
Under review as submission to TMLR

Discovery of Hierarchy in Embedding Space

Anonymous authors
Paper under double-blind review

Abstract

Existing learning models partition the generated representations using linear hyperplanes
which form well defined groups of similar embeddings that can be uniquely mapped to
a particular class. However, in practical applications, the embedding space do not form
distinct boundaries to segregate the clusters. Moreover, the structure of the latent space
remains obscure. As learned representations are frequently reused to reduce the inference
time, it is important to analyse how semantically related classes interact among themselves
in the latent space. We have proposed a cluster growing algorithm that minimises the
inclusion of other classes in the embedding space to form clusters of similar representations.
These clusters are overlapping to denote ambiguous embeddings that cannot be mapped to
a particular class with high confidence. Later, we construct relation trees to evaluate our
method with the WordNet hierarchy using phylogenetic tree comparison methods.

1 Introduction

In modern computer vision, utilising the learned high-dimensional embeddings to reduce the inference time is
ubiquitous. Conventional models aim at grouping images based on semantic relations which are later assigned
to classes. The assessment of similarity among the images are achieved using simple distance measures.
Thus, specific geometry of the embedding space is implied by the operations at the end of deep models.
For example, classification networks (Krizhevsky et al., 2017) use linear operators to map embeddings of
the penultimate layer to its respective classes. This indicate that the embeddings learned by the model lie
in the Euclidean space. Each pair of classes in the latent space are separated by Euclidean hyperplanes.
Hence, Euclidean distances are often used to perform face recognition (Wen et al., 2016), one-shot learning
(Snell et al., 2017) or image retrieval (Wu et al., 2017). Some methods also use spherical embeddings by
applying a spherical projection operator for computing the embeddings at the end of the network. However,
the partitioning of embeddings to form well defined groups by the hyperplane is enforced by the model to
assign each representation to unique classes. In Fig. 1, scatter plots of the generated feature representations
from different models are shown as points in a 3-dimensional space.

Hyperbolic spaces have negative curvature unlike Euclidean and spherical spaces which have zero and positive
curvatures, respectively. These have profound effect on the nature of embeddings that the current methods
can learn (Khrulkov et al., 2020). It has been observed that embeddings in hyperbolic space, perform
significantly better that those in Euclidean space. Thus, it is yet to completely understand the nature and
structure of the latent space under various circumstances. Although generating better visual embeddings
has been an active area of research today, most of these works overlook the interaction among the classes
while learning class representations.

We propose to analyse the structure of the embeddings formed without enforcing any particular criterion
for training. The generated representations are assumed to be points in high dimensional space on which we
apply a cluster growing algorithm to group them based on their similarity. These class associated embedding
clusters (CAEC) are not well partitioned and have overlaps to encode embeddings which are ambiguous and
can be used to represent more than one classes. Such highly related visual features are often observed
among closely related classes. Thus, using our cluster growing algorithm, we have been able to capture such
non-discriminative class embeddings. The proposed cluster growing technique maximises grouping of same
class embeddings and minimises the inclusion of those of other classes. We compare the results observed

1

Under review as submission to TMLR

(a) (b) (c)

x
x x

y yy

zz z

Embedding plot of
ViT

Embedding plot of
EfficientNetV2

Embedding plot of
ConvNeXt

Figure 1: Scatter plots of the embeddings generated from three different models (a) Vision Transformer, (b)
EfficientNetV2 and (c) ConvNeXt, in 3D Euclidean space. The number of classes here are 10 and the total
number of data points are 50,000.

for the representations generated from three different types of models, namely, Vision transformer (ViT)
(Dosovitskiy et al., 2021), convolutional neural network (EfficientNetV2) (Tan & Le, 2021) and ConvNeXt
(Liu et al., 2022). Even though the embedding space is Euclidean, we observe marked differences in the
quality of clusters when different types of distance measures are used while clustering. A relation tree is
constructed by applying the unweighted pair group method with arithmetic mean (UPGMA) (Dawyndt
et al., 2006) on cluster centroids to hierarchically visualise the semantic relations among the classes. This
tree is compared with the WordNet (Miller, 1995) ontology using phylogenetic tree comparison methods to
evaluate our proposed algorithm. We summarise our main contributions as follows:

• Forming class associated embedding clusters (CAEC) using our proposed cluster growing technique.

• Analysing the structure of the clusters and proposing a formal representation to denote each cluster.

• Evaluating the quality of the clusters and comparing the hierarchical relation tree formed for eval-
uation.

Our proposed method has been able to form good quality clusters along with capturing the semantic rela-
tionship among the classes.

2 Recent Works

Most of the recent works focus on generating better feature embeddings to enhance the performance of the
model on various tasks, such as, image retrieval, classification, recognition and segmentation. These methods
use both supervised and self-supervised learning to produce improved quality representations. However, very
few work has been done on interpreting the structure and relationship among the representations in the latent
space.

2.1 Learning feature embeddings

In the field of computer vision, most researchers aim at improving the quality of features through both
supervised and contrastive methods. However, it has been observed that there exist a disparity among
the representations generated for various tasks, such as, classification and segmentation. Thus, feature
embeddings are generated primarily based on the application, although lately Oquab et al. (2023) have
proposed on producing general-purpose embeddings. Moreover, an abundance of un-annotated data has
shifted the focus to self-training methods, where the embedding quality is improved by training a large set
of unlabeled data using a small set of annotations. We have divided the recent works on feature learning
into supervised and self-supervised methods.

2

Under review as submission to TMLR

2.1.1 Supervised methods

The types of features learnt depend solely on the goals of the vision task. Image features obtained using
convolutional neural networks have achieved state-of-the-art performance in classification task. Learning
these embeddings aim at determining well defined hyperplanes in the feature space. However, in image
retrieval, the similarity among the classes are exploited to minimise and maximise the intra-class and inter-
class distances in the feature representations (Liu et al., 2017). In Zhang et al. (2016), a method has been
developed to combine multiple losses to embed more information in the features. The authors incorporate
additional label information, such as hierarchy or shared attributes, to the representations to form the final
embeddings. Kan et al. (2019) demonstrate that fusing deep features with handcrafted features result in
better representations if the two types of features are complementary.

Multi-modal feature extraction using the structural and semantic correspondences between the visual and
textural features is proposed by Ge et al. (2021). The two feature embeddings were learnt jointly using a
common context-free referral tree. DeepVoxels (Sitzmann et al., 2019) give latent representations to input
images of a scene instead of constructing its geometry. These representations can be directly used to generate
3D scenes without utilising the initial set of input images. Euclidean and spherical embeddings currently
dominate computer vision tasks in a way that the degree of similarity to determine class memberships are
determined using linear hyperplanes. Khrulkov et al. (2020) demonstrate the benefits of using hyperbolic
image embeddings. Initially they have used hyperbolic neural networks to generate the embeddings. Later
they evaluated the hyperbolicity of the data set which enables them to estimate the radius of Poincaré disk
for an embedding of a specific data set.

2.1.2 Self-Supervised methods

Recently, researchers have been dwelling on self-supervised learning to formulate discriminative approaches to
learn feature representations that can be used in downstream tasks. These networks have either convolutional
backbones (Bardes et al., 2022a; Tomasev et al.) or Vision transformer (Li et al., 2022; Zhou et al., 2022).
Current approaches include selecting pairs of views of the same image and learning invariant features using a
joint embeddings architecture (Misra & Maaten, 2020; He et al., 2020). Misra & Maaten (2020) eliminate the
irrelevant part of information on position and colour to produce better classification results on benchmark
data sets, while He et al. (2020) use momentum contrast to learn visual features in an unsupervised fashion.
While the above methods strive to outperform state-of-the-art results in classification tasks by improving on
global features, Yang et al. (2022) and Hénaff et al. (2022) extract local features and form embeddings that
perform well in semantic segmentation task. Bardes et al. (2022b) have used position-based and feature-
based matching to devise the local criterion that outperform most of the related works on segmentation
without compromising on global features which are learnt using variance and covariance loss.

A considerable section of self-supervised learning apply instance classification to learn discriminative features.
In instance classification, each image is treated as a different class and the model is trained by discriminating
them. However, it is difficult to generate such embeddings when the number of images increases (Dosovitskiy
et al., 2016). Grill et al. (2020) train features by matching them to the representations generated by a
momentum encoder. This unsupervised technique learn features without discriminating between images.

2.2 Manifold learning method

High dimensional data are often mapped to lower dimensions for better representations. The mapping func-
tion can be provided or learned by the model. Manifold learning algorithms are used to find low dimensional
parameterization of high-dimensional data (Zhang et al., 2011) which enables the understanding of the in-
trinsic structures, feature analysis and visualization. Zhang et al. (2011) proposes an adaptive neighbourhood
selection and bias reduction method in local tangent space alignment (LTSA) (Zhang & Zha, 2003) to form
better approximations of high dimensional embeddings. Manifold learning is beneficial compared to clas-
sical decomposition methods such as principal component analysis (PCA) as it preserves distance metrics
locally with different manifold mapping (Van der Maaten & Hinton, 2008) and beneficial at retaining the
intrinsic local geometrical structure (Li et al., 2017) in low dimensional space (Han et al., 2022) such as in

3

Under review as submission to TMLR

t-distributed stochastic neighbor embedding (t-SNE) (Van der Maaten & Hinton, 2008; Li et al., 2017) and
uniform manifold approximation and projection (UMAP) (Becht et al., 2019).

2.3 Interpreting latent representations

In deep learning, model interpret data in high dimensional space as feature maps which are later encoded as
feature vectors, commonly referred to as latent representations. These representations retain only relevant
information from the initial data which can later be used for downstream tasks (Bengio et al., 2013). However,
the acquired information cannot be interpreted easily as the representations are often unstructured (Klys
et al., 2018). In absence of any regularisation in the latent space, these representations demonstrate obscure
structure (Mathieu et al., 2019). Higgins et al. (2017) proposed to constraint the latent space capacity
resulting in learning only salient features of the data to establish more explicable representation.

Many authors have attempted to decipher the structure of the latent space empirically. Cristovao et al.
(2020) tried to generate images at different resolutions using latent representations which did not perform
well. As the generated images did not resemble the structure of the original image, they assumed that the
learning representations were not constrained under the latent space and have certain degrees of freedom.
Based on empirical results, they have also claimed a probable explanation that the structure of the latent
space was not suitable for interpolation. Hence, they designed a network to enforce an appropriate structure
to the latent space that would enable them to use the interpolation method for generating in-between images.

In our proposed method, empirically we try to interpret the interaction among the classes in embedding space
using a cluster growing algorithm. We assume that there exist inherent groupings and semantic relations
among the classes present in a data set. The representations formed by the encoder network for every class
are not well defined or discriminative to that class due to these interactions. Therefore, the structure of the
latent space may embed the semantic relationship among the classes. We analyse the change in the structure
of these representations when different types of models are used. Moreover, the cluster formation vary when
distance measures are modified. The novelty of this method lies in the cluster growing algorithm to form
overlapping clusters instead of well partitioned groups to interpret the relationship among the classes. We
have also been able to construct a relation tree using phylogenetic tree construction method and compare
the tree with the WordNet hierarchy to evaluate our method. We also analyse the structure of the clusters
formed by proposing a novel mathematical representation.

3 Proposed Method

We generate representations from three different models and apply our cluster growing technique to analyse
the structure of the embedding space. The quality of the clusters and the interaction among the classes vary
for different types of models. Later, we form relation trees to define the existing similarity among the classes
hierarchically.

3.1 Generating Image Embeddings

Image embeddings are generated using three types of models, Vision transformer (ViT), EfficientNetV2 and
ConvNeXt. We analyse the quality of embeddings generated by these models using the proposed cluster
growing algorithm.

3.1.1 Vision Transformer

Transformers (Vaswani et al., 2017) have become de-facto standard for natural language processing (NLP)
tasks due to their computational efficiency and model scalability. The standard approach is to train trans-
former models on large text corpus and fine-tune on smaller datasets. The scalability of the model has made
it possible to train unprecedented amount of data without overfitting. Vision transformer (ViT) (Dosovitskiy
et al., 2021) replicate standard transformers with minor modifications to utilise the benefits of self-attention
based models on images for efficient implementation.

