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Abstract

Sampling conditional distributions is a fundamental task for Bayesian inference
and density estimation. Generative models characterize conditionals by learning a
transport map that pushes forward a reference (e.g., a standard Gaussian) to the
target distribution. While these approaches can successfully describe many non-
Gaussian problems, their performance is often limited by parametric bias and the
reliability of gradient-based (adversarial) optimizers to learn the map. This work
proposes a non-parametric generative model that adaptively maps reference samples
to the target. The model uses block-triangular transport maps, whose components
characterize conditionals of the target distribution. These maps arise from solving
an optimal transport problem with a weighted L2 cost function, thereby extending
the data-driven approach in Trigila and Tabak [45] for conditional sampling. The
proposed approach is demonstrated on a low-dimensional example and a parameter
inference problem involving nonlinear ODEs.

1 Introduction

Characterizing the conditional distribution of parameters X ∈ Rd in a statistical model given an
observation y∗ ∈ Rm is the fundamental task of computational Bayesian inference. For many
statistical models, approximating the posterior µ(x|y∗) ∝ µ(y∗|x)µ(x), given the likelihood µ(y|x)
and prior µ(x), requires sampling approaches, such as Markov-chain Monte Carlo (MCMC) [35].
While MCMC has many consistency guarantees, it is often difficult to produce uncorrelated samples
for high-dimensional distributions with multi-modal behavior.

Generative modeling is a popular framework that avoids some of the drawbacks associated with
MCMC by making use of transportation of measure [26, 37, 31, 22]. Broadly speaking, this approach
finds a transport map T that pushes forward a reference distribution ρ that is easy to sample (e.g.,
a standard Gaussian) to the target distribution µ, which we denote as T♯ρ = µ. This map is often
found by minimizing the KL divergence using the change-of-variables formula, a technique which
first appeared in [43], or by minimizing Wasserstein distances as in [3]. After finding a transport map
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T , one can generate i.i.d. samples in parallel from the target distribution by sampling zi ∼ ρ and
evaluating the map at these samples T (zi) ∼ µ, thereby avoiding the use of Markov chain simulation.

In many inference problems, the likelihood model µ(y∗|x) is computationally expensive or intractable
to evaluate (e.g., it involves marginalization over a set of high-dimensional latent variables) or the
prior density is unavailable (e.g., it is only prescribed empirically by a collection of images). In
these settings, evaluating the posterior density of X|Y = y∗ up to a normalizing constant, and hence
variational inference, is not possible. Instead, likelihood-free (which is also known as simulation-
based) inference [15] aims to sample the posterior distribution given only a collection of samples
(xi, yi) ∼ µ(x, y) drawn from the joint distribution2. To sample conditionals of the joint, [41, 4, 44]
consider the class of transport maps with the lower block-triangular3 structure

T (y, x) =

[
TY(y)
TX (y, x)

]
, (1)

where TY : Rm → Rm and TX : Rm+d → Rd. In particular, Theorem 2.4 in [4] shows that if
the reference density has the product form ρ(y, x) = µ(y)ρ(x) and T♯ρ(y, x) = µ(y, x), then
TX (y∗, ·)♯ρ(x) = µ(x|TY(y∗)) for µ(y)-a.e. y∗. Hence, the map TX can be used to sample any
conditional distribution for X|Y = y∗. Moreover, one can learn maps of the form in (1) given only
samples from the joint distribution [26].

Most approaches for generative modeling (see related work below) find transport maps by imposing
a parametric form for T and learning its parameters by the solution of a (possibly adversarial)
optimization problem [44, 10]. In addition to the challenges of solving high-dimensional optimization,
parametric approaches may introduce bias and can not be easily updated in an online data setting.

Our contribution: We propose a flow that is built from simple elementary maps (Tt) of the block-
triangular form in (1) so that their composition T = TK ◦ · · · ◦ T2 ◦ T1 pushes forward the reference
ρ(y, x) to the joint target distribution µ(y, x). In this work, we take a product reference distribution
for ρ as in [44] and seek the map from ρ(y, x) = µ(y)µ(x) to µ(y, x) = µ(y)µ(x|y). To preserve the
marginal distribution for the observations µ(y), we can take the first map component as TY = Id(y)
so that the composition of the second map components TX

t (y, ·) pushes forward the prior distribution
µ(x) to the conditional µ(x|y) for each y. As compared to parametric approaches that have a fixed
model capacity, our algorithm iteratively adapts the number of maps K in the composition to improve
the approximation until the push-forward constraint is met.

