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ABSTRACT

Generating consecutive images of lip movements that align with a given speech
in audio-driven lip synthesis is a challenging task. While previous studies have
made strides in synchronization and visual quality, lip intelligibility and video
fluency remain persistent challenges. This work proposes FluentLip, a two-stage
approach for audio-driven lip synthesis, incorporating three featured strategies. To
improve lip synchronization and intelligibility, we integrate a phoneme extractor
and encoder to generate a fusion of audio and phoneme information for multi-
modal learning. Additionally, we employ optical flow consistency loss to ensure
natural transitions between image frames. Furthermore, we incorporate a diffu-
sion chain during the training of Generative Adversarial Networks (GANs) to im-
prove both stability and efficiency. We evaluate our proposed FluentLip through
extensive experiments, comparing it with five state-of-the-art (SOTA) approaches
across five metrics, including a proposed metric called Phoneme Error Rate (PER)
that evaluates lip pose intelligibility and video fluency. The experimental results
demonstrate that our FluentLip approach is highly competitive, achieving signif-
icant improvements in smoothness and naturalness. In particular, it outperforms
these SOTA approaches by approximately 16.3% in Fréchet Inception Distance
(FID) and 35.2% in PER.

1 INTRODUCTION

Audio-driven lip synthesis, also known as Talking Face Generation (TFG), generates a coherent
sequence of mouth movements that are consistent with the given audio input. It has become a
prominent topic of research (Jamaludin et al., 2019) due to its wide range of real-world applications,
such as film dubbing (Kim et al., 2018), video bandwidth reduction (Suwajanakorn et al., 2017)
and face animation (Song et al., 2019). Despite its potential, achieving perfect lip synchronization
remains a significant challenge. Hence, it has attracted considerable attention from researchers.

Numerous methods have been proposed to improve synchronization and visual quality in audio-
driven lip synthesis. To enhance synchronization, Wav2Lip (Prajwal et al., 2020) extends Sync-
Net (Chung & Zisserman, 2017) to the RGB space, using a lip sync discriminator to calculate sync
loss and penalize asynchronous lip pose generated. SyncTalkface (Park et al., 2022) calculates sync
loss by measuring lip pose feature distances between synthesized and ground truth videos. Talk-
Lip (Wang et al., 2023a) leverages a pre-trained lip-reading expert (Shi et al., 2022) to guide lip
pose synthesis. Moreover, many approaches, like Wav2Lip, incorporate Generative Adversarial
Networks (GANs) (Goodfellow et al., 2014) to enhance visual quality.

While synchronization and visual quality have been well-studied, less attention has been given to
improving lip pose intelligibility and video fluency. Notably, TalkLip employs a lip-reading ex-
pert to enhance lip pose intelligibility (Wang et al., 2023a). In our work, we address these gaps
by proposing a phoneme-based two-stage approach with optical flow consistency (denoted as Flu-
entLip), specifically designed to improve both lip pose intelligibility and video fluency.

Specifically, we utilize a phoneme extractor to automatically recognize and align phonemes from
the audio and a phoneme encoder to generate the corresponding phoneme embeddings. These em-
beddings are then fused with audio embeddings to serve as the reference input for the lip sync
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discriminator and generator within GANs. To further enhance fluency, we introduce an optical flow
consistency loss that penalizes unnatural transitions between frames during training. Additionally,
we employ a diffusion model (Ho et al., 2020) with a diffusion chain to accelerate convergence and
stabilize the training process (Wang et al., 2023b), ultimately improving visual quality.

The main contributions of this work are summarized as follows.

• We leverage a phoneme extractor and encoder to create a fusion of phoneme and audio
embeddings, improving lip pose intelligibility. Additionally, we develop an optical flow
consistency loss to guide training, ensuring smooth transitions between frames and en-
hancing the naturalness of synthesized videos. Our approach specifically addresses the
underexplored challenges of lip pose intelligibility and video fluency in audio-driven lip
synthesis.

• We integrate a diffusion chain into the training process of GANs, leading to faster conver-
gence and enhancing the stability of the training process. The quality of the synthesized
videos is improved, providing realistic and visually appealing outputs that align closely
with the corresponding audio input.

