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ABSTRACT

Self-Supervised Learning (SSL) excels at learning generic representations of
acoustic signals, yet prevailing methods remain domain-specific, tailored to either
speech or general audio, hindering the development of a unified representation
model with a comprehensive capability over both domains. To address this, we
present SPEAR (SPEech and Audio Representations), the first SSL framework
to successfully learn unified speech and audio representations from a mixture of
speech and audio data. SPEAR proposes a unified pre-training objective based on
masked prediction of fine-grained discrete tokens for both speech and general au-
dio. These tokens are derived from continuous speech and audio representations
using a Multi-codebook Vector Quantisation (MVQ) method, retaining rich acous-
tic detail essential for modelling both speech and complex audio events. SPEAR
is applied to pre-train both single-domain and unified speech-and-audio SSL mod-
els. Our speech-domain model establishes a new state-of-the-art on the SUPERB
benchmark, a speech processing benchmark for SSL models, matching or sur-
passing the highly competitive WavLM Large on 12 out of 15 tasks with the same
pre-training corpora and a similar model size. Crucially, our unified model learns
complementary features and demonstrates comprehensive capabilities across two
major benchmarks, SUPERB and HEAR, for evaluating audio representations. By
further scaling up the model size and pre-training data, we present a unified model
with 600M parameters that excels in both domains, establishing it as one of the
most powerful and versatile open-source SSL models for auditory understanding.
The inference code and pre-trained models will be made publicly available.

1 INTRODUCTION

The drive towards foundation models trained on broad data with generic features that can be adapted
to many tasks is one of the most significant trends in AI, having been demonstrably successful
in natural language processing (Brown et al., 2020) and computer vision (Kirillov et al., 2023).
In the auditory domain, speech conveys linguistic and paralinguistic information, while general
audio provides environmental context and sound events crucial for situational awareness. Critically,
they are rarely isolated in real-world scenarios (Bregman, 1994). Therefore, developing a unified
encoder with comprehensive capabilities across both domains is important for modern AI systems
with holistic auditory perception function (Comanici et al., 2025).

Self-supervised learning (SSL) has emerged as an effective paradigm for learning generic repre-
sentations in the field of speech and audio processing (Baevski et al., 2020; 2022; Huang et al.,
2022; Dinkel et al., 2024). By leveraging a large amount of unlabelled data during pre-training, SSL
models can achieve very high performance on tasks with limited supervised data (Chen et al., 2020b;
Baevski et al., 2020). In speech processing, one dominant approach is masked token prediction (Hsu
et al., 2021; Chung et al., 2021; Chiu et al., 2022). This approach involves quantisation techniques,
such as k-means clustering (Hsu et al., 2021) or random projection quantisation (Chiu et al., 2022),
to generate coarse-grained discrete tokens from the raw speech signal or intermediate SSL repre-
sentations. Although the quantisation process discards some acoustic details, such as prosody and
paralinguistic information (Xin et al., 2024), these tokens still effectively capture the phonetic con-
tent of speech (Baevski et al., 2020; Hsu et al., 2021). This makes the pre-training strategy highly
suitable for the speech domain and has enabled models to achieve excellent performance on a wide
range of downstream speech processing tasks (Chen et al., 2022; Yang et al., 2021).
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However, such coarse-grained tokens are inadequate for general audio. In contrast to speech, gen-
eral audio exhibits more irregular and complex spectro-temporal patterns (Attias & Schreiner, 1996)
that are difficult to capture with coarse-grained discrete units (e.g., k-means). While BEATs (Chen
et al., 2023) adapts discrete token prediction for audio, it requires a complex iterative process to
train a dedicated audio tokeniser. EncodecMAE (Pepino et al., 2025) instead uses the off-the-
shelf Encodec (Défossez et al., 2023) tokens as pre-training targets and shows promising results
in general audio representation learning. However, when applied to speech data, the model exhibits
only limited speech-related capability. Other audio SSL models forgo token prediction in favour of
other objectives, such as masked autoencoder (MAE) (Huang et al., 2022; Dinkel et al., 2024) or
bootstrapping-based methods (Li et al., 2024a). This divergence in performance and objectives has
prevented the emergence of a unified SSL approach for both the speech and general audio domains.