4

Under review as submission to TMLR

The encoder block of ViT comprises of alternate layers of self-attention and linear layers. Every block is
preceded and followed by Layernorm and Residual connections, respectively. The activation function used
in each block is GELU (Nguyen et al., 2021). Standard transformers take sequence of 1D token embeddings
with a fixed latent vector of size, say D. Therefore, to represent image in a similar manner, a sequence of
2D patches along with their positional embeddings are sent as input vectors. These patches undergo linear
projection and mapped to D dimension. We flatten the 2D representations of the final encoder block to form
vectors for each image.

3.1.2 Convolutional Neural Networks

EfficientNets (Tan & Le, 2019) are a family of light weight ConvNet models that are both parameter efficient
and produce state-of-the-art classification results. The baseline model is fixed and designed using neural
architecture search which is later scaled up for better accuracy based on the availability of the resources, to
form a family of models. Compound scaling is used to uniformly scale up all the dimensions like depth, width
and resolution. The architecture uses inverted mobile bottleneck, MBConv, as the main building block and
also add squeeze-and-excitation optimization to it.

We have used the EfficientNetV2 (Tan & Le, 2021) model, which is an improved version of EfficientNets.
This model has better parameter efficiency and training speed compared to the previous models. The models
have been developed using a combination of training-aware neural architecture search and compound scaling
to optimise the training speed and parameter efficiency. The embeddings generated from the final block is
considered for our analysis.

3.1.3 ConvNeXt

Hierarchical transformers such as Swin transformers have introduced several aspects of ConvNets to make
transformers a generic backbone to vision related tasks. It is equipped with inherent inductive biases present
in convolutions, although its training setup and architecture remain significantly different from that of
ConvNets. ConvNeXt (Liu et al., 2022) bridges the gap between transformers and convolutional neural
networks to form a modified architecture which is aligned with the hierarchical ViT (Swin transformer)
without using any attention based modules.

ResNet-50 forms the baseline model with training setup similar to ViT. This gives better results than the
original model. Modifications to the architecture is divided into five parts: 1) macro design which includes a
“patchify” (non-overlapping convolution) layer, 2) ResNeXt module that replaces convolutions with depth-
wise convolutions, 3) inverted bottleneck, 4) large kernel size and 5) layer wise micro designs which reduce the
number of activation and norms, and replace ReLU and Batch-normalisation with GELU and Layernorm,
respectively. The output of the final convolutional layer is taken as the feature embeddings to conduct our
experiments.

3.2 Forming Clusters of Embeddings

The embeddings generated for each of the images from a trained model can be visualised as a data point
in high dimensional real space, Rn. After the model is fine-tuned, these embeddings form natural groups
of similar representations. The details of the experimental setup are presented in Section 4. Ideally, these
groups should constitute of a single class. However, due to interaction among semantically related classes
and misclassification while training, these clusters contain embeddings of other classes as well.

Let C be the number of classes present in the data set. Therefore, eij denote the embedding of the ith sample
belonging to the jth class, where, j ∈ C. We indicate each of the classes in the high dimensional space using
n − d centroids, Gj given by:

Gj =
∑n

i=1 eij

n
(1)

where, n is the number of samples present in each class. In a completely balanced data set, n will be
constant for all the classes. If we visualise the embeddings in real space, we detect formation of natural

5

Under review as submission to TMLR

clusters indicating similar embeddings. Each cluster, Xk, k ∈ C comprises of representations of primarily
one particular class, eij , j = k, j, k ∈ C and some representations of other classes, eij , j ̸= k, j, k ∈ C.

Assuming Gj to be the centre of cluster Xk, k = j, we find the distance of the nearest embedding from
the centre. This distance signifies the starting radius, r, of the cluster. With every unit increase of r, we
encounter two types of sets, Y k

r and Zk
r . These sets can be defined as follows:

Y k
r = {eij : |eij − Gj | ≤ r, j = k, j, k ∈ C, i ∈ N}

Zk
r = {eij : |eij − Gj | ≤ r, j ̸= k, j, k ∈ C, i ∈ N}

(2)

Thus, set Y k
r consists of all the embeddings that belong to class j within the radius r, while Zk

r comprises of
all other classes within the same radius. Here we have assumed that j is the predominating class in cluster
Xk.

We define the cluster growing technique using Y k
r and Zk

r by restricting the number and types of embeddings
that can be included in these two sets. Our main idea is to increase the density of same class embeddings,
and minimise the interaction among other classes by some constraints. We first characterise the bounding
radius, rb, that limits the inclusion of eij in Zk

r by a fraction of γ to the total number of embeddings in Xk.
The criterion for rb can be given as:

rb = r such that
{

|Zk
r | ≤ γ|Xk|, r ≤ rb

|Zk
r | > γ|Xk|, r > rb

(3)

where, |Xk| = |Y k
r | + |Zk

r |. In our experiments, we have considered γ = 0.3. Eqn. 3 gives the criterion
for the upper bound of the radius which restricts the inclusion of other classes. To maximize the purity
of the cluster, we track the number of newly added embeddings between r + 1 and r for r + 1 ≤ rb. The
unit distance for which the increase is maximum, we consider that as the boundary of our cluster. The final
radius, rf is defined as follows:

rf = argmaxr+1≤rb
|Y k

r+1| − |Y k
r | (4)

Hence, the final cluster is the union of both the sets given by Xk = Y k
rf

∪ Zk
rf

. Fig. 2 depicts the cluster
growing algorithm using five classes.

Class 1

Class 2

Class 3

Class 4

Class 5

Figure 2: Cluster growing algorithm using five classes.

3.2.1 Properties of cluster growing technique

Let ri be the radius of the nearest target embedding from the centroid, Gn of cluster cn, therefore, the
increase in the number of target class embeddings will be given by |Y n

r+1| − |Y n
r |. Similarly, the increase

6

Under review as submission to TMLR

in the non-target label embeddings is given by |Zn
r+1| − |Zn

r |. Fig. 3 plots the graph of |Y n
r+1| − |Y n

r | and
|Zn

r+1| − |Zn
r |.

Statement 1: We observe that all the points in a cluster can be contained within a hypersphere in the

0 20 40 60 80
increase in radius

0

500

1000

1500

2000

in
cr

ea
se

 in
 n

um
be

r o
f e

m
be

dd
in

gs

Target class
Non-target class

Figure 3: Increase in the number of target and non-target classes with increase in unit radius.

latent space. The embeddings are not present volumetrically in the hypersphere, but rather in a manifold
structure. The volume of space covering the centroid, G, of each cluster is empty till the first embedding is
found at radius rmin. As the radius is increased by unit measure, new embeddings get included. The last
embedding of that cluster form the boundary of the hypersphere. By empirically observing the distributions
of number of points with the increasing distance for all the datasets and models under our study, we propose
the following hypothesis.

Hypothesis 1: The distribution representing the number of embeddings occurring per unit radius, |Y n
r+1|−

|Y n
r |, peaks at a particular radius and then starts decreasing.

Though we do not have any theoretical proof of the above hypothesis, intuitively we may consider that for
a class in the embedding space the instances lie in a bounded volume. The surface, ϕs, passing through the
last point, es, enclosing all the embeddings within the hypersphere, form the boundary of the embedding
space for the particular data set in concern. The centroid, Gn, of cluster cn is present at the centre of the
hypersphere representing cluster cn. ϕr is the surface passing through the nearest embedding to Gn. Thus,
the density of representations lying on ϕr is low. If en

f be the last embedding of cluster cn, the density of
representations lying on surface ϕf passing through en

f will also be low. Therefore, maximum embeddings
will lie on the surfaces between ϕr and ϕf . Hence, we can say that number of embeddings occurring per unit
radius peak at a particular radius after which it starts decreasing.

We state in Hypothesis 1 that the distribution followed by the occurrences of embeddings decrease after
reaching a peak at a particular radius. This distribution may have one or more peaks. Empirically, we
have found that there exists only one such peak per cluster. Thus, we will now identify the nature of this
distribution.

Hypothesis 2: The function f(x) indicating the increase in the number of embeddings per unit radius,
|Y n

r+1| − |Y n
r |, may follow Poisson or Gaussian distribution.

We empirically show that the function f(x) may follow Poisson or Gaussian distribution by applying the
chi-squared goodness of fit test. The details of the experimental setup is present in Appendix A. We define
the null hypothesis as:

H0 : f(x) follows a given (for example, Poisson, Gaussian, etc.) distribution.

H1 : f(x) does not follow a given (for example, Poisson, Gaussian, etc.) distribution.

7

Under review as submission to TMLR

The observed number of counts are present using our cluster growing technique. We generate the expected
number of counts using Poisson distribution with the same mean. We fix the threshold for p-value at
0.05. Thus, if p-value< 0.05, then we reject the null hypothesis and claim that f(x) do not follow Poisson
distribution. Similar experiment is conducted using Gaussian distribution. Table 1 show the chi-squared
test result for two distributions.

Table 1: p-value observed for the chi-squared.
Distribution No. of observations statistic p-value

Poisson 22 24.47386 0.270669
Gaussian 22 0.52469 0.989999

From Table 1, we observe that the p-value> 0.05. Hence, we cannot discard the possibility that f(x) follows
either Poisson or Gaussian distribution. Empirically we have observed that the p-value> 0.05 in most cases
for Poisson distribution while few clusters may follow Gaussian distribution.

From Hypothesis 2, we may represent f(x) using a Poisson distribution. Given the number of embeddings,
we find the probability that it occurs in a given interval of radius.

Using Hypothesis 2, we shall show how our algorithm maximises the number of target class embeddings.

Statement 2: Let the mean number of embeddings added within a particular interval of radius is given by
λ1 and λ2 for target and non-target class distributions, respectively. As the non-target class contain all the
C−1 classes, thus, λ2 >> λ1.

We validate our statement using paired t-test keeping the threshold for p-value at 0.01. We randomly select
10 clusters and calculate λ1 and λ2 values for each. The paired t-test is conducted on these set of values and
hence, formulate the null hypothesis as:

H0 : µd = 0
H1 : µd ̸= 0

(5)

The p-value generated for this experiment is 0.00008. Therefore, we reject the null hypothesis and conclude
that the difference between λ1 and λ2 is very high.

Assumption: If xλ1 and xλ2 be the points at which modes occur for both the distributions, respectively,
then xλ1 < xλ2 .
Considering these statements and above hypotheses, we prove that our proposed cluster growing technique
maximises the inclusion of target embeddings while minimising the non-target ones.

Hypothesis 3: The point of intersection of the Poisson distribution of the target and non-target embeddings
is greater than the mode of the target Poisson distribution.

Let f(x1) = e−λ1 λ
x1
1

x1! and g(x2) = e−λ2 λ
x2
2

x2! be the distributions for target and non-target class embeddings,
respectively. If x0 is the point of intersection, then,

f(x0) = g(x0)

ln f(x0) = ln g(x0)

ln e−λ1 + ln λx0
1 − ln x0! = ln e−λ2 + ln λx0

2 − ln x0!

ln e−λ1 + ln λx0
1 = ln e−λ2 + ln λx0

2

−λ1 + x0 ln λ1 = −λ2 + x0 ln λ2

x0 = λ2 − λ1

ln λ2 − ln λ1

8

Under review as submission to TMLR

As λ2 >> λ1 thus, the point of intersection, x0 becomes λ2
ln λ2−ln λ1

.
To find the mode of the distribution we consider the following ratio for x > 0:

f(x + 1)
f(x) =

e−λ1 λx+1
1

(x+1)!
e−λ1 λx

1
x!

f(x + 1)
f(x) = λ1

x + 1
Therefore, we observe that

f(x + 1) > f(x) for x < λ1 − 1
f(x + 1) < f(x) for x > λ1 − 1

(6)

The maximum increase in the target embeddings occur when x < λ1 − 1, and the point of intersection,
x0 = λ2

ln λ2−ln λ1
> λ1 − 1. The mode of the distribution for the target class embedding occurs before it

intersects with the non-target class distribution. As xλ1 < xλ2 (from assumption 3), we can conclude that
our cluster growing technique, maximises the number of same class embeddings that are getting included in
the discriminative cluster while the addition of non-target embeddings are limited.

