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Abstract

Despite the efficiency of prompt learning in transferring
vision-language models (VLMs) to downstream tasks, exist-
ing methods mainly learn the prompts in a coarse-grained
manner where the learned prompt vectors are shared across
all categories. Consequently, the tailored prompts often fail
to discern class-specific visual concepts, thereby hindering
the transferred performance for classes that share similar or
complex visual attributes. Recent advances mitigate this chal-
lenge by leveraging external knowledge from Large Lan-
guage Models (LLMs) to furnish class descriptions, yet incur-
ring notable inference costs. In this paper, we introduce Tex-
tRefiner, a plug-and-play method to refine the text prompts
of existing methods by leveraging the internal knowledge of
VLMs. Particularly, TextRefiner builds a novel local cache
module to encapsulate fine-grained visual concepts derived
from local tokens within the image branch. By aggregating
and aligning the cached visual descriptions with the orig-
inal output of the text branch, TextRefiner can efficiently
refine and enrich the learned prompts from existing meth-
ods without relying on any external expertise. For exam-
ple, it improves the performance of CoOp from 71.66% to
76.96% on 11 benchmarks, surpassing CoCoOp which intro-
duced instance-wise feature for text prompts. Equipped with
TextRefiner, PromptKD achieve state-of-the-art performance
while keep inference efficient.

Introduction
Vision-Language Models (VLMs), such as CLIP (Radford
et al. 2021) and ALIGN (Jia et al. 2021), have manifested
exceptional generalization abilities, significantly benefiting
a vast spectrum of applications like open-vocabulary image
recognition (Zhai et al. 2023), object detection (Gu et al.
2022), and image segmentation (Li et al. 2022). Generally,
VLMs optimize an image encoder and a text encoder to align
text and image features in a unified embedding space via
contrastive loss. By pre-training on large-scale web data,
VLMs can acquire transferable representations in both vi-
sual and textual domains, facilitating their application to a
broad range of downstream visual tasks. As such, numer-
ous research efforts have been directed towards devising ap-
proaches to adapt VLMs in a manner mindful of both pa-
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Figure 1: Comparison of different paradigms for enriching
text prompts. Previous methods (left) introduced external
knowledge experts to furnish fine-grained descriptions of
each class, necessitating an extra filtering process to main-
tain alignment with downstream datasets. In contrast, our
proposed TextRefiner (right) leverages the internal knowl-
edge of the image branch to supply fine-grained, localized
region information, thereby drastically reducing the infer-
ence overhead while maintaining the performance.

rameters and data (Khattak et al. 2023a; Shen et al. 2024;
Gao et al. 2024b; Yu et al. 2023; Li et al. 2024a).

To date, the predominant focus of research has pre-
dominantly fallen on employing prompt learning (Zhou
et al. 2022b,a; Kunananthaseelan, Zhang, and Harandi 2024;
Khattak et al. 2023b), a widely acknowledged strategy
for adapting large pre-trained models. As an initial foray,
CoOp (Zhou et al. 2022b) leveraged prompt learning to
adapt text prompts of CLIP, resulting in marked performance
improvements in downstream tasks. Subsequent research ef-
forts have sought to extend prompt learning into the vi-
sual (Wu et al. 2023; Li et al. 2024b; Shen et al. 2024) and
multimodal domains (Khattak et al. 2023a; Xing et al. 2023;
Gao et al. 2024a; Xin et al. 2024), aiming to thoroughly fine-
tune the representations across modalities to enhance their
alignment.

Despite the ongoing advancements, a prevalent limita-
tion of these works is their tendency to enhance high-level
semantics in a coarse-grained, global manner, resulting in
holistic alignment across modalities. Consequently, the tai-
lored prompts may fail to instruct the model to discern di-
verse visual concepts from local regions, thereby hindering
its capability to generalize across classes that share similar
visual attributes. To overcome this limitation, recent works



such as ArGue (Tian et al. 2024) and LLaMP (Zheng et al.
2024) utilize large language models (LLMs) to enrich the
text prompts with fine-grained class descriptions that en-
hance transfer performance, as shown in Figure 1 (left).
Unfortunately, these approaches necessitate additional pro-
cesses to sift through the LLMs outputs to ensure their rel-
evance to downstream datasets, thereby introducing signifi-
cant inference overhead.

