain close in hyperbolic embeddings.

Alignment Across Representations Our goal is not
merely to assess clustering, but to compare structural fi-
delity between two spaces. MI offers a principled way to do
this: by estimating I(X;Y"), where X is the Euclidean rep-
resentation and Y is the hyperbolic one, we can determine
how much information one retains about the other. This
is valuable for validating learned representations or dimen-
sionality reduction pipelines between different geometries.

3.3.1. Kraskov-Stogbauer-Grassberger (KSG) estimator

Given random variables X, Y, and a joint sample
{(z,v:)},, the KSG estimator is defined as

I(X5Y) = (k) + ¢ (N)
1

Z[ (0D + 1) + ¥(n <)+1)] )
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where () is the digamma function, nt and ng(f) are the
number of neighbors within the ¢;-ball around z; and y;
respectively, excluding the query point. The radius ¢; is de-
fined as the maximum distance to the k-th nearest neighbor
in the joint space.

To adapt KSG for this setting, we introduce a general-
ized, tensorized implementation that operates on a precom-
puted 3D pairwise distance array D € RPXN*N where p
is the number of variables, and D,, ; ; denotes the distance
between samples ¢ and j along variable v. Crucially, all
distances are computed using the geometry under evalua-
tion: Euclidean norm for baseline model, and Lorentzian
geodesics for hyperbolic one. As all terms are computed
directly from distances, our evaluation is invariant to co-
ordinate charts and dimensionality, making it a robust tool



for comparing clustering quality across geometric embed-
dings. Moreover, our implementation supports CMI esti-
mation:

I(X;Y|Z) = (k) + (N)

1 & . _ _
— 3 2 [#0 + 1)+ o) + 1) - gl +1)
i=1
2

This enables information-theoretic analysis not only of
mutual dependence between variables, but also of how
that dependence is modulated by auxiliary variables—an
important aspect when studying hierarchical structures in
Lorentzian spaces.

4. Experiments

4.1. Datasets
4.1.1. IMC

We use the imaging mass cytometry (IMC) dataset intro-
duced in the recent work by [29]. The study presents a
meticulously curated 42-marker antibody panel optimized
for the phenotypic and spatial characterization of the tu-
mor microenvironment (TME), with a particular emphasis
on cancer-associated fibroblasts (CAFs) in breast cancer.

The IMC technique enables simultaneous measurement
of protein markers at subcellular resolution by labeling an-
tibodies with metal isotopes and quantifying them via time-
of-flight mass spectrometry. In this dataset, tissue sections
from breast cancer patients were stained and imaged, pro-
ducing spatially resolved, single-cell data with high dimen-
sionality and minimal signal overlap—critical for capturing
complex phenotypic landscapes within the TME.

The dataset comprises data from 10 patients, with 3 im-
ages per patient, resulting in a total of 84,852 single-cell
instances. We partitioned the dataset into training, valida-
tion, and test subsets using an 80/10/20 stratified split at the
cell level: 67,881 cells for training, 6,788 for validation, and
16,971 for testing.

To support multiscale analyses, the dataset includes hier-
archical cell type annotations across 4 levels of granularity,
however, we only use the first 3. Level 1 categorizes cells
into broad functional groups: Cancer cells, Immune cells,
Endothelial cells, and Fibroblasts. Level 2 further subdi-
vides Immune cells into finer subtypes, including B cells,
T cells, Macrophages (M cells), NK cells, Other immune
cells, Pericytes, CD16+, CD3+CD16+, CD3+CD20+, and
CD3+CD68+. Level 3 provides an even more detailed view
by resolving Macrophages into M0, M1, M2, and MDP,
and T cells into MemoryT_CD4+, MemoryT_CD8+, Tcyto
(cytotoxic T cells), Th (T helper cells), Treg (regulatory T
cells), Other T cells, CD8+CD4+, and CD8-CD4-.

4.1.2. MNIST

To complement our analysis on biologically complex data,
we also evaluate our method on the widely-used MNIST
dataset of handwritten digits in a more controllable environ-
ment. MNIST [5] serves as a canonical benchmark in rep-
resentation learning and clustering tasks, providing a well-
understood, high-signal testbed for validating geometry-
aware embedding methods.

4.2. Implementation Details

All experiments are conducted using PyTorch [26], and the
hyperbolic models are trained using adaptive Riemannian
optimization techniques [2], as implemented in the Geoopt
library [13], with computations carried out in 32-bit floating
point precision as in [1].

