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Abstract001

Representation learning on text-attributed002
graphs (TAGs) is vital for real-world applica-003
tions, as they combine semantic textual and004
contextual structural information. Research005
in this field generally consist of two main006
perspectives: local-level encoding and global-007
level aggregating, respectively refer to textual008
node information unification (e.g., using009
Language Models) and structure-augmented010
modeling (e.g., using Graph Neural Networks).011
Most existing works focus on combining012
different information levels but overlook the013
interconnections, i.e., the contextual textual014
information among nodes, which provides015
semantic insights to bridge local and global016
levels. In this paper, we propose GraphBridge,017
a multi-granularity integration framework018
that bridges local and global perspectives by019
leveraging contextual textual information,020
enhancing fine-grained understanding of TAGs.021
Besides, to tackle scalability and efficiency022
challenges, we introduce a graph-aware token023
reduction module. Extensive experiments024
across various models and datasets show that025
our method achieves state-of-the-art perfor-026
mance, while our graph-aware token reduction027
module significantly enhances efficiency and028
solves scalability issues. Codes are available at029
https://anonymous.4open.science/r/GraphBridge-030
13E0031

1 Introduction032

Text-Attributed Graphs (TAGs), characterized by033

the association of nodes with text attributes (Yang034

et al., 2021), are prevalent in diverse real-world con-035

texts. In TAGs, nodes represent entities with tex-036

tual information and edges capture relationships be-037

tween entities, e.g., social graphs where each user is038

accompanied by a textual description and paper ci-039

tation graphs where textual content is linked to each040

respective paper. These relationships yield special-041

ized and crucial insights that are fundamental for042
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Figure 1: Illustration of the local-global integration in
TAGs within a social network context. The words in
pink emphasize the interconnection semantic relation-
ship between them. (i) The local-level encoding module
processes individual nodes’ textual information into uni-
fied vectors; (ii) The global-level aggregating module
enhances node features with structural information; (iii)
Our method bridges these two perspectives through in-
corporating contextual textual information.

our understanding, thereby facilitating the resolu- 043

tion of subsequent tasks. The utilization of TAGs 044

empowers us to unlock new discoveries across var- 045

ious domains, including graph learning (Zhang 046

et al., 2024) and information retrieval (Seo et al., 047

2024). 048

The nucleus of learning on TAGs lies in the 049

effective integration of both the node attributes 050

(textual semantics) and graph topology (structural 051

connections) to facilitate the learning of node rep- 052

resentations. Broadly, previous methods can be 053

divided into two modules: (i) encoding module 054

(local-level) and (ii) aggregating module (global- 055

level). The encoding module transcribes the textual 056

information (tokens) of each node into a unified 057

vector employing static shallow embedding tech- 058

niques such as Bag of Words (Zhang et al., 2010), 059

or language models (LMs) like BERT (Devlin et al., 060

2018), serving as node attributes. The aggregat- 061

ing module enhances these features via structural 062

information, procuring structure-augmented fea- 063

tures through Graph Neural Networks (GNNs) like 064

GCN (Kipf and Welling, 2016). These two mod- 065
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ules can be integrated into cascading (Duan et al.,066