3.2.2 Structure of the Clusters

We visualise the clusters formed in the embedding space using t-SNE plots as shown in Fig. 4. They form

(a)

(c)

(b)

(d)

Figure 4: 3D and 2Ds plot of “airplane” and “automobile” class of CIFAR10 using Canberra measure on
ViT embeddings. The orange dot denote the centroid and blue dots represent the embeddings. (a) 3D plot
of “airplane” class. (b) 3D plot of “automobile” class. (c) 2D plot of “airplane” class corresponding to (a).
(d) 2D plot of “automobile” class corresponding to (b).

sectors with the cluster centroids G as the centre. We mathematically denote each of these clusters based on
the structure formed in Fig. 5. Empirically, we have observed that the space around the centroid is empty,
and only after covering a minimum radius of rmin, we encounter the first embedding for that cluster. The

9

Under review as submission to TMLR

G

P

centroid

Figure 5: Structure of a cluster with mathematical notations.

number of embeddings follows the Poisson distribution and diminishes when the radius reaches the boundary
of the cluster, rmax. Thus, all the embeddings of a cluster are concentrated between rmin and rmax. We
compute the mean vector µ⃗k from the centroid Gk for the cluster k as:

µ⃗k =
∑n

i=1 eik − Gk

n
(7)

where, eik represents the ith embedding of the kth cluster. Therefore, there exists a point Pk within the
cluster k which can be denoted as Pk = Gk + µ⃗k. We designate this point as the manifold mean point, MMP.
After calculating the mean vectors, we now compute the angle formed by the sector with respect to µ⃗k. We
locate all the embeddings present at the boundary of the cluster with the soft threshold of 1. Thus, we form
a set of embeddings present between rmax − 1 and rmax.

Sk = {eik : rmax − 1 ≤ eik − Gk ≤ rmax, k ∈ C} (8)

where, eik and Gk are the ith embedding and cluster centroid of the kth cluster, respectively.

We now compute the distance between each of the embeddings present in set Sk and MMP Pk. The
embedding with maximum distance from Pk is considered as the point on the rim of the sector of kth cluster
depicted as erimk

.
erimk

= argmaxj |ejk − Pk|, ejk ∈ Sk (9)

Let r⃗k = erimk
− Gk. Therefore, the angle θmaxk

2 formed between µ⃗k and r⃗k is given by:

θmaxk

2 = arccos µ⃗k · r⃗k

|µ⃗k||r⃗k|
(10)

Similarly, we compute θmin

2 and θmax

2 by considering the point at minimum and maximum distance from
Pk, respectively. During visualization we have observed that the data points in a cluster lie between θmin

2
and θmax

2 which is calculated with respect to the centroid Gk and Pk for cluster k. Thus, it gives us an
insight to the structure of a cluster in latent space. Both Gk and Pk are n-dimensional, and along with the
minimum radius rmin, maximum radius rmax and cluster angles, θmax

2 and θmin

2 , form a 2n + 4 parametric
representation for each of the clusters. Table 2 shows the average minimum θmin

2 and maximum θmax

2 cluster
angles (in radians) obtained for each dataset using various models and distance measures.

10

Under review as submission to TMLR

Table 2: Average minimum (θmin

2) and maximum (θmax

2) cluster angles (in radians) obtained for each dataset
using various models and distance measures.

Model Distance
function CIFAR10 CIFAR100(20) CIFAR100 ImageNet

min max min max min max min max

ViT
Euclidean 1.15±0.16 1.89±0.18 0±0.0 1.23±0.55 0±0.0 1.39±0.38 0±0.0 1.44±0.12
Manhattan 1.36±0.08 1.76±0.11 0.94±0.19 1.48±0.21 0.58±0.23 1.68±0.25 0.77±0.08 1.31±0.10
Canberra 1.31±0.10 1.71±0.13 0.62±0.33 1.65±0.32 0.43±0.13 1.84±0.32 0±0.0 1.61±0.10

EfficientNetV2
Euclidean 0.91±0.07 2.33±0.11 0.78±0.14 2.45±0.16 0.97±0.10 2.10±0.15 0±0.0 2.20±0.23
Manhattan 0.91±0.12 2.08±0.16 0.89±0.24 2.39±0.35 1.03±0.10 1.71±0.12 0.41±0.10 1.87±0.14
Canberra 1.11±0.10 1.96±0.20 0.76±0.27 2.44±0.49 1.11±0.09 1.99±0.14 0±0.0 2.09±0.25

ConvNeXt
Euclidean 0.61±0.17 2.50±0.15 0.49±0.09 1.73±0.30 0.54±0.31 2.86±0.37 0±0.0 2.48±0.27
Manhattan 0.71±0.28 2.07±0.22 0.61±0.18 1.57±0.27 0.53±0.31 2.37±0.35 0±0.0 2.36±0.32
Canberra 0.45±0.43 2.08±0.26 0.77±0.38 2.26±0.35 0.46±0.37 1.97±0.33 0±0.0 2.39±0.35

3.2.3 Distance measures

The initial measure used to find the distance between embedding points for growing the cluster is Euclidean
distance. It computes the shortest distance between any two points in the Euclidean space and is given by:

D(x, y) =

√√√√ n∑
i=1

|xi − yi|2 (11)

We evaluate our method on two other distance measures, Manhattan and Canberra, to find the optimal
metric that can define these clusters distinctly.
Manhattan distance: Manhattan distance is used to measure the distance between two real values vectors
in high-dimensional data. It is given by:

D(x, y) =
n∑

i=1
|xi − yi| (12)

Canberra distance: Canberra distance computes the distance between pair of vectors as a sum of series
fraction differences between the coordinates of these objects. It is given by:

D(x, y) =
n∑

i=1

|xi − yi|
|xi| + |yi|

(13)

3.3 Constructing Class Relations tree

We generate the final clusters using Eqn. 3 and 4. Each of these clusters have one predominant class and
multiple other classes. We compute the centroid of the final clusters as

Gf
k =

∑|Xk|
i=1 xik

|Xk|
(14)

where, Xk is the set of all the embeddings present in cluster k. Using the Gf
k for each of the clusters, we

apply the unweighted pair group method with arithmetic mean (UPGMA) (Dawyndt et al., 2006) to build
the relation trees. UPGMA is an agglomerative hierarchical clustering method that is commonly used to
build phylogenetic trees. The algorithm constructs dendrograms that denote the structure present while
computing the pair-wise similarity among the class embeddings. At every step, the two most similar clusters
are grouped together to form an aggregate cluster.

The distance between any two clusters will be the average distance between all the pairs of objects present
in those clusters. Let x and y be two objects present in cluster A and B, respectively. Then the distance

11

Under review as submission to TMLR

between A and B, is given by:
d(A, B) = 1

|A||B|
∑
x∈A

∑
y∈B

d(x, y) (15)

where, d(x, y) is the distance between the pair of objects, x and y. If we introduce a new cluster, M , the
distance between the aggregate cluster A ∪ B and M will be computed as:

d(A ∪ B, M) = |A|d(A, M) + |B|d(B, M)
|A| + |B|

(16)

We have used three different distance measures, Euclidean, Manhattan and Canberra, to construct the
dendrograms using UPGMA algorithm.

4 Experimentation

The experiments have been divided into two parts: 1) studying the performance of the cluster growing
technique. In this subsection, we check the quality of the clusters formed using different learning models;
2) examine the hierarchy present between the clusters. This subsection carefully studies and analyses the
relationship among the classes, the overlaps and compares the relation trees formed with the existing WordNet
hierarchy.

We perform the entire experiment on three different family of models, ViT , EfficientNetV2 and ConvNeXt,
to compare the types of embeddings generated by them. We summarise the steps of the experiments as
follows:

• The performance of our proposed method is evaluated on CIFAR10, 20 coarse classes of CIFAR100,
100 fine classes CIFAR100 (Krizhevsky et al., 2009) and ImageNet (Deng et al., 2009) data sets.

• The generated embeddings are grouped into distinct classes using our cluster growing technique. We
denote them as class associated embedding clusters (CAEC).

• We analyse the quality of the clusters formed, and study the interaction between various classes
using three different distance metrics

• The relationship among the classes are depicted in a tree structure, named relation tree, using the
UPGMA algorithm (Dawyndt et al., 2006).

• The relation trees are then evaluated using phylogenetic tree comparison methods.

4.1 Data Set

The CIFAR10 and CIFAR100 (Krizhevsky et al., 2009) datasets are widely used for benchmarking algorithms
in the field of computer vision. CIFAR10 consist of 32 × 32 images denoting 10 classes. Each of the classes
comprise of 5000 images for training and 1000 images for testing. CIFAR100 has 100 classes with 600
samples for each class. Thus, a total of 50, 000 images are used in a training set. CIFAR100 coarse data set
form groups of 5 finer classes to form 20 resultant superclasses. We use these superclasses for our study and
refer to it as CIFAR100(20). We further use all the 100 classes in our experiments. The pre-trained model is
fine-tuned on the training data for 50 epochs using stochastic gradient descent optimizer, keeping the learn-
ing rate fixed at 0.001. The test set containing 10, 000 images are then used to generate the embeddings.
ImageNet (Deng et al., 2009) is the benchmark data set for image classification. It has 1.28 million images
for training and 100, 000 for testing. As the models are already pre-trained on ImageNet data, we directly
use the embeddings generated from the models.

4.2 Quality Analysis of Clusters

The cluster growing technique is applied using different distance measures. Each cluster formed encloses
distinct representations of a particular class. Fig 6 shows a t-SNE plot of the clusters formed using Canberra
distance applied on embeddings generated from ViT model.

12

Under review as submission to TMLR

400
200

0
200 200

150
100

50
0
50
100

300
200
100
0

100
200

Figure 6: Cluster plot of CIFAR10 using Canberra measure on ViT embeddings. airplane-blue, automobile-
orange,

Table 3: Maximum radius obtained for all the classes of CIFAR10 for various distance measures on
embeddings from ViT, EfficientNetV2 and ConvNeXt.

Model Distance function airplane automobile bird cat deer dog frog horse ship truck

ViT
Euclidean 203.28 209.32 191.96 186.97 194.40 190.06 203.37 195.40 199.25 203.56
Manhattan 54916 58842.66 53008.24 53027.37 53914.27 53045.04 53854.55 56783.96 51108.96 55887.05
Canberra 81224 81441.78 79873.75 87293.50 82904.66 88326.50 78487.53 83287.62 78676.77 83474.0

EfficientNetV2
Euclidean 10.51 11.03 11.06 12.58 10.31 10.91 10.48 10.24 10.12 10.13
Manhattan 277 240.96 261.42 295.78 262.08 272.39 241.22 243.21 240.65 229.34
Canberra 550 537.72 574.53 644.60 560.61 602.65 534.70 511.98 496.56 514.62

ConvNeXt
Euclidean 9.17 9.20 8.75 8.75 8.63 7.55 10.25 9.31 8.92 7.78
Manhattan 198 227.22 170.62 98.78 164.82 155.95 198.99 195.72 174.38 158.58
Canberra 341 280.82 378.57 402.67 394.16 349.72 302.36 314.02 267.20 264.26

We observe annular structure for some clusters in the projected space using Fig. 6. In these cases, θmin is
observed to be greater than 45◦ or roughly 0.8 radian. Although the annular structure may not be prominent
for individual clusters in the projected space, we assume clusters with θmin ≥ 0.8 to follow this structure in
high-dimensional latent space.

Some clusters may also contain few embeddings of different classes which are closely related or missclassified
while training. We compute the radius of each cluster using our proposed method, and determine the coverage
as fraction of target class embeddings to the total number of embeddings present in a cluster. Table 3 and
4 show the radius and coverage obtained using various distance measures on embeddings generated from
different models on CIFAR10, respectively.

We note that the average coverage for classes like “cat” and “dog” is low for all the methods and high for
“ship” and “truck.” The average coverage for all other classes are comparable. However, the overall result
observed in Table 4 using Canberra distance is better compared to the other two metrics. We obtain best
results for embeddings generated using EfficientNetV2.

4.2.1 Cluster Purity

Each cluster is assigned a label based on the maximum occurring class embeddings. Purity of the cluster
is estimated as the fraction of the number of matching class and cluster labels among the total number of
embeddings present in all the clusters. The purity of a cluster with centre at mk is computed with respect to
class k. Assuming C to be the number of clusters formed and N as the total number of embeddings present

13

Under review as submission to TMLR

Table 4: Coverage obtained for all the classes of CIFAR10 for various distance measures on embeddings
from ViT, EfficientNetV2 and ConvNeXt.