We evaluate vanilla VAEs on our own dataset IMC.
Our comparisons include the HCNN-VAE and Euclidean-
VAE. Specifically, we evaluate the HCNN models using the
wrapped normal distribution in the Lorentz model [23]. Ad-
ditionally, we evaluated our methods on the MNIST dataset,
which exhibited consistent patterns with those observed in
the IMC dataset.

The input to the VAE consisted of individual cells seg-
mented from tissue images, with each of the 35 channels
representing a constant expression value summarizing the
activity of a specific protein marker within that cell. All
analyses are done on the test set.

4.3. Analysis of latent embeddings

To obtain comparable latent representations in both hyper-
bolic and Euclidean geometries, we train the HCNN-VAE
and the Euclidean-VAE independently using reconstruction
loss as a common objective. By aligning the training objec-
tive across both models, we ensure that any observed dif-
ferences in representation quality can be attributed to the
geometry of the latent space rather than differences in opti-
mization. This setup allows us to derive latent embeddings
in hyperbolic and Euclidean spaces under consistent recon-
struction constraints, facilitating a fair and meaningful com-
parison between the two geometries.

The structure of the latent embedding space plays a cen-
tral role in VAEs, as it determines how input features are
encoded and subsequently utilized for generation. To better
understand the geometry of the learned representations, we
perform a qualitative and quantitative analysis of the latent
embeddings inferred by the trained VAEs. Specifically, we
encode the test set images and project the resulting embed-
dings for visualization.

4.3.1. Qualitative Analysis

To visualise the structure of the learned latent represen-
tations, we extract embeddings from both Euclidean and
hyperbolic VAEs, originally 128 space dimensions and 1



time dimension, and project them into two dimensions us-
ing UMAP [19]. For each trained model, we pass the test set
through the encoder to obtain latent vectors, which are sub-
sequently visualized. While UMAP is a widely used tool
for visualizing high-dimensional data, its application to hy-
perboloid spaces is inherently limited due to its underlying
Euclidean assumptions. Specifically, standard UMAP oper-
ates under the premise that input data resides in a Euclidean
space and relies on Euclidean distance metrics to construct
neighborhood graphs. This poses a mismatch when applied
directly to embeddings in the Lorentz model, where dis-
tances are defined with respect to a pseudo-Riemannian ge-
ometry. As a result, applying UMAP to Lorentzian embed-
dings can distort the geometric relationships among points,
leading to misleading visualizations. Unlike previous work,
to address this issue, we manually compute normalised pair-
wise Lorentzian distances between latent embeddings and
leverage UMAP’s precomputed distance mode, allowing us
to preserve the intrinsic geometry of the hyperbolic space
during dimensionality reduction.

4.3.2. Quantitative Analysis

While qualitative analysis through embedding visualiza-
tions provides intuitive insights into structural differences
between Euclidean and Lorentzian spaces, it remains inher-
ently subjective and limited by human interpretation. In
contrast, quantitative analysis offers a robust and objec-
tive framework for evaluating representational quality, us-
ing well-defined statistical and geometric measures. These
metrics enable reproducible, data-driven comparisons that
can generalize across datasets and experimental settings.
To compute MI and CMI using the kNN approach, we
rely on identifying local neighborhoods for each observa-
tion in the dataset based on a user-defined distance met-
ric. For a given point, we calculate the ¢*° (maximum
coordinate-wise) distance to all other points across the rel-
evant subset of variables v, whether from X, Y, or Z,
using a precomputed pairwise distance array. The k-th
smallest such distance defines a radius p around the point,
which is then used to count the number of neighbors ly-
ing within this radius in the joint space (XY Z), and in
the marginal subspaces (XZ, YZ, and Z). These counts
are then plugged into the previous mentioned equations
I(X;Y) and I(X;Y | Z). Importantly, this procedure is
fully agnostic to the ambient geometry because it relies only
on the distance matrix: we can define neighborhoods us-
ing Euclidean distances, Lorentzian distances, or any other
valid metric, allowing for a direct comparison of informa-
tion content across different geometrical representations.
To incorporate categorical variables, such as class la-
bels, into the MI and CMI estimation framework, we de-
fine a discrete distance metric that assigns a fixed, nonzero
distance when two values differ and zero when they are
equal. Specifically, for any categorical variable, we con-

struct a pairwise distance matrix where each entry is either
0 (if the two observations belong to the same category) or
a fixed scalar (typically 1) if they differ. This binary dis-
tance captures label similarity without imposing an artifi-
cial ordering or metric structure on the categories. When
computing neighborhoods for MI or CMI estimation, these
categorical distances are treated on the same footing as con-
tinuous distances: they contribute to the ¢>° distance used
to determine the local radius p for kNN counting. This
approach allows categorical variables to be integrated nat-
urally into the neighborhood-based estimation framework
while preserving their non-metric nature, ensuring accurate
and geometry-agnostic information estimates. Therefore,
the distances fed should be normalised between O and the
assigned nonzero distance.