2023; Chien et al., 2021), joint (Zhao et al., 2022)067

or side structure (Zhu et al., 2024), as illustrated in068

Figure 1. Despite promising, the aforementioned069

local-global integration suffers from the discrete070

interconnection of encoding and aggregating mod-071

ules, i.e., the contextual textual semantics among072

nodes are overlooked (Figure 1(iii)). In real-life073

scenarios, e.g., social networks, the closely con-074

nected individuals are more likely to share substan-075

tial semantically textual information in text, which076

serves as the common characteristics for construct-077

ing their relationships.078

Based on the aforementioned insight, one opti-079

mizable TAG learning solution is to leverage such080

contextual textual information that could effec-081

tively bridge local and global perspectives, thereby082

boosting fine-grained understanding of TAGs, like083

Figure 1(iii). However, this method faces severe084

efficiency and scalability issues. Memory com-085

plexity increases with graph size, as neighborhood086

texts are also encoded. Using Large Language087

Models (LLMs) with densely connected nodes fur-088

ther exacerbates resource consumption, potentially089

impairing TAG’s practicality. In summary, these090

shortcomings necessitate a thorough reevaluation091

of TAG learning and its corresponding solutions.092

In this work, we introduce a novel multi-093

granularity integration framework for text-094

attributed graphs, named GraphBridge, which095

seamlessly bridges local and global perspectives by096

incorporating contextual textual information. This097

method enhances semantic analysis and provides098

deeper graph structure insights, significantly im-099

proving representation learning. Additionally, to100

address the efficiency and scalability issues men-101

tioned above, we developed a graph-aware token102

reduction module. This module uses a learnable103

mechanism that considers both the graph structure104

and downstream task information to selectively105

retain the most crucial tokens, reducing informa-106

tion loss and allowing for the inclusion of more107

contextual text. Extensive experiments show that108

our method achieves state-of-the-art performance109

across various domains compared to previous meth-110

ods, while solving the efficiency and scalability111

issues. Key contributions of this work include:112

• We propose an innovative multi-granularity113

integration framework named GraphBridge to114

integrate both local and global perspectives115

through leveraging contextual textual infor-116

mation, thereby enhancing the fine-grained 117

understanding of TAGs. 118

• A graph-aware token reduction module is de- 119

signed to ensure efficiency and scalability 120

while minimizing information loss. 121

• Extensive experiments conducted across var- 122

ious domains demonstrate that our proposed 123

method achieves state-of-the-art performance 124

compared to various baselines, demonstrating 125

its effectiveness in bridging the gap between 126

local and global information, while maintain- 127

ing efficiency and scalability. 128

2 Related Work 129

2.1 Representation Learning on TAGs 130

Representation learning for text-attributed graphs 131

has increasingly garnered attention in graph ma- 132

chine learning (Yang et al., 2021). Typically, pre- 133

vious methods in this field can be divided into 134

two key components, as depicted in Figure 1: (i) 135

an encoding module at the local level, which em- 136

ploys word embedding methods such as Bag of 137

Words (Zhang et al., 2010) or advanced LMs like 138

BERT (Devlin et al., 2018) and RoBERTa (Liu 139

et al., 2019) to generate token representations from 140

nodes’ textual data. These representations are inte- 141

grated using methods like mean pooling to derive 142

nodes’ attributes; (ii) an aggregating module at 143

the global level, which utilizes GNNs (Kipf and 144

Welling, 2016; Veličković et al., 2018) or graph 145

transformers (Wu et al., 2022) to augment nodes’ 146

attributes with structural information. The encod- 147

ing module concentrates on extracting fine-grained 148

semantic details from textual attributes individu- 149

ally, whereas the aggregating module emphasizes 150

structural relationships between nodes, neglecting 151

the intricate local textual information. 152

Recent advancements aim to effectively integrate 153

these two modules. Integration strategies include 154

joint frameworks (Yang et al., 2021; Zhao et al., 155

2022) and side structures (Zhu et al., 2024), as well 156

as cascading approaches (Duan et al., 2023; He 157

et al., 2023). However, these integration strategies 158

fail to explicitly capture the interconnection be- 159

tween the encoding and aggregating modules, i.e., 160

the contextual textual semantics among nodes are 161

frequently overlooked, potentially compromising 162

the efficacy of the results. 163
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2.2 Token Reduction for LMs164