Model Distance function airplane automobile bird cat deer dog frog horse ship truck

ViT
Euclidean 0.73 0.76 0.72 0.73 0.73 0.72 0.89 0.72 0.89 0.85
Manhattan 0.82 0.86 0.75 0.84 0.84 0.85 0.99 0.73 0.99 0.95
Canberra 0.93 0.99 1.0 0.93 0.92 0.79 1.0 0.98 1.0 1.0

EfficientNetV2
Euclidean 0.98 0.98 0.97 0.81 0.98 0.92 0.98 0.99 0.99 0.99
Manhattan 0.97 0.98 0.98 0.82 0.97 0.91 0.98 0.99 0.99 0.99
Canberra 0.99 0.98 0.99 0.90 0.97 0.93 0.98 0.99 0.99 0.99

ConvNeXt
Euclidean 0.90 0.98 0.79 0.52 0.85 0.75 0.90 0.96 0.98 0.97
Manhattan 0.88 0.96 0.81 0.72 0.91 0.76 0.92 0.97 0.99 0.98
Canberra 0.97 0.99 0.93 0.74 0.92 0.86 0.98 0.99 1.0 0.98

in all the clusters, purity is given by:

purity = 1
N

C∑
j

maxj |cj ∩ tj | (17)

where, ci is the cluster representing ith class and tj is the class embedding having maximum count for ci.
Table 5 compares the purity of the clusters obtained for embeddings generated from three family of models
using different distance measures. We examine the average cluster purity obtained for each dataset using
the three models in Table 6.

Table 5: Comparison of purity of clusters obtained for embeddings generated using ViT, EfficientNetV2
and ConvNeXt using different distance metrics.

Model Distance function CIFAR10 CIFAR100(20) CIFAR100 ImageNet

ViT
Euclidean 0.80 0.35 0.39 0.04
Manhattan 0.86 0.66 0.57 0.07
Canberra 0.95 0.83 0.71 0.11

EfficientNetV2
Euclidean 0.96 0.90 0.96 0.92
Manhattan 0.97 0.94 0.96 0.92
Canberra 0.98 0.86 0.91 0.88

ConvNeXt
Euclidean 0.81 0.60 0.86 0.43
Manhattan 0.91 0.66 0.88 0.68
Canberra 0.93 0.89 0.95 0.89

Table 6: Average cluster purity obtained for all the datasets using ViT, EfficientNetV2 and ConvNeXt
models.

Model CIFAR10 CIFAR100(20) CIFAR100 ImageNet

ViT 0.87±0.06 0.61±0.19 0.56±0.13 0.07±0.03
EfficientNetV2 0.97±0.01 0.90±0.03 0.94±0.02 0.91±0.02
ConvNeXt 0.88±0.05 0.72±0.14 0.90±0.04 0.67±0.19

4.2.2 Rand Index

Rand Index (RI) is a commonly used measure to find similarity among clustering methods by comparing
the real labels with the cluster labels to evaluate the performance of an algorithm. It groups unordered data

14

Under review as submission to TMLR

points into pairs and matches the occurrences of each pair in the true and predicted clusters. For example,
if we consider x to be the number of pairs whose elements belong to the same cluster for both true and
predicted labels, and y to be the number of pairs whose elements do not belong to the same cluster for both
true and predicted labels, RI is given by:

RI = x + y
nC2

(18)

where, nC2 form all pairs of unordered elements. Table 7 compares the RI of the clusters obtained for
embeddings generated from three family of models using different distance measures.

Table 7: Comparison of Rand Index (RI) of clusters obtained for embeddings generated using ViT,
EfficientNetV2 and ConvNeXt using different distance metrics.

Model Distance function CIFAR10 CIFAR100(20) CIFAR100 ImageNet

ViT
Euclidean 0.92 0.62 0.95 0.97
Manhattan 0.94 0.85 0.95 0.96
Canberra 0.98 0.95 0.97 0.97

EfficientNetV2
Euclidean 0.99 0.98 1.0 1.0
Manhattan 0.99 0.99 1.0 1.0
Canberra 0.99 0.97 0.99 1.0

ConvNeXt
Euclidean 0.92 0.90 0.99 0.99
Manhattan 0.97 0.91 0.99 0.99
Canberra 0.97 0.98 1.0 1.0

4.2.3 Normalised Mutual Information

Normalised Mutual Information (NMI) is a measure commonly used to assess network partitioning, and
compare the partitions formed using community finding algorithms. It scales the value between 0 to 1,
where NMI of 1 denote perfect correlation, while a value of 0 means no mutual information. Let the cluster
and class labels be given by C and K, respectively then NMI can be measured as:

NMI = 2 × I(K; C)
H(K) × H(C) (19)

where, I(K; C) is the mutual information between K and C, and H(K) and H(C) represent entropy of K
and C, respectively. Table 8 compares the NMI of the clusters obtained for embeddings generated from three
family of models using different distance measures.

Table 8: Comparison of Normalised Mutual Information (NMI) of clusters obtained for embeddings
generated using ViT, EfficientNetV2 and ConvNeXt using different distance metrics.

Model Distance function CIFAR10 CIFAR100(20) CIFAR100 ImageNet

ViT
Euclidean 0.67 0.31 0.58 0.13
Manhattan 0.76 0.52 0.67 0.24
Canberra 0.91 0.75 0.79 0.33

EfficientNetV2
Euclidean 0.93 0.84 0.97 0.97
Manhattan 0.93 0.90 0.97 0.97
Canberra 0.95 0.80 0.93 0.96

ConvNeXt
Euclidean 0.71 0.47 0.89 0.60
Manhattan 0.82 0.55 0.92 0.81
Canberra 0.88 0.84 0.96 0.95

15

Under review as submission to TMLR

From Table 5, 7 and 8, we observe that the quality of clusters formed using Manhattan distance on em-
beddings generated from EfficientNetV2 is better based on the evaluation metrics that we have used. The
results for ViT and ConvNeXt are comparable if we consider only the purity and RI measures when it comes
to CIFAR10 dataset. However, NMI of ConvNeXt surpasses ViT significantly. As the number of classes
increase, the cluster purity of ViT decreases. We observe that for high dimensional data, ViT fail to capture
feature similarity among classes. The overall cluster quality observed for all the embeddings are better when
Manhattan or Canberra distances are used instead of Euclidean.

4.3 Paired t-test

We conduct paired t-test to statistically verify our analysis based on the results of coverage that we have
observed using our cluster growing technique in Table 4. The p-values for every pair of distances are computed
for each model embeddings. We define µd as the difference between the mean coverage between any two
distance measure, and hence formulate the null hypothesis as:

H0 : µd = 0
H1 : µd ̸= 0

(20)

We fix the threshold for p-value at 0.01. Thus, two measures are giving significantly different results if
p-value≤ 0.01. Otherwise, the results are comparable and we do not reject the null hypothesis. Table 9 show
the results for paired t-test.

Table 9: p-values observed for the paired t-test.
Model Distance pairs p-value

CIFAR10 CIFAR100(20) CIFAR100 ImageNet

ViT
Euclidean, Manhattan 0.000041 0.362701 0.010575 0.000349
Euclidean, Canberra 0.000016 0.439860 0.811339 7.30e-58
Manhattan, Canberra 0.017404 0.969604 0.040832 1.28e-80

EfficienNetV2
Euclidean, Manhattan 0.678309 0.000068 0.152181 0.034765
Euclidean, Canberra 0.217194 0.014037 0.000004 5.01e-23
Manhattan, Canberra 0.134050 0.001735 0.000002 2.85e-23

ConvNeXt
Euclidean, Manhattan 0.171016 0.109041 0.134542 1.50e-66
Euclidean, Canberra 0.005719 0.000076 0.000006 2.82e-120
Manhattan, Canberra 0.008351 0.004372 0.000284 1.95e-30

From Table 9, we observe that for ViT model, Manhattan and Canberra measures are comparable when
CIFAR10 dataset is used. However, for CIFAR100 with 20 coarse classes and 100 fine classes, no significant
changes are observed. On the other hand, clustering using Euclidean and Manhattan distances show compa-
rable cluster coverage on all the datasets except ImageNet for ConvNeXt model. In general, when ImageNet
dataset is used, the mean difference between the coverage using all distance measures are incomparable. In
case of EfficientNetV2, we observe that as the number of classes increase, Euclidean measure show significant
variation in coverage when compared to Manhattan and Canberra measures.

4.4 Interaction among Classes

The classes present in the datasets are highly correlated and can be grouped under an aggregated or parent
class. The semantic similarity among the classes may vary based on their lowest common ancestor. Due to
the inherent relation that exist among them, trained models tend to misclassify similar target labels or form
representations which are ambiguous to both the classes. These embeddings affect the performance of the
model on unknown data as they are not well defined and discriminative. We conduct a detailed study of these
correlations, and build a tree-like structure depicting the class relations using the CIFAR10, CIFAR100(20),
CIFAR100 and ImageNet dataset.

16

Under review as submission to TMLR

The proposed clustering algorithm may not provide partitioning of the space and manifolds of clusters may
overlap. This implies that some of the embeddings may have ambiguous assignment of multiple classes. This
kind of interaction is called “intrusion”. On the other hand, there may be an embedding of an instance of a
class “B” belonging to the cluster of a class “A”. This is a case of misclassification and we call this interaction
“infiltration”. Next we observe the set of intrusive and infiltrated classes given a cluster of a specific class.

We have divided our study into two parts: 1) Section 4.4.1: In this Section, we study the presence of
infitrated classes. We group non-target embeddings which are part of the cluster formed by a target label
using our cluster growing technique. These embeddings are not present in their respective original clusters
and hence, are misclassified. 2) Section 4.4.2: We study the presence of intrusive classes whose embeddings
are ambiguous and part of multiple clusters denoting distinct classes. They form the overlapping region
among two clusters. Such interaction is mostly seen in highly correlated classes. The representations learnt
by the model cannot identify a particular class with high confidence as they are considered discrete by more
than one class. Both the studies have been performed on all the classes. We show the results observed on
all or randomly selected 10 classes (whichever is less) for all the datasets.

4.4.1 Presence of infiltrated classes

Each cluster contains embeddings of other classes which are either highly similar to the class in concern or
have infiltrated the cluster due to misclassification. Typically, these representations are not present in their
respective distinct clusters as they are not discriminative. We identify these classes, and group them for
each cluster. Our algorithm tries to minimise the inclusion of other class embeddings when we increase the
radius by a unit distance. Table 10, 11, 12 and 13 show the top 3 classes that are present in each distinct
cluster based on the number of embeddings (>= 2) using Euclidean, Manhattan and Canberra distances for
CIFAR10, CIFAR100(20) CIFAR100 and ImageNet, respectively.

From Table 10, 11, 12 and 13, we observe that maximum infiltration happens using embeddings generated
from ViT model. Considering the average inclusion of other classes through all the datasets, we notice
least infiltration when Canberra distance is used for clustering. If we examine the results of each of the
models, we note that EfficientNetV2 has shown least interaction when Manhattan or Canberra metric is
used. Moreover, the classes included for all the distance measures are highly similar to the cluster.

However, for EfficientNetV2 and ConvNeXt, unfamiliar classes are grouped, with ConvNeXt showing max-
imum discrepancy when Euclidean measure is used. For example, in Table 10 if we consider the cluster
denoting “automobile” class, the group of class present for ViT are “truck”, “ship” and “airplane” for Eu-
clidean. On the other hand, EfficienNetV2 and ConvNeXt have included “cat” and “dog,” respectively. All
the clusters of ConvNeXt model when computed using Euclidean measure have incorporated the embeddings
of “cat.” The results show vast improvement when Manhattan and Canberra distances are used. All the
three models group semantically related classes for each of the clusters.

The interaction among the classes start decreasing with the increase in the total number of classes. We
observe that the clusters formed are more distinct and have very less embeddings from non-target class.
ImageNet, although with 1000 classes, show less infiltration when compared to CIFAR10 with only 10
classes. One of the main reasons behind this trend is the number of samples with which the model is trained
for each of the classes. Thus, the model is able to learn more discriminative representations for each of
the classes. Moreover, these large models are typically devised to work well on ImageNet, and are mostly
fine-tuned on small-scale datasets.