• We evaluate the effectiveness of our proposed FluentLip with five state-of-the-art (SOTA)
approaches, demonstrating a notable performance of approximately 16.3% in Fréchet In-
ception Distance (FID) and 35.2% in Phoneme Error Rate (PER). Additionally, we intro-
duce a novel metric that leverages insights from the lip-reading expert and the Grapheme-
to-Phoneme (G2P) model to assess the perceptual performance of various approaches.

2 RELATED WORK

2.1 SPEECH-DRIVEN TALKING FACE GENERATION

Talking face generation was first proposed in the 1990s (Yehia et al., 1998), with early approaches
primarily using Hidden Markov Models (HMM) (Bregler et al., 1997). In recent years, deep learn-
ing has emerged as the dominant TFG method, which can be generally classified into intermediate
representation-based approaches and reconstruction-based approaches (Park et al., 2022).

The intermediate representation-based approaches focus on learning facial representations, such as
3D meshes, which are used for facial synthesis. For example, SadTalker (Zhang et al., 2023) gen-
erates 3D-aware face renders for synthesizing talking faces, while Everybody’s Talkin’ (Song et al.,
2022) reconstructs 3D meshes from extracted facial parameters to generate video sequences. How-
ever, these approaches are limited in their generalizability to arbitrary characters, and 3D modeling
often struggles to represent mouth details (Wang et al., 2023a).

In contrast, reconstruction-based approaches primarily rely on end-to-end encoder-decoder architec-
tures, which avoid the limitations of intermediate representations and offer improved mouth details
synthesis. It began with ObamaNet (Kumar et al., 2017), which focused on a specific character.
This was followed by Speech2Vid(Jamaludin et al., 2019) and LipGAN (KR et al., 2019), which
improved generalizability allowing for video generation of arbitrary characters. A breakthrough
came with Wav2Lip (Prajwal et al., 2020), which introduced SyncNet (Chung & Zisserman, 2017)
as a lip sync expert, achieving SOTA synchronization performance. More recent efforts have aimed
at improving visual quality based on the Wav2Lip model. Gupta et al. (2023) pre-trained a VQGAN
model (Esser et al., 2021) to train Wav2Lip in quantized space, improving visual quality to a max-
imum of 4K resolution. Diff2Lip (Mukhopadhyay et al., 2024) uses a diffusion model (Ho et al.,
2020) to replace the Seq2Seq framework in Wav2Lip, further improving visual quality.

At the same time, some works have taken an alternative approach by focusing on issues that impact
human viewing, particularly by integrating generated videos into real-life scenarios. Among the
most novel concerns is lip pose intelligibility. Wang et al. (2023a) is the first to highlight this issue
in the context of TFG, introducing AV-HuBERT (Shi et al., 2022) as a lip-reading expert to improve
lip pose intelligibility and opening a new direction for TFG research.

Despite the increasing number of works in TFG, surprisingly little attention has been given to video
fluency. Although these subtle details may be difficult to perceive with the naked eye, as visual
quality continues to improve, fluency will become a critical issue. To fill this gap, our work intro-
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duces phonemes, commonly used in the Text-to-Speech (TTS) domain, along with a novel metric to
promote assessing lip pose intelligibility. Furthermore, we incorporate optical flow consistency loss
to improve the fluency of generated videos.

2.2 PHONEME-BASED MULTIMODAL LEARNING

Most previous TFG studies employ audio or text as the input driver with their unimodal learning
model. ATVGnet (Chen et al., 2019) and Wav2Lip (Prajwal et al., 2020) employ audio as driven
input, while ParaLip (Liu et al., 2022) and Make-A-Video (Singer et al., 2023) are text-driven.
Since audio varies with different speakers and text may contain homophones, it’s difficult to rep-
resent speech content with just one of them. Phoneme (Zhang et al., 2022) is a more microscopic
concept widely used in the TTS domain, focusing on syllables rather than words. Although some
previous works employ phonemes in TFG, such as Text2video (Zhang et al., 2022) and text-based
editing video (Fried et al., 2019), few of them have extended unimodal to multimodal learning.
Thus, we introduce multimodal learning in our work by combining audio and phoneme as driven in-
puts. Phonemes capture precise speech content, while audio conveys robust and ample information,
helping to judge speech content accurately and ultimately enhancing lip pose intelligibility.