Finally, by reusing the kNN structure, we can de-
rive empirical neighborhood-based confusion matrices, en-
abling classification-based evaluations that are intrinsically
aligned with the MI estimation process.

5. Results

5.1. Qualitative Results

A visual comparison of embeddings in Lorentzian and Eu-
clidean spaces computed using neighborhood graphs con-
structed based on geodesic distances or euclidean distances
depending on the space geometry, as seen in Fig. 1, reveals
notable structural differences that underscore the represen-
tational advantages of hyperbolic geometry. In Lorentz
space, clusters are consistently more compact, reflecting
the space’s exponential volume growth. This is particu-
larly evident in the IMC dataset, where the minority class
of Endothelial Cells —comprising only 8.40% of the total
data—is more distinctly and tightly clustered in Lorentzian
embeddings, whereas it is more diffuse and harder to sepa-
rate in Euclidean space. This suggests that the Lorentzian
geometry better captures subtle, semantically meaningful
differences even for underrepresented classes.

Additionally, in the MNIST dataset, we observe that cer-
tain instances of the digit 3" occupy a “higher level” in the
Lorentzian embedding space—appearing scattered above
clusters corresponding to digits ”0”, ”6”, and ”8”. This
behavior highlights Lorentz space’s capacity to encode se-
mantic ambiguity: some “3”’s share more visual similarity
with these digits, and hyperbolic embeddings naturally re-
flect this by positioning them in intermediary regions, in
contrast to the flatter separation seen in Euclidean projec-
tions. Moreover, we observe that MNIST Lorentzian em-
beddings are closer to the boundary since they follow a less
hierarchal structure.
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Figure 1. Embeddings in 2D latent space of VAEs. Colors represent ground truth labels.

Table 1. Estimated MI and CMI on IMC and MNIST test sets.

Quantity IMC MNIST
MI(Dy;C) .07 186
MI(Dg;C) 096 178
MI(Dy; Dg) 001  4.03

CMI(DL;C|Dg) 106  0.16
CMI(Dp;C | D) 000  0.09

5.2. Quantitative Results

We quantitatively assess how each geometry—FEuclidean
and Lorentzian—captures class-relevant structure in the
embedding space. Specifically, we estimate the MI be-
tween the Lorentzian distance matrix and the class labels,
I(Dy;C), and between the Euclidean distance matrix and
the class labels, I(Dg; C), where Dy, and D are the pair-
wise distance matrices computed under Lorentzian and Eu-
clidean metrics, respectively, and C' denotes the discrete
class labels. Additionally, we compute the MI between the
two distance matrices themselves, I(Dy; Dg), to under-
stand how much geometric information is shared between
the two representations. To further probe the complemen-
tarity of the geometries, we compute two conditional MI
quantities: I(Dy; C' | Dg), which captures the incremental
information that Lorentz geometry provides about the labels
beyond what is already explained by Euclidean structure,
and I(Dg;C | Dyp), which evaluates the converse. These
quantities provide a more nuanced, information-theoretic
view of the expressive power of each space, revealing not
just which geometry encodes class information more effi-
ciently, but also whether either provides non-redundant sig-
nal beyond the other. The results are shown in Table 1.

The MI results quantitatively confirm the qualitative
observations. The MI between Lorentzian distances and
class labels, I(Dp;C) = 1.07, is considerably higher
than the Euclidean counterpart, I(Dg;C) = 0.96, indi-
cating that the Lorentzian geometry encodes more class-
relevant information. This aligns closely with visual ob-
servations—particularly the greater compactness of clusters

and improved separation of minority classes like the en-
dothelial cells. Furthermore, the MI between Lorentzian
and Euclidean distances is negligible, I(Dy; Dg) = 0.01,
suggesting that the two geometries capture fundamentally
different structural aspects of the data rather than being re-
dundant encodings. The CMI results reinforce this interpre-
tation: conditioning on Euclidean distances does not sig-
nificantly reduce the MI between Lorentzian distances and
class labels, I(Dr;C | Dg) = 1.06, while the reverse
I(Dg;C | Dy) = 0.00 indicates that Euclidean distances
contribute no additional class information beyond what is
already captured by the Lorentzian geometry. Together,
these results underscore the greater expressive power and
discriminative capacity of the Lorentzian space, providing
a robust theoretical foundation for its observed empirical
advantages in embedding structure and cluster quality.