4.4.2 Presence of intrusive classes

Overlapping regions are observed when embeddings are shared by multiple distinct clusters. Thus, a rep-
resentation of class “airplane” may be present in both “airplane” and “ship” clusters. In Section 4.4.1, we
identify those classes which are present in a different embedding cluster. They are not part of their original
cluster. However, in this case an overlap among the clusters are observed. Hence, a particular embedding
is recognised as a discrete representative by more than one classes. Table 14 represents the embeddings of
those classes which occupy more than one clusters from ViT, EfficientNetV2 and ConvNeXt for CIFAR10
dataset.

17

Under review as submission to TMLR

Table 10: Top 3 most occurring infiltrated classes in a given cluster for all the models using Euclidean,
Manhattan and Canberra distances on CIFAR10 dataset. The number inside the brackets show the number
of embeddings of that class present in the given cluster.
Left: Using Euclidean distance, Right: Using Manhattan distance, Bottom left: Using Canberra distance.

Clusters ViT EfficientNetV2 ConvNeXt

airplane
ship (67) ship (2) cat (14)
bird (34) - bird (10)
truck (22) - ship (3), frog (3)

automobile
truck (169) truck (4) cat (4)
ship (14) cat (2) truck (3)
airplane (4) - -

bird
deer (17) cat (7) cat (54)
airplane (6) deer (3) deer (23)
frog (5) airplane (2) frog (17)

cat
dog (14) dog (17) dog (61)
deer (3) frog (2) bird (24)
bird (2), frog (2) deer (1), bird (1) frog (17)

deer
bird (38) cat (6) cat (58)
cat (23) bird (3) bird (27)
dog (20) horse (2) frog (12)

dog
cat (47) cat (63) cat (221)
deer (8) bird (3) deer (11)
bird (7) - bird (10)

frog
bird (25), deer (25) cat (5) cat (4)
cat (18) - bird (17)
dog (6) - deer (8)

horse
deer (32) cat (7) cat (53)
dog (11) dog (2) dog (9)
cat (6) - deer (8)

ship
airplane (46) cat (2) airplane (12)
truck (5) - cat (5)
automobile (2) - dog (3)

truck
automobile (39) automobile (5) cat (14)
airplane (26) - airplane (7)
ship (25) - automobile (4), bird (4)

Clusters ViT EfficientNetV2 ConvNeXt

airplane
ship (43) ship (2) bird (7)
bird (28) - frog (2), ship (2)
truck (15) - -

automobile
truck (103) truck (2) airplane (2)
ship (3) - -
airplane (2) - -

bird
airplane (11) cat (6) airplane (16)
deer (4) airplane (4), deer (4) deer (13), frog (13)
frog (2) - dog (5)

cat
dog (9) dog (19) dog (57)
deer (2) deer (2), frog (2) bird (17)
- - frog (11)

deer
bird (20) cat (4) bird (18)
cat (10) horse (2) frog (8)
frog (7) - dog (4), horse (4)

dog
cat (23) cat (35) bird (9)
bird (3) bird (3) cat (6)
deer (2), horse (2) deer (2) frog (5)

frog
- cat (4) bird (10)
- - deer (6)
- - airplane (4)

horse
deer (104) dog (5) dog (9)
dog (30) cat (4) airplane (6)
cat (16) - deer (4)

ship
- airplane (2) airplane (17)
- - dog (4)
- - automobile (3)

truck
automobile (13) automobile (4) automobile (11)
airplane (10) airplane (2) airplane (8)
ship (4) - automobile (4), bird (4)

Clusters ViT EfficientNetV2 ConvNeXt

airplane bird (14) ship (2) bird (2), deer (2)
ship (2) - -

automobile truck (3) truck (3) truck (2)

bird
- deer (5) deer (17)
- cat (4) cat(5)
- dog (2) frog (2)

cat
dog (11) dog (17) dog (41)
frog (7) deer (3), frog (3) bird (7)
deer (1) - deer (5)

deer
bird (21) - bird (14)
horse (4) - cat (10)
frog (3) - dog (2)

dog
cat (49) cat (25) cat (88)
frog (21) deer (2) deer (5)
deer (15) - bird (3)

frog
- deer (2) cat (8)
- - deer (7)
- - bird (5)

horse
deer (4) dog (2) dog (8)
- - deer (7)
- - cat (5)

ship - - airplane (4)
truck - automobile (7) bird (2), cat (2)

Table 14 show the number of cluster embeddings present in multiple distinct clusters. The third column
represent the distinct clusters, while the fourth column group all the other classes where embeddings from
the distinct cluster is present. For example, six embeddings of “airplane” cluster are also part of the “bird”
cluster.

18

Under review as submission to TMLR

Table 11: Top 3 most occurring infiltrated classes in a given cluster for all the models using Euclidean,
Manhattan and Canberra distances on CIFAR100(20) dataset. The number inside the brackets show the
number of embeddings of that class present in the given cluster.
aq mammals: aquatic mammals, non-inst invtb: non-insect invertebrates, fr veg :fruit and vegetables,
hed: household electrical device, containers: food containers, sm: small mammals, hsld furtr: household
furniture, omni-herb: large omnivores and herbivores, mm: medium-sized mammals, mm outdr: large
man-made outdoor things, nos: large natural outdoor scenes, lc: large carnivores.
Left: Using Euclidean distance, Right: Using Manhattan distance, Bottom left: Using Canberra distance.

Clusters ViT EfficientNetV2 ConvNeXt

fish
- reptiles (7) -
- aq mammals (6) -
- non-inst invtb (2) -

fr veg - containers (2) -

hed
- containers (17) containers (3)
- hsld furtr (9) -
- vehicles 2 (3) -

hsld
furtr

- hed (11) hed (2)
- mm outdr (3) -
- vehicles 2 (2) -

non-inst
invtb

- insects (19) sm (8)
- reptiles (17) nos (5)
- fr veg (4) -

reptiles
non-inst invtb (15) non-inst invtb (11) sm (4)
mm (14) fish (8) non-inst invtb (3)
sm (13) omni-herb (6) -

sm
- mm (28) lc (4)
- omni-herb (9) non-inst invtb (3)
- aq mammals (6) -

tree - nos (6) -
- flowers (2) -

vehicles
1

- vehicles 2 (18) -
- - -

vehicles
2

- vehicles 1 (27) -
- mm outdr (6) -
- -

Clusters ViT EfficientNetV2 ConvNeXt

fish - aq mammals (2) -
- sm (2) -

fr veg - flowers (2) -

hed - containers (11) -
- hsld furtr (6) -

hsld
furtr

- - nos (2)
- - -

non-inst
invtb

- insects (5) -
- reptiles (3) -
- - -

reptiles
- non-inst invtb (9) non-inst invtb (7)
- fish (7) mm (6)
- aq mammals (5) -

sm
- mm (3) mm (5)
- - lc (4)
- - -

trees
nos (5) - -
mm outdr (4) - -
- - -

vehicles
1

- vehicles 2 (8) -
- - -
- - -

vehicles
2

- vehicles 1 (17) -
- mm outdr (3) -
- - -

Clusters ViT EfficientNetV2 ConvNeXt

fish
aq mammals (18) - aq mammals (9)
reptiles (10) - -
insects (9) - -

fr veg
containers (8) flowers (11) -
fish (3) containers (4) -
insects (2) - -

hed
containers (14) containers (11) hsld furtr (13)
hsld furtr (6) hsld furtr (7) containers (11)
fish (3) - -

hsld
furtr

containers (13) - hed (8)
hed (12) - -
fish (10) - -

non-inst
invtb

fish (49) insects (5) reptiles (5)
container (2) fr veg (3) -
- - -

reptiles
fish (75) - aq mammals (15)
mm (18) - non-inst invtb (13)
insects (17) - fish (12)

sm
mm (53) people (10) aq mammals (18)
fish (12) mm (7) mm (14)
omni-herb (7) lc (6) fish (5)

tree
nos (14) - -
mm outdr (6) - -
insects (2) - -

vehicles
1

vehicles 2 (10) vehicles 2 (21) vehicles 2 (10)
mm outdr (7) mm outdr (5) hsld furtr (7)
nos (3) hsld furtr (4) -

vehicles
2

vehicles 1 (22) vehicles 1 (53) vehicles 1 (33)
fish (7) trees (5) mm outdr (12)
insects (4) mm outdr (4) -

19

Under review as submission to TMLR

Table 12: Top 3 most occurring infiltrated classes in a given cluster for all the models using Euclidean,
Manhattan and Canberra distances on CIFAR100 dataset. The number inside the brackets show the
number of embeddings of that class present in the given cluster.
Left: Using Euclidean distance, Right: Using Manhattan distance, Bottom left: Using Canberra distance.

Clusters ViT EfficientNetV2 ConvNeXt

beaver otter (2) porcupine (2) -
clock bowl (2), plate (2) - -

cloud plain (3) mountain (2), sea (2) sea (4)
rocket (2), sea (2) - -

dinosaur
crocodile (2) - woman (4)
- - man (3)
- - elephant (2)

dolphin whale (3) whale (4) shark (3)
mouse shrew (2) - -
mushroom squirrel (2), beaver (2) -
plain sea (2) sea (2) sea (2)
poppy tulip (3) - -

ray caterpillar (2) - flatfish (7)
- - man (2), shark (2)

rose tulip (6) - -
poppy (4) - -

Clusters ViT EfficientNetV2 ConvNeXt

beaver - porcupine (3) porcupine (2)
beetle cockroach (3) - cockroach (2)
clock bowl (2), plate (2) - -
cloud - - sea (6)
dolphin - whale (3) -
poppy - - tulip (4)

ray shark (5) - flatfish (7)
caterpillar (2), rabbit (2) - -

skyscraper rocket (6) - -
castle (3) - -

trout crocodile (6) - -
caterpillar (4) - -

Clusters ViT EfficientNetV2 ConvNeXt

beaver cockroach (2) lion (2) -

bed chair (9) - couch (2)
trout (4) - -

beetle cockroach (18) - -

clock
telephone (8) - -
plate (5) - -
chair (3) - -

cloud - mountain (2) sea (7)
dolphin shark (2) - -

lamp
cup (19) cup (6) -
bottle (7) - -
cockroach (6) - -

mouse hamster (5) - shrew (4)
- - hamster (3)

otter
trout (8), skunk (8) - -
cockroach (7), dinosaur (7) - -
whale (6) - -

plain - - sea (4)
ray shark (10) - -

We observe that maximum overlap occurs when embeddings from ViT model is used followed by ConvNeXt
and EfficientNetV2. Although the overlap decreases using Canberra distance, it is still significantly more
compared to the other models. The embeddings from EfficientNetV2 produce well partitioned clusters.
Similar trends are detected using Manhattan and Canberra distances for ConvNeXt. However, overlaps with
“cat” cluster is present when Euclidean measures are used.

From Table 14, we observe that the models, EfficientNetV2 and ConvNeXt show minimum overlapping
clusters. Therefore, to further analyse the difference between these models, we select a few classes from
CIFAR100 and ImageNet datasets, and list all the overlapping embeddings for those classes using these two
model embeddings in Table 15 and 16, respectively.

From Table 15 and 16, we observe that for the selected classes, the number of overlapping embeddings is
less in case of ConvNeXt model. However, this may vary when another set of classes are chosen. In general,
using Canberra metric has substantially reduced the overlapping regions for both the models.

4.5 Comparison of Relation trees

We generate the relation trees using two parameters 1) cluster centroids G for each of the class representa-
tions, and 2) point through which the mean vector µ⃗ from the centroid G passes through the cluster denoted
as the MPP, P = G+ µ⃗. The trees are generated by applying the UPGMA algorithm (Dawyndt et al., 2006).

20

Under review as submission to TMLR

Table 13: Top 3 most occurring infiltrated classes in a given cluster for all the models using Euclidean,
Manhattan and Canberra distances on ImageNet dataset. The number inside the brackets show the number
of embeddings of that class present in the given cluster.
husky: Siberian husky, A. terrier: Australian terrier, B. terrier: Bedlington terrier, setter: English setter,
springer: English springer, t.t. sloth: three toed sloth, b.f. ferret: black footed ferret, M. hairless: Mexican
hairless, cockatoo: sulphur crested cockatoo, camel: Arabian camel, cobra: Indian cobra, fbhelmet: football
helmet, stocking: Christmas stocking, rb sandpiper : red backed sandpiper, b. swan: black swan, cellphone:
cellular telephone, tie: Windsor tie.
Left: Using Euclidean distance, Right: Using Canberra distance, Bottom left: Using Manhattan distance.