2.3 CONSECUTIVE IMAGE GENERATION

Video generation can be viewed as a process of generating consecutive images in frames, and the
three primary frameworks are prevalent for solving it: Seq2Seq, GANs (Goodfellow et al., 2014),
and diffusion model (Ho et al., 2020). Among these, Seq2Seq serves as the foundational model,
while diffusion models have demonstrated outperforming GANs in image generation (Dhariwal &
Nichol, 2021). Most of the previous TFG works use Seq2Seq to generate frame images, often
coupled with GANs to enhance the visual quality of these images, such as Wav2Lip (Prajwal et al.,
2020). Some approaches use the diffusion model as an image generator, which also achieves good
results, such as Diff2Lip (Mukhopadhyay et al., 2024). Nevertheless, GANs training often comes
up with the mode collapse (Wang et al., 2023b), a challenge that has been overlooked in previous
TFG works that leverage GANs. To mitigate this, Wang et al. (2023b) propose Diffusion-GAN,
which integrates a diffusion model into the GANs training to generate Gaussian instance noises in
high-dimensional data space, effectively improving the stability and overall performance of GANs
training. Inspired by it, our work also employs a diffusion model to stabilize GANs training and
improve its performance.

Unlike naive image generation, consecutive image generation should consider the fluency between
frames. In real-life videos, objects are moving regularly with specific trends, so the pixel points
move more smoothly. Naive image generation methods often neglect this, leading to irregular and
trendless pixel point movement between frames. Optical flow (Horn & Schunck, 1981), a tech-
nique frequently used to measure pixel displacement between two consecutive frames, is estimated
by FlowNet (Dosovitskiy et al., 2015; Ilg et al., 2017) or more popular Recurrent All-pairs Field
Transforms (RAFT) (Teed & Deng, 2020) and is often applied in dynamic image detection. For
example, self-driving automobiles use optical flow to predict the motions and traces of surrounding
objects (Hu et al., 2020). Therefore, we assert that optical flow is an effective measure of video
fluency and design a novel loss function based on optical flow to penalize irregular pixel moves gen-
erated, enhancing video fluency. Note that our work first employs optical flow in the TFG domain.

3 THE PROPOSED FLUENTLIP APPROACH

The two-stage approach that combines a lip sync discriminator and a lip synthesis network has
proved to be quite successful for audio-driven lip synthesis (Prajwal et al., 2020; Gupta et al., 2023;
Mukhopadhyay et al., 2024). Leveraging this powerful framework, we design dedicated fused em-
bedding and optical flow consistency strategies to address lip pose intelligibility and video fluency,
and to improve lip synchronization.

Algorithm 1 outlines the architecture of FluentLip, which adopts a two-stage process. In stage 1,
phonemes are automatically extracted from the audio corresponding to a given video frame, and
aligned precisely by frame. A phoneme encoder generates phoneme embeddings, which are then
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Figure 1: The architecture of the proposed FluentLip approach

fused with the audio embeddings and fed into the lip sync discriminator alongside the corresponding
video embeddings. This fusion of sensory modalities establishes multimodal learning.

In stage 2, the fused audio and phoneme embeddings are used to train the lip generator, together with
video embeddings from stacked frames of both predicted and reference images. The synthesized
facial video is guided by the fixed lip sync discriminator from stage 1 via a sync loss to ensure
precise lip synchronization, and by the visual discriminator of GANs to improve visual quality.

Additionally, an adaptive diffusion model is employed between the generator and visual discrimi-
nator, where a diffusion chain of variable length is applied to gradient propagation to improve the
stability and effectiveness of the training process. To further improve the realism of the synthesized
video, the RAFT model predicts optical flow between frames, applying optical flow consistency loss
to penalize unnatural shifts. All losses are integrated to optimize the training of the whole network.
Below, we provide a detailed description of each core component of the FluentLip approach.