Sequence length has become a significant fac-165

tor limiting the scalability of transformer mod-166

els (Vaswani et al., 2017). Token reduction has167

gained considerable research interest because it168

can reduce computational costs by decreasing se-169

quence length. The general idea of token reduc-170

tion is to drop some tokens based on their im-171

portance (Xu and McAuley, 2023). Specifically,172

DynSAN (Zhuang and Wang, 2019) applies a gate173

mechanism to measure the importance of tokens for174

selection, dropping less important tokens in higher175

layers to enhance efficiency. TR-BERT (Ye et al.,176

2021) introduces a dynamic reinforcement learn-177

ing mechanism for making decisions of reducing178

tokens. LTP (Kim et al., 2022) learns a threshold179

for each Transformer layer, dropping tokens with180

a saliency score below this threshold instead of181

adhering to a preset token reduction schedule.182

Although token reduction has proven successful183

in streamlining individual sentences, its applica-184

tion to interrelated texts within TAGs has yet to be185

fully explored. In this work, we propose a graph-186

aware token reduction module that leverages the187

graph structure along with the information from188

downstream tasks to perform token reduction.189

3 Method190

In this section, we will introduce the notations used191

in this paper. Subsequently, we will present the192

proposed graph-aware token reduction method in193

Section 3.2. Finally, the multi-granularity integra-194

tion framework will be discussed in Section 3.3.195

196

3.1 Notations197

When dealing with node classification tasks of198

TAGs, we formally consider a text-attributed graph199

G = {V, T ,A,Y}, where V is a set of nodes,200

T ∈ R|V|×k denotes the textual features associ-201

ated with each node i ∈ V , and k is the sequence202

length. A ∈ {0, 1}|V|×|V| is the adjacency matrix203

where each entry Ai,j indicates the link between204

nodes i, j ∈ V , and Y represents labels for each205

node. Given a set of labeled nodes VL ⊂ V , our206

goal is to predict the remaining unlabeled nodes207

VU = V \ VL.208

3.2 Graph-Aware Token Reduction209

To bridge local and global perspectives for TAGs, it210

is essential to consider both the text of the current211

node and its neighboring nodes. This approach, 212

however, leads to extremely long sequences that 213

can result in prohibitive computational costs for 214

LM processing. To mitigate this, we first imple- 215

ment a graph-aware token reduction module. For- 216

mally, for an input graph G, the text of each node Ti 217

is initially tokenized, resulting in si ∈ Rk, where 218

k is the number of tokens. Our objective is to re- 219

duce the number of tokens to k′ (where k′ ≪ k), 220

focusing on retaining the most pivotal tokens while 221

omitting the lesser ones. Specifically, we assess the 222

importance of each token for node i based on its 223

textual and structural information: 224

P (Scorei | Ti, TNi ,A), (1) 225

where Scorei ∈ R1×k is the importance score for 226

each token in node i, and Ni denotes the neighbor- 227

ing nodes of i. The importance score is calculated 228

by a trainable graph-enhanced attention module, as 229

depicted in Figure 2. 230

For better evaluating the importance of each to- 231

ken, we first use Pre-trained LMs like BERT and 232

RoBERTa to obtain fine-grained representations for 233

each token. For node i, these representations are 234

represented as Ei ∈ Rk×d, consisting of vectors 235

[e0, e1, . . . , ek], where each ej is a d-dimensional 236

token representation from the PLM. We subse- 237

quently employ mean pooling Pmean on these token 238

representations to extract the sentence-level textual 239

feature, which serves as the node attribute: 240

zi = Pmean(Ei) =
1

k

k∑
j

ej . (2) 241

Then, a parameter-free message-passing mecha- 242

nism is employed to aggregate text features from 243

neighboring nodes, excluding self-loops to avoid 244

reinforcing a node’s own information. This en- 245

sures the integration of contextual information from 246

neighbors, enhancing node features with structural 247

insights from graph. This process is described as: 248

z
(l)
i =

1

|Ni|
∑
j∈Ni

z
(l−1)
j , (3) 249

where l means l-hop message passing, and z0i is zi. 250

Graph-Enhanced Importance Score. To mea- 251

sure the importance of each token, we define 252

a graph-enhanced importance score calculated 253

through a well designed cross-attention module, 254
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Figure 2: Overview of the GraphBridge framework. Left: The Graph-Aware Token Reduction module which
selectively retains crucial tokens, enhancing efficiency and scalability. Right: A detailed pipeline illustrates the
integration process, where selected tokens undergo a cascaded structure that bridges local and global perspectives,
leveraging contextual textual information to effectively refine node representations.

that quantifies the significance of each token utiliz-255

ing both textual and structural information. Specif-256

ically, for each node i, the query is derived from257

the message passing output of neighboring nodes,258

while the key and value come from the node’s own259

textual token embedding. The importance score is260

calculated as follows:261

Scorei = σ


(
z
(l)
i Wq

)
(EiWk)

T

√
d

 , (4)262

where Wq,Wk ∈ Rd×d′ are the parameter matrices263

for the query and key, and σ denotes the softmax264

function. A top-k function is then used to select the265

k′ most crucial tokens.266

Optimizing Importance Score. The supervisory267

signals derived from downstream tasks provide268

valuable guidance, allowing the attention module to269

select informative tokens more effectively. Specifi-270

cally, during the training phase, we aggregate the271

token representations using Scorei, which can be272

formulated as:273

si = ScoreiEi, (5)274

where si ∈ R1×d denotes the weighted summation275

of text features using attention score. Observe that276

Ei can be directly regarded as the value matrix,277

because we set the value parameter matrix as the 278

identity matrix I here for efficiency. Finally, si is 279

fed into a linear classifier C for prediction. The 280

training loss Ldown is computed using the cross- 281

entropy loss CE(·, ·) between the prediction and 282

true label for the target node i: 283

Ldown = Ei∈VL
CE(ŷi|Ci(si), yi). (6) 284

Note that, only the attention module and the classi- 285

fier are trained while keeping the PLM frozen for 286

efficiency. 287

Regularization. Through our empirical study, 288

we discovered that the importance score for the ma- 289

jority of nodes deteriorates when solely optimizing 290

Ldown, as depicted in Figure 3. We hypothesize that 291

this phenomenon is due to overfitting on the limited 292

set of training nodes. Consequently, most nodes 293

tend to converge on a single token with an exces- 294

sively high importance score (e.g., 0.99), thereby 295

hindering the selection of multiple informative to- 296

kens and inhibiting exploration. To mitigate this 297

phenomenon, we introduce a regularization term. 298

This term penalizes the network when certain to- 299

kens receive disproportionately high importance 300

scores, achieved with a KL-divergence loss: 301

Lreg = Ei∈VL
DKL(U ||Scorei), (7) 302

where U is an uniform distribution. 303
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Figure 3: Selecting the highest score token for each node
in WikiCS dataset, with and without regularization. The
x-axis means the highest importance score of token for
each node, the y-axis indicates the number of nodes
corresponding to each importance score.