This work aims to enrich VLM prompt tuning without
the reliance on external knowledge experts, as previously
described. Our core impetus stems from a widely accepted
consensus in the traditional computer field: fine-grained vi-
sual concepts at local regions are prominently present in
the intermediate layer outputs of the visual networks (Zeiler
and Fergus 2014; Kim, Nam, and Ko 2022a; Selvaraju
et al. 2020). As such, one can intuitively exploit the inter-
nal knowledge within the VLM, specifically the intermedi-
ate outputs of the image encoder, to deliver precise class de-
scriptions and achieve local alignment without the need for
external LLMs assistance.

To this end, we propose a plug-and-play method, dubbed
TextRefiner, to refine the text prompt in VLM tuning without
the need for external LLMs’ assistance. As depicted in Fig 1,
TextRefiner incorporates a novel local cache module to en-
capsulate fine-grained visual concepts derived from local
tokens within the image branch. More particularly, amidst
VLM tuning, the image branch continuously writes fine-
grained semantic information into the cache in a class-wise
manner. The fine-grained information retrieved for each cat-
egory is concatenated with the corresponding class embed-
ding, followed by a feature aggregation module to fuse
global and local information to enhance the representation
capability for the text branch. To further align the interme-
diate embeddings between modalities, we furnish TextRe-
finer with a feature alignment module to transform local to-
kens into the text embedding space. Owing to such design,
the fine-grained local features from the image branch can
be seamlessly utilized to deliver class descriptions, thereby
effectively refining the vanilla text prompting performance.

It is noteworthy that TextRefiner is both scalable and or-
thogonal to augment the efficacy of prevailing VLM tun-
ing methods, i.e, the local cache module operates indepen-
dently with existing prompt tuning paradigms. For example,
TextRefiner enhances CoOp by 5.30% on 11 benchmarks,
surpassing CoCoOp which introduced instance-specific fea-
tures for text prompts to improve generalization. Equipped
with TextRefiner, PromptKD achieves state-of-the-art per-
formance, surpassing LLaMP, which relies on external ex-
perts, by 1.06%. Moreover, TextRefiner demonstrates high
inference efficiency. CoCoOp achieves 20.45 FPS, LLaMP
reaches 1473.46 FPS, while PromptKD w/TextRefiner
achieves 12793.26 FPS. This efficiency is due to its reliance
on simple matrix multiplication at the text output, unlike Co-
CoOp and LLaMP, which require additional modules to ex-
tract and combine information with the text input.

The contributions of this paper are delineated as follows:
• We introduce TextRefiner, which, for the first time, ex-

ploits the internal knowledge of the image branch to re-
fine the text prompts of VLMs.

• TextRefiner introduces three principal innovations, en-
compassing local cache, feature aggregation, and feature
alignment, which collaboratively enhance the incorpora-
tion of fine-grained visual attributes into the text prompts.

• Extensive experiments demonstrate the effectiveness of
TextRefiner in boosting VLM prompt tuning, even with-
out additional inference costs associated with prior meth-
ods that utilize external knowledge from LLMs.

Related Works
Vision-Language Model
Traditional visual representation learning relied exclusively
on a predefined set of labels limiting its expansion to un-
seen classes (Deng et al. 2009; He et al. 2016; Dosovitskiy
et al. 2021; Liu et al. 2022). Vision-language models redress
this deficiency by incorporating natural language supervi-
sion, thereby aiding vision systems in mastering more visual
concepts. These models are pre-trained on copious amounts
of raw text paired with images from the Internet in a self-
supervised manner. Marked advances such as ALIGN (Jia
et al. 2021) and CLIP (Radford et al. 2021) utilize con-
trastive loss during pre-training to align both modalities into
a unifying embedding space. Benefiting from the large-scale
dataset and contrastive training objective, the learned visual
representations connect with language and are highly gen-
eralizable, which has been widely applied to various down-
stream vision tasks, such as object detection (Gu et al. 2022),
semantic segmentation (Li et al. 2022) and depth estima-
tion (Zhang et al. 2022). Despite these formidable capabili-
ties, the transfer of VLMs to downstream tasks at few-shot
scenarios poses a formidable challenge, where the quan-
tity of data in such tasks falls substantially short relative to
pre-training, leading to a significant falloff in generalizabil-
ity (Zhu et al. 2023; Khattak et al. 2023b; Roy and Etemad
2024). Our proposed TextRefiner in this paper is crafted
to achieve efficient transfer learning in low-data scenarios
while preserving generalization.