Furthermore, we can leverage the pairwise distance ma-
trices—computed using the appropriate geometry—to train
a k-nearest neighbors (kNN) classifier. This enables us to
evaluate the clustering quality that is agnostic to the embed-
ding space, allowing for a direct comparison between hy-
perbolic and Euclidean representations. Moreover, because
kNN relies solely on local neighborhood structure without
learning additional parameters, this evaluation isolates the
quality of the embeddings themselves, avoiding confound-
ing effects from downstream model capacity. By applying
the same classification framework across geometries, we
obtain comparable accuracy scores, adjusted rand indices
(ARI) [10], and confusion matrices that further quantify the
discriminative structure captured in each latent space.

The confusion matrices and derived metrics, shown in
Fig. 2, support the claim that kNN-based MI estimation
effectively captures the alignment between local distance
distributions and class labels. When evaluating the kNN
classifier on the Euclidean embeddings of the test set, the
overall classification performance is moderate, with an ac-
curacy of 81.01% on level 1 and 64.59% on level 3 and
an ARI of 0.565 and 0.505, respectively. Most notably,
the classifier struggles significantly with the minority En-
dothelial Cells, correctly identifying only 34% of instances,
with 56% misclassified as Fibroblasts. In contrast, when



the same classifier is trained and evaluated using distances
from the Lorentzian space, we observe substantial improve-
ments. The accuracy increases to 86.54% on level 1 and
70.11% on level 3 and the ARI to 0.687 on level 1 and
0.637 on level 3. The most dramatic enhancement is again
seen in the minority Endothelial Cells, with correct iden-
tification improving to 51% and misclassification reducing
to 41%. This aligns well with our qualitative observations
where the Lorentzian embeddings produced more compact
and geometrically meaningful clusters, especially benefit-
ing underrepresented categories like Endothelial Cells. The
Lorentzian space appears to better capture the subtle re-
lational structure of the data, which allows the classifier
to make more confident and accurate decisions even with
sparse class examples.

Further results and statistical tests can be found in the
supplementary material.

6. Discussion

Our findings demonstrate that hyperbolic embedding mod-
els, particularly those trained in Lorentzian space, are not
only effective at capturing clustering structure in high-
dimensional biological data but also align remarkably well
with current medical understanding of cell identities and
phenotypic transitions. The use of Lorentzian geometry al-
lows for a more natural encoding of biological hierarchies,
as reflected in the qualitative inspection of model outputs
and confirmed by domain experts in translation medicine
and IMC imaging. Crucially, these insights are enabled by
our proposed information-theoretic evaluation framework,
which allows for principled, geometry-agnostic comparison
of clustering performance and reveals the superiority of hy-
perbolic embeddings that would otherwise be obscured by
traditional Euclidean-based metrics.

Several apparent misclassifications in our results are in
fact biologically meaningful. Both cell types express high
levels of vimentin, particularly in regions where they are
spatially co-located, making them difficult to distinguish
with current marker panels. Compounding this, CD34 is
also known to be expressed in some type of cancer asso-
ciated fibroblasts [6, 33], which can result in both classifi-
cation ambiguity and protein signal spillover. The model’s
tendency to conflate endothelial cells and fibroblast popu-
lations is thus not a failure of representation but rather a
reflection of biological and technical uncertainty.

A similar observation holds for immune cell types. Im-
mune subtypes such as T cells, NK cells, and macrophages
are known to express overlapping markers in varying de-
grees, and they often occupy shared tissue niches, con-
tributing to lateral signal spillover. For instance, CD16 is
a marker present in both NK cells and monocytes, while
granzyme B expression — necessary for defining NK cells
— can be minimal. These subtleties often challenge both

manual annotation and automated clustering. Our model
reflects this ambiguity, but crucially, the Lorentzian version
tends to organize immune subtypes according to functional
and developmental relationships, rather than merely spa-
tial proximity or surface-level marker expression. Notably,
Memory CD8+ T cells are embedded more closely to other
T cell types, rather than being erroneously pulled toward
CD8+CD4+ double-positive regions [32].