The overall training loss of the reduction model304

is as follows:305

Ltrain = Ldown + βLreg, (8)306

where β is the regularization parameter for control-307

ling the distribution of importance score. A larger308

β results in a more uniform score distribution, and309

vice visa.310

3.3 Multi-Granularity Integration311

As discussed in Section 1, the integration of local-312

global perspectives is essential for representation313

learning in TAGs (Yan et al., 2023). However, pre-314

vious methods (Duan et al., 2023; He et al., 2023)315

often fail to adequately address the interconnection316

between these two perspectives. In this work, we317

propose an innovative multi-granularity integration318

framework that bridges local and global perspec-319

tives by considering contextual textual semantics320

among nodes, as illustrated in Figure 2. Intuitively,321

the contextual textual semantics among nodes can322

offer supplementary information for a given node.323

For example, within a citation network, the textual324

content of neighboring nodes might include key325

terms or concepts pertinent to the target node.326

To incorporate contextual information, we con-327

sider both the text of each node and its neighbors.328

For each node i, we concatenate its own text with329

the text of its neighboring nodes into a single se-330

quence Qi:331

Qi = (t1i , · · · , t
k′i
i , [SEP], t1j1 , · · · , t

k′n
jn
), (9)332

where tk
′
i

i represents the tokens in the node i, [SEP]333

is a separator token for separating different nodes,334

and {j1, · · · , jn} ∈ Ni. Note that concatenating 335

the text of multiple nodes results in an excessively 336

long sequence, which results in efficiency and scal- 337

ability issues. Therefore, we utilize the token reduc- 338

tion module described in Section 3.2 to select the 339

most crucial k′ tokens for forming the sequence. 340

After constructing the sequence Qi for each tar- 341

get node i, we train the language model LM(·), 342

which serves as the encoding module, on this se- 343

quence to obtain embeddings enriched with both 344

textual and contextual information: 345

LLM = Ei∈VL
CE(ŷi|C (LM (Qi)) , yi). (10) 346

It is noteworthy that sampling fewer neighbor- 347

ing nodes focuses the model more on the fine- 348

grained semantic information from a local perspec- 349

tive, whereas sampling more neighboring nodes 350

shifts the model’s emphasis towards capturing the 351

structural semantic information from a global per- 352

spective. 353

After completing the training of the LM, the 354

model is used to produce node representations H . 355

Subsequently, we train the aggregating module 356

GNN(·) as follows: 357

LGNN=Ei∈VL
CE(ŷi|C(GNN(A,H)i), yi), (11) 358

where the aggregating module GNN will generate 359

node features that further reflect the structural se- 360

mantics from a global perspective. 361

Additionally, training the GNN and LM is fully 362

decoupled, allowing for the use of any existing 363

GNN and LM models. This cascading structure en- 364

ables the independent optimization of each model, 365

enhancing flexibility and facilitating integration 366

with diverse architectures and applications. 367

4 Experiments 368

In this section, we first introduce the used datasets 369

in Section 4.1. We then detail the baseline methods 370

and experimental setup in Sections 4.2 and 4.3, 371

respectively. Experiments are presented to evaluate 372

our proposed method in Section 4.4. We further 373

investigate the use of a causal large language model 374

as the backbone in Section 4.5. Finally, we provide 375

an analysis of hyper-parameters, assess scalability 376

and efficiency, and conduct an ablation study. 377

4.1 Datasets 378

In this work, we adopt seven widely used tex- 379

tual graphs to evaluate our proposed GraphBridge: 380

Cora (Sen et al., 2008), WikiCS (Mernyei and 381
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Dataset #Nodes #Edges #Avg.tokens #Avg.degrees #Classes

Cora 2,708 5,429 194 3.90 7
WikiCS 11,701 215,863 545 36.70 10
CiteSeer 3,186 4,277 196 1.34 6
ArXiv-2023 46,198 78,543 253 1.70 40
Ele-Photo 48,362 500,928 185 18.07 12
OGBN-Products (subset) 54,025 74,420 163 2.68 47
OGBN-ArXiv 169,343 1,166,243 231 13.67 40

Table 1: Data statistics. #Nodes, #Edges, #Classes and #Avg.degrees mean the number of nodes, edges, classes
and average degrees for each dataset, respectively. #Avg.tokens represents the average number of tokens per node
in each dataset when using the RoBERTa-base’s tokenizer.