Prompt Learning in VLMs
Prompt learning is progressively favored in adapting Vision-
and-Language Models (VLMs) to downstream tasks with-
out necessitating a full re-training of the original model.
For VLMs, prompt learning entails introducing learnable
text or visual prompts that transcend manually-defined
prompts like a photo of a {class}. CoOp (Zhou
et al. 2022b) incorporates learnable tokens into predefined
text prompts within the text branch. These tokens, univer-
sally shared across classes, glean task-related knowledge
to align with the image features derived from the down-
stream dataset. Zhou et al. (Zhou et al. 2022a) proposed
conditional prompt learning (CoCoOp), constraining image
features in an instance-specific manner to curtail overfit-
ting in few-shot scenarios and bolster generalization towards
unseen classes. PromptSRC (Khattak et al. 2023b) further
modulates learned prompts utilizing pre-trained features to
enhance generalization. MaPLe (Khattak et al. 2023a) ex-
pands prompt learning into multimodal branches, enabling
the prompt to not only capture characteristics within the



text branch but also enhance inter-modal alignment. De-
spite their effectiveness, these methods generally tune the
prompt on a rather coarse granularity scale, which tends
to overlook the fine-grained image feature, potentially im-
pairing the generalization across classes that share simi-
lar visual attributes. To mitigate this, ArGue (Tian et al.
2024) and LLaMP (Zheng et al. 2024) utilize large language
models (LLMs) to provide detailed attribute information of
classes to the text branch, achieving fine-grained alignment
in downstream tasks. However, such LLM-based methods
necessitate well-curated filtering of knowledge generated by
the LLMs to ensure its relevance to downstream tasks, con-
sequently incurring additional computational expenses. Our
method capitalizes on the semantic information embedded
in image local tokens to realize fine-grained alignment with-
out the need for complex filtering or huge inference costs.

Method
Background
Preliminaries. By aligning image and text in a joint
embedding space, Vision-Language Models (VLMs) like
CLIP (Radford et al. 2021) and ALIGN (Jia et al. 2021)
mark significant advancements in vision applications. Fol-
lowing previous works (Zhou et al. 2022a; Khattak et al.
2023b; Zheng et al. 2024), this paper utilizes CLIP as the
foundation model, with relevant preliminary details pro-
vided herein. CLIP consists of an image encoder, labeled as
fI , and a text encoder referred to as fT . Both encoders incor-
porate a feature extractor and a projection layer the transfer
the multimodal inputs into a joint embedding space. Without
loss of generality, we utilize the CLIP model equipped with
a vision transformer (ViT) for illustration.

During the training phase, a contrastive loss (Chen
et al. 2020) is employed to maximize the cosine similar-
ity between embeddings of corresponding image-text pairs
{I, T}, where I denotes the image and T the associated cap-
tion. For testing, CLIP integrates each class name within
a hard prompt formatted as a photo of a {class},
creating textual class descriptions P ∈ RC×l, where C is
the number of classes and l is the harmonized length of text
sequences. The text encoder fT then generates textual em-
beddings E ∈ RC×d for P, which act as class templates.
Then, with the image feature v ∈ Rd outputted by the im-
age encoder fI , the prediction probabilities are determined
by the corresponding similarity between textual embeddings
and the image feature, expressed as:

P (c) =
exp(cos(v,Ec)/τ)∑C
c=1 exp(cos(v,Ec)/τ)

, (1)

where c represents a specific class, cos( · ) calculates the co-
sine distance between vectors, and τ is a tuning parameter
for scaling the softmax function.