The remainder of this article is organized as follows. Section 3 contains background on optimal
transport (OT) maps. Section 4 shows how to learn a flow composed of block-triangular maps that are
optimal for a weighted L2 cost. Section 5 demonstrates this flow on a Bayesian inference problem.

2 Related work

Monte Carlo methods: A popular family of nonparametric statistical methods for sampling
posterior distributions (often with intractable likelihood functions) given only joint samples is
approximate Bayesian computation (ABC) [40]. To bypass the evaluation of the likelihood, ABC
selects a distance function d : Rm × Rm → R+ (e.g., the L2 norm) and identifies parameters xi, ,
whose synthetic observations yi ∼ µ(·|xi) are close to the true observation y∗ up to a small tolerance
ϵ > 0, i.e., it rejects parameter samples xi that do not satisfy d(yi, y∗) < ϵ. While ABC can
correctly sample the posterior distribution as ϵ→ 0 [6], the large distances between high-dimensional
observations often cause ABC to reject many samples and produce poor approximations [29]. Given
that many statistical models are often computationally expensive to simulate, this calls for strategies
that don’t waste any samples from the joint distribution µ(y, x).

Conditional generative models: Several generative approaches build maps for conditional sam-
pling by directly seeking maps TX parameterized by the conditioning variables y. These mod-
els include conditional normalizing flows [46, 51, 24], conditional generative adversarial net-

2Even if the likelihood and/or prior are intractable, it is often feasible to sample parameters xi ∼ µ(x) from
the prior distribution and synthetic observations yi ∼ µ(·|xi) from the likelihood model.

3We can equivalently consider an upper-triangular structure with a reverse ordering for TX and TY .
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works [27, 1, 23], and conditional diffusion models [7, 38]. These approaches all require a pa-
rameterization for the map or the score function in the case of diffusion models. A way to overcome
a fixed parameterization was proposed in [42] where the first modern version of normalizing flows
(NF) appeared. NFs build a map from the target to a Gaussian reference density in a gradual way
by composing many elementary maps. Rather than finding the overall map at once, one deals with
the more straightforward task of parameterizing simple elementary maps whose composition is
supposed to reproduce the overall map. NFs were then popularized in computer vision [34], where
the elementary maps were chosen to be a combination of relatively simple neural networks and affine
transformations with tractable Jacobians in order to use likelihood-based training methods. Recently,
many more choices of NFs have been proposed; see [31, 22] for reviews on this topic and [19, 30]
for continuous-time variants. Despite their name, modern NF models select a small number of maps
K = O(1) and jointly learn the composed transformation TK ◦ · · · ◦ T1, thereby making NFs similar
to seeking a map with a a fixed parametric capacity, rather than a flow.

Optimal transport: Among all maps that pushforward one measure to another, optimal transport
(OT) select maps that minimize an integrated transportation cost of moving mass [48]. In recent
years, an immense set of computational tools have been developed to find OT maps [32]. For
instance, [16] showed that Sinkhorn’s algorithm is an efficient procedure for computing transport
plans between two empirical measures. The plan can then be used to estimate an approximate
transport map [33]. Alternative approaches directly learn a map that can be evaluated at new inputs
(that are not necessarily in the training dataset) by leveraging the analytical structure of the optimal
Brenier map for the quadratic cost [8]. In particular, [25] parameterized the map T as the gradient of
an input convex neural network [2]. The Brenier map T transports the samples in a single step and
can be estimated by solving an adversarial optimization problem given only samples of the reference
and target measures. This approach was extended in [44] for conditional sampling by imposing
the block-triangular structure in (1) on T , thereby finding the conditional Brenier map [12]. The
requirement to solve challenging min-max problems in these approaches, however, has inspired
alternative methods to find the (conditional) Brenier map that are more stable in high dimensions [47].
In this work, we propose a flow-based approach based on OT that only requires the solution of
minimization problems, such as those appearing in conditional normalizing flows.

3 Background on optimal transport

Given two measures ρ, µ defined on Rn that have densities4, the Monge problem seeks a map
T : Rn → Rn that satisfies T♯ρ = µ and minimizes an integrated transportation cost given in terms of
c : Rn×Rn → R+. Here we will only consider strictly convex cost functions c, such as the quadratic
cost c(z, z′) = 1

2∥z − z
′∥2. Then, the optimal transport map is the solution to the Monge problem

min
T

{∫
c(z, T (z))ρ(z)dz : T♯ρ = µ

}
, (2)

over all measurable functions with respect to ρ. To consider measures for which problem (2) does not
admit a solution, it is common to work with the relaxation introduced by Kantorovich, which seeks
a coupling, or transport plan, γ : Rn × Rn → R+ with marginals ρ and µ. The relaxation solves
minγ∈Π(ρ,µ)