To address this lack of unification, we propose SPEAR (SPEech and Audio Representations), a uni-
fied SSL framework for both speech and general audio. We hypothesise that masked prediction of
fine-grained discrete tokens could be a unified SSL pre-training task for both domains. Our approach
applies multi-codebook vector quantisation (MVQ) (Guo et al., 2023) to the intermediate represen-
tations of existing speech and audio SSL models to obtain fine-grained discrete tokens, which then
serve as the targets for a masked prediction objective. MVQ decomposes the representation space
into multiple subspaces spanned by parallel codebooks. This multi-codebook design enables MVQ
tokens to retain far more detail than coarse-grained discrete units, making SPEAR suitable for both
speech and general audio. The pre-training objective can be viewed as performing multiple masked
language modelling (Devlin et al., 2019) tasks simultaneously, one for each MVQ codebook. A key
aspect of SPEAR is the joint pre-training on speech and audio, where the model learns to predict
two sets of MVQ tokens derived from separate expert models from two domains. Together with a
specially designed asymmetrical pre-training strategy, the dual-target objective enables SPEAR to
learn a single, unified representation space bridging both domains. Finally, to enhance the model’s
versatility for tasks requiring different temporal granularities (Shi et al., 2024a), we integrate a
multi-temporal resolution encoder (Yao et al., 2024), allowing the model to process the input signal
at variable frame rates in intermediate layers.

Our contributions can be highlighted as follows:

• We propose SPEAR, the first unified SSL framework for both speech and general audio
that successfully learns high-quality unified representations for both domains.

• We conduct extensive experiments and validate the effectiveness of SPEAR in both single-
domain and unified settings. Notably, our speech-domain model achieves the same or better
performance than the competitive WavLM Large (Chen et al., 2022) on 12 out of 15 SU-
PERB (Yang et al., 2021; Tsai et al., 2022) tasks under a fair comparison. Our audio model
approaches the best-performing SSL models on the HEAR (Turian et al., 2022) benchmark,
and even outperforms them on environment-related tasks while using far less data.

• We demonstrate that SPEAR unifies joint speech and audio pre-training, resulting in a
model with a comprehensive capability over both domains. Furthermore, we show that this
synergy is enhanced when scaling up model parameters and pre-training data.

Inference code and pre-trained models will be made open-source to facilitate future research.

2 RELATED WORK

SSL for Speech and Audio As introduced in Section 1, SSL has been widely adopted for learn-
ing generic representations in both the speech domain (Baevski et al., 2020; Hsu et al., 2021; Chen
et al., 2022) and audio domain (Huang et al., 2022; Dinkel et al., 2024). Yet, existing SSL methods
are typically domain-specific, and a unified framework for both domains remains absent. Bootstrap-
ping approaches (Grill et al., 2020; Caron et al., 2021; Niizumi et al., 2021) have shown promise,
achieving strong performance in speech (Baevski et al., 2022; 2023) and audio (Chen et al., 2024; Li
et al., 2024a) independently, but have not been successfully applied to joint SSL on both domains.
While Gong et al. (2022) explored using both speech and audio data for SSL, their main focus was
to improve general audio capability. To the best of our knowledge, our proposed SPEAR framework
is the first to establish a unified SSL pre-training framework for both speech and general audio.

Masked-Token-Prediction-based SSL Masked-token prediction is a widely used pretext task in
SSL (Devlin et al., 2019). In the field of speech and audio, prevailing methods rely on coarse-grained
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acoustic tokens generated via k-means clustering (Hsu et al., 2021; Chung et al., 2021) or random-
projection quantisation (Chiu et al., 2022; Chen et al., 2023). In the music domain, MERT (Li et al.,
2024b) integrates fine-grained Encodec tokens (Défossez et al., 2023) as its pre-training targets.
Similarly, EncodecMAE (Pepino et al., 2025) uses an MAE (He et al., 2022) structure to predict the
Encodec tokens for learning audio representations. Our framework SPEAR likewise utilises fine-
grained tokens as the pre-training target, but derives them via a non-hierarchical multi-codebook
vector quantisation method, while also extending the domains to both speech and audio.

