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Abstract
We study universal properties in real-world com-
plex and synthetically generated datasets. Our
approach is to analogize data to a physical sys-
tem and employ tools from statistical physics and
Random Matrix Theory (RMT) to reveal their
underlying structure. Examining the local and
global eigenvalue statistics of feature-feature co-
variance matrices, we find: (i) bulk eigenvalue
power-law scaling vastly differs between uncorre-
lated Gaussian and real-world data, (ii) this power
law behavior is reproducible using Gaussian data
with long-range correlations, (iii) all dataset types
exhibit chaotic RMT universality, (iv) RMT statis-
tics emerge at smaller dataset sizes than typical
training sets, correlating with power-law conver-
gence, (v) Shannon entropy correlates with RMT
structure and requires fewer samples in strongly
correlated datasets. These results suggest natu-
ral image Gram matrices can be approximated by
Wishart random matrices with simple covariance
structure, enabling rigorous analysis of neural net-
work behavior.

1. Introduction
Natural, or real-world, images are expected to follow some
underlying distribution, which can be arbitrarily complex,
and to which we have no direct access to. This distribution
could have infinitely many nonzero moments, with varying
relative importance compared to one another. In practice,
we only have access to a very small subset of samples from
the underlying distribution, which can be parameterized
as X ∈ Rd×M , where d is the dimension of each image
vector and M is the number of samples. The first moment
of the data can always be set to 0, since we can remove
the mean from each sample, without losing information
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regarding the distribution. The second moment, however,
cannot be set to 0, and holds valuable information. This
observation motivates the study of the empirical covariance
(Gram) matrix, ΣM = 1

MXXT .

The properties of ΣM in real world data are entirely un-
known a priori, as we do not know how to parameterize the
process which generated natural images. Nevertheless, in-
teresting observations have been made. Empirical evidence
shows that the spectrum of ΣM for various datasets can be
separated into a set of large eigenvalues (O(10)), a bulk
of eigenvalues which decay as a power law λi ∼ i−1−α

(Ruderman, 1997; Caponnetto and De Vito, 2007) and a
large tail of small eigenvalues which terminates at some fi-
nite index n. Since the top eigenvalues represent the largest
overlapping properties across different samples, these are
not simply interpreted without more information on the un-
derlying distribution. The bulk of the eigenvalues, however,
can be understood as representing the correlation structure
of different features amongst themselves, and has been key
to understanding the emergence of neural scaling laws (Ka-
plan et al., 2020; Maloney et al., 2022).

In this work, we study both the power law behaviors present
in natural datasets, and their spectral statistics, with the goal
of obtaining a universal, analytically tractable model for real
world Gram matrices, regardless of their origins. While this
may not be feasible for any ΣM , fortunately, the standard
datasets used today are high dimensional and contain many
samples, a ubiquitous regime found in complex systems,
and typically studied using Random Matrix Theory (RMT).

RMT is a powerful tool for describing the spectral statistics
of complex systems. It is particularly useful for systems
that are chaotic but also have certain coherent structures.
The theory predicts universal statistical properties, provided
that the underlying matrix ensemble is large enough to suffi-
ciently fill the space of all matrices with a given symmetry,
a property known as ergodicity (Guhr et al., 1998). Ergod-
icity has been observed in a variety of systems, including
chaotic quantum systems (Bohigas et al., 1984; Mehta, 1991;
Pandey, 1983), financial markets, nuclear physics and many
others (Plerou et al., 1999; Brody, 1981; Efetov, 1997). To
demonstrate that a similar universal structure is also ob-
served for correlation matrices resulting from datasets, we
will employ several diagnostic tools widely used in the field
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of quantum chaos. We will analyze the global and local
spectral statistics of empirical covariance matrices gener-
ated from three classes of datasets: (i) Data generated by
sampling from a normal distribution with a specific corre-
lation structure for its features, (ii) Uncorrelated Gaussian
Data (UGD), (iii) Real-world datasets composed of images,
at varying levels of complexity and resolution. Our research
aims to answer the following questions:

• Is a power-law spectrum a universal property across
real-world datasets?; what determines the scaling
exponent and what properties should an analytical model
of the dataset have in order to follow the same behavior?

• What universal properties of datasets can be gleaned
from the empirical covariance matrix and how are they
related to local and global statistical properties of RMT?

• How to quantify the extent to which complex data is
well characterized by its Gram matrix?

• What, if any, are the relations between datasets power
laws, entropy and statistical chaos diagnostics?

Our primary contributions are:

1. We find that power-law spectra appears across various
datasets. It is governed by a single scaling exponent
α, and its origin is the strength of correlations in the
underlying population matrix 1 . We accurately recover
the behavior of the eigenvalue bulk of real-world datasets
using Wishart matrices with the singular values of a
Toeplitz matrix (Gray, 2006) as its covariance. We dub
these Correlated Gaussian Datasets (CGDs).

2. We show that generically, the bulk of eigenvalues’ dis-
tribution and spacings are well described by RMT pre-
dictions, verified by diagnostic tools typically used for
quantum chaotic systems. This means that the CGD
model is a correct proxy for real-world data covariances.

3. We find that the effective convergence of the empirical
covariance matrix as a function of the number of sam-
ples correlates with the corresponding RMT description
becoming a good description of the statistics and the
eigenvalues power law decay.

4. The Shannon entropy is correlated with the local RMT
structure and the eigenvalues behavior, and is substan-
tially smaller in strongly correlated datasets compared to
uncorrelated data. Additionally, it requires fewer samples
to reach the distribution entropy.

1There are systems which display multiple correlation scales,
showing several bulk exponents (Levi and Oz, 2023).

2. Background and Related Work
Neural Scaling Laws Neural scaling laws are a set of em-
pirical observations that describe the relationship between
the size of a neural network, dataset, compute power, and its
performance. These laws were first proposed by Kaplan et al.
(2020) and have since been confirmed by a number of other
studies (Maloney et al., 2022; Hernandez et al., 2022) and
studied further in (Ivgi et al., 2022; Alabdulmohsin et al.,
2022; Sharma and Kaplan, 2022; Sorscher et al., 2022; De-
bowski, 2023; Fernandes et al., 2023). The main finding of
neural scaling laws is that the test loss of a neural network
scales as a power-law with the number of parameters in the
network. This means that doubling the number of param-
eters roughly reduces the test loss by 2α. However, this
relationship does not persist indefinitely, and there is a point
of diminishing returns beyond which increasing the number
of parameters does not lead to significant improvements in
performance. One of the key challenges in understanding
neural scaling laws is the complex nature of the networks
themselves. The behavior of a neural network (NN) is gov-
erned by a large number of interacting parameters, making
it difficult to identify the underlying mechanisms that give
rise to the observed scaling behavior, and many advances
have been made by appealing to the RMT framework.

Random Matrix Theory RMT is a branch of mathemat-
ics that was originally developed to study the properties of
large matrices with random entries. It is particularly suited
to studying numerous realizations of the same system, where
the number of realizations M → ∞, the dimensions of the
system d → ∞, and the ratio between the two tends to
a constant d/M → γ ≤ 1, γ ∈ R+. Results from RMT
calculations have been applied to a wide range of problems
in Machine Learning (ML), beyond the scope of neural
scaling laws, including the study of nonlinear ridge regres-
sion (Pennington and Worah, 2017), random Fourier feature
regression (Liao et al., 2021), the Hessian spectrum (Liao
and Mahoney, 2021), and weight statistics (Martin and Ma-
honey, 2019; Thamm et al., 2022). For a review of some of
the recent developments, we refer the reader to Couillet and
Liao (2022) and references therein.