3.1 STAGE 1: LIP SYNC DISCRIMINATOR

Phoneme encoder The phoneme encoder is to effectively encode the phoneme sequence, which is
subsequently concatenated and fused with the audio embedding. The raw phoneme text and its cor-
responding durations are automatically extracted from the reference audio by a pre-trained phoneme
extractor Montreal Forced Aligner (MFA) (McAuliffe et al., 2017), as illustrated in Fig. 1. The
phoneme text sequence is first converted into numerical representations via a global phoneme table.
Given that the length of the phoneme sequences varies across different audio clips, we pad both
the phoneme encodings and their corresponding duration vector to a fixed length before proceeding
with the embedding process. Within the phoneme encoder, positional encoding is employed along-
side a Transformer-based architecture, which improves the model’s ability to capture the sequential
dependencies inherent in the phonemes, ultimately generating high-quality phoneme embeddings.

Let us denote Vraw ∈ Rx and Lraw ∈ Rx as the initial phoneme encoding and duration vector re-
spectively, where x is the irregular length of each phoneme vector. The padded phoneme encoding
and duration vector are denoted as Vpad ∈ RT and Lpad ∈ RT , where T is the fixed phoneme vector
length. The embedded phoneme vector is represented as V ∈ RT×D, where D is the feature dimen-
sion, and L ∈ RT is the normalized duration vector. Additionally, P ∈ RT×D denotes the positional
encoding vector. The sequential concatenation of V , L and P , denoted as Vcat ∈ RT×(D+1+D),
is fed to the Transformer network, which processes the input to generate the penultimate phoneme
embedding Vtm ∈ RT×(D+1+D). Subsequently, a linear layer followed by a batch normalization
layer produces the ultimate phoneme embedding Y ∈ RT×(D×2), which serves as the output. The
whole procedure of phoneme encoding is shown in Fig. 2.

Lip sync discriminator The lip sync discriminator, such as the previously proposed Sync-
Net (Chung & Zisserman, 2017), aims to evaluate the synchronization between a Mel spectrum clip
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Figure 2: The phoneme encoding procedure, with t representing the unit time for duration.

and a lip motion clip by comparing their embeddings under a latent space. Inspired by Wav2Lip (Pra-
jwal et al., 2020), which first applied the lip sync discriminator into the TFG to improve lip synchro-
nization, we also integrate this module, introducing phonemes as a novel addition. The cosine
similarity between the audio and video feature vectors is calculated and used to obtain the sync loss
by computing Binary Cross-Entropy (BCE).

Let us denote y as the target similarity, whose value reflects whether the audio-video pair is origi-
nally matched, and S (m,n) is the cosine similarity function for feature vectors m and n . For Ni

audio-video pairs with audio embedding a and video embedding v , the sync loss is formulated as:

Lsync =
1

Ni

Ni∑
i

[-yi logS(ai, vi)− (1− yi) log (1− S(ai, vi))] (1)

We fuse the phoneme embedding, extracted from the audio and encoded by the phoneme encoder,
with the original audio embedding. This fused embedding replaces the audio-only embedding for
training the lip sync discriminator. Considering the Mel spectrum varies significantly across speak-
ers and even across sentences from the same speaker, phonemes are a relatively stable feature that is
consistent as long as the speech content remains the same, regardless of speaker or style. Thus, com-
bining audio with phonemes leads to more accurate lip sync guidance and more stable lip motion
synthesis. Denoting the phoneme embedding as p, the ultimate sync loss is formulated as:

L
′

sync =
1

Ni

Ni∑
i

[-yi logS(ai + pi, vi)− (1− yi) log (1− S(ai + pi, vi))] (2)

Once training stage 1 is done, the lip sync discriminator is fixed and serves as guidance for training
stage 2. In this stage, the sync loss penalizes the mismatched motion of synthesized lips by compar-
ing the video with the fused audio-phoneme reference, prompting the lip generator to produce more
realistic, synchronized, and fluent lip image frames.