Knowledge Distillation Knowledge distillation (KD) (Hinton et al., 2014) is frequently employed
as a model compression technique (Jiao et al., 2020; Chang et al., 2022; Yang et al., 2022). SPEAR
is related to multi-teacher KD, since its pre-training targets are obtained from two domain-specific
teacher models. Multi-teacher KD has been explored to combine knowledge from multiple domains
within a single model (Ranzinger et al., 2024). In the speech and audio domain, Yang et al. (2025)
proposes to train a single model by performing KD on three supervised teachers specialising in
speech, speaker, and audio event, respectively. USAD (Chang et al., 2025), a contemporaneous
work closely related to SPEAR, distils knowledge from two separate SSL models for speech and
audio modalities into a single model to learn unified speech audio representations. However, USAD
primarily focuses on feature matching, using objectives such as the L1 loss or cosine similarity
to align the student representation space with that of the teacher. Our method differs from them
by coupling KD with a well-established masked-token prediction SSL objective for representation
learning, rather than explicitly matching teacher representations.

3 SPEAR

In this section, we introduce the proposed SPEAR framework. We hypothesise that a masked pre-
diction objective can serve as a unified SSL solution for both speech and general audio, provided
the discrete tokens are sufficiently fine-grained to retain critical acoustic detail from both domains.
This motivates our choice of a powerful quantisation method, which is described below.

3.1 MULTI-CODEBOOK VECTOR QUANTISATION

To generate fine-grained discrete targets for our masked prediction SSL objective, we employ multi-
codebook vector quantisation (MVQ) (Guo et al., 2023), a trainable quantisation method originally
proposed to compress high-dimensional feature vectors for storage optimisation. To the best of our
knowledge, the application of MVQ in the context of SSL pre-training has never been explored.
MVQ utilises N parallel codebooks, each containing K trainable code vectors. Given an input
feature vector x ∈ Rd, MVQ encodes it into a tuple of N discrete tokens, i.e. z = Encode(x;Q) =
(z1, . . . , zN ). Each token zn is an integer index in the range [0,K − 1] specifying which code
vector to select from the n-th codebook. These selected vectors can then be used to approximate the
original feature vector x via a direct-sum scheme (Barnes & Watkins, 1995).

Intuitively, this process partitions the feature space into N distinct subspaces, each governed by a
corresponding codebook. The multi-codebook structure produces significantly more fine-grained
representations than coarse methods like k-means, as the number of representable states grows ex-
ponentially as KN . Compared to other multi-codebook quantisation methods like RVQ (Défossez
et al., 2023), the codebooks in MVQ are non-hierarchical, reducing inter-codebook correlation and
making each codebook equally important. The MVQ quantiser is trained by minimising the re-
construction error, supplemented by a diversity loss to encourage uniform code usage within each
codebook. For a complete description of MVQ encoding and training mechanisms, we refer readers
to the original paper (Guo et al., 2023) and the extended summary in Appendix B.

3.2 MULTI-CODEBOOK FINE-GRAINED MASKED TOKEN PREDICTION

3.2.1 SINGLE DOMAIN PRE-TRAINING

The pre-training objective is to train a single student encoder S, to predict fine-grained discrete
tokens extracted from a pre-trained SSL teacher model T in a masked-token prediction manner.
Since the teacher used for generating the pre-training targets was trained without any labelled data,
SPEAR is treated as an SSL approach. An illustration of the overall framework is shown in Figure 1.
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Feature Encoder

Multi-codebook Masked Prediction Loss 

Speech Teacher

MVQ

Multi-codebook Prediction Head

Audio Teacher

Frontend Processor

Masking

MVQ

Figure 1: The SPEAR framework for dual-domain pre-training. Teacher models are frozen. For
single-domain pre-training, only one teacher from the corresponding field is employed for generating
pre-training targets. After pre-training, the components in the grey box are retained as the encoder.