Universality Considerable work has been dedicated to the
concept of universality, i.e. that certain features are shared
between seemingly disparate systems, when the systems are
sufficiently large. For instance, spectra that are generated
by different dynamical processes may have similar distribu-
tions (Bao et al., 2015; Baik et al., 2004; Hu and Lu, 2022;
Bai and Silverstein, 2010). Universality is powerful since
it often happens that System A’s complex structure is diffi-
cult to analyze, and can be explained by system B, which
lies in the same universality class, and is much easier to
study. In our work, system A represents real-world datasets
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CGD (0.5)
UGD (-1)

Figure 1. Left: Scree plot of Σij,M for several different vision datasets, as well as for UGD and a CGD with fixed α. Here, the number
of samples is taken to be the entire dataset for each real-world dataset, and M = 50k for the gaussian data, where we set c = 1. We see a
clear power law for the eigenvalue bulk as λi ∝ i−1−α where all real-world datasets display α ≤ 1/2. Right: The power-law exponent α
value can be tuned from α = 1/4 to α = −1 by corrupting the FMNIST dataset with a varying amount of normally distributed noise.

with unknown statistics generated from a complex process,
while system B is our CGD, whose Gram matrix is a simple
Wishart matrix. The fact that real world datasets fall in
the same universality class as CGD allows us to replace its
complex covariance matrix by the simple CGD one, while
retaining the information encoded in its spectrum.

3. Correlations and power-law spectra
In this section, we analyze the feature-feature covariance
matrix for datasets of varying size, complexity, and origin.
We consider real-world as well as correlated and uncorre-
lated gaussian datasets, establish a power-law decay of their
eigenvalues, and relate it to a correlation length.

3.1. Feature-Feature Empirical Covariance Matrix

We consider the data matrix X = Xia ∈ Rd×M , con-
structed of M columns, each corresponding to a single
sample, composed of d features. In this work, we focus on
the empirical feature-feature covariance matrix, defined as

Σij,M =
1

M

M∑
a=1

XiaXaj ∈ Rd×d . (1)

Intuitively, the correlations between the different input fea-
tures, Xia, should be the leading order characteristic of the
dataset. For instance, if the Xia are pixels of an image, we
may expect that different pixels will vary similarly across
similar images. Conversely, the mean value of an input fea-
ture is uninformative, and so we will assume that our data is
centered in a pre-processing stage.

A random matrix ensemble is a probability distribution on
the set of d × d matrices that satisfy specific symmetry
properties, such as invariance under rotations or unitary

transformations. In order to study Eq. (1) using the RMT
approach, we define Σij,a as a single sample realization of
the population random matrix ensemble Σij , and thus Σij,M

is the empirical ensemble average, i.e. ΣM = ⟨Σa⟩a∈M =
1
M

∑M
a=1 Σa approximating the limits of M → ∞, d → ∞.

If M and d are sufficiently large, the statistical properties of
ΣM will be determined entirely by the underlying symmetry
of the ensemble. We refer to this case as the "RMT regime".

3.2. Data Exploration

We study the following real-world datasets: MNIST (LeCun
et al., 2010), FMNIST (Xiao et al., 2017), CIFAR10 (cif),
Tiny-IMAGENET (Torralba et al., 2008), and CelebA (Liu
et al., 2015) (downsampeld to 109× 89 in grayscale). We
proceed to center and normalize all the datasets in the
pre-processing stage, to remove the uninformative mean
contribution. The uncorrelated gaussian data is repre-
sented by a data matrix whose elements Xia ∈ R, where
each column is drawn from a jointly normal distribution
N (0, Id×d). We then construct the empirical covariance
matrix ΣM = 1

M

∑M
a=1 XiaXaj ∈ Rd×d. To generate cor-

related gaussian data, we repeat the same process, changing
the sample distribution to N (0,Σd×d), where we choose a
specific form for Σ which produces feature-feature correla-
tions and includes a natural cut-off scale, as

ΣToe
ij = Sij , Tij = Iij + c|i− j|α = (U†SV )ij , (2)

where α, c ∈ R. The matrix ΣToe
ij is a positive semi definite

diagonal matrix of singular values S constructed from T , a
full-band Toeplitz matrix. The sign of α dictates whether
correlations decay (negative) or intensify (positive) with
distance along a one-dimensional feature space2.

2Correlation strength which grows with distance is a hallmark
of some one-dimensional physical systems, such as the Coulomb
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3.3. Correlations Determine the Spectral Noise to Data
Transition

We begin by reproducing and extending some of the results
from Maloney et al. (2022). In Fig. 1, we show the Σij,M

eigenvalue power law decay for the different classes of data
(i.e. real-world, UGD and CGDs). We find that for all
datasets, the eigenvalues bulk scales as a power-law

λi ∝ i−1−α, α ∈ R, i = 10, . . . dbulk , (3)

where i = 10 is approximately where the power law be-
havior begins and dbulk is the effective bulk size, where
the power-law abruptly terminates. We stress that this be-
havior repeats across all datasets, regardless of origin and
complexity.

The value of α can be readily explained in terms of correla-
tions within our CGD model. Taking the Laplace Transform
of the second term in Eq. (2), the bulk spectrum is given
by Appendix B as

λbulk
i = c · Γ(α+ 1)

(
d

i

)1+α

, (4)

where Γ(x) is the Gamma function. This implies that the
value of α determines the strength of correlations in the
original data covariance matrix. For real-world data, we
consistently find that α > 0, which corresponds to increas-
ing correlations between different features. In contrast, for
UGD, the value of α ∼ −1, and the power-law behavior
vanishes. Interpolating between UGD, and real-world-data,
the CGD produces a power-law scaling, which can be tuned
from −1 < α ≤ 0, in the case of decaying long range
correlations, or 0 ≤ α < ∞ for increasing correlations,
to match any real-world dataset we examined. Lastly, we
can extend this statement further and verify the transition
from correlated to uncorrelated features by corrupting a
real-world dataset (FMNIST) and observing the continuous
deterioration of the power-law from α ∼ 1/4 to α = −1,
implying that the CGD can mimic the bulk behavior of both
clean and corrupted data.

4. Global and Local Statistical Structure
4.1. Random Matrix Theory

In this section, we move on from the eigenvalue scaling be-
havior, to their statistical properties. We begin by describing
the RMT diagnostic tools, often used to characterize RMT
ensembles, with which we obtain our main results. We de-
fine the matrix ensemble under investigation, then provide
an overview of each diagnostic, concluding with a summary

and Riesz gases (Lee and Yang, 1966; Smorodinsky, 1953), which
display an inverse power-law repulsion, while decaying correla-
tions are common in the 1-d Ising model (Ising, 1925).

of results for the specific matrix ensemble to which both
real-world and Gaussian datasets converge.