∫
c(z, z′)γ(z, z′)dzdz′, where Π(ρ, µ) denotes all joint probability distributions that

satisfy the constraints
∫
γ(z, z′)dz′ = ρ(z), and

∫
γ(z, z′)dz = µ(z′). The Kantorovich problem is

the continuous equivalent of a linear program and, as such, it admits a dual formulation that is useful
for our purpose. The dual problem consists of solving the maximization problem

max
φ,ψ

∫
φ(z)ρ(z)dz +

∫
ψ(z′)µ(z′)dz′, (3)

among potential functions φ : Rn → Rn and ψ : Rn → Rn satisfying the constraint φ(z) + ψ(z′) ≤
c(z, z′) for all z, z′. It can be shown that the solution (φ,ψ) of (3) is given by the conjugate pair

φ(z) = ψc(z) := min
z′
{c(z, z′)− ψ(z′)}

ψ(z′) = φc(z′) := min
z
{c(z, z′)− φ(z)},

4While this assumption can be relaxed, for ease of exposition we will assume densities exist in this work and
denote them using the notation for the corresponding measures.
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where f c denotes the c-transform of f . One of the most important results of the dual Kantorovich
problem is that, for sufficiently smooth ρ and µ, the solution of the dual problem is equivalent to
the solution of the Monge optimal transport problem; in other words, when ρ and µ are sufficiently
regular, the optimal plan γ is induced by a one-to-one map T . Moreover, one can recover the optimal
transport map solving (2) from the solution of the dual problem for any cost function of the form
c(z, z′) = h(z − z′) with h strictly convex as

T (z) = z − (∇h)−1∇φ(z). (4)
We refer the reader to [39, Chapter 1.3] and [17, Chapter 2] for more details on the solution of the
dual formulation for general costs.

Inspired by the form of the optimizer, [13, 18] show that the optimal potentials (and thus the optimal
map by (4)) can be directly computed by maximizing the objective functional

J (φ) =
∫
φ(z)ρ(z)dz +

∫
φc(z′)µ(z′)dz′. (5)

Moreover, the authors showed that the first variation, i.e., the functional derivative, of the
objective J for the quadratic cost h(z) = 1

2∥z∥
2 at φt can be explicitly computed as

δJ
δφ |φt = ρ(z)− µ(∇φ∗∗

t ) det∇2φ∗∗
t , where φ∗

t denotes the convex conjugate of φt. This sug-
gests that a natural way to solve (5) is via the gradient ascent iterations

φt+1(z) = φt(z) + α
δJ
δφ

∣∣∣∣
φt

, (6)

where α > 0 denotes a step-size parameter. Applying this iteration in practice, however, requires
the functional form of the source and target densities as well as evaluating convex conjugates via
the solution of separate optimization problems. The next section constructs a flow for which we can
more easily evaluate the functional derivatives of the objective functional.

4 Conditional transport via data-driven flows

Given that the optimal map is the gradient of the optimal potential φ, one way to look at the gradient
ascent iteration for the potentials is to take the gradient with respect to z on both sides of (6) in order
to obtain the discrete-time evolution equation

zt+1 = zt − α(∇h)−1∇z
δJ
δφ

∣∣∣∣
φt

, (7)

starting from the identity map z0 = z, or equivalently φ0(z) = ∥z∥2/2 for the quadratic cost. In the
limit of t→∞, the evolution in (7) defines a map z∞(z) pushing forward ρ to µ. The challenge of
considering this dynamic for φ is that computing the functional derivative is not straightforward due
to the presence of convex conjugates in the definition for J , as in (6).

A crucial observation made in Trigila and Tabak [45] shows that one can substitute (7) with

zt+1 = zt − α(∇h)−1∇z
δJt
δφ

∣∣∣∣
φ=const.

(8)

in terms of the time-dependent functional

Jt(φ) =
∫
φ(z)ρt(z)dz +

∫
φc(z′)µ(z)dz′, (9)

where ρt is defined as the pushforward of ρ under the map zt(z). In this case, the functional derivative
evaluated at a constant potential φ, that without loss of generality we take to be zero, was shown
in [45] to be δJt

δφ |φ=0 = ρt(z)− µ(z). This computation avoids the use of convex conjugates as is in
Section 3. A parametric approximation of this functional derivative will be presented in Section 4.2.