Cangea, 2020), CiteSeer (Giles et al., 1998), ArXiv-382

2023 (He et al., 2023), Ele-Photo (Yan et al., 2023),383

OGBN-Products (Hu et al., 2020) and OGBN-384

ArXiv (Hu et al., 2020). The raw text of these385

datasets are collected by previous works (Chen386

et al., 2023; Yan et al., 2023; He et al., 2023). De-387

tails of these datasets can be found in Appendix A.388

4.2 Baselines389

To verify the effectiveness of our proposed method,390

we select several baseline models for comparison,391

categorized into three types:392

Traditional GNN-based methods: primarily fo-393

cus on the global level but utilize static shallow em-394

beddings, which neglect fine-grained textual infor-395

mation, e.g., MLP, GCN (Kipf and Welling, 2016),396

SAGE (Hamilton et al., 2017), GAT (Veličković397

et al., 2018), NodeFormer (Wu et al., 2022).398

LM-based methods: primarily focus on the lo-399

cal textual level and do not consider global struc-400

tural information, e.g., BERT (Devlin et al., 2018),401

RoBERTa (Liu et al., 2019).402

Recent works designed for TAGs: integrate both403

local and global levels, e.g., GLEM (Zhao et al.,404

2022), TAPE (He et al., 2023), SimTeG (Duan405

et al., 2023), ENGINE (Zhu et al., 2024).406

4.3 Experimental Setup407

For traditional GNN-based methods, we utilize the408

raw features of each dataset, which are derived us-409

ing bag of words or one-hot vectors. For LM-based410

methods, we fine-tune LMs with raw texts of each411

node on downstream tasks. For recent TAGs meth-412

ods, we select RoBERTa-base and RoBERTa-large413

as the LM backbones, and a two-layer SAGE with414

64 hidden size as the GNN backbone. Regarding415

to our method, we select the same LM and GNN416

backbones with recent TAGs methods for a fair417

comparison. Additionally, we utilize RoBERTa-418

base as the LM encoder for our token reduction419

module. For alternative LMs used in token reduc- 420

tion, please refer to Appendix D. 421

In our experiments, we fine-tune all parameters 422

for base language models such as RoBERTa-base. 423

For larger models like RoBERTa-large, we employ 424

LoRA (Hu et al., 2021) with a rank of 8 to en- 425

sure scalability and maintain consistency with the 426

SimTeG approach (Duan et al., 2023). 427

4.4 Main Results 428

From Table 2, we draw the following conclusions: 429

First, traditional GNN-based methods, which 430

rely on global structural information using static 431

shallow embeddings, underperform compared to 432

current TAGs methods like GLEM that integrate 433

both local and global levels information. For in- 434

stance, on the ArXiv-2023 dataset, this integration 435

results in a 12% higher absolute performance over 436

GNN methods such as GCN, highlighting the cru- 437

cial role of local textual information in enhancing 438

model efficacy. 439

Second, LM-based methods primarily focusing 440

on local textual information fall short on TAGs, 441

as evidenced by integration methods which uti- 442

lize the same LM backbones surpassing them by 443

about 10% absolute performance on the Ele-Photo 444

dataset, achieving over 80% accuracy. This high- 445

lights the essential role of global structural informa- 446

tion in creating more semantically and structurally 447

aware node embeddings. 448

Last, our method surpasses existing local and 449

global integration approaches for TAGs. Specifi- 450

cally, GraphBridge achieves an absolute improve- 451

ment of over 6% on the CiteSeer dataset and 4% 452

on the ArXiv-2023 dataset, outperforming the pre- 453

vious state-of-the-art method, SimTeG, across var- 454

ious LM backbones. This demonstrates the effec- 455

tiveness of our approach in seamlessly integrating 456

local and global perspectives by incorporating con- 457

textual textual information among nodes, thereby 458
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Methods Cora WikiCS CiteSeer ArXiv-2023 Ele-Photo OGBN-Products OGBN-ArXiv

MLP 76.12 ± 1.51 68.11 ± 0.76 70.28 ± 1.13 65.41 ± 0.16 62.21 ± 0.17 58.11 ± 0.23 62.57 ± 0.11
GCN 88.12 ± 1.13 76.82 ± 0.62 71.98 ± 1.32 66.99 ± 0.19 80.11 ± 0.09 69.84 ± 0.52 70.78 ± 0.10
SAGE 87.60 ± 1.40 76.65 ± 0.84 72.44 ± 1.11 68.76 ± 0.51 79.79 ± 0.23 70.64 ± 0.20 71.72 ± 0.21
GAT 85.13 ± 0.95 77.04 ± 0.55 72.73 ± 1.18 67.61 ± 0.24 80.38 ± 0.37 69.70 ± 0.25 70.85 ± 0.17
NodeFormer 88.48 ± 0.33 75.47 ± 0.46 75.74 ± 0.54 67.44 ± 0.42 77.30 ± 0.06 67.26 ± 0.71 69.60 ± 0.08

BERT 79.70 ± 1.70 78.13 ± 0.63 71.92 ± 1.07 77.15 ± 0.09 68.79 ± 0.11 76.23 ± 0.19 72.75 ± 0.09
RoBERTa-base 78.49 ± 1.36 76.91 ± 0.69 71.66 ± 1.18 77.33 ± 0.16 69.12 ± 0.15 76.01 ± 0.14 72.51 ± 0.03
RoBERTa-large 79.79 ± 1.31 77.79 ± 0.89 72.26 ± 1.80 77.70 ± 0.35 71.22 ± 0.09 76.29 ± 0.27 73.20 ± 0.13

GLEM(base) 87.61 ± 0.19 78.11 ± 0.61 77.51 ± 0.63 79.18 ± 0.21 81.47 ± 0.52 76.15 ± 0.32 74.46 ± 0.27
TAPE(base) 87.82 ± 0.91 − − 80.11 ± 0.20 − 79.46 ± 0.11 74.66 ± 0.07
SimTeG(base) 86.85 ± 1.81 79.77 ± 0.68 78.69 ± 1.12 79.31 ± 0.49 81.61 ± 0.18 76.46 ± 0.55 74.31 ± 0.14
ENGINE(base) 87.56 ± 1.48 77.97 ± 0.94 76.79 ± 1.38 78.34 ± 0.15 80.50 ± 0.33 77.80 ± 1.20 73.59 ± 0.14
Ours(base) 92.14 ± 1.03 80.59 ± 0.47 85.32 ± 1.39 84.07 ± 0.34 83.84 ± 0.07 79.80 ± 0.19 74.89 ± 0.23