We interpret ΣM for real world data as a single realization,
drawn from the space of all possible Gram matrices which
could be constructed from sampling the underlying pop-
ulation distribution. In that sense, ΣM itself is a random
matrix with an unknown distribution. For such a random
matrix, there are several universality classes, which depend
on the strength of correlations in the underlying distribu-
tion. These range from extremely strong correlations, which
over-constrain the system and lead to the so called Poisson
ensemble (Atas et al., 2013), to the case of no correlations,
which is equivalent to sampling independent elements from
a normal distribution, represented by the Gaussian Orthogo-
nal Ensemble (GOE) (Mehta, 2004). These classes are the
only ones allowed by the symmetry of the matrix XXT ,
provided that the number of samples and the number of
features are both large. Since the onset of the RMT regime
depends on the population statistics, it is a priori unknown.
Determining if real data covariances converge to an RMT
class, and to which one they converge to at finite sample
size would inform the correct way to model real-world co-
variances.

Below we review the tools used in our analysis. While we
provide an overview of each diagnostic, we refer the reader
to Tao (2012); Kim et al. (2023) for a more comprehen-
sivereview. We then apply these tools to gain insights into
the statistical structure of the datasets.

Spectral Density: The empirical spectral density of a
matrix Σ is defined as,

ρΣ(λ) =
1

n

n∑
i=1

δ(λ− λi(Σ)), (5)

where δ is the Dirac delta function, and the λi(Σ), i =
1, . . . , n, denote the n eigenvalues of Σ, including multi-
plicity. The limiting spectral density is defined as the limit
of Eq. (5) as n → ∞.

Level Spacing Distribution and r-statistics: The level
spacing distribution measures the probability density for two
adjacent eigenvalues to be in the spectral distance s, in units
of the mean level spacing ∆. The procedure for normaliz-
ing all distances in terms of the local mean level spacing is
often referred to as unfolding. We unfold the spectrum of
the empirical covariance matrix ΣM (ρ) by standard meth-
ods (Kim et al., 2023), reviewed in Appendix A. Ultimately,
the transformation λi → ei = ρ̃(λi) is performed such that
ei shows an approximately uniform distribution with unit
mean level spacing. Once unfolded, the level spacing is
given by si = ei+1−ei, and its probability density function
p(s) is measured.

4



The Underlying Universal Statistical Structure of Natural Datasets

CGD FMNIST, (KL=0.001)
UGD

CGD CIFAR10, (KL=0.006)

UGD

CGD ImageNet, (KL=0.01)

UGD

CGD FMNIST CGD CIFAR10 CGD ImageNet

Figure 2. Top row: Scree plot of Σij,M for several different configurations and datasets. We show the eigenvalues of the population
covariance matrix ΣToe, the eigenvalues for the empirical covariance of the full real-world dataset with M = 50k and finally the
eigenvalues of the empirical covariance using the same ΣToe, with M = 50k. The datasets used here are (left to right): FMNIST,
CIFAR10, ImageNet. Bottom row: Spectral density for the bulk of eigenvalues for the same datasets, as well as a comparison against
UGD of the same dimensions. The λ̄ indicates normalization over the maximal eigenvalue among the bulk. We also provide the KL
divergence between the CGDs and the real-world data distributions.

The distribution p(s) captures information about the short-
range spectral correlations, demonstrating the presence of
level repulsion, i.e., whether p(s) → 0 as s → 0, which is
a common trait of the GOE ensemble, as the probability of
two eigenvalues being exactly degenerate is zero. Further-
more, the level spacing distribution p(s) for certain systems
is known. For integrable systems, it follows the Poisson
distribution p(s) = e−s, while for chaotic systems (GOE),
it is given by the Wigner surmise

pβ(s) = Zβs
βe−bβs

2

, (6)

where β, Zβ , and bβ depend on which universality class of
random matrices the covariance matrix belongs to (Mehta,
2004). In this work, we focus on matrices that fall under the
universality class of the GOE, for which β = 1, as we show
that both real-world data and CGD covariances belong to.

While the level spacing distribution depends on unfolding
the eigenspectrum, which is only heuristically defined and
has some arbitrariness, it is useful to have additional diagnos-
tics of chaotic behavior that bypass the unfolding procedure.
The r-statistics, first introduced in Oganesyan and Huse
(2007), is such a diagnostic tool for short-range correlations,
defined without the need to unfold the spectrum.

Given the level spacings si, defined as the differences be-
tween adjacent eigenvalues · · · < λi < λi+1 < · · · without
unfolding, one defines the following ratios:

ri = Min(si, si+1)/Max(si, si+1) , 0 ≤ ri ≤ 1 . (7)

The expectation value of the ratios ri takes very specific
values if the energy levels are the eigenvalues of random
matrices: for matrices in the GOE the ratio is ⟨r⟩ ≈ 0.536.
The value is smaller for integrable systems, approaching
⟨r⟩ ≈ 0.386 for a Poisson process (Atas et al., 2013).

Spectral Form Factor: The spectral form factor (SFF)
is a long-range observable that probes the agreement of a
given unfolded spectrum with RMT at energy scales much
larger than the mean level spacing. It can be used to detect
spectral rigidity, which is a signature of the RMT regime.

The SFF is defined as the Fourier transform of the spectral
2-point correlation function (Cotler et al., 2017; Liu, 2018)

K(τ) = |Z(τ)|2/Z(0)2 ≃ 1

Z

〈
|
∑
i

ρ(ei)e
−i2πeiτ∥2

〉
, (8)

where Z(τ) = Tre−iτΣM . The second equality is the nu-
merically evaluated SFF (Juntajs et al., 2020), where ei is
the unfolded spectrum, and Z =

∑
i |ρ(ei)|2 is chosen to

ensure that K(τ → ∞) ≈ 1.

The SFF has been computed analytically for the GOE en-
semble, and it reads

KGOE(τ) = 2τ − τ ln(1 + 2τ) for 0 < τ < 1, (9)
KGOE(τ) = 2− τ ln[(2τ + 1)/(2τ − 1)] for 1 ≤ τ .

Several universal features occur in chaotic RMT ensem-
bles, manifesting in Eq. (9) and discussed in detail in Liu
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CGD CIFAR10

CGD FMNIST
UGD

UGD
UGD
CGD
CGD

CGD CIFAR10
CGD FMNIST

UGD

Figure 3. The r probability density (left), the unfolded level spacing distribution (center) and the spectral form factor (right) of ΣM

for FMNIST, CIFAR10, their CGDs, and UGD, obtained with M = 50000. Black curves indicate the RMT predictions for the GOE
distribution from Eq. (11). These results indicate that the bulk of real-world data eigenvalues belongs to the GOE universality class, and
that system has enough statistics to converge to the RMT predictions.

(2018); Kim et al. (2023). We mention here only two: (i)
The constancy of K(τ) for τ ≥ 1 is simply a consequence
of the discreteness of the spectrum. (ii) The existence of
a timescale that characterizes the ergodicity of a dynami-
cal system. It is defined as the time when the SFF of the
dynamical system converges to the universal RMT compu-
tation. More concretely, it is indicated by the onset of the
universal linear ramp 2τ as in equation 9, which is absent
in non-ergodic systems.

4.2. Insights from the Global and Local Statistics

4.2.1. EIGENVALUES DISTRIBUTIONS

While the power law behavior of the bulk of eigenvalues is
certainly meaningful, it is not the only piece of information
that can be extracted from the empirical covariance matrix.
Particularly, it is natural to inquire whether the origin of the
power-law scaling determines also the degeneracy of each
eigenvalue. We can test this hypothesis by comparing the
global and local statistics of the bulk between real-world
data and their CGD counterparts.

For the gaussian datasets we generate, there are known pre-
dictions for the spectral density, level spacing distribution,
r-statistics and spectral form factor. In these special cases,
the empirical covariance matrix in Eq. (1) is known as a
Wishart matrix (Wishart, 1928): Σij,M ∼ Wd(Σ,M).