As α → 0, the iterations in (8) define a continuous-time flow gradually mapping ρ into µ. The
flow evolves according to the dynamic ż = −(∇h)−1∇z(ρt(z) − µ(z)), where the density ρt for
z(t) satisfies the continuity equation ∂ρt

∂t + div(ρtż) = 0. Section 5 in [45] shows that for strictly
convex cost functions, the squared L2 norm between ρt and µ is strictly decreasing, which shows
that ρt → µ in L2 as t→∞. An important direction of future work is to establish convergence rates
of the flow in (8) under different metrics on probability spaces.
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4.1 Block-triangular maps

With the quadratic cost c, the flow in (8) does not yield maps with a block-triangular structure in (1)
whose blocks can be used for conditional sampling. To find a block-triangular transport map for
z = (y, x), we use a cost function that heavily penalizes mass movements in the y variable while
making almost free movements in the x variable. An example is

cλ(z, z
′) =

1

2
(λ∥y − y′∥2 + ∥x− x′∥2), (10)

with large positive λ. In this case, the optimal map in (4) has the form

T (z) = z −∇λφ(z), (11)

where we define the rescaled gradient associated with the cost cλ as∇λφ(z) = (∂yφ(z)/λ, ∂xφ(z)).
Hence, when λ → ∞ the map in (11) converges to a block-triangular map of the form in (1) with
TY(y) = Id(y) and TX (y, x) = x+ ∂xφ(y, x).
Remark 1. The optimal transport map x 7→ TX (y, x) pushing forward ρ(x) to µ(x|y) for each y
with minimal quadratic cost

∫
∥x− TX (y, x)∥2ρ(y, x)dxdy was coined in Carlier et al. [12] as the

conditional Brenier map. Theorem 2.3 in Carlier et al. [12] shows that this map is monotone and
unique among all functions written as the gradient of a convex potential with respect to the input x.
Remark 2. The cost function in (10) is related to the weighted L2 cost function

∑n
i=1 λi(ε)|zi− z′i|2

for λi(ε) > 0. For weights satisfying λi+1(ε)/λi(ε)→ 0 as ε→ 0 for all i ∈ {1, . . . , d−1}, Carlier
et al. [11] showed that the optimal transport map with respect to this weighted cost converges to the
strictly lower-triangular transport map known as the Knothe-Rosenblatt (KR) rearrangement [21, 36].
The KR map is uniquely defined given a variable ordering. For the purpose of conditional sampling,
it is sufficient to consider block-triangular, rather than triangular, maps, as described in Section 1.
The drawback is that the larger space of block-triangular maps T admits more transformations
satisfying the push-forward condition T♯ρ = µ. The non-uniqueness can be resolved, however, by the
regularization from the transport cost; see Remark 1.

As in the previous section, we now derive a flow where each elementary map has a block-triangular
structure of the form in (1). For the rescaled cost, the flow in (8) has the form zt+1 = zt −
α∇λ(ρt(zt)− µ(zt)). Each update defines an elementary map Tt pushing forward ρt to ρt+1, which
is exactly block-triangular as λ→∞. Moreover, each map is the sum of an identity and a perturbation
given by the rescaled gradient of the maximum ascent direction for Jt. We recall that the functional
derivative of Jt is computed only using the current reference measure ρt and the target µ. The next
section shows how to compute the functional gradient given only samples from ρt and µ.

4.2 Gradient approximation from samples

In this work, we follow Trigila and Tabak [45] and approximate the gradient in the span of a small set
of features Fj : Rn → R where n = d+m with coefficients βj ∈ R, i.e.,

δJt
δφ

∣∣∣∣
φ(z)=0

≈
∑
j

βjFj(z). (12)

The features can include radial basis functions, polynomials, or neural networks; see [20] in the
context of GANs. Here we choose Fj to be radial basis functions centered around a subset of random
points. More details on the parameterization and center selection strategy is provided in Appendix A.

The approximation in (12) corresponds to the parameterization of a potential φ(z) ≈ φβ(z) =∑
j βjFj(z). Given a rich expansion for φ, one can hope to approximate the functional derivative

sufficiently well. Nevertheless, a core advantage of the flow is that the elementary map at each step
does not need to learn the full map pushing forward ρt to µ.