The student encoder S consists of a frontend processor and a feature encoder F (specifically, a
Zipformer (Yao et al., 2024)). The frontend processor converts the raw input waveform w into
frame-level acoustical representations X = {x1, . . . ,xT } of length T . A masking operation is
applied to X by randomly sampling a set of frames M and replacing {xt|t ∈ M} with a learnable
mask embedding m, creating the masked input X̂ . The feature encoder F then processes X̂ to
produce a sequence of contextualised representations H = {h1, . . . ,hT }, where ht ∈ Rd.

To generate the prediction targets, the same raw audio waveform w is fed into the teacher model T ,
producing a sequence of frame-level representations E = T (w) = {e1, . . . , eT }. We assume the
teacher and student models share the same frame rate1. These representations E are then quantised
frame-by-frame using a pre-trained MVQ quantiser Q to produce a sequence of fine-grained discrete
tokens Z = {z1, . . . ,zT } as the pre-training targets, where zt = Encode(et;Q).

The student model is trained to predict the target tokens Z from the contextualised representations
H . The multi-codebook masked prediction loss is formulated as the sum of N independent predic-
tion losses, one for each codebook in the MVQ quantiser. Each of these losses is a cross-entropy
objective calculated over all frames, with an adjustable weight α for masked and unmasked frames2:

Lsingle(H,Z) =
1

N

N∑
n=1

[αLn
m(H,Z) + (1− α)Ln

u(H,Z)] (1)

=
1

N

N∑
n=1

[
α
∑
t∈M

− log pn(zt,n | ht) + (1− α)
∑
t/∈M

− log pn(zt,n | ht)

]
, (2)

where Ln
m and Ln

u are the loss on masked and unmasked frames for the n-th codebook, respectively.
pn(zt,n|ht) is the predicted probability of the correct token zt,n at time t for the n-th codebook,

1This can be achieved by interpolating the teacher representations if the frame rates differ.
2The effect of α is investigated in Appendix G.2
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which is computed via a softmax function over the logits from a projection matrix Wn:
pn(· | ht) = softmax(Wnht), (3)

where Wn ∈ RK×d is the projection matrix of the prediction head for the n-th codebook.

3.2.2 UNIFIED DUAL-DOMAIN PRE-TRAINING

The framework is extended to dual-domain pre-training on a mixture of speech and general au-
dio data for learning unified representations of both domains. Specifically, we employ two expert
teacher models, T s (speech) and T a (general audio), along with their corresponding pre-trained
MVQ quantisers, Qs and Qa. Note that the number of codebooks could be different for Qs and Qa.

For each input waveform, the teacher representations Es and Ea are extracted. Two sets of fine-
grained target tokens are obtained by applying the corresponding quantiser on Es and Ea:

Zs = {Encode(es1;Qs), . . . ,Encode(esT ;Qs)} (4)
Za = {Encode(ea1 ;Qa), . . . ,Encode(eaT ;Qa)}. (5)

During dual-domain pre-training, the speech tokens Zs are used as universal prediction targets for
all input data, whereas the audio tokens Za are only used for loss computation when the input is
general audio. This asymmetric approach helps the model achieve balanced performance across
both domains (see Appendix G.7.1 for a comparison of three dual-domain pre-training strategies).
The dual-domain training objective is formulated as follows:

Ldual(H,Zs,Za) = Lsingle(H,Zs) + 1is audio · λ · Lsingle(H,Za), (6)
where Lsingle is the single-domain masked prediction loss defined in Equation 2. The term 1is audio is
an indicator function that returns 1 if the input is general audio and 0 otherwise. λ is a hyperparam-
eter for balancing the contribution of the general-audio-specific loss. By learning to predict both Zs

and Za, the student model can learn a joint feature space for both domains.

4 EXPERIMENTAL SETUP

Data Pre-training is performed on a mixture of public unlabelled English speech datasets and gen-
eral audio datasets, as shown in Table 1. Due to the limited amount of public general audio datasets,
we incorporate two music datasets, Music4all (Santana et al., 2020) and MTG-Jamendo (Bogdanov
et al., 2019), to enrich the general audio data.