The spectral density ρ(λ) of a Wishart matrix is given by
the generalized Marčenko-Pastur (MP) law (Silverstein and
Bai, 1995; Couillet and Liao, 2022), which depends on the
details of Σ and specified in App. B for certain limits. For
Σ = σ2Id, the spectral density is given explicitly by the MP
distribution as

ρ(λ) =
1

2πσ2

√
(λmax − λ)(λ− λmin)

γλ
, (10)

for λ ∈ [λmin, λmax] and 0 otherwise. Here, σ ∈ R+,
λmax/min = σ2(1±√

γ)2, γ ≡ d/M and d,M → ∞.

In Fig. 11, we show that the CGDs capture not only the
power law decay of the eigenvalue bulk, but also the spectral
density and the distribution of eigenvalues, for ImageNet,
CIFAR10, and FMNIST, measured by the Kullback–Leibler
divergence (KL) (Kullback and Leibler, 1951). We further
emphasize this point by contrasting the distributions with
the MP distribution, which accurately captures the spectral
density of the UGD datasets. This measurement alone is in-
sufficient to determine that the system is well approximated
by RMT, and we must study other statistical diagnostics.

4.2.2. LEVEL SPACING DIAGNOSTICS

RMT predicts that certain local and global statistical prop-
erties are determined uniquely by symmetry. Therefore,
the empirical covariance matrix must lie either in the GOE
ensemble if it is akin to a quantum chaotic system3 or in the
Poisson ensemble, if it corresponds to an integrable system.

Both the level spacing and r statistics (the ratio of adjacent
level spacings) probability distribution functions and SFF
for a Wishart matrix in the limit of d,M → ∞ and d/M =
γ, are given by the GOE universality class:

pGOE(s) =
π

2
se−

π
4 s2 , ⟨r⟩GOE = 4− 2

√
3, (11)

pGOE(r) =
27

4

(r + r2)

(1 + r + r2)5/2
Θ(1− r),

In Fig. 3, we demonstrate that the bulk of eigenvalues for
various real-world datasets behaves as the energy eigenval-
ues of a quantum chaotic system described by the GOE
universality class. This result is matched by both the UGD
and the CGDs, as is expected of a Wishart matrix. Here,
the dataset size is taken to be M = 50000 samples, and the
results show that this sample size is sufficient to provide a
proper sampling of the underlying ensemble.

3Large random real symmetric matrices belong in the orthogo-
nally invariant class.

6



The Underlying Universal Statistical Structure of Natural Datasets

4.2.3. HIGHER ORDER STATISTICS

Going beyond the nearest-neighbor local r statistics, one can
probe structure at increasingly larger scales. In particular,
the n neighbor local statistics can be defined as

r(n) =
λi+2n − λi+n

λi+n − λi
, (12)

for which the GOE distribution is known analytically (Tekur
et al., 2018)

pGOE(r
(n)) = Z

(r + r2)ν

(1 + r + r2)1+3ν/2
, (13)

where ν = 1
2n(n+ 3)− 1 and Z is a normalization factor.

In Fig. 4, we show that the nearest-neighbor statistics are in
good agreement with the GOE theory, but as the value of
n gets larger, farther neighbors are probed and discrepan-
cies between the distributions emerge. Probing these higher
order local statistics in greater detail can offer a system-
atic path towards explaining the discrepancies between the
expected learning curves for neural network performance
trained on gaussian vs. real world data (Loureiro et al.,
2021), since r(n) statistics explicitly measure deviations
from gaussianity.

4.2.4. EFFECTIVE CONVERGENCE

Having confirmed that CGDs provide a good proxy for the
bulk structure for a large fixed dataset size, we may now ask
how the statistical results depend on the number of samples.

As discussed in Sec. 3.1, ΣM can be interpreted as an ensem-
ble average over single realizations of the true population
covariance matrix Σ. As the number of realizations M in-
creases, a threshold value of Mcrit is expected to appear
when the space of matrices that matches the effective dimen-
sion of the true population matrix is fully explored.

The specific value of Mcrit can be approximated without
knowing the true effective dimension by considering two
different evaluation metrics. Firstly, convergence of the lo-
cal statistics of ΣM , given by the point at which its level
spacing distribution and r value approximately match their
respective RMT ensemble expectations. Secondly, conver-
gence of the global spectral statistics, both of ΣM to that
of Σ and of the empirical parameter αM to its population
expectation α.

Here, we define these metrics and measure them for different
datasets, obtaining analytical expectations for the CGDs,
which accurately mimic their real-world counterparts.

We can deduce Mcrit from the local statistics by measuring
the difference between the empirical average r value and
the theoretical one given by

|rM − rRMT| = δ(M)rGOE, (14)

Figure 4. Top: The r(n) statistics for CIFAR10. Bottom: The r(n)

statistics for GOE data. The local statistics at different scales (n)
are shown in different colors, while the black curves indicate the
theoretical curves. For small n = 1, 2, 4 the r(n) distributions
match between real-world data and the GOE results, but at larger
scales n = 6 a deviation begins to appear.

where rGOE = 4− 2
√
3 ≃ 0.536 for the GOE.

Next, we compare the results obtained for Mcrit from δ(M)
to the ones obtained from the global statistics by using a
spectral distance measure for the eigenvalue bulk given by

|αM − α| = ∆(M), (15)

where αM is the measured value obtained by fitting a power-
law to the bulk of eigenvalues for a fixed dataset size M ,
while α represents the convergent value including all sam-
ples from a dataset.

Lastly, we compare the empirical Gram matrix ΣM with the
convergent result Σ obtained using the full dataset by taking

|ΣM − Σ| = ϵ(M)|Σ|, (16)

where |A| is the spectral norm of A, and ϵ(M) will be our
measure of the distance between the two covariances.

In Fig. 6, we show the results for each of these metrics
separately as a function of the number of samples M . We
find that the δ(M) parameter, which is a measure of local
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 Mcrit
CGD FMNIST
UGD

CGD FMNIST
UGD
CGD FMNIST

Figure 5. Convergence of the various metrics in Eqs. (14) to (16) in relation to entropy for the bulk of eigenvalues. Left: The Shannon
entropy HM as a function of the dataset size M . Center: Convergence of the normalized α metric ∆M/∆ to its asymptotic value as a
function of the normalized entropy HM/H . Right: Convergence of the normalized r statistics metric δM/δ to its asymptotic value as a
function of the normalized entropy HM/H . We show the results for CIFAR10, FMNIST, MNIST, UGD, and the FMNIST CGD5.

 Mcrit  Mcrit

UGD
CGD FMNIST CGD FMNIST

UGD

Figure 6. Left: The r distance metric δ(M) for the bulk of eigenvalues. Center: The α distance metric ∆(M) for the bulk of eigenvalues.
Right: The full matrix comparison metric ϵ(M). We show the results for CIFAR10, FMNIST, UGD, and the FMNIST CGD as a function
of the number of samples. The results show that the bulk distances decrease as 1/M , where M is the number of samples, asymptoting to
a constant value at similar values of Mcrit ∼ d (black dashed), where d is the number of features.

statistics, converges to the expected GOE value at roughly
the same Mcrit as the entirely independent ∆(M) parameter,
which measures the scaling exponent α. The combination of
these two metrics confirms empirically that the system has
become ergodic at sample sizes roughly Mcrit ∼ d, which
is much smaller than the typical size of the datasets.