GLEM(large) 89.11 ± 0.22 77.99 ± 0.72 78.24 ± 0.31 78.91 ± 0.40 82.11 ± 0.66 78.59 ± 0.27 74.98 ± 0.45
TAPE(large) 88.56 ± 0.88 − − 80.21 ± 0.31 − 79.76 ± 0.23 75.29 ± 0.11
SimTeG(large) 88.78 ± 1.05 80.13 ± 0.76 79.59 ± 1.56 80.51 ± 0.33 82.49 ± 0.17 78.55 ± 0.66 75.16 ± 0.21
ENGINE(large) 88.49 ± 1.10 80.21 ± 0.29 78.02 ± 0.87 77.45 ± 0.46 82.68 ± 0.09 78.83 ± 0.80 74.62 ± 0.30
Ours(large) 92.73 ± 1.00 80.73 ± 0.41 86.81 ± 1.09 84.79 ± 0.29 84.18 ± 0.15 80.22 ± 0.47 75.90 ± 0.11

Table 2: Experimental results of node classification: We report the mean accuracy with a standard deviation of 5
runs with different random seeds. Highlighted are the top first, second, and third results. ‘base’ and ‘large’ refer to
RoBERTa-base and RoBERTa-large as LM backbones, respectively. ‘−’ indicates that datasets do not support for
this method.

Methods Cora WikiCS Ele-Photo

LLaMA2 82.80 ± 1.37 80.82 ± 0.48 72.06 ± 0.10

SimTeG( LLaMA2) 92.84 ± 0.13 82.55 ± 0.51 82.05 ± 0.17
ENGINE( LLaMA2) 91.48 ± 0.32 81.56 ± 0.97 83.75 ± 0.08

Ours( LLaMA2) 93.65 ± 0.44 84.18 ± 0.68 84.35 ± 0.12

Table 3: Experimental results when utilizing LLaMA2-
7B as the Large Language Model backbone. We employ
LoRA with a rank of 4 to fine-tune the LLM and report
the corresponding accuracy. We use boldface to denote
the best performace.

enhancing the fine-grained understanding of TAGs.459

4.5 Enhanced with Large Language Models460

Our method, as demonstrated in Section 4.4, proves461

effective with small and medium discriminative462

LMs like RoBERTa-base and RoBERTa-large. Fur-463

thermore, we have expanded our method to in-464

corporate causal Large Language Models (LLMs),465

which have shown significant capabilities across466

various natural language tasks (Achiam et al.,467

2023). Table 3 presents the results obtained us-468

ing LLaMA2-7B (Touvron et al., 2023) as the469

LLM backbone. Our method outperforms both470

LM-based method (i.e., LLaMA2) and integration471

methods (i.e., SimTeG, ENGINE) that utilize LLM.472

This demonstrates the effectiveness of our method473

with the LLM backbone, highlighting the impor-474

tance of bridging the local and global perspectives.475

4.6 Sensitive Analysis 476

The number of walk steps. In the construction 477

of the sequence Q as outlined in Equation 9, sam- 478

pling neighboring nodes via a random walk with 479

restart (Zhu et al., 2022) is essential for effectively 480

incorporating contextual textual information. The 481

number of walk steps, a key hyper-parameter, dic- 482

tates the extent of neighboring node inclusion and 483

thus influences the breadth of contextual informa- 484

tion captured. 485

89
90
91
92
93

Cora
WikiCS
CiteSeer
Ele-Photo

4 8 16 32 64
78
80
82
84
86

Figure 4: Sensitive analysis of the number of walk steps.

Empirically, we explore the impact of this num- 486

ber, choosing from {4, 8, 16, 32, 64}. The results 487

in Figure 4 indicate that a low number of walk 488

steps like 4, leads to insufficient contextual infor- 489

mation, while a high number like 64, may blur fine- 490

grained local information and introduce noise, neg- 491

atively impacting performance. To balance local 492
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Figure 5: Sensitive analysis of regularization term β.

and global information effectively, an intermediate493

number of steps, e.g., 16 or 32, is optimal.494

The regularization term β. The regularization495

process penalizes the token reduction module when496

certain tokens receive extremely high importance497

scores. We analyze the regularization term β as de-498

scribed in Equation 8, testing various value {0.01,499

0.1, 0.5, 1.0, 10.0}. Based on Figure 5, optimal500

results are observed with a β value of 0.1. A small501

or large β value can lead to a steep or excessively502

smooth score distribution, respectively.503

4.7 Scalability and Efficiency Analysis504

Walk Steps Reduction Memory (GB) Total Time

8
✗ 9.6 39h 14m
✓ 3.2 13h 55m

16
✗ 20.1 68h 42m
✓ 4.6 18h 41m

32
✗ OOM −
✓ 7.7 31h 14m

64
✗ OOM −
✓ 15.2 61h 51m

Table 4: The scalability and efficiency analysis of train-
ing on the OGBN-ArXiv dataset with and without token
reduction. The batch size was set to 1 for LM tuning,
with total training time reported using a 48-core Intel(R)
Xeon(R) CPU @ 2.50GHz and 8 NVIDIA GeForce
RTX 3090 GPUs. ‘OOM’ refers to out of memory.