VLMs Prompt Tuning. Instead of manually crafted
hard prompts, VLM prompt tuning methods, pioneered by
CoOp (Zhou et al. 2022b), learn soft prompts to further im-
prove the transferring performance on downstream tasks.
Specifically, CoOp incorporates multiple learnable word

embeddings pi shared within all classes to construct tex-
tual descriptions as P = [p1, p2, ..., pL]{class}, where L
specifies the number of soft prompts. With these learnable
prompts, CLIP can enhance task-relevant textual descrip-
tions across all classes. Subsequent research efforts intro-
duce learnable context tokens into the image branch or both
branches to better learn downstream representations (Wu
et al. 2023; Shen et al. 2024; Khattak et al. 2023a; Xing
et al. 2023). Despite their efficacy, the prevailing paradigms
largely enhance embeddings in a coarse-grained manner,
with prompts that are universal across all classes, achiev-
ing only global alignment and often failing to reflect the
diverse visual attributes of localized regions. Although re-
cent works have revealed the potential in utilizing external
knowledge from LLMs (Touvron et al. 2023a,b) to refine the
learned prompts with fine-grained class-wise information, it
comes at additional inference costs associated with filtering
the outputs of LLMs to ensure their pertinence to specific
downstream datasets.

TextRefiner
To mitigate the aforementioned challenges, this paper
presents a plug-and-play method to refine the text prompt
in VLM prompt tuning without depending on external assis-
tance, termed TextRefiner. The core contribution of TextRe-
finer lies in enhancing the textual embedding with linguis-
tic visual attributes using local features within the image
branch, which have been demonstrated to encompass rich
fine-grained visual concepts at local regions (Ghiasi et al.
2022; Ma et al. 2023; Kim, Nam, and Ko 2022b). TextRe-
finer achieves this objective through three complementary
innovations, including local cache, feature aggregation and
feature alignment, as shown in Fig. ??. We detailedly intro-
duce them as below.

Local Cache. The visual encoder ViT splits input image
into non-overlapping patches and feeds them into stacked
transformer blocks to obtain a series of local tokens V =
{v1, v2, ..., vN}, where N represents the number of patches.
These local tokens have been widely demonstrated to be
capable of capturing specialized visual features such as
edges, textures, and represent discernible conceptual cate-
gories (Ghiasi et al. 2022). Therefore, we propose to lever-
age these internal local tokens within VLMs as visual at-
tribute descriptions for classes, forsaking the practice of us-
ing external experts as previous methods do. To achieve
this, we propose a novel local cache module to store the
fine-grained visual concepts from local tokens. Instead of
coarsely storing all local tokens in bulk, we establish a fixed
number of entries within the local cache and cluster sim-
ilar local tokens into a single entry to selectively capture
corresponding visual attributes. For instance, when process-
ing a zebra sample, our objective is to amalgamate its pro-
nounced black and white stripe features into a cache entry
that epitomizes textures. To this end, we construct an storage
A ∈ RM×d, where M entries in A are used to collect infor-
mation from local tokens across all instances based on sim-
ilarity and d denotes the feature dimension. Given local to-
kens, we calculate the cosine similarity between the attribute
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Figure 2: (a) shows the framework of TextRefiner, which is composed of local cache, feature aggregation, and feature alignment.
(b) demonstrate the mechanism of local cache. Each item in the local cache can be considered as an attribute prior, updated by
local tokens from the image branch. Textual class embedding can obtain corresponding linguistic visual attributes by querying
this cache.

storage and local tokens, followed by a softmax function to
obtain probability, as follows:

Di,j =
exp(cos(vi,Aj))∑M
j=1 exp(cos(vi,Aj))

. (2)

Then, the local tokens are assigned to the entry in A with
the highest probability. For example, the allocated position
of the j-th entry in the local cache is formulated as follows:

Gj = { i | argmax
k

Di,k = j}. (3)

Subsequently, the j-th entry gathers information from local
tokens as:

Aj = γ · Aj + (1− γ)
∑
i∈Gj

Di,j · vi, (4)

where γ denotes the momentum coefficient. Through the
above updates, we achieve continuously memorizing the
fine-grained information inherent in the local tokens and this
information subsequently can be utilized to enhance the de-
scriptive capabilities of text representation.