3.2 STAGE 2: LIP SYNTHESIS

Lip synthesis networks Similar to previous studies (Prajwal et al., 2020; Wang et al., 2023a; Gupta
et al., 2023), our lip generator uses a Seq2Seq network for reconstruction, comprising two audio
and video encoders with an additional phoneme encoder and one decoder. Like the lip sync dis-
criminator, the generator processes a triple tuple input, including an audio clip, a phoneme sequence
with durations, and an image frame. The image frame is stacked on the RGB channels with two
images from a video clip, one randomly selected as a full identity reference while the other with its

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

lower half masked to predict the lip pose. The audio and visual elements are fed into a CNN-based
encoder, while the phoneme sequence and duration are processed by the Transformer-based encoder
described in Sec. 3.1, generating three embeddings. These embeddings are combined and passed
to the CNN-based decoder, which generates the output layer by layer. Finally, the predicted face is
separated from the stacked image and applied to the original video. The objective is to synthesize a
facial image that closely resembles the original face but with the lip driven by the reference audio
and phonemes. Given Ni pairs of synthesized facial images v

′
and ground truth images v , we adopt

L1 loss as the reconstruction loss between the synthesized and real facial images, which is calculated
as:

Lrec =
1

Ni

Ni∑
i

|vi − vi
′
| (3)

In our lip synthesis networks, the synthesized images are augmented with noise through an adaptive
diffusion model before being inputted to the visual discriminator, equivalent to the discriminator of
GANs. This diffusion chain is a novel approach shown to improve training stability and efficiency
of the GANs, which will be introduced in the following subsection.

Let us denote D as the visual discriminator in Fig. 1. The generator and discriminator losses caused
by the visual discriminator are defined as:

Lgen =
1

Ni

Ni∑
i

- log(1−D(v
′
)) (4)

Ldisc =
1

Ni

Ni∑
i

[- logD(v)− log(1−D(v
′
))] (5)

The generator loss Lgen propagates gradients back to improve the quality of synthesized facial
images, while the discriminator loss Ldisc strengthens the ability of discriminator to distinguish
between synthesized and real facial images. Together, these losses drive the mutual reinforcement
of the GANs.

Optical flow consistency loss The optical flow consistency loss is commonly used in stereo match-
ing (Lai et al., 2019) and multi-view stereo tasks (Furukawa et al., 2015), comparing luminance
consistency and motion smoothness between consecutive frames. Considering our task is to gener-
ate continuous image frames for fluent video output, we adopt the optical flow consistency loss as
part of the total guidance of the generator to penalize anomalous motion variations among synthe-
sized facial images. Unlike previous works such as Wav2Lip, which simply focus on audio-video
consistency, our approach also ensures video inter-frame consistency. This is especially important
when the original video features significant motion, with frequent changes in lip angle and pose.

To calculate this loss, we estimate the optical flow consistency between synthesized and real image
sequences using a pre-trained RAFT model (Teed & Deng, 2020), applying L1 loss as the optical
flow consistency metric. Let F (m,n) represent the optical flow estimating function for two dynamic
images, m and n . Given Ni pairs of synthesized facial images v

′
and ground truth images v , the

optical flow consistency loss is defined as:

Lcons =
1

(Ni − 1)

Ni∑
i=2

|F (v
′

i, v
′

i−1)− F (vi, vi−1)| (6)

Finally, the total loss for optimizing the lip synthesis networks combines all the aforementioned loss
components and is formulated as follows:

Ltotal = λsync · L
′

sync + λrec · Lrec + λgen · Lgen + λcons · Lcons (7)

where λsync, λrec, λgen and λcons are scale factors that adjust the contributions of loss components.

Adaptive diffusion model Inspired by Diffusion-GAN (Wang et al., 2023b), which proposes a
Gaussian mixture distribution over all diffusion steps in a forward length-adaptive diffusion chain
to improve the stability and efficiency of GANs training, we integrate a similar technique into our
framework. While maintaining the original GANs, we employ an additional diffusion model to
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noise-augment the facial images fed into the discriminator. This leads to enhanced training perfor-
mance, as the generator benefits from its gradients backpropagating through the forward diffusion
chain. The chain’s length is adaptively adjusted by controlling the noise proportion added to both
synthesized and real facial images, based on the discriminator’s performance.