4.2.5. DATASETS ENTROPY

The Shannon entropy (Shannon, 1948) of a random variable
a measure of information, inherent to the variable’s possible
outcomes (Rényi, 1956), given by H = −

∑n
i=1 pi log(pi)

where pi is the probability of a given outcome and n is
the number of possible states. For covariance matrices, we
define pi given the spectrum as pi = λi/

∑nbulk

i=1 λi, where
nbulk is the number of bulk eigenvalues.

In Fig. 5 (left) we plot the Shannon entropies of real and
gaussian datasets as a function of the number of samples.
The entropies grow linearly and reach a plateau whose value
is related to the correlation strength, with strong correlation
corresponding to low entropy. We see the same entropy
for both the gaussian and real datasets that have the same
scaling exponent, implying that they also share the same
eigenvalues degeneracy.

4.2.6. ENTROPY, SCALING EXPONENT AND RMT

In Fig. 5 (left), we see that the entropy saturation is corre-
lated with the effective convergence in Fig. 6 as a function
of the number of samples, while the middle and right plots
show the correlation between the convergence of the entropy,
the scaling exponent, and the r-statistics, respectively. We
see that real data and gaussian data with the same scaling
exponent exhibit similar convergence behavior.

4.3. Eigenvector Phenomenology

The results of our work concern the eigenvalue behavior of
natural dataset covariances, as these seem to be well cap-
tured by a universal RMT description. The eigenvectors,
however, specify the non-universal basis, which is highly
dataset dependent, and should not be captured by a ran-
dom orthogonal matrix. Nevertheless, for completeness,
we explore the phenomenology of covariance eigenvectors
in App. E. Our main observations are: (i) the eigenvectors
obtained from an empirical covariance ΣM align, on aver-
age, with the population as M1/2 for small sample sizes
and then exponentially with M (Fig. 12), and the transi-

5We omit UGD from the center panel, as α = −1 for any M .
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tion point Mvec is significantly smaller than the eigenvalue
threshold Mcrit; (ii) the eigenvectors corresponding to the
largest eigenvalues, as well as the smallest ones, align faster
than the bulk of eigenvectors (Figs. 13 and 14), in contrast
with the GCD model (Fig. 15), a property that seems to
be related to how spatially localized these eigenvectors are.
These results imply that accomplishing learning tasks for
which the spectrum is insufficient and eigenvector properties
are needed, requires a different scale of data samples.

5. Conclusions
In this work, we demonstrate that the bulk eigenvalue spec-
tra of Gram matrices for real-world data can be accurately
modeled by a Wishart matrix with a shift-invariant corre-
lation structure and defining exponent α. Crucially, these
Gram matrices universally conform to the GOE statistics
across various data-generating processes. This universality
indicates that our approximation captures not only the scal-
ing behavior of eigenvalues but also their full distribution,
which can be rigorously derived using tools from RMT.

Our findings bridge a critical gap between theoretical mod-
els of data—often used to study neural network (NN) behav-
ior—and real-world datasets. While Normally distributed
data has advanced our understanding of NN learning dynam-
ics (Gerace et al., 2021; Mei and Montanari, 2020; dAscoli
et al., 2020), parameter scaling limits (Maloney et al., 2022),
and weight evolution (Arous et al., 2018), such models in-
herently lack the structured correlations present in natural
data. As a concrete application, we show in App. F that
accurate modeling of spectral densities—enabled by our
framework—is essential for solving the dynamics of even
simple teacher-student models with correlated inputs.

We propose an RMT-based data model that preserves ana-
lytical tractability while incorporating realistic correlations.
Although similar assumptions appear implicitly in neural
scaling law studies, our work strengthens this paradigm with
rigorous mathematical foundations, empowering practition-
ers to derive predictions better aligned with real data.

Our results also constrain the statistical properties of real-
world data distributions. Specifically, the convergence of
Gram matrices to GOE (rather than Poisson) statistics under
finite sampling imposes non-trivial moment conditions on
the underlying data distribution. This insight could inform
both the inference of data-generating processes and the de-
sign of synthetic datasets that replicate natural correlations.

Although our analysis focuses on Gram matrices, which in-
herently discard spatial relationships, this simplicity enables
a broad applicability. Extending our framework to language
datasets, audio signals, or other modalities may reveal uni-
versal power-law behaviors transcending data types. Future
work should explore the interplay between eigenvalues and

eigenvectors in neural networks, as both components criti-
cally shape information processing.

Finally, while we empirically observe chaotic spectral prop-
erties in real-world data, the origin of this chaos remains
unclear. Is it intrinsic to the strongly correlated structure
of natural data, or does it arise from noise in the sampling
process? Resolving this question—potentially through con-
trolled studies of synthetic datasets with tunable correlation
and noise—will deepen our understanding of data complex-
ity.
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A. The Unfolding Procedure
Here, we provide additional details on the unfolding procedure used to produce Fig. 3 in the main text.

Care must be taken when analyzing the eigenvalues of the empirical covariance matrix ΣM , since they exhibit unavoidable
numerical errors. To control for the effect of numerical errors, we adopted a robust phenomenological procedure that utilizes
the fact that all eigenvalues of ΣM must be non-vanishing by definition. To ensure we consider only eigenvalues of ΣM

unimpacted by edge effects, we inspect only the bulk spectrum.

Restricting to the bulk removes many eigenvalues of ΣM as many are zero for small M. However, for larger M when ΣM ’s
structure is clearly visible, this is not the case. The procedure ensures the eigenvalues kept are robust and not significantly
impacted by numerical precision. From the significant eigenvalues of the empirical covariance matrix ΣM , we compute the
spectrum λi.
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Figure 7. Bulk eigenvalue distribution for the empirical covariance matrix constructed from M = 50000 samples of FMNIST, before
unfolding (left), and after unfolding (right) The unfolded spectrum displays approximately unit mean, and defined on the interval [0, 1].

The unfolding procedure used to derive the unfolded spectrum is as follows:

1. Arrange the non-degenerate eigenvalues, λi , of the empirical covariance matrix ( ΣM ) in ascending order.

2. Compute the staircase function S(λ) that enumerates all eigenstates of the empirical covariance matrix ( ΣM ) whose
eigenvalues are smaller than or equal to λ.

3. Fit a smooth curve, denoted by ρ̃(λ) , to the staircase function. Specifically, we used a 12th-order polynomial as the
smooth approximation.

4. Rescale the eigenvalues λi as follows:
λi → ei = ρ̃(λi) (17)

5. By construction, the unfolded eigenvalues ei should show an approximately uniform distribution with mean level spacing
1. This can be used to check if the procedure was successful by plotting the unfolded levels and checking the flatness of
the distribution.

In Fig. 7, we show an example of the unfolding procedure for the FMNIST dataset. Specifically, we show the eigenvalue
distribution before (P (λi) ) and after (P (ei)) unfolding. Up to the quality of the smoothing function ρ̃(λi), the unfolded
eigenvalue distribution displays a uniform distribution on the unit interval.

B. Spectral Density for Wishart Matrices with a Correlated Features
For z ∈ C\supp(ρΣ), the Stieltjes transform G and inverse Stieljes transform ρΣ are defined as

G(z) =

∫
ρΣ(t)

z − t
dt = − 1

n
E
[
Tr(Σ− zIn)

−1
]
, ρΣ(λ) = − 1

π
lim

ϵ→0+
ℑG(λ+ iϵ), (18)
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where E[. . .] is taken with respect to the random variable X and (Σ− zIn)
−1 is the resolvent of Σ.