In an empirical setting, our goal is to estimate the potential functions φβ given only i.i.d. samples
{zit}Ni=1 ∼ ρt and {(z′)i}Mi=1 ∼ µ. In practice, samples from the initial product reference ρ0(y, x) =
µ(y)µ(x) can be generated by creating a tensor product set of the joint samples from µ(y, x). We
use the samples to define a Monte Carlo approximation of the objective functional in (9). That is,

Ĵt(φβ) =
1

N

N∑
i=1

φβ(z
i
t) +

1

M

M∑
i=1

φcβ((z
′)i). (13)
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In this work, we find the coefficients βj that maximize the objective in (13) via gradient ascent. To
avoid selecting a step size, we choose the coefficients according to the one-step Newton scheme
β∗ = (∇2

βĴt)−1∇βĴt, where the first and second derivatives are computed at β = 0. The Newton
method captures the local curvature of Jt around the identity map and empirically results in faster
convergence of the flow towards µ. Appendix B shows that the gradient and Hessian of (13) with
respect to β can be easily computed as

∇βj Ĵt
∣∣∣
β=0

=
1

N

N∑
i=1

Fj(z
i
t)−

1

M

M∑
i=1

Fj((z
′)i),

∇2
βj ,βk

Ĵt
∣∣∣
β=0

= − 1

M

M∑
i=1

1

2
⟨∇Fj((z′)i),∇λFk((z′)i)⟩.

After computing the optimal coefficients β∗, we take the rescaled gradient of φβ∗ to obtain a
discrete-time update for the parameterized version of (8). Each update defines one elementary map

zt+1 = Tt(zt) := zt −
∑
j

β∗
j∇λFj(zt). (14)

We remind the reader that for large λ, the elementary map in (14) is mostly acting to update the x
component of the z variable by penalizing transport of the y component. In practice, we implement
the flow by only updating x and setting yt+1 = yt.

We propose to update the samples {zt}Ni=1 until their values are no longer changing; specifically,
we stop the procedure when the L2 norm for the update of all points in (14) is below the threshold
ϵ = 10−6. When the samples stop moving they are approximately equal in distribution to the target
samples from µ. The composition of the resulting elementary maps in (14) defines a generative flow
model pushing forward ρ to µ. Our complete procedure is provided in Algorithm 1.

Algorithm 1 Generative flow model for conditional sampling
1: Input: Joint samples {(yi, xi)}Ni=1 ∼ µ(y, x), features (Fj), termination threshold ϵ
2: Split dataset to create reference ρ(y, x) = µ(y)µ(x) and target µ(y, x) samples
3: Set t = 0 and zit = (yit, x

i
t) to reference samples

4: while samples are still moving:
∑
i ∥zit+1 − zit∥2 > ϵ do

5: Find coefficients β∗ using one-step of Newton’s method
6: Move points using the map in (14)
7: Increment counter t← t+ 1
8: end while

The resulting flow defines an overall block-triangular map that can be used to sample any conditional
of the target measure. By preserving the block-triangular structure in each component, the composed
map after running K steps of Algorithm 1 has the block-triangular form in (1) where the second
component is given by TX (y∗, x) := TX

K (y∗, ·) ◦ · · · ◦ TX
1 (y∗, x) for any conditioning variable y∗.

Theorem 2.4 in [4] shows that the map x 7→ TX (y∗, x) pushes forward µ(x) to µ(x|y∗). Thus, we
can sample any conditional measure after learning the flow by pushing forward (new) prior samples
through the composed map with a fixed argument for the y variable.

We conclude this section by presenting the core advantages of our algorithm. First, it does not require
selecting a fixed number of elementary maps (i.e., flow layers) a-priori, which makes the approach
non-parametric as compared to modern NFs [31]. The algorithm above proceeds until the difference
between the reference and target measures is small according to the selected features, which can be
chosen adaptively at each step. Second, the algorithm only uses minimization steps with respect to
the parameters as compared to approaches that solve min-max problems. In fact, the complexity of
each iteration is at most O(Mdp2 + p3) to update the coefficients, where p is the number of features,
and O(Ndp) to move the sample points. Third, we don’t evaluate the push-forward density through
the map T for training, unlike approaches that use the change-of-variables formula to maximize
the likelihood of the data. Hence, the algorithm does not require specific parameterizations that
guarantee T is invertible and/or det∇T is tractable to evaluate, as in [50, 5]. Lastly, we don’t require
the functional form of the reference density, which permits us to construct maps that push-forward a
general (possibly non-Gaussian) prior measure.
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5 Numerical examples

In this section, we illustrate the flow on a two-dimensional example in Section 5.1, and a Bayesian
inference problem of inferring four parameters of the Lotka–Volterra nonlinear ODE in Section 5.2.

5.1 2D banana distribution

Here we let the parameter and observation beX ∼ N (0, 1) and Y = 0.5X2−1+ϵwith ϵ ∼ N (0, 1),
respectively. The left panel of Figure 1 shows the un-normalized joint density µ(x, y) while the
middle panel shows samples from µ(x, y) in red, and the product reference µ(x)µ(y) in blue. In this
example, we parameterize each elementary map using ten features given by radial basis functions
with centers chosen at random points from the empirical measure for µ(x)µ(y).