In this section, we assess the scalability and ef-505

ficiency of our method by reducing the sequence506

length through token reduction module, detailed in507

Section 3.2. RoBERTa-base serves as our LM back-508

bone, and for this experiment, we use the rotatory509

position embeddings (Su et al., 2024) to accommo-510

date sequences of unlimited length. Results pre-511

sented in Table 4, demonstrate that without token512

reduction, method which considers neighboring513

textual information suffers from significant com-514

Cora WikiCS Ele-Photo
Different Datasets

70

73

76

79

82

85

88

91

94

Ac
cu

ra
cy

GraphBridge
w/o reg
Random
TF-IDF
Truncation

Figure 6: Experimental results of ablation study.

putational costs in terms of training time and GPU 515

memory usage, and it may even run out of memory 516

with a large number of walk steps (i.e., greater than 517

32). With our token reduction module, we only 518

retain the most k′ crucial tokens for each nodes, 519

thereby enhancing efficiency and scalability. 520

4.8 Ablation Study 521

In this section, we evaluate the effectiveness of 522

our token reduction module. Specifically, ‘w/o reg’ 523

refers to training the module without regulariza- 524

tion. The methods ‘Random’, ‘TF-IDF’, and ‘Trun- 525

cation’ represent three different alternative token 526

reduction strategies: random selection, selection 527

based on TF-IDF scores, and selecting the initial 528

tokens from texts, respectively. Figure 6 shows 529

that our token reduction module outperforms other 530

reduction methods, highlighting its effectiveness 531

in selecting crucial tokens. Additionally, regular- 532

ization is essential as it helps prevent overfitting to 533

specific tokens. 534

5 Conclusion 535

In this paper, we introduce GraphBridge, an in- 536

novative multi-granularity integration framework 537

for text-attributed graphs. Our method emphasizes 538

the importance of bridging local and global per- 539

spectives by incorporating contextual textual in- 540

formation, thereby enhancing the fine-grained un- 541

derstanding of TAGs. To tackle scalability and 542

efficiency challenges associated with handling ex- 543

tensive textual data, we propose a graph-aware to- 544

ken reduction module. Empirical studies confirm 545

that GraphBridge surpasses existing state-of-the-art 546

methods on various datasets. 547
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6 Limitations548

This work introduces a framework that seamlessly549

integrates both local and global perspectives by550

leveraging contextual textual information for TAGs.551

However, it primarily focuses on high-level dis-552

criminative tasks such as node classification and553

cannot be directly applied to generative tasks like554

graph description. Leveraging this framework to555

construct a graph foundation model presents a chal-556

lenging yet valuable area for exploration.557
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A Datasets718

We evaluated our method using seven widely rec-719

ognized text-attributed graph datasets. The details720

of these datasets are as follows:721

Cora (Sen et al., 2008) dataset contains 2,708722

scientific publications classified into seven classes:723

case-based, genetic algorithms, neural networks,724

probabilistic methods, reinforcement learning, rule725

learning, and theory. Each paper in the citation726

network cites or is cited by at least one other paper,727

resulting in a total of 5,429 edges.728

WikiCS (Mernyei and Cangea, 2020) dataset729

is a Wikipedia-based dataset designed for bench-730

marking Graph Neural Networks, consisting of 10731

computer science branches as classes with high732

connectivity. Node features are derived from the733

corresponding article texts1.734

CiteSeer (Giles et al., 1998) dataset comprises735

3,186 scientific publications categorized into six736

areas: Agents, Machine Learning, Information Re-737

trieval, Database, Human Computer Interaction,738

and Artificial Intelligence, with the task of classify-739

ing each paper based on its title and abstract.740

ArXiv-2023 dataset, introduced in TAPE (He741

et al., 2023), is a directed graph representing the742

citation network of computer science arXiv papers743

published in 2023 or later. Similar to OGBN-ArXiv,744

it features nodes representing arXiv papers and di-745

rected edges for citations. The goal is to classify746

each paper into one of 40 subject areas such as747

cs.AI, cs.LG, and cs.OS, with classifications pro-748

vided by the authors and arXiv moderators.749

Ele-Photo (Yan et al., 2023) dataset, derived750

from the AmazonElectronics dataset (Ni et al.,751

2019), consists of nodes representing electron-752

ics products, with edges indicating frequent co-753

purchases or co-views. Each node is labeled ac-754

cording to a three-level classification of electronics755

products. The text attribute for each node is the756

user review with the most votes, or a randomly se-757

lected review if no highly-voted reviews are avail-758

able. The task is to classify these products into 12759

categories.760

OGBN-Products (Hu et al., 2020) dataset, com-761

prising 2 million nodes and 61 million edges,762

is reduced using a node sampling strategy from763

TAPE (He et al., 2023) to create the OGBN-764

Products (subset) with 54k nodes and 74k edges.765

Each node represents an Amazon product, with766

1We obtain the raw texts of each node from
https://github.com/pmernyei/wiki-cs-dataset.