For the construction, discussed in the main text, and general α, there is no closed form for the spectral density. However,
in certain limits, analytical expressions can be derived from the Stieljes transform using Eq. (18). Specifically, given a
determinstic expression for Σ, the spectral density can be derived by evoking Theorem 2.6 found in Couillet and Liao (2022),
which uses the following result by Silverstein and Bai (1995)

G(z) =
1

γ
G̃(z) +

1− γ

γz
, G̃(z) =

(
−z +

1

M
Tr
[
Σ(Id + G̃(z)Σ)−1

])−1

, (19)

where γ ≡ d/M and d,M → ∞, and we substitute C from the original theorem with Σ.

The empirical covariance matrix of the Gaussian correlated datasets discussed in the main text, is a Wishart matrix
with a deterministic covariance, and thus fits the requirements of Theorem 2.6, where ΣToe = S, S = V †TU , and
Ti,j = Iij + c|i− j|α. In order to use Eq. (19), it is useful to first find the singular values of Ti,j . This can be done by using
the discrete Laplace transform (extension of the Fourier transform), leading to

ΣToe(s) = S(s) = 1 + cLi−α

(
e−

s
d

)
− ce−sΦ

(
e−

s
d ,−α, d

)
, (20)

where s = 1 . . . d, Φ(x, k, a) is the Lerch transcendent, and Li(x) is the Poly-log function. Note that by the definition of
S, Eq. (20) is a non-negative function of s. Because the identity matrix commutes with ΣToe, we may substitute Eq. (20)
in Eq. (19) to obtain

G̃(z) =
1

−z + γ
dSd(α)

, (21)

where we define the sum Sd(α) to be

Sd(α) =

d∑
s=1

ΣToe(s)

1 + G̃(z)ΣToe(s)
. (22)

Since the behavior of ΣToe(s) is intrinsically different for positive and very negative α, we separate the two cases. First,
consider the case of α < −1, where correlations decay very quickly. In this scenario, the covariance matrix reduces to
Σ̃Toe(s) ≃ 1.

Here, Sd(α) is given simply by the α → ∞ limit

Sd(α → −∞) =

d∑
k=1

1

1 + G̃(z)
=

d

1 + G̃(z)
, (23)

which is precisely the case of Σ = Id.

Solving Eq. (21) using the above result yields the following expression for G̃(z)

G̃(z) =
−1− z + γ −

√
(−1− z + γ)2 − 4z

2z
. (24)

Finally, substituting Eq. (24) into Eq. (18) leads to the known Marčenko-Pastur (MP) law (Couillet and Liao, 2022)

ρ(λ) =
1

2π

√
(λmax − λ)(λ− λmin)

γλ
for λ ∈ [λmin, λmax] and 0 otherwise , (25)

where λmax/min = (1±√
γ)2.

The other interesting limit is that of α > −1, in which the correlations do not decay quickly, and for d → ∞ the Laplace
transform of the Toeplitz matrix simplifies to

ΣToe(s) ≃ c · Γ(1 + α)

(
d

s

)1+α

. (26)
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Figure 8. Theoretical predictions for the bulk spectral density of a CGD matrix against the empirical densities of FMNIST and the CGD.
The green curve represents the generalized MP distribution, given by the solution to the inverse Steiljes transform in Eq. (29). The CGD
curve has a value of c = 1.14, and γ = 380/1000 since that is the approximate number of bulk eigenvalues.

Using this approximation for the population covariance in Eq. (22) we obtain

G̃(z) =

(
−z +

γ

d

d∑
s=1

c(s/d)−1−α

1 + G̃(z)c(s/d)−1−α

)−1

, ĉ = cΓ(1 + α). (27)

In the d → ∞ limit,we can convert the sum to an integral using the Riemann definition

lim
d→∞

1

d

d∑
i=1

f(i/d) = lim
d→∞

d∑
i=1

f(xi)∆x =

∫ b

a

dxf(x), ∆x =
b− a

d
=

1

d
, (28)

allowing us to write the equation for G̃(z) as

G̃(z) =

(
−z +

γ

d

d∑
s=1

ĉ(s/d)−1−α

1 + G̃(z)ĉ(s/d)−1−α

)−1

≃
(
−z + γ

∫ 1

0

ĉx−1−α

1 + G̃(z)ĉx−1−α
dx

)−1

(29)

=

−z + γ
2F1

(
1, 1

α+1 ; 1 +
1

α+1 ;−
1

ĉG̃(z)

)
G̃(z)

−1

,

where 2F1(a, b; c; z) is the Gaussian hypergeometric function. Eq. (29) is an algebraic equation which can be solved
numerically, or analytically approximated in certain limits.

In Fig. 8, we show the theoretical results for the spectral density of a Wishart matrix with ΣToe covariance, for a value of α
and c matching FMNIST, against the empirical densities for FMNIST and the matching CGD. The green curve shows the
generalized MP distribution given by the inverse Stieljes transform of Eq. (29).

C. Robustness of the results
Here, we discuss some details regarding the robustness of our local and global statistical analyses.
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For all of our analyses, we focused on the full Gram matrix, consisting of every sample in a given dataset. This implies that
we only have access to a single realization of a ΣM empirical Gram matrix, per dataset, thus limiting our ability to perform
standard statistics, for instance averaging over an ensemble of ΣM , and obtaining confidence bands. This is not an issue
in the RMT regime, as the matrix itself is thought of as an ensemble on to itself, and its eigenvalues have an interesting
structure due to a generalization of the Central Limit Theorem (CLT).

CGD FMNIST

Figure 9. Left: The r statistics distribution for FashionMNIST, comparing M = 50000 with M = 1000 subsets. In the first case, we
obtain only a single realization of the Gram matrix, and so the r statistics appear more noisy, however, when taking 40 realizations of a
smaller subset, still above Mcrit, we see that the fit to the GOE prediction (green) improves. We will add these figures, either in the main
text or appendices, including goodness of fit measures on the rest of the datasets studied in the paper. Right: The r statistics distribution
for FashionMNIST and its CGD. In red, we show the singular values of the population covariance, ΣToe used in the main text. In Orange,
the true FMNIST r distribution, obtained by taking 40 different realizations of a M = 1000 subset of the full dataset, leading to a perfect
fit to the GOE prediction (blue). In green, we show the CGD using a 1000 samples as well. This figure illustrates that the deterministic
population covariance does not sufficiently capture all the information that resides in the Gram matrix, while the CGD does.

CGD FMNIST
CGD FMNIST

CGD FMNIST

Figure 10. Left: Scree plot for the eigenvalues of the FashionMNIST Gram matrix (blue), its CGD (orange) using M = 1000 for 50
runs, and the Toeplitz population covariance matrix (green). Here, we show that the population and empirical covariance matrices match
precisely in spectral scaling. The Gram matrices for FMNIST and its analogue are obtained by first normalizing the samples (mean
subtraction and dividing by the standard deviation) and the population covariance is rescaled by a constant factor that depends only on the
input dimension d. Right: The eigenvalue distribution for FashionMNIST, Gram matrix (blue), its CGD (orange) using M = 1000 for 50
runs, and the Toeplitz population covariance matrix (green). We see that the three distributions are similar, as can be expected, but that
certain local features (such as the spacing between eigenvalues) is poorly captured by the deterministic population covariance.