Table 1: Pre-training corpora used in SPEAR. Left: Speech datasets; Right: Audio datasets.

Speech Dataset Hours

Libriheavy (Kang et al., 2024) ∼ 50k
GigaSpeech (Chen et al., 2021) ∼10k
VoxPopuli (en) (Wang et al., 2021) ∼24k
Yodas-granary (en) (Koluguri et al., 2025) ∼100k

Audio Dataset Hours

AudioSet (Gemmeke et al., 2017) ∼5k
VGGsound (Chen et al., 2020a) ∼0.5k
Freesound (Wu et al., 2023) ∼2.8k
Music4all (Santana et al., 2020) ∼1k
MTG-Jamendo (Bogdanov et al., 2019) ∼3.8k

Model Architecture As shown in (Shi et al., 2024a), modelling speech representations at different
time resolutions is beneficial to the comprehensive capabilities of speech SSL models. Therefore,
Zipformer (Yao et al., 2024) is selected as the feature encoder in SPEAR due to its dynamic down-
sampling mechanism in the intermediate layers. The model receives 128-dimensional filter-bank
features as input and produces frame-level representations at a 50 Hz frame rate.

Pre-training Configuration We pre-train three model scales under the SPEAR framework: Base
(94M), Large (327M), and XLarge (600M). At the Base and Large scales, we pre-train both single-
domain and dual-domain models. To further explore the benefits of scaling, we additionally train
an XLarge dual-domain model on a larger dataset. The pre-training data used for different scales of
SPEAR models are given in Table 2. The data mixtures are defined as follows: Speech-84k com-
prises Libriheavy, GigaSpeech, and VoxPopuli (en); Audio-13k includes all general audio datasets
listed in Table 1; Mix-97k combines Speech-84k and Audio-13k; and Mix-197k additionally in-
cludes the Yodas-granary dataset. Detail regarding the encoder configurations is provided in Ap-
pendix C.1, and hyperparameters for pre-training are presented in Appendix C.2.
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Table 2: Pre-training configurations for different SPEAR settings.

Model Domain(s) Data Mixture Total Hours

SPEARs-{Base, Large} Speech Speech-84k ∼84k
SPEARa-{Base, Large} Audio Audio-13k ∼13k
SPEARs+a-{Base, Large} Speech & Audio Mix-97k ∼97k

SPEARs+a XLarge Speech & Audio Mix-197k ∼197k

Table 3: Teacher models and MVQ-quantiser configurations for generating pre-training targets.

Teacher Model # Params Pre-train
Data

Model Config MVQ Config

Domain Model Dim Frame Rate N K

WavLM Large 317M 94k Speech 1024 50 Hz 16 256
Dasheng 1.2B 1.2B 272k Audio 1536 25 Hz 8 256

Teacher Models and MVQ quantiser WavLM Large (Chen et al., 2022) and Dasheng
1.2B (Dinkel et al., 2024) are utilised to generate pre-training targets for speech and audio do-
mains, respectively. Model details and corresponding MVQ quantiser configurations are provided
in Table 3. WavLM Large is pre-trained on 94k hours of unlabelled English speech data, including
Libri-light (Kahn et al., 2020), GigaSpeech, and Voxpopuli (en). It can be fairly contrasted with
SPEAR models trained on Speech-84k since Libriheavy is the segmented version of Libri-light. The
speech MVQ quantiser with 16 codebooks is trained using the 21st layer representations of WavLM
Large on 100 hours of data sampled from LibriSpeech (Panayotov et al., 2015). Dasheng 1.2B is
an audio SSL model pre-trained with an MAE (Huang et al., 2022) objective on an exceptionally
large amount of general audio data of over 272k hours. The audio MVQ quantiser is trained on
the last-layer representations with 8 codebooks on 50 hours of AudioSet balanced set. Ablation
studies on different choices of teacher models for pre-training target generation and MVQ quantiser
configurations are presented in Appendix G.1.1 and Appendix G.3.