edges denoting co-purchases. The classification 767

task involves categorizing products into one of 47 768

top-level categories. 769

OGBN-ArXiv dataset is a directed graph de- 770

picting the citation network among computer sci- 771

ence arXiv papers indexed by MAG (Wang et al., 772

2020). Each node represents an arXiv paper with 773

directed edges indicating citations. The goal is to 774

classify papers into one of 40 subject areas like 775

cs.AI, cs.LG, and cs.OS, with labels manually as- 776

signed by the authors and arXiv moderators. 777

B Baselines 778

The details of the baseline methods we compared 779

GraphBridge to are as follows: 780

• Traditional GNNs: In this work, we 781

adopted three simple yet widely used 782

GNN models: GCN (Kipf and Welling, 783

2016), SAGE (Hamilton et al., 2017), and 784

GAT (Veličković et al., 2018). Addition- 785

ally, We include a graph transformer as the 786

GNNs-based methods baseline, i.e., Node- 787

Former (Wu et al., 2022). 788

• Fine-tuned Language Models: We adopt three 789

commonly used pre-trained language models 790

in our study: BERT (Devlin et al., 2018), two 791

versions of RoBERTa (Liu et al., 2019), specif- 792

ically RoBERTa-base and RoBERTa-large. 793

• GLEM (Zhao et al., 2022) is an effective 794

framework that fuses language models and 795

GNNs in the training phase through a vari- 796

ational EM framework. We use the official 797

source code2 to reproduce its results. 798

• TAPE (He et al., 2023) utilizes Large Lan- 799

guage Models like ChatGPT (Achiam et al., 800

2023) to generate pseudo labels and explana- 801

tions for textual nodes, which are then used to 802

fine-tune Pre-trained Language Models along- 803

side the original texts. We reproduced its re- 804

sults using the official source code3. 805

• SimTeG (Duan et al., 2023) employs a cas- 806

cading structure specifically designed for 807

textual graphs, utilizing a two-stage train- 808

ing paradigm. Initially, it fine-tunes lan- 809

guage models and subsequently trains GNNs. 810

2https://github.com/AndyJZhao/GLEM
3https://github.com/XiaoxinHe/TAPE
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Cora WiKiCS CiteSeer Ele-Photo

Ours( base) 92.03 ± 0.94 80.13 ± 0.31 84.52 ± 1.17 83.14 ± 0.10

Ours( large) 91.96 ± 0.77 80.55 ± 0.24 85.91 ± 0.99 84.34 ± 0.14

Table 5: Results using BERT as an alternative language model backbone for token reduction.

We conducted experiments using the official811

source code4.812

• ENGINE (Zhu et al., 2024) is an efficient813

fine-tuning and inference framework for text-814

attributed graphs. It co-trains large language815

models and GNNs using a ladder-side ap-816

proach, optimizing both memory and time817

efficiency. For inference, ENGINE utilizes818

an early exit strategy to further accelerate. We819

reproduce its results using the official source820

code5.821

C Implementation Details822

In this section, we give the implementations details823

about our method GraphBridge.824

Training of Graph-Aware Token Reduction825

Module. We train only the cross-attention mod-826

ule and the classifier, keeping the encoding lan-827

guage models frozen. Each dataset undergoes 100828

training epochs, with an early stopping patience829

of 10 epochs. The learning rate is explored within830

{1e-3, 5e-4, 1e-4}, and the regularization term β is831

set to 0.1.832

Training of Language Models. Initially, we con-833

struct the sequence Q by sampling adjacent nodes834

using a random walk with restart sampler Γ (Zhu835

et al., 2022, 2024). The number of walk steps836

for sampling varies among {8, 16, 32}. Train-837

ing epochs for the language models are adapted838

according to the dataset sizes: {4, 6, 8} for839

small datasets (e.g., Cora, WikiCS, CiteSeer), {4,840

6} for medium datasets (e.g., ArXiv-2023, Ele-841

Photo, OGBN-Products), and {4} for the large-842

scale dataset (OGBN-ArXiv). We employ AdamW843

optimizers. The learning rate is explored within844

{1e-4, 5e-5, 1e-5} for full parameter fine-tuning of845

RoBERTa-base6, and {1e-3, 5e-4, 1e-4} for tuning846

RoBERTa-large7 using LoRA (Hu et al., 2021) with847

4https://github.com/vermouthdky/SimTeG
5https://github.com/ZhuYun97/ENGINE
6https://huggingface.co/FacebookAI/roberta-base
7https://huggingface.co/FacebookAI/roberta-large

a rank of 8. For the large language model LLaMA2- 848

7B8, as outlined in Table 3, we use LoRA with a 849

rank of 4 and a learning rate within {5e-4, 1e-4, 850

5e-5}. 851

Training of Graph Neural Networks. We train 852

the GNNs models (i.e., SAGE) subsequent to ac- 853

quiring node representations from the language 854

models. Specifically, The number of training 855

epochs is designated within the range of {100, 200, 856

500}, complemented by an early stopping mecha- 857

nism set at 20 epochs for each dataset. We utilize 858

the Adam optimizers, and the learning rate is cho- 859

sen from the set {1e-2, 5e-3, 1e-3}. 860

D Alternative LMs as Backbones for 861

Token Reduction 862

Our graph-aware token reduction module is com- 863

patible with any language model as a backbone. In 864

this section, we demonstrate the effectiveness of 865

our token reduction module using BERT9 (Devlin 866

et al., 2018) as an alternative backbone. Table 5 867

presents the results when employing BERT for to- 868

ken reduction. 869

8https://huggingface.co/meta-llama/Llama-2-7b
9https://huggingface.co/google-bert/bert-base-uncased
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