We can still attempt to persuade the reader that our results are robust a posteriori, by noting that the number of samples
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required to reach the RMT regime is approximately Mcrit ∼ d. This implies that we can consider sub-samples of the full
empirical Gram matrix, consisting of Mcrit, as ΣMcrit = 1/Mcrit

∑Mcrit

a=1 XiaXaj , and average over multiple sub-sample
matrices.

In Fig. 9, we see an implementation of this process for FMNIST, demonstrating that additional sampling pushes the
distribution to a perfect fit for the GOE r-statistics, while in Fig. 10, we see the same type of convergence for the eigenvalue
distribution.

D. Results on Augmented Data
In Fig. 11, we show the RMT results for the eigenvalue spectra as well as the r-statistics for augmented versions of CIFAR10
and FashionMNIST. The augmentations include shifts, rescalings and rotations, in this case taken with a range of 50% for
height and width shift, rotation angle of 40 degrees and zooming range up to 20%. The results indicate that global statisitics
can change substantially, as seen in the the left scree plot of Fig. 11, while the local r-statistics is maintained even for highly
augmented images.

E. Eigenvector Phenomenology
In this section, we discuss the universal eigenvector behavior of two natural datasets: CIFAR10 and FashionMNIST. We
compute the population (full training set size) and the empirical covariances Σ,ΣM , and define their eigen-decomposition
simpye as

ΣM = UTSU, (30)

where U is the matrix of eigenvectors and S is a diagonal matrix composed of the eigenvalues of ΣM . We further employ
the magnitude of the cosine similarity to measure how aligned two eigenvectors are with one another, as

|Cosine similarity| = SC,ij = u⃗i · u⃗j , (31)

which ranges between [−1, 1], as the eigenvectors are normalized.

Analyzing the eigenvector alignment with the number of samples, we observe two interesting phenomena that seem to be
universal. First, in Fig. 12 we show that for both datasets, the average magnitude SC behaves differently for small sample
sizes, below and above some threshold value Mvec. Concretely, for M < Mvec the similarity scales as SC ∝ M1/2, while
for M > Mvec, it scales as SC ∝ eM/Mpop , where Mpop is the population sample size, which is Mpop = 50k for both
datasets.

Secondly, in Fig. 13, we see a clear distinction between the eigenvector convergence behavior for a random basis (bottom
rows) and natural data. The GCD model is always given in a random basis, whose eigenvectors align to the population
eigenvectors in descending order, from the ones associated with the largest eigenvalues, to the ones associated with
the smallest eigenvalues. A different phenomenon occurs for natural data - both the top eigenvectors and the smallest
eigenvectors align together, while the bulk is aligned last. We believe this is tightly related to the localization properties of
the eigenvectors. In Figs. 14 and 15 we see that the cosine similarity changes can be qualitatively traced to the the Inverse
Participation Ratio (IPR), defined as

IPRi =
∑
a

∥uia∥4, (32)

where i indicates the index of the eigenvector, while a denotes the different elements of that particular eigenvector. A large
small IPR implies that the vector is highly de-localized, since each element should scale as 1/

√
d and since there are d

elements, IPR ∼ 1/d, while for a fully localized vector, all elements apart from one will be 0, therefore we have that the
IPR ∼ 1. We see in Figs. 14 and 15 that for natural data the IPR is small for the top eigenvectors, then plateaus before
growing for the smallest eigenvectors, implying a transition from de-localization to localization. For CGD data, which has a
random basis, the exact opposite occurs, where the first top eigenvectors are highly localized, and the rest are not.
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Figure 11. Top: Scree plot and r statistics distributions for CIFAR10 and FashionMNIST, as well as augmented variations of these
datasets for M = 50k samples out of the datasets. Augmentations encompass shifts, rescalings and rotations, in this case taken with
a range of 50% for height and width shift, rotation angle of 40 degrees and zooming range up to 20%. Here, we use the definition of
ri = si/si−1, which has a known GOE prediction given by P (r) = 27

8
(r+r2)

(1+r+r2)5/2
. This can be easily translated to the form presented

in the main text. Bottom: Representative images taken from the 4 types of datasets, in order from top row to bottom row are: CIFAR10,
Augmented CIFAR10, FashionMNIST and Augmented FashionMNIST. The results show that the local statistical structure is maintained
for the augmented parameters chosen, as well as a power law behavior for the eigenvalue bulk, but with different scaling exponent between
the augmented and original data. It should be clear that if the parameters are exaggerated, for instance if the zoom range grows to the level
of a constant gradient across the image, we do not expect the statistical structure to remain the same.

F. Universality in Neural Network Analysis - A Toy Example
Universality laws have been employed in various ways to study error universality in neural networks, for instance in (Mei
and Montanari, 2022; Gerace et al., 2020; Goldt et al., 2022; Hu and Lu, 2022). In this context, one looks directly at the
universality of the training and generalisation errors instead of the features, taking into account the labels and the task. It has
also been observed to hold for correlated Gaussian data in teacher-student settings in (Loureiro et al., 2021). Furthermore, it
has been shown that for a simple regression task, the computation of the error reduces to an RMT problem (Wei et al., 2022),
which is linked to the work presented in the main text regarding the data features themselves. In particular, it has been noted
that in some cases the structure of the bulk fully characterises the error, even for multi-modal distributions, see (Gerace
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Figure 12. Average magnitude of the cosine similarity between population eigenvectors and their empirical estimate from M samples.
Left: The results for CIFAR10 eigenvectors. Middle: The results for FashionMNIST eigenvectors. Right: The results for CGD (α = 0.3)
eigenvectors. The results quite universally show an increase in cosine similarity that scales roughly as a power law (M1/2 for real data
and M1/3 for CGD) for M below some threshold value Mvec, while the increase from this value and above grows exponentially.

et al., 2023; Pesce et al., 2023).

As a self contained example of applying universality in neural network analysis, we call upon an exceedingly simple machine
learning setup, namely, training a linear network using gradient descent to learn a teacher-student mapping. We show that
even in this basic example, it is necessary to apply the results demonstrated in the main text in order to correctly analyze the
system, when data correlations are present in the underlying population covariance.

Teacher-student models have been the subject of a long line of works (Seung et al., 1992; Watkin et al., 1993; Engel and
Van den Broeck, 2001; Donoho, 1995; El Karoui et al., 2013; Saxe et al., 2014; Zdeborov’a and Krzakala, 2016; Donoho
and Montanari, 2016) , and have experienced a resurgence of interest in recent years (Mei and Montanari, 2019; Hastie
et al., 2019; Cand‘es et al., 2020; Aubin et al., 2020; Salehi et al., 2020) as a powerful tool to study the high-dimensional
asymptotic performance of learning problems with synthetic data.

The teacher-student model can be described as follows: The teacher uses ground truth information along with a probabilistic
model to generate data which is then passed to the student who is supposed to recover the ground truth as well as possible
only from the knowledge of the data and the model.