Clusters ViT EfficientNetV2 ConvNeXt

husky
A. terrier (5) - setter (4)
grey whale (4), Airedale (4) - A. terrier (2)
springer (3), setter (3) -

A. terrier
huskey (8) - -
hartebeest (5), collie (5) - -
guacamole (4), spider web (4) - -

t.t. sloth skunk (3), coyote (3) - -
B. terrier (2) - -

M.hairless - b.f. ferret (14) b.f. ferret (33)

mousetrap
collie (7) cockatoo (4)
Pomerarian (6), camel (6), siamang (6) -
whiskey jug (5), pop bottle (5) -

broccoli
spaghetti squash (5), running shoe (5) - king penguin (2)
scoreboard (4), plate rack (4) -
shoe shop (3), tobacco shop (3) -

safe
printer (8) - spider web (2)
coucal (7), hummingbird (7), spoonbil (7) - mailbag (2)
black stork (5), box turtle (5) - -

fbhelmet
coucal (11), hummingbird (11), spoonbil (11), - mailbag (2)
bee eater (10), b. swan (10), rb sandpiper (10) - -
goose (9), bittern (9) - -

sarong
tie (8) - overskirt (2)
volleyball (7) - -
overskirt (5) - -

pretzel
quilt (5), tape player (5) - mud turtle (17)
mud turtle (4), bannister (4) - tench (11)
bulletproof vest (3), agaric (3) - bannister (8)

Clusters ViT EfficientNetV2 ConvNeXt

sundial - parking meter (16) parking meter (2)
- toaster (12) -

neck
brace

junco (26) - -
ocarina (25), flamingo (25) - -

wolf
spider

megalith (28) partridge (2) -
slug (26) - -

stone
wall

tile roof (30) - -
cellphone (22) - -
harvester (19) - -

stocking
bulbul (24) - -
Siberian husky (22) - -
Australian terrier (19) - -

mitten
vine snake (45) vine snake (2) -
cellphone (43) - -
tile roof (39) - -

pretzel
prairie chicken (34) - -
basketball (20) - -
peacock (16), castle (16) - -

Clusters ViT EfficientNetV2 ConvNeXt

t.t. sloth skunk (2), coyote (2) - -

tench mud turtle (7), bannister (7), agaric (7) - pretzel (5)
loupe (6), quilt (6) - loupe (2)

sidewinder sea anemone (6), drumstick (6), lotion (6) lotion (2) mailbag (2)

altar cobra (8), spiny lobster (8) Petri dish (2) -
green mamba (7), rule (7) - -

fbhelmet drake (2), spider web (2) - -

drumstick sea anemone (6), cucumber (6) - -
radiator (4), combination lock (4) - -

sarong tie (3) - -
parachute (2) - -

All the three distance metrics, Euclidean, Manhattan and Canberra, are used in UPGMA (Dawyndt et al.,
2006) to generate the dendrograms. As a reference tree, we use a sub-tree derived from the WordNet (Miller,
1995) ontology. Each leaf node depicts a particular class present in the datasets. The hierarchy is built using
semantic relationship among the classes present (Bertinetto et al., 2020). We compare the relation trees
formed by ViT , EfficientNetV2 and ConvNeXt with the CLIP (Radford et al., 2021) model. CLIP learn
visual representations from natural language supervision using joint learning of image and text pairs. Fig. 7
show the dendrograms formed before and after the clustering algorithm is applied using Canberra distance
for CIFAR10 dataset.

4.5.1 Robinson-Foulds distance metric

Robinson-Foulds (Robinson & Foulds, 1981) is a widely used metric to find the distance between trees by
comparing the number of splits that differ for a pair of tree. Each branch is removed and the number of
partitions unique to the tree is calculated. The total number of such partitions between a pair of trees form
the Robinson-Foulds distance. We calculate Robinson-Foulds (RF) distances for the generated trees with
respect to the WordNet reference tree in Table 17 using centroid G and manifold mean point P .

21

Under review as submission to TMLR

Table 14: List of intrusive classes for a cluster of a specific class using CIFAR10 dataset. The number inside
the brackets show the number of overlapping embeddings present.

Model Distance Class-specific Overlapping Embeddings
function cluster

ViT

Euclidean

airplane ship (45), truck (25), bird (6)
automobile truck (39), airplane (3), ship (2)
bird deer (29), frog (19), airplane (15)
cat dog (28), deer (9), frog (7)
deer horse (30), frog (25), bird (17)
dog deer (15), cat (14), horse (9)
frog deer (14), dog (6), bird (5)
horse deer (15), airplane (4), dog (3)
ship airplane (63), truck (18), automobile (7)
truck automobile (156), airplane (20), ship (5)

Manhattan

airplane bird (11), dog (11), truck (11)
automobile truck (11), airplane (1)
bird deer (10), airplane (9), horse (4)
cat dog (20), horse (8), airplane (3)
deer horse (75), bird (4), airplane (2)
dog horse (17), cat (7), airplane (3)
frog deer (4), bird (1)
horse deer (6), dog (2), airplane (1)
ship airplane (25)
truck automobile (71), airplane (12)

Canberra

bird deer (7), dog (6), airplane (2)
cat dog (38)
deer dog (13), horse (4), cat (1)
dog cat (11)
frog dog (10), deer (1)
horse deer (2)
ship airplane (25)
truck automobile (2)

EfficientNetV2
Euclidean dog cat (2)
Manhattan - -
Canberra - -

ConvNeXt
Euclidean

bird cat (4)
cat dog (26), deer (4), bird (2)
deer cat (6)
dog cat (54)

Manhattan dog cat (1)
Canberra - -

The the three columns for each dataset in Table 17 denote the distance measure used to generate the
trees. We observe best result on CIFAR10 for ViT using Canberra distance for cluster formation, and
Euclidean measure for tree generation. EfficientNetV2 show better results on CIFAR100 coarse and fine
when Canberra and Manhattan distances are used, respectively. The results for ImageNet dataset remain
almost indistinguishable from before and after cluster formation. The trend remains the same when trees are
generated using centroid G or manifold mean point P . The observed Robinson-Foulds distance using G and
P are almost similar. However, the average results are slightly better when P is considered for UPGMA.

22

Under review as submission to TMLR

Table 15: List of intrusive classes for a cluster of a specific class using CIFAR100 dataset on EfficientNetV2
and ConvNeXt model on the same set of clusters. The number inside the brackets show the number of
overlapping embeddings present.

Model Distance Class-specific Overlapping Embeddings
function cluster

EfficientNetV2

Euclidean

apple orange (5)
baby boy (18), girl (4)
man boy (15), woman (8)
bear seal (4)
beaver seal (6), otter (4)
bed couch (16)
oak tree maple tree (26), pine tree (18), willow tree (10)
tractor lawn mower (13)

Manhattan

apple sweet pepper (4)
baby boy (10), girl (3)
man boy (22)
bear seal (5), otter (1)
beaver seal (4), otter (4)
bed couch (7)
oak tree pine tree (16), willow tree (13), maple tree (10)
tractor lawn mower (4)

Canberra

apple sweet pepper (1)
baby girl (7)
man woman (13)
bed couch (45)
oak tree maple tree (49), willow tree (25)
tractor lawn mower (13)

ConvNeXt

Euclidean

apple pear (4)
baby boy (1), caterpillar (1)
man boy (28), bowl (5), girl (2)
bed couch (6)

Manhattan

apple pear (4)
baby boy (10), bowl (2), flatfish (2)
man boy (22)
bed couch (2)
oak tree willow tree (1)

Canberra beaver mouse (2)
oak tree pine tree (1)

4.5.2 Deformity Index

There exists unresolved relationship among species due to which it is difficult to acquire an accurate reference
tree for any dataset. Thus, prevalent tree comparison techniques may show unexpected results under different
circumstances. Deformity index (Mahapatra & Mukherjee, 2021) is a scoring system that measures the
dissimilarity among different phylogenetic trees based on the list of clades given in a reference tree. The
measure is dependent on the list of clades obtained either from the reference tree or hypotheses. Deformity
index of the tree T is given by:

D(T) = 1
|Λ(TR)|

∑
i

Dc(Λi); ∀Λi ∈ Λ(TR) (21)

23

Under review as submission to TMLR

Table 16: List of intrusive classes for a cluster of a specific class using ImageNet dataset on EfficientNetV2
and ConvNeXt model on the same set of clusters. The number inside the brackets show the number of
overlapping embeddings present.
slipper: yellow lady’s slipper, gn schnauzer: giant schnauzer, S. terrier: Sealyham terrier, B. griffon:
Brabancon griffon, M. hairless: Mexican hairless, I. wolfhound: Irish wolfhound, bf. ferret: black-footed
ferret, chicken: prairie chicken, h. monkey: howler monkey

Model Distance Class-specific Overlapping Embeddings
function cluster

EfficientNetV2

Euclidean

titi schnauzer (24), meerkat (8)
bf. ferret M. hairless (39), skunk (4)
Saluki schipperke (289)
schipperke Saluki (297)
S. terrier B. griffon (287)
h.monkey hippopotamus (48)
ambulance beach wagon (50)
tractor mobile home (283)
trombone French horn (83)
cliff slipper (46)
chicken basketball (50)
dishwasher artichoke (154)
artichoke sea urchin (154)
earthstar sunscreen (68)
bubble espresso (66)

Manhattan

titi schnauzer (23), meerkat (11)
bf. ferret M. hairless (17)
schipperke Saluki (4), colobus (3)
S. terrier I. wolfhound (280)
tractor mobile home (280)
trombone French horn (33)
chicken basketball (55)
artichoke sea urchin (5)
earthstar sunscreen (25)
bubble espresso (11), gown (4)

Canberra

titi schnauzer (16), meerkat (13)
bf. ferret M. hairless (6)
S. terrier wild boar (4), wool (3)
tractor mobile home (3)
trombone French horn (11)
chicken basketball (13)
earthstar sunscreen (28)
bubble espresso (38), gown (4)

ConvNeXt

Euclidean

bf. ferret M. hairless (21)
Saluki schipperke (6)
schipperke Saluki (6)
h.monkey hippopotamus (5), water buffalo (4)
ambulance beach wagon (3)
trombone French horn (5)
cliff slipper (10), flute (7)
artichoke sea urchin (3)
bubble espresso (3)

Manhattan trombone French horn (4)
Canberra earthstar sunscreen (6)

24

Under review as submission to TMLR

ViT ViT

EfficientNetV2 EfficientNetV2

ConvNeXt ConvNeXt

after
clustering

after
clustering

after
clustering

using
Canberra

using
Canberra

using
Canberra

ViT ViT

EfficientNetV2 EfficientNetV2

ConvNeXt ConvNeXt

after
clustering

after
clustering

after
clustering

using
Canberra

using
Canberra

using
Canberra

(b)(a)

Figure 7: Dendrograms formed before and after clustering using Canberra distance. The UPGMA algorithm
have used Euclidean distance to build the trees. The x-axis represents the class labels. (a) CIFAR10 -
(0) airplane, (1) automobile, (2) bird, (3) cat, (4) deer, (5) dog, (6) frog, (7) horse, (8) ship, (9) truck.
(b) CIFAR100(20) (0) aquatic animals (1) fish (2) flowers (3) food containers (4) fruits and vegetables (5)
household electrical vehicles (6) household furniture (7) insects (8) large carnivores (9) large man-made
outdoor things (10) large natural outdoor scenes (11) large omnivores and herbivores (12) medium-sized
mammals (13) non-insect invertebrates (14) people (15) reptiles (16) small mammals (17) trees (18) vehicles
1 (19) vehicles 2

where, Dc(Λi) denotes clade deformation. Thus, deformity index computes the degree of deformation for
each clade in the generated tree with respect to the reference tree. When the target tree is consistent with
the reference tree, deformity index becomes 0. The maximum value is achieved when the tree is a caterpillar
tree with the members of reference clades present at the highest levels. We use this measure to compare our
relation tree with the WordNet hierarchy tree in Table 18.