Feature Aggregation. To harness the potential of the fine-
grained information in the local cache, we introduce feature
aggregation operation. As shown in Figure ??, we enhance
text embedding of classes by integrating local context from
the local cache into the global context from CLIP via resid-
ual connection (He et al. 2016; Yu et al. 2023). Specifically,
we begin by matching each text embedding Ei from CLIP
with the corresponding visual attributes stored in entries of
the local cache as:

Wi,j =
exp(cos(Ei,Aj))∑M
j=1 exp(cos(Ei,Aj))

, (5)

Then, the detailed descriptive embedding associated with the
corresponding i-th class is calculated as:

Ei =

M∑
j=1

Wi,j · Aj . (6)

Then, we concatenate the detailed descriptive embedding
with the original text embedding and subsequently employ
a linear layer with residual connection to aggregate the two
types of features:

Êi = α · Linear([Ei,Ei]) + Ei, (7)

where α is the coefficient hyperparameter.

Feature Alignment. CLIP aligns the global feature from
images and texts to learn a joint embedding space. How-
ever, local features in images lack explicit alignment, lead-
ing to the modality gap between the local feature V and the
textual embedding E. To address potential feature shift, we
further incorporate a feature alignment module to transform
local features into the text embedding space, mitigating the
modality gap. The feature alignment module simply consists
of a 2-layer MLP where V will be transformed as:

V̂ = W2σ(norm(W1V)). (8)

Training
During the training, we adhere to the original CLIP frame-
work, utilizing contrastive loss as the primary classification
supervision, formulated as follows:

Lcls = − log
exp(cos(v, Êc)/τ)∑C
j=1 exp(cos(v, Êj)/τ)

. (9)



Method
Average ImageNet Caltech101 OxfordPets

Base Novel HM Base Novel HM Base Novel HM Base Novel HM

CLIP 69.34 74.22 71.70 72.43 68.14 70.22 96.84 94.00 95.40 91.17 97.26 94.12
CoOp 82.69 63.22 71.66 76.47 67.88 71.92 98.00 89.81 93.73 93.67 95.29 94.47

CoCoOp 80.47 71.69 75.83 75.98 70.43 73.10 97.96 93.81 95.84 95.20 97.69 96.43
PromptSRC 84.26 76.10 79.97 77.60 70.73 74.01 98.10 94.03 96.02 95.33 97.30 96.30

MaPLe 82.28 75.14 78.55 76.66 70.54 73.47 97.74 94.36 96.02 95.43 97.76 96.58
PromptKD 84.11 78.28 81.09 77.63 70.96 74.15 98.31 96.29 97.29 93.42 97.44 95.39

LLaMP 85.16 77.71 81.27 77.99 71.27 74.48 98.45 95.85 97.13 96.31 97.74 97.02

CoOp w/TextRefiner 79.74 74.32 76.94 76.84 70.54 73.56 98.13 94.43 96.24 95.27 97.65 96.45
PromptKD w/TextRefiner 85.22 79.64 82.33 77.51 71.43 74.35 98.52 96.52 97.51 95.60 97.90 96.74

Method
StanfordCars Flowers102 Food101 FGVCAircraft

Base Novel HM Base Novel HM Base Novel HM Base Novel HM

CLIP 63.37 74.89 68.65 72.08 77.80 74.83 90.10 91.22 90.66 27.19 36.29 31.09
CoOp 78.12 60.40 68.13 97.60 59.67 74.06 88.33 82.26 85.19 40.44 22.30 28.75

CoCoOp 70.49 73.59 72.01 94.87 71.75 81.71 90.70 91.29 90.99 33.41 23.71 27.74
PromptSRC 78.27 74.97 76.58 98.07 76.50 85.95 90.67 91.53 91.10 42.73 37.87 40.15