5 RESULTS

To validate the effectiveness of the SPEAR framework, we assess its performance through both full
fine-tuning and frozen representation evaluations on two major benchmarks for evaluating speech
and audio representations: SUPERB Yang et al. (2021); Tsai et al. (2022) and HEAR (Turian et al.,
2022). Finally, ablation studies on core components of SPEAR can be found in Section 5.4.

5.1 DOWNSTREAM FINE-TUNING

We evaluate the performance of the pre-trained models on two key downstream fine-tuning tasks:
automatic speech recognition (ASR) for speech capabilities and audio tagging (AT) for general
audio understanding capabilities. The downstream fine-tuning results for the single-domain and
dual-domain models are presented in Table 4 and configurations are shown in Appendix C.3.

ASR ASR performance is evaluated on LibriSpeech (Panayotov et al., 2015), where the model is
fine-tuned on the train-clean-100 subset (LS-100) or the full 960 hours (LS-960) of LibriSpeech.
A lightweight, stateless RNN-T decoder (Graves, 2012; Ghodsi et al., 2020) with fewer than 3M
parameters using an output vocabulary of 500-class byte-pair-encoding (Sennrich et al., 2016) units
is attached to the pre-trained models unless otherwise noted. During fine-tuning, the pre-trained SSL
model is also updated. The projection heads for predicting MVQ tokens are discarded. Performance
is measured by the Word Error Rate (WER) on the test-clean and test-other splits of LibriSpeech,
using beam search decoding with no external language model. We mainly compare with the WavLM
models pre-trained on similar corpora at similar model sizes. Additional results of ASR fine-tuning
with a CTC (Graves et al., 2006) decoder can be found in Appendix D.

Audio Tagging To evaluate audio capabilities, our models are fine-tuned on AudioSet for AT
following the procedure in Gong et al. (2021). We perform fine-tuning on both the balanced subset
(AS-20k) and the full dataset (AS-2M). A linear projection layer is added on top of the encoder to

6
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Table 4: Fine-tuning results on LibriSpeech ASR task and AudioSet AT task. For ASR, WERs under
“clean” and “other” denote the WERs on test-clean and test-other sets. △: Model fine-tuned from
the public checkpoint. Best results in bold, 2nd best results underlined.

Model # Params Pre-train
data

LS-100 LS-960 AS-20k AS-2M
clean other clean other

Speech SSL Models
WavLM Base + △ (Chen et al., 2022) 95M 94k 4.0 8.4 2.9 5.4 - -
HuBERT Large△ (Hsu et al., 2021) 317M 60k - - 1.8 3.9 - -
WavLM Large△ (Chen et al., 2022) 317M 94k 3.0 6.1 1.8 3.8 - -
Ours, SPEARs Base 94M 84k 3.0 5.8 1.9 4.0 26.9 43.6
Ours, SPEARs Large 327M 84k 2.6 4.7 1.7 3.3 26.4 43.9

Audio SSL Models
BEATs (Chen et al., 2023) 90M 5k - - - - 38.9 48.6
EAT (Chen et al., 2024) 88M 5k - - - - 40.2 48.6
ATST Frame (Li et al., 2024a) 86M 5k - - - - 39.0 48.0
Dasheng-Base△ (Dinkel et al., 2024) 86M 272k - - - - - 49.7
Dasheng-1.2B△ (Dinkel et al., 2024) 1.2B 272k 7.7 20.0 3.4 8.7 - 50.0
Ours, SPEARa Base 94M 13k 11.2 23.0 - - 39.2 49.3
Ours, SPEARa Large 327M 13k 7.4 18.6 - - 39.3 49.8

Speech & Audio SSL Models
Ours, SPEARs+a Base 94M 97k 3.1 6.1 1.9 4.2 39.1 48.4
Ours, SPEARs+a Large 327M 97k 2.6 4.8 1.7 3.4 39.2 49.6
Ours, SPEARs+a XLarge 600M 197k 2.5 4.6 1.6 2.9 39.4 50.0

predict the class probability of 527 sound event classes. Binary cross-entropy is used as the training
objective, and the mean average precision (mAP) is measured on the AudioSet evaluation set. We
compare SPEAR models with existing state-of-the-art audio SSL models.