The integration of adaptive diffusion model between the generator and discriminator will be demon-
strated to accelerate convergence and stabilize the training process in Sec. 4.3, marking a successful
practice of injecting instance noise in lip synthesis tasks.

4 EXPERIMENTS

4.1 EXPERIMENTS SETTINGS

Dataset We train our model using the LRS2 dataset (Afouras et al., 2018) and evaluate it on unseen
test sets of both the GRID (Cooke et al., 2006) and LRS2 datasets. The GRID is a large multi-
talker audiovisual sentence corpus whose video files have a resolution of 720×576 and a frame rate
of 25 fps. The audio from each video file is extracted with a maximum amplitude value of 1 and
downsampled to 16 kHz. Sentences of GRID consist of a relatively fixed length of independent
short words. The LRS2 is an open-world audio-visual speech recognition dataset whose video and
extracted audio files have the same parameters of 25fps and 16kHz with GRID, respectively. Unlike
GRID, sentences of LRS2 have more meaningful content of varying lengths, and the scenes are more
diverse and irregular, making LRS2 more reflective of real-life scenarios.

Metrics We evaluate lip synchronization and the quality of synthesized images using widely used
metrics such as FID (Heusel et al., 2017), SSIM (Wang, 2004), LSE-D and LSE-C (Prajwal et al.,
2020). LSE-D and LSE-C are calculated via a pre-trained sync net to measure the synchronization
of lip movements, while FID and SSIM quantitatively assess image quality. In addition, we pro-
posed a novel metric called Phoneme Error Rate (PER), which evaluates lip pose intelligibility and
video fluency. PER is computed by comparing phonemes predicted from synthesized video with
real phonemes extracted from audio, using a pre-trained lip-reading model AV-HuBERT (Shi et al.,
2022). Unlike the Word Error Rate (WER) metric proposed by AV-HuBERT and adopted by Talk-
Lip (Wang et al., 2023a) in TFG, PER focuses directly on phonemes, avoiding the shortcomings of
word-based evaluation, as the same phoneme sequence can represent multiple distinct words.

Baselines We compare our model against several SOTA lip synthesis models, including
ATVGnet (Chen et al., 2019), Wav2Lip (Prajwal et al., 2020), SadTalker (Zhang et al., 2023), Talk-
Lip (Wang et al., 2023a), and Diff2Lip (Mukhopadhyay et al., 2024). ATVGnet is the first model to
use an Attention-based Transformer Network (AT Network) and a Video Generator Network (VG
Network) for generating talking face videos. Wav2Lip introduced the innovative use of a lip sync
net in its reconstruction-based method. SadTalker generates videos by leveraging intermediate 3D
Morphable Models (3DMM) and a 3D-aware face renderer. TalkLip builds upon Wav2Lip by in-
tegrating lip-reading loss and contrastive loss with guidance from a lip-reading expert. Diff2Lip is
the latest SOTA model, adopting a diffusion model instead of the traditional Seq2Seq framework,
achieving superior performance in lip synthesis.

Implementation Details We have trained our models in environment configuration as follows: OS
of Ubuntu20.04, CPU of AMD EPYC 9754 (18v CPU), GPU of RTX4090D (24GB) and RAM of
60GB. Our model has been trained in stage 1 for 90k steps with a batch size of 40, and in stage 2 for
35k steps with the same batch size. To ensure fairness and rigor, we carry out the experiments for
both our model and other approaches under the same setting and on a consistent range of the dataset.

4.2 EXPERIMENTAL RESULTS

Quantitative results The performance comparison of lip synchronization and visual quality of syn-
thesized images of different approaches on the metrics mentioned above is shown in Tab. 1 for both
the GRID and LRS2 datasets. Guided by the diffusion model and optical flow consistency loss,
FluentLip achieves near SOTA performance in terms of visual quality, realism and video fluency,
with excellent synchronization. Our FluentLip attains top scores in FID, SSIM and PER, while also
achieving competitive scores in LSE-D and LSE-C, which reflect lip synchronization.