MaPLe 72.94 74.00 73.47 95.92 72.46 82.56 90.71 92.05 91.38 37.44 35.61 36.50
PromptKD 80.48 81.78 81.12 98.69 81.91 89.52 89.43 91.27 90.34 43.61 39.68 41.55

LLaMP 81.56 74.54 77.89 97.82 77.40 86.42 91.05 91.93 91.49 47.30 37.61 41.90

CoOp w/TextRefiner 71.40 70.90 71.15 95.92 74.33 83.76 90.88 91.43 91.15 35.35 35.87 35.61
PromptKD w/TextRefiner 80.91 81.83 81.37 99.30 82.91 90.37 91.42 92.71 92.06 45.01 40.12 42.42

Method
SUN397 DTD EuroSAT UCF101

Base Novel HM Base Novel HM Base Novel HM Base Novel HM

CLIP 69.36 75.35 72.23 53.24 59.90 56.37 56.48 64.05 60.03 70.53 77.50 73.85
CoOp 80.60 65.89 72.51 79.44 41.18 54.24 92.19 54.74 68.69 84.69 56.05 67.46

CoCoOp 79.74 76.86 78.27 77.01 56.00 64.85 87.49 60.04 71.21 82.33 73.45 77.64
PromptSRC 82.67 78.47 80.52 83.37 62.97 71.75 92.90 73.90 82.32 87.10 78.80 82.74

MaPLe 80.82 78.70 79.75 80.36 59.18 68.16 94.07 73.23 82.35 83.00 78.66 80.77
PromptKD 82.53 80.88 81.70 82.86 69.15 75.39 92.04 71.59 80.54 86.23 80.11 83.06

LLaMP 83.41 79.90 81.62 83.49 64.49 72.77 91.93 83.66 87.60 87.13 80.66 83.77

CoOp w/TextRefiner 80.96 76.49 78.66 75.35 58.09 65.60 74.57 72.82 73.68 82.52 75.01 78.59
PromptKD w/TextRefiner 83.02 80.50 81.74 83.91 71.01 76.92 92.99 79.22 85.55 89.20 81.90 85.39

Table 1: Comparison between our method and other existing methods on base-to-novel generalization.

In addition to the vanilla contrastive loss, we augment Tex-
tRefiner with a semantic loss and a regularization loss com-
ponent. Respectively, we select the top-k transformed local
features with attention scores and calculate the average of
all tokens to obtain S ∈ R(k+1)×d. The semantic loss en-
sures that S align with their corresponding text embeddings,
expressed as:

Lsem =
1

k + 1

k+1∑
i=1

log
exp(cos(Si, Êc)/τ)∑C
j=1 exp(cos(Si, Êj)/τ)

. (10)

On the other hand, we implement a regularization loss to
curb overfitting to the limited amount of training images in
VLMs fine-tuning scenarios, which can be denoted as:

Lreg = |E − Ê|. (11)
The overall loss can be formulated as follows:

L = Lcls + λ1 ∗ Lsem + λ2 ∗ Lreg, (12)
where λ1 and λ2 are hyperparameters utilized to balance the
loss components.

Inference

During the inference phase for the input image denoted by
x, we compute the cosine similarity between v = fI(x) and
the fused textual embedding Êi for all classes. The predicted
label y is ascertained based on the maximum likelihood, ex-
pressed as:

y = argmax
i

exp(cos(v, Êi)/τ)∑C
j=1 exp(cos(v, Êj)/τ)

(13)

Unlike other methods that insert hard or carefully designed
learnable prompts representing visual attributes into the in-
put embedding of the text branch, our approach only re-
quires feature aggregation between the textual output em-
beddings and the local cache, providing an efficiency advan-
tage.



Method Source Target

ImageNet -V2 -Sketch -A -R

CLIP 66.73 60.83 46.15 47.77 73.96
CoOpOp 71.02 64.07 48.75 50.63 76.18
PromptSRC 71.27 64.35 49.55 50.90 77.80

CoOp 71.51 64.20 47.99 49.71 75.21
+ TextRefiner 72.06 65.02 48.58 49.77 76.30

MaPLe 70.72 64.07 49.15 50.90 76.98
+ TextRefiner 71.13 64.54 49.08 51.49 77.71

Table 2: Comparison between our method and other existing
methods on cross-domain generalization.