Results The results presented in Table 4 demonstrate that SPEAR learns high-quality speech and
audio representations that transfer well to the downstream tasks. For speech, our SPEARs Base
and Large achieve relative WER reductions of 25.9% and 13.2% on the test-other set in LS-960
compared to their WavLM counterparts, with similar model size and pre-training data. For general
audio, the SPEARa Base model achieves an mAP of 49.3 on AS-2M, surpassing all other audio SSL
models with similar sizes3 (except Dasheng Base, which is pre-trained with 20 times more general
audio data), and SPEARa Large improves further to 49.8 on AS-2M. These results highlight the
effectiveness of using fine-grained MVQ tokens as pre-training targets in SPEAR.

Moreover, the dual-domain models successfully learn a unified representation space capable of han-
dling both tasks with minimal performance loss, achieving ASR and AT performance comparable to
their single-domain counterparts, and this performance gap diminishes as model capacity increases.
Specifically, the WER for SPEARs+a Large model on test-other is only 0.1 higher than the speech-
domain specialist SPEARs Large, while its mAP is only 0.2 lower than the SPEARa Large. This
demonstrates that with sufficient model capacity, our dual-domain pre-training scheme enables a
single model to learn a unified representation space with strong capability for both domains. It
should be noted that this versatility is particularly important, since the single-domain models yield
poor cross-domain capability (see SPEARs on AT or SPEARa and Dasheng on ASR). Finally, our
largest model SPEARs+a XLarge further improves the performance on ASR and AT, setting a new
state-of-the-art for SSL models on AS-2M AT task by achieving an mAP of 50.0.

In summary, the experiments in Table 4 suggest that the representations learnt through SPEAR adapt
well to both domains after fine-tuning, proving its strong capability of learning both domain-specific
and unified representations that excel in both speech and general audio domains.

5.2 SUPERB EVALUATION

Setup Experiments are carried out on SUPERB (Yang et al., 2021; Tsai et al., 2022), a benchmark
for evaluating SSL models on a wide range of speech processing tasks. We follow the standard
SUPERB evaluation protocol, using a weighted sum of the frozen intermediate representations from

3A strict comparable AT fine-tuning setup with all models pre-trained with the same dataset is shown in
Appendix G.1.1, where our Base-scaled SPEARa model consistently outperforms SOTA audio SSL models.
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Table 5: Results on SUPERB. Best results in bold, 2nd best underlined. F1 reported for SF and
PESQ for SE. Other task metrics described in Appendix E. USAD models from Chang et al. (2025).

Model # Param Pre-train
data

Understanding Paralinguistic Enhancement

PR↓ ASR↓ IC↑ KS↑ SF↑ ST↑ SID↑ SV↓ ER↑ SE↑ SS↑
Speech SSL models
WavLM Base+ 95M 94k 3.5 3.92 99.00 97.37 90.6 24.3 89.4 4.07 68.7 2.63 10.85
WavLM Large 317M 94k 3.1 3.44 99.31 97.86 92.2 26.6 95.5 3.77 70.6 2.70 11.19
Ours, SPEARs Base 94M 84k 3.4 3.46 99.17 97.50 91.0 24.4 90.5 3.75 69.2 2.64 10.84
Ours, SPEARs Large 327M 84k 2.6 3.27 99.47 97.89 92.8 26.2 95.5 3.14 72.1 2.71 11.20

Audio SSL models
BEATs 90M 5k 36.4 36.4 97.70 53.40 - - 57.1 - 64.5 - -
EAT 88M 5k 55.0 25.9 92.80 62.50 - - 45.0 - 62.5 - -
ATST Frame 86M 5k 20.4 18.8 95.10 85.40 - - 69.8 - 64.4 - -
Dasheng 1.2B 1.2B 272k 14.3 13.8 98.13 97.73 - - 92.4 - 68.7 - -