The tree is built using three different measures, Euclidean, Manhattan and Canberra. The first column of
Table 18 represent the models from which the features have been obtained. The second column denotes the
distance metric used to form the feature representation cluster. The three columns under each datasets are
measures used while forming the relation tree. From Table 18, we observe best results for ViT using Canberra
distance measures when the tree is built using Euclidean distance on CIFAR10 dataset. A minimum value
of 0 has been observed which indicates no deformation with respect to the reference tree. However, in case of
EfficientNetV2, under similar cluster measure, tree built using Canberra distance show minimum deformity
for both CIFAR100(20) and CIFAR100 datasets. ImageNet show best results with EfficientNetV2 model.
The overall deformity observed is least when a combination of EfficientNetV2 model and Manhattan or
Canberra measures are used for generating embeddings and clustering, respectively. While comparing the
deformity index using cluster centroid, G, and manifold mean point, P , we observe better average results for
the latter. In case of CIFAR10 and CIFAR100, similar results are observed in most of the cases, however,
in ImageNet, we observe substantially better results using P .

We summarise our observations as follows:

• Due to the manifold structure of the embeddings in the latent space, each cluster can be represented
using 2n+4 parameters such as, centroid G, manifold mean point P , maximum radius of the cluster,

25

Under review as submission to TMLR

Table 17: Results for Robinson-Foulds distance metric between the trees generated using UPGMA with
centroid G /MPP P and WordNet hierarchy.
Left: CIFAR10, Right: CIFAR100(20), Bottom Left: CIFAR100, Bottom Right: ImageNet

Model Cluster
Distance fn. Euclidean Manhattan Canberra

G MPP G MPP G MPP

ViT
Euclidean 6 3 7 3 7 7

Manhattan 6 7 7 7 7 7
Canberra 1 1 3 3 5 5

EfficientNetV2
Euclidean 13 13 9 5 11 11

Manhattan 13 13 9 9 10 11
Canberra 13 13 5 5 10 11

ConvNeXt
Euclidean 13 13 13 13 13 13

Manhattan 13 13 13 13 13 13
Canberra 13 13 13 13 13 13

CLIP
Euclidean 9 5 9 5 13 5

Manhattan 11 5 11 5 13 5
Canberra 13 5 13 5 13 5

Model Cluster
Distance fn. Euclidean Manhattan Canberra

G MPP G MPP G MPP

ViT
Euclidean 30 30 30 30 30 30

Manhattan 30 30 30 30 30 30
Canberra 28 26 28 26 30 26

EfficientNetV2
Euclidean 20 22 18 20 18 20

Manhattan 22 24 16 18 18 20
Canberra 20 22 16 18 18 14

ConvNeXt
Euclidean 24 24 24 22 16 18

Manhattan 24 26 24 24 14 16
Canberra 26 28 24 26 24 26

CLIP
Euclidean 28 16 28 14 22 18

Manhattan 32 18 32 18 30 16
Canberra 32 26 32 24 30 22

Model Cluster
Distance fn. Euclidean Manhattan Canberra

G MPP G MPP G MPP

ViT
Euclidean 149 145 149 145 149 145

Manhattan 149 149 149 149 149 147
Canberra 143 141 139 135 145 133

EfficientNetV2
Euclidean 125 127 127 125 141 135

Manhattan 125 125 127 127 135 135
Canberra 135 129 139 131 139 137

ConvNeXt
Euclidean 135 143 143 143 129 133

Manhattan 145 139 141 137 129 129
Canberra 137 137 141 141 135 135

CLIP
Euclidean 147 129 147 129 147 129

Manhattan 141 127 141 127 141 127
Canberra 149 129 149 129 149 129

Model Cluster
Distance fn. Euclidean Manhattan Canberra

G MPP G MPP G MPP

ViT
Euclidean 1365 1369 1365 1369 1365 1365

Manhattan 1367 1369 1367 1369 1367 1369
Canberra 1367 1369 1367 1367 1367 1369

EfficientNetV2
Euclidean 1361 1357 1359 1357 1361 1365

Manhattan 1361 1355 1363 1357 1361 1361
Canberra 1363 1359 1365 1359 1363 1361

ConvNeXt
Euclidean 1361 1361 1359 1359 1359 1357

Manhattan 1361 1359 1361 1359 1361 1359
Canberra 1363 1359 1361 1359 1361 1359

CLIP
Euclidean 1363 1363 1361 1363 1359 1363

Manhattan 1369 1359 1369 1359 1367 1363
Canberra 1363 1363 1365 1365 1367 1367

Table 18: Results for Deformity Index between the trees generated using UPGMA with centroid G/MPP
P and WordNet hierarchy.
Left: CIFAR10, Right: CIFAR100(20), Bottom Left: CIFAR100, Bottom Right: ImageNet

Model Cluster
Distance fn. Euclidean Manhattan Canberra

G MPP G MPP G MPP

ViT
Euclidean 1.80 1 1.97 1 2.35 1.89

Manhattan 1.80 1.46 1.80 1.46 2.35 1.89
Canberra 0 0 1.50 1 1.90 1.89

EfficientNetV2
Euclidean 5.27 5.27 2.11 1.29 5.52 4.67

Manhattan 4.71 4.71 1.87 2.11 3.77 4.55
Canberra 3.78 3.77 0.83 1 4.89 5.35

ConvNeXt
Euclidean 5.47 5.46 5.28 5.28 4.84 4.70

Manhattan 5.47 5.46 5.28 4.56 4.92 4.70
Canberra 5.70 5.70 5.70 5.70 4.84 4.83

CLIP
Euclidean 4.74 1.16 4.74 1.16 2.41 1.25

Manhattan 3.76 1.25 3.59 1.16 3.19 1.25
Canberra 5.01 1.16 5.01 1.16 3.95 1.25

Model Cluster
Distance fn. Euclidean Manhattan Canberra

G MPP G MPP G MPP

ViT
Euclidean 14.78 16.77 14.91 16.90 14.70 80.68

Manhattan 13.69 18.23 15.95 18.16 15.23 15.43
Canberra 11.12 11.19 12.93 10.33 12.79 8.50

EfficientNetV2
Euclidean 4.15 4.15 3.93 3.93 5.74 5.74

Manhattan 8.83 8.83 3.03 3.03 5.74 5.74
Canberra 7.65 7.65 5.90 5.90 2.97 2.97

ConvNeXt
Euclidean 10.66 13.24 10.44 11.41 8.61 8.41

Manhattan 10.43 14.44 10.51 13.31 9.44 9.04
Canberra 16.83 16.83 17.87 17.87 8.67 8.67

CLIP
Euclidean 10.54 3.56 10.52 3.80 8.36 4.56

Manhattan 16.09 4.45 16.51 3.41 11.74 3.94
Canberra 21.28 11.21 21.28 9.51 10.60 5.03

Model Cluster
Distance fn. Euclidean Manhattan Canberra

G MPP G MPP G MPP

ViT
Euclidean 106.18 80.68 106.60 86.95 65.73 74.08

Manhattan 92.63 104.10 100.33 111.69 68.49 80.36
Canberra 51.25 66.59 45.88 65.68 55.41 40.36

EfficientNetV2
Euclidean 18.57 17.16 14.61 12.16 24.85 23.91

Manhattan 18.73 18.73 13.61 13.61 23.77 23.77
Canberra 63.48 18.13 43.22 11.99 29.15 28.52

ConvNeXt
Euclidean 96.45 77.10 90.56 66.64 21.38 23.10

Manhattan 112.70 93.43 104.61 89.16 25.16 24.34
Canberra 84.19 84.19 94.07 94.07 28.46 28.46

CLIP
Euclidean 111.57 17.73 114.01 17.94 30.07 19.23

Manhattan 134.20 21.83 137.31 21.53 34.02 16.05
Canberra 150.46 21.58 154.75 22.99 37.21 17.13

Model Cluster
Distance fn. Euclidean Manhattan Canberra

G MPP G MPP G MPP

ViT
Euclidean 2547.64 2141.26 2583.87 2122.93 585.37 810.35

Manhattan 2592.95 2239.78 2522.28 2186.02 400.11 635.56
Canberra 2005.55 614.38 2013.02 632.08 1220.78 404.76

EfficientNetV2
Euclidean 1031.02 292.65 135.82 125.78 177.88 154.75

Manhattan 1393.86 290.07 157.72 127.95 179.68 162.67
Canberra 1869.49 272.96 202.24 148.03 241.37 157.98

ConvNeXt
Euclidean 546.33 399.16 821.04 464.64 174.91 142.69

Manhattan 476.94 427.40 1231.60 483.76 196.92 135.76
Canberra 466.12 614.15 1113.68 615.80 228.68 125.45

CLIP
Euclidean 176.34 156.37 202.72 181.49 164.97 140.79

Manhattan 189.26 167.94 230.12 207.75 149.76 131.56
Canberra 206.04 184.11 242.72 208.14 150.68 133.97

26

Under review as submission to TMLR

minimum radius of the cluster, the angle θmax

2 between the mean vector µ⃗ and vector passing through
the rim of the cluster surface, and the angle θmin

2 between the mean vector µ⃗ and vector passing
through the central annular ring.

• The average result using Canberra measure is better when all the metrices are compiled.

• The embeddings formed in the space form well defined regions with minimum overlap with other
classes in case of EfficientNetV2 and ConvNeXt. However, in case of ViT, multiple overlaps with
unrelated classes are observed.

• EfficientNetV2 is able to capture the semantic relationship among the classes present in the dataset.
However, it is not distinct in ViT.

• For high dimensional data, cluster semantics for all three distance measures behave similarly.

• The Robinson-Foulds distance and Deformity Index results observed using P are either equal or bet-
ter compared to G while measuring the similarity between the relation trees and WordNet. When the
number of classes are less, for example, CIFAR10, CIFAR100(20) and CIFAR100, the score is simi-
lar for centroid G and MPP P . However, in case of ImageNet, we observe substantial improvement
when P is used.

4.6 Hierarchy among label embeddings

We compare the hierarchical relations formed using word embeddings of the image labels from two pre-
trained models, namely, BERT (Devlin et al., 2018) and GloVe (Pennington et al., 2014) with the given
WordNet ontology. In this experiment, we form captions for each of the images present in CIFAR10 ,CI-
FAR100(20), CIFAR100 and ImageNet datasets using the labels. The word embeddings generated from the
pre-trained models are used to form relation trees by applying UPGMA algorithm using Euclidean, Man-
hattan and Canberra distance metrics. We compare the relation trees with a sub-tree derived from WordNet
using Robinson-Foulds and Deformity Index in Table 19. From Table 19, we observe that the hierarchical

Table 19: Results for Robinson-Foulds distance (RF) and Deformity Index (DI) between the trees generated
using UPGMA with label embeddings and WordNet hierarchy.

Model UPGMA
Distance fn. CIFAR10 CIFAR100(20) CIFAR10 ImageNet

RF DI RF DI RF DI RF DI

BERT
Euclidean 15 6.36 28 8.83 143 34.03 1367 299.64

Manhattan 15 6.36 28 8.83 143 36.19 1367 296.39
Canberra 15 5.55 28 7.15 139 26.94 1365 174.82

GloVe
Euclidean 15 7.07 30 18.69 149 143.84 1365 -

Manhattan 15 7.07 30 18.69 149 143.84 1365 -
Canberra 15 7.07 30 18.69 149 143.84 1365 -

relationships captured by the image embeddings are more meaningful compared to the hierarchy formed by
its corresponding captions. However, if we compare the two language models, BERT performs better than
GloVe when the number of classes are increased.

5 Conclusions

In this paper, we have analysed the structure of the embedding space when different types of models are
used. Moreover, we have been able to establish a hierarchical relationship among interacting classes using
relation trees. These trees have been evaluated using phylogenetic tree comparison methods. Further, we
have proposed a cluster growing technique to minimise the overlap and inclusion of other classes to form
high quality clusters of embeddings. A comparative study among the different distance measures used for

27

Under review as submission to TMLR

clustering has shown that Canberra distance outperforms the other measures to form better quality clusters
with minimum overlaps and maximum coverage. From our experiments we observe that EfficienNetV2
show minimum interaction among the classes while training, and form non-overlapping clusters using our
technique. The mean vector computation is more robust and has shown better results compared to centroid
while comparing the hierarchical trees. However, we have not considered the involvement of the θ parameter
while computing the distance between any two clusters. A method to include both θ and mean vector for
tree comparison technique will be more appropriate and robust.

References
Adrien Bardes, Jean Ponce, and Yann Lecun. Vicreg: Variance-invariance-covariance regularization for self-

supervised learning. In ICLR 2022-10th International Conference on Learning Representations, 2022a.