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Table 1: Quantitative performance comparisons of six different approaches on GRID and LRS2
datasets. PER is excluded from GRID due to the lack of semantic content in its sentences, making
lip-reading predictions unreliable.

Methods
GRID LRS2

LSE-D↓ LSE-C↑ FID↓ SSIM (%)↑ LSE-D↓ LSE-C↑ FID↓ SSIM (%)↑ PER (%)↓

Ground Truth 7.213 6.143 0.00 100.00 6.252 10.427 0.00 100.00 76.83

ATVGnet 7.081 5.523 36.00 90.35 6.109 8.323 29.36 83.76 90.56

Wav2Lip 6.352 6.627 26.71 96.10 5.487 11.516 28.80 91.93 77.92

SadTalker 7.195 5.542 20.08 87.80 5.524 9.792 98.50 55.59 73.91

TalkLip 5.808 7.534 35.38 95.85 5.755 10.561 22.71 92.64 47.31

Diff2Lip 5.710 6.903 33.70 95.37 4.748 11.926 19.83 94.54 82.93

FluentLip 6.258 6.790 21.94 96.25 5.018 11.984 16.93 93.31 46.91

FluentLip ranks second in LSE-D and first in LSE-C on the LRS2 dataset, highlighting the effective-
ness of our phoneme-based multimodal learning strategy for improving synchronization. Moreover,
FluentLip’s standout performance in PER on the LRS2 dataset, especially when compared to models
without the guidance of a lip-reading expert, underscores the model’s superior lip pose intelligibility
and its accurate alignment between audio and lip movements. This further confirms the strength of
our phoneme-based strategy. The performance on the GRID dataset, which is less varied in terms of
background and speech content compared to LRS2, still shows FluentLip’s strengths in synchroniza-
tion, as evidenced by its high LSE-D and LSE-C scores. FluentLip also demonstrates strong visual
quality with leading FID and SSIM scores, reflecting its generalizability across unseen datasets.

Figure 3: Qualitative comparison on five consecutive frames of the video from different approaches

Both FID and SSIM are metrics that measure similarity between images, but in this case, we apply
them to videos. FID evaluates the similarity in aspects such as visual quality, head motion trends,
and lip poses, making it a comprehensive metric of video quality, synchronization and fluency.
FluentLip’s FID is second only to SadTalker’s on the GRID dataset and outperforms others on the
LRS2 dataset, showing the highly competitive performance of FluentLip in balancing visual quality,
synchronization, and fluency. SSIM, which directly measures image realism, places FluentLip ahead
of Wav2Lip and TalkLip on the GRID dataset, and just slightly behind Diff2Lip on the LRS2 dataset,
showing FluentLip’s robustness in producing realistic video. It is worth noting that SadTalker, which
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generates facial animations from a single static image rather than a consecutive video, performs
differently on the more static GRID dataset and on the more dynamic LRS2 dataset. As a result,
SadTalker’s performance is optimized for datasets with fewer facial motions and expression changes,
whereas FluentLip excels in handling more dynamic content like that found in LRS2.

Qualitative results To qualitatively compare the videos generated by FluentLip with those generated
by the other models, we present Fig. 3, which shows five consecutive frames from the videos
generated by FluentLip and the different models using two arbitrarily selected videos and their
corresponding audio from the test set as input. Specifically, the first row displays the ground truth
video, and the second row shows the video frames generated by FluentLip, followed by the video
frames generated by the other models in sequence. Moreover, we select and zoom in on a single lip
pose from each image in Fig. 3 to demonstrate differences in lip poses between FluentLip and the
other models more closely, as shown in Fig. 4.

Figure 4: Single frame picked from Fig. 3 and zoomed in on the lip region

From Fig. 3, it is evident that FluentLip generates the most similar image frames to ground truth
video regarding synchronization and smoothness. When compared to TalkLip and Diff2Lip, Flu-
entLip generates highly consistent images with ground truth, without any abnormal color block in
the video background. Furthermore, in comparison to Wav2Lip and Diff2Lip, FluentLip generates
visible and significantly shaped teeth. Against SadTalker, FluentLip produces clear and natural faces
with coherent and synchronized expressions and motions. Note that the five consecutive frames from
SadTalker appear almost identical, suggesting that the use of 3D may lead to a static expression for
the facial animation.