Experiment
Settings
Datasets. We follow the common practice in the lit-
erature (Zhou et al. 2022a; Khattak et al. 2023b,a) to
adopt two experimental settings: base-to-novel and cross-
domain. For base-to-novel evaluation, we adopt a wide
range of visual recognition benchmark datasets i.e., Ima-
geNet (Deng et al. 2009), Caltech101 (Fei-Fei, Fergus, and
Perona 2004), OxfordPets (Parkhi et al. 2012), Stanford-
Cars (Krause et al. 2013), Flowers102 (Nilsback and Zis-
serman 2008), Food101 (Bossard, Guillaumin, and Gool
2014), FGVCAircraft (Maji et al. 2013), SUN397 (Xiao
et al. 2016), DTD (Cimpoi et al. 2014), EuroSAT (Hel-
ber et al. 2019)and UCF101 (Soomro, Zamir, and Shah
2012). In this setting, the datasets are split into two non-
overlapping sets where the base classes and novel classes
serve as training sets and test sets, respectively. For cross-
domain evaluation, we train our model on ImageNet and
test the generalization performance on its variants: Ima-
geNetV2 (Recht et al. 2019), ImageNet-Sketch (Wang et al.
2019), ImageNet-A (Hendrycks et al. 2021b) and ImageNet-
R (Hendrycks et al. 2021a). Both are trained using 16 shots
per class from the training sets and are tested on the full test
sets.

Implementation details. For a fair comparison, we adopt
CLIP with ViT-B/16 vision encoder and verify the effective-
ness of our method on CoOp (Zhou et al. 2022b), MaPLe
and PromptKD (Li et al. 2024b). The setting of epochs,
batch size, learning rate, optimizer and soft token length cor-
responds with the original papers, except for CoOp, where
the number of epochs was reduced from 200 to 10. In partic-
ular, the momentum α and the fusion factor β are configured
to be 0.8 and 0.2, respectively. For the hyper-parameters in
Eq. 12, we set λ1 to 0.02 and λ2 to 20 based on empirical
observation. For simplicity, we report ablation results on
CoOp to verify its effectiveness.

Main Results
Base-to-novel. Firstly, we report the quantitative results of
various methods for base-to-novel tasks on 11 benchmarks.
Table 1 shows our method can consistently enhance the per-
formance of existing methods. In particular, TextRefiner en-
hances CoOp’s generalization on novel classes, improving
accuracy from 63.22% to 74.32%. Compared to CoCoOp,
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Figure 3: Comparison of inference efficiency among existing
methods on the ImageNet dataset. Our TextRefiner is more
efficient than LLaMP which relies on external knowledge.

which integrates instance-conditional context produced by
meta-net to refine text prompt, TextRefiner effectively local
tokens and offers additional improvements. For PromptKD,
our method enhances their performance on fine-grained
benchmarks. On DTD, TextRefiner increases novel accuracy
from 69.15% to 71.01%, On EuroSAT, TextRefiner achieves
improvements of 7.63%. Compared to LLaMP, which uses
LLMs to provide detailed descriptions according to class
names, our method achieves better generalization and pro-
vides a better balance between base and novel classes, where
PromptKD w/TextRefiner achieves average gains of 1.97%
in novel accuracy, and 1.06% in harmonic mean on average.
This suggests that additional filtering modules run the risk
of overfitting downstream tasks, requiring careful design. In
contrast, our approach leverages the internal knowledge in
visual networks to improve downstream performance while
enhancing generalization. These improvements verify that
our method can achieve better balances on seen and unseen
data, thus showcasing stronger generalization compared to
the original methods.

Cross-domain. Moving beyond fundamental base-to-
novel benchmarks, we exploit the generalization capac-
ity of TextRefiner across domains on four commonly-used
datasets i.e., ImageNet-V2, ImageNet-Sketch, ImageNet-A
and ImageNet-R. The experimental results are shown in Ta-
ble 2, where a significant improvement has been observed in
all scenarios and the robustness to domain shift is verified.