3 2 1 0 1 2
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0.00

0.04

0.08

0.12
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0.28

0.32

Figure 1: Left: Contours of the joint density µ(x, y). Middle: 500 i.i.d. samples from µ(x, y) in red
and 104 samples from µ(x)µ(y). Right: Samples from µ(x, y) in red, from µ(x)µ(y) in blue, and
from the pushforward of µ(x)µ(y) through the flow in green. As expected, the pushforward samples
overlap with the joint samples.

The right panel of Figure 1 plots the samples generated by pushing forward the product reference
samples through the composed map T in green. At the end of the algorithm, we observe the push-
forward condition T♯ρ = µ is satisfied with the close match between the green and red samples. By
Theorem 2.4 in [4], we can use the learned map to sample the conditional distribution µ(x|y∗) for
any y∗. Figure 2 plots the approximate density (using a kernel density estimator) of 104 push-forward
samples TX (y∗, xi) given xi ∼ µ(x) for the conditioning variable y∗ = 2. In comparison to a
conditional kernel density estimator from joint samples of µ(y, x), we observe close agreement
between the mapped samples and the true multi-modal conditional density for µ(x|y∗).
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Pushforward Mapping
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Figure 2: The blue lines in the first three panels represent the true conditional density for µ(x|y∗ = 2).
The red lines display a Nadaraya-Watson [28, 49] conditional kernel density estimator (CKDE) of
the approximation to µ(x|y∗ = 2) using samples obtained from: the pushforward of µ(x)µ(y) (i.e.,
the green points in Figure 1) in the first panel, the joint distribution (i.e., the red points in Figure 1)
in the second panel, and the push-forward of µ(x) via the learned flow x 7→ T (y∗ = 2, x) in the
third panel. The fourth (right) panel compares the error between the true conditional density and the
CKDE of the first panel in blue and the CKDE of the third panel in red (i.e., the method proposed in
this work). We observe that the flow provides a more accurate conditional approximation than kernel
estimators given the same joint samples. In particular, the L∞ error relative to the three conditional
density estimates of the three panels above, from left to right, are 1.07, 1.19, and 0.37, respectively.
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5.2 Lotka–Volterra dynamical system
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Figure 3: Species populations over time
(solid lines) for the true parameter x∗. Cir-
cles are observations y∗ from the true tra-
jectory; triangles are before adding noise.

Next, we apply Algorithm 1 to estimate static parameters
in the Lotka–Volterra population model given noisy re-
alizations of the states over time. The model describes
the populations p = (p1, p2) ∈ R2

+ of prey and preda-
tor species, respectively. The populations p(t) for times
t ∈ [0, T ] solve the nonlinear coupled ODEs

dp1(t)

dt
= αp1(t)− βp1(t)p2(t),

dp2(t)

dt
= −γp2(t)− δp1(t)p2(t),

(15)

with the initial conditional p(0) = (30, 1), where X =
(α, β, γ, δ) ∈ R4 are unknown parameters. The param-
eters are initially distributed according to a log-normal
prior distribution given by log(X) ∼ N (µ, 0.5I4) with
µ = (−0.125,−0.125,−3,−3). We simulate the ODE
for T = 20 time units and observe the state values every ∆tobs = 2 time units with independent
and additive log-normal noise, i.e., log(Yk) ∼ N (p(k∆tobs), σ

2I2) for k = 1, . . . , 9 with σ2 = 0.1.
Figure 3 displays the two states p(t) for the parameter x∗ = (0.83, 0.041, 1.08, 0.04) and an obser-
vation y∗ ∈ R18 drawn from the likelihood model µ(·|x∗) in circles. The main reason for choosing
this model is that the likelihood is known in closed form and hence the results can be compared to
an MCMC sampling procedure, the gold standard for solving Bayesian inference problems. In this
experiment, we learn the flow using M = 1000 samples from the joint distribution.

Figure 4 compares one and two-dimensional projections of the approximate posterior distribution for
the parameters obtained with the flow (left) and with MCMC (right). The red vertical line represents
the exact value of the parameters x∗ used to generate the trajectory in Figure 3. We observe close
agreement between the approximate samples, as well as similar mean squared errors between x∗
(the red line) and the posterior means of 0.52 and 0.50 using the flow and MCMC, respectively.
Additional numerical results with a comparison of the posterior predictive distributions of both
methods is presented in Appendix C.

Figure 4: Left: approximate posterior samples generated by mapping 104 points from the prior using
the map computed from the flow. Right: 104 MCMC samples. Both simulations are compared to the
true parameters x∗ (in red) that generated the observations y∗ in Figure 3.