Adrien Bardes, Jean Ponce, and Yann Lecun. Vicregl: Self-supervised learning of local visual features. In
36th Conference on Neural Information Processing Systems (NeurIPS 2022), 2022b.

Etienne Becht, Leland McInnes, John Healy, Charles-Antoine Dutertre, Immanuel WH Kwok, Lai Guan
Ng, Florent Ginhoux, and Evan W Newell. Dimensionality reduction for visualizing single-cell data using
umap. Nature biotechnology, 37(1):38–44, 2019.

Yoshua Bengio, Aaron Courville, and Pascal Vincent. Representation learning: A review and new perspec-
tives. IEEE transactions on pattern analysis and machine intelligence, 35(8):1798–1828, 2013.

Luca Bertinetto, Romain Mueller, Konstantinos Tertikas, Sina Samangooei, and Nicholas A Lord. Mak-
ing better mistakes: Leveraging class hierarchies with deep networks. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 12506–12515, 2020.

Paulino Cristovao, Hidemoto Nakada, Yusuke Tanimura, and Hideki Asoh. Generating in-between im-
ages through learned latent space representation using variational autoencoders. IEEE Access, 8:149456–
149467, 2020.

Peter Dawyndt, Hans De Meyer, and Bernard De Baets. Upgma clustering revisited: A weight-driven
approach to transitive approximation. International Journal of Approximate Reasoning, 42(3):174–191,
2006.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale hierarchical
image database. In 2009 IEEE conference on computer vision and pattern recognition, pp. 248–255. Ieee,
2009.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep bidirectional
transformers for language understanding. arXiv preprint arXiv:1810.04805, 2018.

Alexey Dosovitskiy, Philipp Fischer, Jost Tobias Springenberg, Martin Riedmiller, and Thomas Brox. Dis-
criminative unsupervised feature learning with exemplar convolutional neural networks. IEEE Transac-
tions on Pattern Analysis & Machine Intelligence, 38(09):1734–1747, 2016.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Un-
terthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An image is worth
16x16 words: Transformers for image recognition at scale. In International Conference on Learning Rep-
resentations, 2021.

Xuri Ge, Fuhai Chen, Joemon M Jose, Zhilong Ji, Zhongqin Wu, and Xiao Liu. Structured multi-modal fea-
ture embedding and alignment for image-sentence retrieval. In Proceedings of the 29th ACM international
conference on multimedia, pp. 5185–5193, 2021.

Jean-Bastien Grill, Florian Strub, Florent Altché, Corentin Tallec, Pierre Richemond, Elena Buchatskaya,
Carl Doersch, Bernardo Avila Pires, Zhaohan Guo, Mohammad Gheshlaghi Azar, et al. Bootstrap your
own latent-a new approach to self-supervised learning. Advances in neural information processing systems,
33:21271–21284, 2020.

28

Under review as submission to TMLR

Henry Han, Wentian Li, Jiacun Wang, Guimin Qin, and Xianya Qin. Enhance explainability of manifold
learning. Neurocomputing, 500:877–895, 2022.

Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross Girshick. Momentum contrast for unsupervised
visual representation learning. In Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition, pp. 9729–9738, 2020.

Olivier J Hénaff, Skanda Koppula, Evan Shelhamer, Daniel Zoran, Andrew Jaegle, Andrew Zisserman, João
Carreira, and Relja Arandjelović. Object discovery and representation networks. In Computer Vision–
ECCV 2022: 17th European Conference, Tel Aviv, Israel, October 23–27, 2022, Proceedings, Part XXVII,
pp. 123–143. Springer, 2022.

Irina Higgins, Loic Matthey, Arka Pal, Christopher Burgess, Xavier Glorot, Matthew Botvinick, Shakir
Mohamed, and Alexander Lerchner. beta-vae: Learning basic visual concepts with a constrained variational
framework. In International conference on learning representations, 2017.

Shichao Kan, Yigang Cen, Zhihai He, Zhi Zhang, Linna Zhang, and Yanhong Wang. Supervised deep feature
embedding with handcrafted feature. IEEE Transactions on Image Processing, 28(12):5809–5823, 2019.

Valentin Khrulkov, Leyla Mirvakhabova, Evgeniya Ustinova, Ivan Oseledets, and Victor Lempitsky. Hyper-
bolic image embeddings. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 6418–6428, 2020.

Jack Klys, Jake Snell, and Richard Zemel. Learning latent subspaces in variational autoencoders. Advances
in neural information processing systems, 31, 2018.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images. 2009.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep convolutional
neural networks. Communications of the ACM, 60(6):84–90, 2017.

Chunyuan Li, Jianwei Yang, Pengchuan Zhang, Mei Gao, Bin Xiao, Xiyang Dai, Lu Yuan, and Jianfeng
Gao. Efficient self-supervised vision transformers for representation learning. In International Conference
on Learning Representations, 2022.

Wentian Li, Jane E Cerise, Yaning Yang, and Henry Han. Application of t-sne to human genetic data.
Journal of bioinformatics and computational biology, 15(04):1750017, 2017.

Peizhong Liu, Jing-Ming Guo, Chi-Yi Wu, and Danlin Cai. Fusion of deep learning and compressed domain
features for content-based image retrieval. IEEE Transactions on Image Processing, 26(12):5706–5717,
2017.

Zhuang Liu, Hanzi Mao, Chao-Yuan Wu, Christoph Feichtenhofer, Trevor Darrell, and Saining Xie. A
convnet for the 2020s. In Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition, pp. 11976–11986, 2022.

Aritra Mahapatra and Jayanta Mukherjee. Deformity index: A semi-reference clade-based quality metric of
phylogenetic trees. Journal of Molecular Evolution, 89:302–312, 2021.

Emile Mathieu, Tom Rainforth, Nana Siddharth, and Yee Whye Teh. Disentangling disentanglement in
variational autoencoders. In International Conference on Machine Learning, pp. 4402–4412. PMLR, 2019.

George A Miller. Wordnet: a lexical database for english. Communications of the ACM, 38(11):39–41, 1995.

Ishan Misra and Laurens van der Maaten. Self-supervised learning of pretext-invariant representations. In
Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp. 6707–6717, 2020.

Anh Nguyen, Khoa Pham, Dat Ngo, Thanh Ngo, and Lam Pham. An analysis of state-of-the-art activation
functions for supervised deep neural network. In 2021 International Conference on System Science and
Engineering (ICSSE), pp. 215–220. IEEE, 2021.

29

Under review as submission to TMLR

Maxime Oquab, Timothée Darcet, Théo Moutakanni, Huy Vo, Marc Szafraniec, Vasil Khalidov, Pierre
Fernandez, Daniel Haziza, Francisco Massa, Alaaeldin El-Nouby, et al. Dinov2: Learning robust visual
features without supervision. arXiv preprint arXiv:2304.07193, 2023.

Jeffrey Pennington, Richard Socher, and Christopher D Manning. Glove: Global vectors for word representa-
tion. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP),
pp. 1532–1543, 2014.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal, Girish
Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual models from
natural language supervision. In International conference on machine learning, pp. 8748–8763. PMLR,
2021.

David F Robinson and Leslie R Foulds. Comparison of phylogenetic trees. Mathematical biosciences, 53
(1-2):131–147, 1981.

Vincent Sitzmann, Justus Thies, Felix Heide, Matthias Nießner, Gordon Wetzstein, and Michael Zollhofer.
Deepvoxels: Learning persistent 3d feature embeddings. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 2437–2446, 2019.

Jake Snell, Kevin Swersky, and Richard Zemel. Prototypical networks for few-shot learning. Advances in
neural information processing systems, 30, 2017.

Mingxing Tan and Quoc Le. Efficientnet: Rethinking model scaling for convolutional neural networks. In
International conference on machine learning, pp. 6105–6114. PMLR, 2019.

Mingxing Tan and Quoc Le. Efficientnetv2: Smaller models and faster training. In International conference
on machine learning, pp. 10096–10106. PMLR, 2021.

Nenad Tomasev, Ioana Bica, Brian McWilliams, Lars Holger Buesing, Razvan Pascanu, Charles Blundell,
and Jovana Mitrovic. Pushing the limits of self-supervised resnets: Can we outperform supervised learning
without labels on imagenet? In First Workshop on Pre-training: Perspectives, Pitfalls, and Paths Forward
at ICML 2022.

Laurens Van der Maaten and Geoffrey Hinton. Visualizing data using t-sne. Journal of machine learning
research, 9(11), 2008.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz Kaiser,
and Illia Polosukhin. Attention is all you need. Advances in neural information processing systems, 30,
2017.

Yandong Wen, Kaipeng Zhang, Zhifeng Li, and Yu Qiao. A discriminative feature learning approach for
deep face recognition. In Computer Vision–ECCV 2016: 14th European Conference, Amsterdam, The
Netherlands, October 11–14, 2016, Proceedings, Part VII 14, pp. 499–515. Springer, 2016.

Chao-Yuan Wu, R Manmatha, Alexander J Smola, and Philipp Krahenbuhl. Sampling matters in deep
embedding learning. In Proceedings of the IEEE international conference on computer vision, pp. 2840–
2848, 2017.

Junwei Yang, Ke Zhang, Zhaolin Cui, Jinming Su, Junfeng Luo, and Xiaolin Wei. Inscon: instance consis-
tency feature representation via self-supervised learning. arXiv preprint arXiv:2203.07688, 2022.

Xiaofan Zhang, Feng Zhou, Yuanqing Lin, and Shaoting Zhang. Embedding label structures for fine-grained
feature representation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recogni-
tion, pp. 1114–1123, 2016.

Zhenyue Zhang and Hongyuan Zha. Nonlinear dimension reduction via local tangent space alignment. In
International Conference on Intelligent Data Engineering and Automated Learning, pp. 477–481. Springer,
2003.

30

Under review as submission to TMLR

Zhenyue Zhang, Jing Wang, and Hongyuan Zha. Adaptive manifold learning. IEEE transactions on pattern
analysis and machine intelligence, 34(2):253–265, 2011.

Jinghao Zhou, Chen Wei, Huiyu Wang, Wei Shen, Cihang Xie, Alan Yuille, and Tao Kong. Image BERT
pre-training with online tokenizer. In International Conference on Learning Representations, 2022. URL
https://openreview.net/forum?id=ydopy-e6Dg.

31

https://openreview.net/forum?id=ydopy-e6Dg

Under review as submission to TMLR

A Chi-squared test setup

The chi-squared test is conducted for all the datasets to show that the distribution followed by the embed-
dings is Poisson in nature. We divide the distance between minimum and maximum radius into 22 intervals.
Each of these intervals cover a radius of 5 units. We tabulate the number of embeddings from target and
non-target classes for each interval for a given cluster. We perform the chi-squared test to compare this
distribution with the Poisson distribution of similar mean and standard deviation. The results are shown in
Section 3.2.1. This experiment has been conducted on randomly selected 10 clusters from each dataset. The
results shown in Section 3.2.1 is for CIFAR10 dataset.

B Dendrograms for CIFAR100 datasets

We have shown the dendrograms of CIFAR10 and CIFAR100(20) datasets after clustering in Fig. 7. In this
section, we show the results for CIFAR100 dataset on EfficientNetV2 and ConvNeXt in Fig. 8.

EfficientNetV2

ConvNeXt

EfficientNetV2

ConvNeXt

using

Manhattan

using

Manhattan

Figure 8: Dendrograms formed before and after clustering using Manhattan distance. The UPGMA algo-
rithm have used Euclidean distance to build the trees.

32

	Introduction
	Recent Works
	Learning feature embeddings
	Supervised methods
	Self-Supervised methods

	Manifold learning method
	Interpreting latent representations

	Proposed Method
	Generating Image Embeddings
	Vision Transformer
	Convolutional Neural Networks
	ConvNeXt

	Forming Clusters of Embeddings
	Properties of cluster growing technique
	Structure of the Clusters
	Distance measures

	Constructing Class Relations tree

	Experimentation
	Data Set
	Quality Analysis of Clusters
	Cluster Purity
	Rand Index
	Normalised Mutual Information

	Paired t-test
	Interaction among Classes
	Presence of infiltrated classes
	Presence of intrusive classes

	Comparison of Relation trees
	Robinson-Foulds distance metric
	Deformity Index

	Hierarchy among label embeddings

	Conclusions
	Chi-squared test setup
	Dendrograms for CIFAR100 datasets