In fact, one of the most striking advantages of hyperbolic
embeddings lies in their capacity to preserve such hierar-
chical relationships. Unlike Euclidean embeddings, which
impose an isotropic geometry ill-suited for tree-like or tax-
onomic structures, hyperbolic spaces naturally accommo-
date such topologies. The Lorentzian model, with its ca-
pacity to represent indefinite inner products and exponen-
tial volume growth, models the nested and branching lin-
eage structure of immune and stromal compartments more
accurately. For example, ambiguous macrophage states
such as MO and MDP are embedded near M1 and M2
macrophages, not with unrelated fibroblast populations —
also a misclassification more commonly observed in Eu-
clidean space. This structural consistency is particularly
important for downstream tasks such as subtype discovery
or treatment response modeling, where the preservation of
biological topology directly impacts interpretability.

We also observed improved modeling of fibroblast het-
erogeneity, an area of growing importance in tumor mi-
croenvironment research. Fibroblast subtypes, including
cancer-associated fibroblasts (CAFs) and pericytes, are no-
toriously hard to distinguish with current marker panels. In
our dataset, pericyte identification was hindered by equivo-
cal staining of MCAM, a known limitation acknowledged
by the original study [29]. Despite this, the Lorentzian
model managed to preserve a degree of distinction between
fibroblast-related types and other lineages, while still allow-
ing for fluid boundaries in the embedding space. This is cru-
cial for modeling uncertain or transitional phenotypes with-
out forcing hard, discrete classifications where they may not
exist biologically.

Overall, while both models inevitably produce some
misclassifications due to the complexity and noise inher-
ent in biological data, the Lorentzian model consistently
makes misclassifications that are mostly medically inter-
pretable and aligned with current biological understanding.
Its embedding space captures transitional phenotypes, lin-
eage proximities, and marker expression overlaps in ways
that reflect the known fluidity and hierarchy of cell states.
In contrast, the Euclidean model tends to impose artificial
boundaries and incorrectly groups unrelated cell types, fail-
ing to account for the nuanced relationships that define bi-
ological systems. This highlights the critical importance of
choosing a geometric representation that reflects the latent
structure of the data: in our case, the Lorentzian hyper-
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Figure 2. k-nearest neighbor (kNN) classifier results on the IMC test set. (a) Euclidean representations with labels at level 1, (b) Lorentz
representations with labels at level 1, (c) Euclidean representations with labels at level 3, and (d) Lorentz representations with labels at

level 3

bolic model not only improves clustering metrics, but more
importantly, produces representations that are semantically
meaningful to domain experts.

6.1. Limitations

Although Lorentzian geometry appears to model hierarchi-
cal cell type relationships more faithfully, we rely on on
ground-truth class labels in the test set to estimate MI. This
dependence constrains the applicability of the approach to
labeled datasets and may limit its generalizability in unsu-
pervised or real-world clinical settings where annotations
are scarce or noisy.

Another key limitation is our reliance on downstream vi-
sual inspection and qualitative feedback from domain ex-
perts to validate this structure. A full biological valida-
tion—e.g., through targeted experimental follow-up—is be-
yond the scope of this study and remains an important di-
rection for future work.

Additionally, while pairwise distance matrices provide
interpretable and geometry-consistent basis for downstream
tasks such as kNN classification, computing them be-
comes computationally intensive as dataset size grows. For
larger-scale applications, efficient approximation or sam-
pling strategies would be necessary to maintain scalability.

7. Conclusions and Outlook

In this work, we used information-theoretic measures
to quantify the clustering of unsupervised representation
learning techniques across geometric spaces equipped with
non-equivalent metrics. Specifically, we investigated the

suitability of the KSG formulation of MI, which is based
on kNN statistics and does not assume any specific geomet-
ric structure. This allowed for a metric-agnostic comparison
of learned latent spaces.

Our qualitative analysis showed that Lorentzian embed-
dings yield more compact and semantically coherent clus-
ters, especially benefiting minority classes such as En-
dothelial Cells in the IMC dataset. Quantitative results re-
inforced these insights: MI and conditional MI revealed
that Lorentzian distances carry substantially more informa-
tion about class labels than their Euclidean counterparts,
even when controlling for geometric overlap. Additionally,
confusion matrices from kNN classifiers demonstrated that
Lorentzian embeddings improve classification accuracy and
clustering robustness, particularly for ambiguous or under-
represented samples.

To do so, we extended the classical [16] MI estimator
into a geometry-agnostic framework that operates on dis-
tance matrices, enabling fair comparisons across different
latent geometries. This formulation also allowed the inte-
gration of KNN-based classification to derive interpretable
metrics like confusion matrices, accuracy, and ARI. Taken
together, our findings provide strong evidence that hy-
perbolic (Lorentzian) geometry offers a more expressive
and discriminative embedding space for high-dimensional,
structured data, especially in regimes of class minority and
subtle feature variations.
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