6 Conclusions and future work

This work presents a generative flow model for Bayesian inference where posterior samples are
generated by pushing forward prior samples through a composition of maps. Finding the flow is
entirely data-driven and it is based on the theory of optimal transport (OT) with a weighted L2 cost
function. This cost yields transport maps with a block-triangular structure, which is suitable for

8



conditional sampling. As compared to state-of-the-art OT approaches for conditional sampling that
solve challenging min-max optimization problems, the flow is is constructed using a sequence of
elementary maps that are found using only minimization and gradually push forward the prior to
the posterior. Future work includes the possibility of enlarging the map feature space by means of
projections into reproducing Kernel Hilbert spaces in a similar spirit to [14], as well as adapting the
features to exploit low-dimensional structure between the reference and target distributions as in [9].
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A Map parametrization and simulation details

In this section we discuss our parameterization for the elementary potential functions φβ(z) =∑
j βjFj(z) that are used in the numerical experiments of Section 5.

In this work we selected the features (Fj) to be inverse multiquadric kernels or radially-symmetric
kernels of the form

F (r) = r erf
( r
α

)
+
αe−(r/α)2

√
π

(16)

where α ∈ R>0 is the bandwidth and r = ∥z − zc∥ is the radius for some center point zc ∈ Rn. This
choice aligns with the approach presented in the first modern version of normalizing flows [42], in
which the features apply local expansions or contractions of the sample points around the centers zc.

Once the functional form of the kernels is prescribed, the elementary potential function is completely
defined by the choice for the bandwidths α and the centers zc. In our numerical experiments, we
selected the centers uniformly at random from the samples zit ∼ ρt of the reference distribution
and the samples (z′)i ∼ µ of the joint (target) distribution. For problems with high-dimensional
parameters and observations, such as the Lotka-Volterra example in Section 5.2, we found that
adapting the random sampling for the centers improves the speed of convergence of Algorithm 1. In
particular, we selected the observation location yc of the center points zc = (yc, xc) to be near the
particular observation of interest, y∗, more frequently. This choice refines the map pushing forward
ρt(y, x) to µ(y, x) around y∗, which is the map used to sample the target conditional µ(x|y∗).
We chose the bandwidth α for each feature according to the rule of thumb described in [45]. That is,

α =

(
np

(
1

ρ̃(zc)
+

1

µ̃(zc)

))1/d

(17)
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where ρ̃ and µ̃ are kernel density estimates (KDE) of the reference and the target distributions,
respectively. The rationale behind (17) is to have kernels with a larger bandwidth where there are
fewer samples of the reference and the target distributions, and with a smaller bandwidth that can
finely resolve the density in regions of the domain where the distributions are more concentrated.
Given that the kernel estimator is only needed to compute the scalar bandwidth, they are not meant to
be very accurate and updated at every step of the algorithm. In this work, the target density is time
independent and hence its KDE is computed only once at the beginning of the procedure. The KDE
of the reference distribution is instead updated after every 200 steps of the algorithm. The scalar
np ∈ R>0 is a problem dependent parameter that can be either set to a fixed value (e.g., np = 0.01 in
our experiments) or selected via cross-validation.

To reduce the impact of the specific bandwidth adopted in our procedure, we further multiplied the
value of α in (17) by a time dependent constant m(t) ∈ R>0, which decreases as the algorithm
advances. In particular, at the beginning of the experiment, the radius of influence of the kernels (i.e.,
features that result in local expansions or contractions) is set to be large in order to cover the entire
domain containing the samples of µ(x)µ(y). As the simulation advances, we gradually decrease the
value of m(t) to produce a more localized action of the elementary maps. In our experiments we
chose

m(t) = 1 +
m0

1 + e(t−tmax)/σ

with the parameters taken to be m0 = 10, and σ = tmax/10, where tmax is the maximum number of
steps we allow the algorithm to complete.

Lastly, while the maps found using Algorithm 1 can be used to sample any conditional distribution,
we suggest augmenting the reference samples when one is interested in the conditional distribution
corresponding to one realization of the conditioning variable y∗. In particular, we include markers
{(xi, y∗)}Ni=1 with xi ∼ µ(x) in the set of reference ρ0 samples. The push-forward of these additional
samples immediately provides samples from the desired conditional distribution µ(x|y∗).