Here, we consider a linear teacher-student model, where the data inputs xi ∈ Rdin are identical independently distributed
(iid) normal variables drawn from a Gaussian distribution with non-trivial population covariance xi ∼ N (0,Σpop). We
draw Ntr training samples, and the teacher model generates output labels by computing a vector product on each input
y = w∗ · x, where w∗ ∈ Rdin , assuming a perfect, noiseless teacher. The student, which shares the same model as the
teacher, generates predictions ŷ = w · x, where w ∈ Rdin as well. The loss function which measures convergence of the
student to the teacher outputs is the standard MSE loss. Our analysis is done in the regime of large input dimension and
large sample size, i.e., din, Ntr → ∞, where the ratio λ ≡ din/Ntr ∈ R+ kept constant. The student model is trained with
the full batch Gradient Descent (GD) optimizer for t steps with a learning rate η. The training loss function is given by

Ltr =
1

Ntr

Ntr∑
i=1

∥(w − w∗)Txi∥2 = Tr
[
∆TΣtr∆

]
, (33)

where we define ∆ ≡ w−w∗ as the difference between the student and teacher vectors. Here, Σtr ≡ 1
Ntr

∑Ntr

i=1 xix
T
i is the

din×din empirical data covariance, or Gram matrix for the training set. The elements of w∗ and w are drawn at initialization
from a normal distribution w0, w

∗ ∼ N (0, 1/(2din)). We do not include biases in the student or teacher weights, as they
have no effect on centrally distributed data.

The generalization loss function is defined as its expectation value over the input distribution, which can be approximated by
the empirical average over Ngen randomly sampled points

Lgen = Ex∼N
[
∥(w − w∗)Tx∥2

]
= Tr

[
∆TΣgen∆

]
. (34)

Here Σgen is the covariance of the generalization distribution. Note that in practice the generalization loss is computed
by a sample average over an independent set, which is not equal to the analytical expectation value. The gradient descent
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Figure 13. Top 2 rows: Covariance eigenvector cosine similarity magnitude matrices as a function of the number of samples M ,
for CIFAR10. Middle 2 rows: Covariance eigenvector cosine similarity matrices as a function of the number of samples M , for
FashionMNIST. Bottom 2 rows: Covariance eigenvector cosine similarity matrices as a function of the number of samples M , for GCD
with α = 0.3. Clearly, a random basis aligns by first matching the eigenvectors associated with the largest eigenvalues, while natural data
aligns first both the largest and the smallest eigenvectors.
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Figure 14. Cosine similarity for between each population eigenvector and its empirical estimate from N samples, as well as IPR for
each eigenvector as a function of number of samples. Top row: IPR in log and linear scale for CIFAR10. Second row: Absolute
cosine similarity for CIFAR10. Third row: IPR in log and linear scale for FashionMNISt. Fourth row: Absolute cosine similarity for
FashionMNIST.
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Figure 15. Cosine similarity for between each population eigenvector and its empirical estimate from N samples, as well as IPR for each
eigenvector as a function of number of samples. Top row: IPR in log and linear scale for CGD with α = 0.3. Bottom row: Absolute
cosine similarity in log and linear scale for CGD with α = 0.3.

equations at training step t are

∆t+1 = (I − 2ηΣtr)∆t, (35)

where γ ∈ R+ is the weight decay parameter, and I ∈ Rdin×din is the identity.

Eq. (35) can be solved in the gradient flow limit, setting η = η0dt and dt → 0, resulting in

∆̇(t) = −2η0Σtr∆(t) → ∆(t) = e−2η0Σtrt∆0, (36)

where ∆0 is simply the difference between teacher and student vectors at initialization. It follows that the empirical losses,
calculated over a dataset admit closed form expressions as

Ltr = ∆T
0 e

−4η0ΣtrtΣtr∆0, Lgen = ∆T
0 e

−2η0ΣtrtΣpope
−2η0Σtrt∆0. (37)

Since the directions of both ∆ and the eigenvectors of Σtr are uniformly distributed, we make the approximation that the
projection of ∆ on all eigenvectors is the same, which transforms Eq. (37) to the simple form

Ltr ≈
1

din

∑
i

e−4η0νitνi , (38)

while the calculation for the generalization loss amounts to

Lgen ≈ 1

din

∑
i,j

e−2η0(νi+νj)t(UΣpopU
†)ij , (39)

where U is a random unitary matrix used to rotate to the basis of Σtr.

Now we turn to the choice of Σpop and the implication for Σtr. As demonstrated in the main text, the empirical covariance
matrix of many real world data-sets can be faithfully modelled by a Wishart matrix with long range correlations, where the
bulk of eigenvalues is described by the population covariance Σpop = Γ(1 + α)(i/d)−1−αδij . As we discussed in App. B,
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we can utilize our RMT observations to give a closed formula expression for the empirical Gram matrix eigenvalues and
spectral density, in terms of a generalized MP law.

Following this choice of data modelling, and focusing on the bulk eigenvalues alone, it is clear that the sums Eqs. (38)
and (39) are the empirical averages over the function e−4η0νtf(ν), if ν follows the spectral density derived in App. B. We
can the solve the training dynamics by approximating the sum by its respective expectation value,

Ltr(η0, λ, α, t) ≈ Eν∼ρΣpop (λ,α)

[
νe−4η0νt

]
. (40)

In order to proceed further for the generalization loss, we note that the rotation matrices which form the basis for Σtr are
random unitary matrices, drawn from the Haar measure. This implies that we can glean further information by averaging
over training realizations, which will not change the training trajectory at all, but will provide with an average generalization
loss ⟨L⟩U . We utilize the following property of ensemble averaging over unitary random matrices (Nielsen, 2002)

Φ(X) ≡ EU [UXU†] ≡
∫
U
dµ(U)UXU† =

1

din
Tr(X)I, (41)

where dµ(U) is the Haar measure. Since the eigenvalue distribution does not change upon this averaging, the average
generalization loss can be expressed as

⟨Lgen⟩U ≈ Tr(Σpop)×
1

din

∑
i

e−4η0νit , (42)

which can be approximated by its expectation value

⟨Lgen(η0, λ, α, t)⟩U ≈ Tr(Σpop)Eν∼ρΣpop (λ,α)

[
e−4η0νt

]
, (43)

completing the dynamical analysis of the loss curves for the model at hand.

Above we gave a toy example of how one may use our results to obtain justified theoretical predictions. Namely, we solved
a simple teacher-student model with power law correlated data, and showed that the training dynamics and convergence
both depend on the spectral density of the Gram matrices studied in the main text. We obtained analytical expressions for
the training and generalization losses.

We stress that on their own, these findings do not attempt to fully explain many aspects of neural network dynamics
and generalization, which depend on additional factors beyond the bulk spectrum, such as the large outlier eigenvalues,
eigenvectors and higher moments.

Analyzing the interaction between these elements and learning dynamics/generalization remains an important open question,
as recent works have started to demonstrate how outliers impact early gradient steps and network collapse.

For instance, as shown by (Seddik et al., 2020) and verified by our results, the outliers can also be described by a Gaussian
model, but simply not the CGD that we presented in this work, as the largest eigenvalues are expected to describe the most
shared features in the entire data, and do not demonstrate the local correlation structure of the bulk. They are certainly
important in classification tasks, and in particular their effect, as well as the effect of the different class mean values are the
most important for linear classifiers, as shown in (Saxe et al., 2019).

Our approach focused more on the regime where one would like to understand improved performance using more and more
data, where the largest eigenvalues have long been well captured, and the only performance gain that can be achieved is
squeezed out of the bulk alone. This has proven a sufficient path to construct solvable models which approximate real-world
generalization curves (Kaplan et al., 2020; Maloney et al., 2022; Mei and Montanari, 2022).
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