Efficiency. We also provide a comparison of inference ef-
ficiency which is evaluated with one single A800 GPU based
on the officially released code. As shown in Figure 3, Tex-
tRefiner only slightly reduces FPS and remains highly effi-
cient. In contrast, LLaMP, which relies on external experts,
significantly compromises inference speed.

Ablations
The effects of each component. To verify the effective-
ness of the proposed method, we examine different combi-
nations of components. As shown in Table 3, TextRefiner
can significantly enhance the performance of CoOp by pro-



TextRefiner Lsem Lreg
ImageNet

Base Novel HM

76.47 67.88 71.92
✓ 76.50 70.48 73.37
✓ ✓ 76.58 70.62 73.48
✓ ✓ 76.70 69.67 73.02
✓ ✓ ✓ 76.84 70.54 73.56

Table 3: Ablation study on each component.
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Figure 4: Ablation study on M in A.

viding fine-grained information in the local cache. The intro-
duced semantic loss ensures that the semantic information
stored in the local cache is distinguish and aligned with the
text, further improving performance. Introducing regulariza-
tion loss enhances performance on seen classes but restricts
the utilization of fine-grained information in the local cache,
which leads to decreased generalization on unseen classes.
Utilizing all components together effectively balances the
recognition of seen classes and the generalization of unseen
classes.

The effects of M . We investigate the effect of M in A,
controlling the condensation level of local tokens, where a
larger M means more entries to summarize the visual at-
tributes from local tokens. As shown in Figure 4, recognition
performance improves as M increases, but once M reaches
a certain value, performance starts to decline. This can be
understood as follows: when M exceeds a certain threshold,
complete visual attributes are split and stored in multiple en-
tries compromising their integrity and text embedding strug-
gles to recombine the correct attributes.

The effects of λ1 and λ2. To better understand the effects
of these two loss factors, we fixed one and observed the per-
formance changes as the other varied. As shown in Table 4,
the performance of our method consistently increases first
and then decreases when the loss balance factor λ1 and λ2

increase. This observation suggests that excessively aligning
local tokens can cause the stored information to overfit the
local features of seen samples, leading to a spurious relation-

1
λ1

20 30 40 50 60

Base 76.33 76.45 76.52 76.84 76.60
Novel 70.14 70.04 70.28 70.54 70.27
HM 73.10 73.10 73.27 73.56 73.30

λ2 5 10 15 20 25

Base 76.65 76.70 76.67 76.84 76.65
Novel 70.49 70.51 70.32 70.54 70.34
HM 73.44 73.47 73.36 73.56 73.36

Table 4: Ablation study on loss factors.

0.0 0.2 0.4 0.6 0.8 1.0

68

70

72

74

76

78

A
cc

ur
ac

y 
(%

)

Base
Novel
HM

Figure 5: Ablation study on aggregation coefficient in Eq. 7.

ship. In addition, applying a strong regularization results in
insufficient learning for TextRefiner.

The effects of fusion coefficient α. We also studied the
hyperparameter α, where a larger α indicates the final text
embedding contains more local information from E. In Fig-
ure 5, as α increases, accuracy on the base class continu-
ously improves, while accuracy on the novel class would
increase first and then continuously decrease. This indicates
that with a limited number of samples, over-reliance on fine-
grained information from seen samples may lead to overfit-
ting and damage generalization capability.

Conclusion
In this paper, we utilize visual concepts naturally embed-
ded in local tokens of visual networks to enhance the text
prompt with fine-grained information. Specifically, we in-
troduce TextRefiner, a plug-and-play module, containing the
local cache, feature aggregation, and feature alignment. The
local cache is used to continuously store fine-grained infor-
mation from local tokens. Meanwhile, feature aggregation
provides a solution to fuse global and local information to
enhance the representation capability for the text branch.
Feature alignment module can alleviate the modality gap
between the text embedding and local tokens. We also in-
troduce two additional training losses, the semantic loss and
regularization loss, to aid in the optimization process. We
hope this study will inspire additional advancements in the
field of multimodal learning and efficient transfer learning.
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