B Derivation of the Jacobian and Hessian

In this section we derive expressions for the Jacobian and Hessian of the empirical objective functional
Ĵt in (13) with respect to the parameters (βj) of the elementary potential function φβ . To compute
these derivatives, we first derive an expression for the c-transform of the parametric potential function
appearing inside the objective functional.
Proposition 1. For the cost function cλ(z, z

′) = 1
2 (λ∥y − y′∥2 + ∥x − x′∥2), let φcβ(z

′) =

minz{cλ(z, z′)− φβ(z)} be the c-transform of the differentiable function φβ(z) : Rn → R where
φβ(z) =

∑
j βjFj(z). Then, φcβ has an second-order asymptotic expansion in β given by

φcβ(z
′) = −

∑
j

βjFj(z
′)− 1

2

∑
j,k

βjβk⟨∇Fj(z′),∇λFk(z′)⟩+O(∥β∥3). (18)

Proof. Let z̄ be the optimal z that attains the minimum value for the c-transform, i.e., φcβ(z
′) =

cλ(z̄, z
′) − φβ(z̄). For a differentiable function φβ , the optimal value z̄ satisfies ∇zcλ(z̄, z′) −

∇zφβ(z̄) = 0. Thus, for the parametric expansion φβ(z) =
∑
j βjFj(z) we have the condition

z̄ = z′ +
∑
j βj∇λFj(z̄), which defines an implicit function for z̄ in terms of z′.

Substituting the expression for z̄ in the c-transform gives us

φcβ(z
′) =

1

2

λ∥∥∥∑
j

βj∇yFj(z̄)/λ
∥∥∥2 + ∥∥∥∑

j

βj∇xFj(z̄)
∥∥∥2

−∑
j

βjFj(z̄), (19)

where z̄ depends on z′. A first-order Taylor series expansion of each feature Fj in the first term
of (19) around z′ yields the following second-order asymptotic expansion in the coefficients β

λ
∥∥∥∑

j

βj∇yFj(z̄)/λ
∥∥∥2 + ∥∥∥∑

j

βj∇xFj(z̄)
∥∥∥2

=
∑
j,k

βjβk⟨∇yFj(z′),∇yFk(z′)/λ⟩+
∑
j,k

βjβk⟨∇xFj(z′),∇xFk(z′)⟩+O(∥β∥3).
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Similarly, a first-order Taylor series expansion of each feature Fj in the second term of (19) around
z′ yields the asymptotic expansion∑

j

βjFj(z̄) =
∑
j

βjFj(z
′) +

∑
j,k

βjβk⟨∇Fj(z′),∇λFk(z′)⟩+O(∥β∥3).

Substituting these expansions in (19), we arrive at the second-order expansion in (18) after collecting
the quadratic terms in β and using the definition of the rescaled gradient.

Using the result of Proposition 1, a second-order asymptotic expansion in β for the empirical objective
functional is given by

Ĵt(φβ) =
1

N

N∑
i=1

∑
j

βjFj(z
i
t)

−
1

M

M∑
i=1

∑
j

βjFj((z
′)i) +

1

2

∑
j,k

βjβk⟨∇Fj((z′)i),∇λFk((z′)i)⟩+O(∥β∥3)

 .

Computing the first and second derivatives of the functional above with respect to each coefficient
and evaluating the result at β = 0 results in the Jacobian and Hessian presented in Section 4.

C Additional numerical results for the Lotka–Volterra model

For the flow and MCMC approximations, we obtain the 30 most significant posterior samples, which
are closest to the empirical posterior mean in the Euclidean norm. For each parameter, we find the
corresponding state trajectories by solving the ODEs in (15). The states obtained with the flow and
with MCMC are compared in the left and right of Figure 5 respectively. The posterior predictive states
give a visual representation of the uncertainty arising from estimating the true parameter x∗ given
noisy observations. As expected, the MCMC method displays lower uncertainty in the trajectories
due to its use of the exact likelihood model. This is particularly noticeable for larger values of the
populations p1, p2 where the effect of the noise on the sampled data (i.e., the difference between the
circle and triangle markers in Figure 3) has a larger effect than during time intervals where p1 and p2
are nearly constant.
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Figure 5: Populations as a function of time obtained by solving the ODE model with the parameter
posterior samples displayed in Figure 4 from the flow model (left) and MCMC (right). The parameters
were chosen to be the 30 closest values (in the Euclidean norm) to the empirical posterior mean.

13


	Introduction
	Related work
	Background on optimal transport
	Conditional transport via data-driven flows
	Block-triangular maps
	Gradient approximation from samples

	Numerical examples
	2D banana distribution
	Lotka–Volterra dynamical system

	Conclusions and future work
	Map parametrization and simulation details
	Derivation of the Jacobian and Hessian
	Additional numerical results for the Lotka–Volterra model