4.3 ABLATION STUDY

To verify the effectiveness of each proposed key component, we have trained two variants of our
FluentLip model under the following conditions: (1) without the integration of the optical flow
consistency loss (FluentLip (w/o cons)), and (2) without the integration of the diffusion model
(FluentLip (w/o diff)). For fair comparisons, FluentLip and its two variants have undergone the
same training process in stage 1. In stage 2, they have been trained for 35,000 steps with a batch
size of 40.

Training results To intuitively compare the performance of our FluentLip and its two variants during
training, we select the variation of several crucial losses as shown in Fig. 5.

First of all, regarding the diffusion model, FluentLip (w/o diff), which disables the diffusion chain
during the GANs training, exhibits gradual mode collapse in the medium term. Despite losses
getting down quickly at the beginning, the unstable training process leads to poor end results. This
is evident in the downward and subsequent upward trend of losses (a), (b) and (c) in Fig. 5. This
phenomenon is mainly caused by the repression of discriminator, as shown in Fig. 5 (d). However,
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Figure 5: Variation of different losses of FluentLip and its two variants on the training of stage 2

Table 2: Quantitative performance comparisons of FluentLip and its two variants on GRID and
LRS2 datasets.

Methods
GRID LRS2

LSE-D↓ LSE-C↑ FID↓ SSIM (%)↑ LSE-D↓ LSE-C↑ FID↓ SSIM (%)↑ PER (%)↓

FluentLip 6.258 6.790 21.94 96.25 5.018 11.984 16.93 93.31 46.91
FluentLip (w/o cons) 6.825 6.485 23.13 96.22 5.629 11.206 24.60 90.54 66.25
FluentLip (w/o diff) 7.594 5.917 82.48 94.37 5.048 11.928 25.81 91.20 68.37

this issue is effectively mitigated by integrating the diffusion model, as demonstrated by FluentLip
(w/o cons) and FluentLip.

When evaluating the impact of the optical flow consistency loss, FluentLip (w/o cons) consistently
lags behind FluentLip, which utilizes the optical flow consistency loss. This clearly indicates that
the optical flow consistency loss is beneficial for generating facial images with higher synchro-
nization and visual quality. Models that adopt this loss function, such as FluentLip, achieve lower
reconstruction and synchronization losses.

Overall, these results provide strong evidence that all proposed key components positively influence
both the training process and the final outcomes, confirming their effectiveness.

Quantitative results We evaluated our FluentLip and two variants on both the GRID and LRS2
datasets using the same metrics as before. The comparisons across different metrics are presented
in Tab. 2. As shown in the table, the quantitative performances of the three models generally align
with the training results. Specifically, the overall metrics for FluentLip (w/o diff), FluentLip (w/o
cons), and FluentLip exhibit a progressively superior trend, with FluentLip achieving the best re-
sults overall. Notably, the performance of FluentLip (w/o diff) varies significantly across different
datasets, highlighting the instability of GANs, particularly concerning visual quality when the diffu-
sion model is not utilized. The quantitative results, combined with the training findings, demonstrate
that each of our proposed key components positively impacts the results, enhancing lip synchroniza-
tion, visual quality as well as fluency.

5 CONCLUSION

In this work, we have studied the challenges inherent in the talking face generation by propos-
ing the FluentLip approach, which synthesizes facial videos with improved fluency and lip pose
intelligibility. Unlike previous approaches that primarily focus on synchronization and visual qual-
ity, our FluentLip emphasizes lip intelligibility and video fluency by incorporating several novel
components. We introduce optical flow consistency loss and utilize phonemes as input to enable
multimodal learning, while also employing a diffusion model to stabilize the training of GANs.

Extensive experiments demonstrate the effectiveness of the proposed FluentLip approach, show-
casing highly competitive performances in lip synchronization and visual quality compared to five
SOTA approaches from the literature. Notably, FluentLip outperforms these approaches in terms
of fluency. In addition to these computational results, we conduct an in-depth analysis of the key
components to shed light on their roles in the performance of the proposed approach.
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