Speech+Audio Models
USAD Base 94M 126k 5.1 7.70 98.30 97.10 - - 88.6 - 68.0 - -
USAD Large 330M 126k 4.0 6.50 98.40 97.10 - - 91.2 - 68.4 - -
Ours, SPEARs+a Base 94M 97k 3.9 3.76 98.05 97.58 90.5 24.1 90.0 3.85 69.4 2.66 10.89
Ours, SPEARs+a Large 327M 97k 3.1 3.39 99.40 97.92 92.1 25.6 95.0 3.30 71.6 2.72 11.12
Ours, SPEARs+a XLarge 600M 97k 2.9 3.19 99.61 98.12 92.9 26.7 96.3 2.86 73.3 2.72 11.24

the SSL models. For better readability, we group the SUPERB tasks into three categories: Under-
standing, Paralinguistic, and Enhancement. We select representative tasks within each category and
report their results in Table 5. The primary comparison is made against the WavLM Large, which is
the current SOTA on SUPERB. Further details on the SUPERB evaluation, including the individual
task information and complete results on SUPERB, can be found in Appendix E.

Results As can be seen from Table 5, SPEAR improves across the range of speech tasks, achieving
notable gains across all three task categories. With the same model size and pre-training corpora,
our speech-domain SPEARs Large model outperforms the current state-of-the-art WavLM Large on
nearly every task. The improvement in paralinguistic capabilities is particularly noteworthy. For
instance, SPEARs Large achieves a 16.7% relative reduction of equal-error-rate on speaker verifica-
tion (SV) and a 1.48% absolute accuracy improvement on emotion recognition (ER). This suggests
that our fine-grained masked-token prediction objective helps the model learn richer paralinguistic
information beyond speech content alone, than by using k-means clustered tokens. An analysis of
the feature subspaces learned through the fine-grained MVQ tokens is conducted in Appendix G.4.

It is evident that audio-only SSL models generally underperform on the SUPERB benchmark. Even
with a very large pre-training corpus of 272k hours, Dasheng 1.2B consistently performs more
poorly than our much smaller SPEARs Large, especially on tasks requiring higher-level semantic or
phonetic understanding. This gap could be attributed to the MAE (He et al., 2022) objective used by
Dasheng, which attempts to reconstruct the input acoustic features, making the model focus more on
low-level acoustic details rather than high-level semantic structures necessary for speech understand-
ing. In contrast, the fine-grained masked-token prediction objective in SPEAR allows the model to
learn semantic structures while retaining acoustic details. Therefore, our dual-domain SPEAR mod-
els maintain strong performance on SUPERB. Despite a slight degradation in some understanding
and paralinguistic tasks, the SPEARs+a Large notably outperforms its speech-only counterpart on
keyword spotting (KS) and speech enhancement (SE), indicating a positive synergy from the dual-
domain pre-training on these tasks. SPEARs+a Large also outperforms USAD Large (Chang et al.,
2025) comprehensively, another unified speech and audio model trained via matching the represen-
tations of two teacher models, demonstrating the advantage of the SSL objective defined by SPEAR.
Finally, by scaling up the model size and training data, SPEARs+a XLarge, our largest dual-domain
model, pushes the performance boundary even further, establishing new state-of-the-art on multiple
SUPERB tasks, while being more versatile than speech-only models.

5.3 HEAR EVALUATION

Setup To assess the general audio capabilities of our models, experiments are conducted on the
HEAR benchmark (Turian et al., 2022), which evaluates audio representations across 19 diverse
tasks. The final-layer representations are used for evaluation unless otherwise specified. For clarity,
the average scores for each of the three task categories are reported: Environment, Speech and
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Table 6: Results on the HEAR benchmark. The group-wise average score and the overall average
score are reported. Rows with grey background: results obtained by using concatenation of all
layers’ features. Best results in bold, 2nd best results underlined.

Model # Params Pre-train Data Env Speech Music Average

Speech Models
WavLM Base+ (Chen et al., 2022) 95M 94k 57.28 68.14 61.31 62.69
WavLM Large (Chen et al., 2022) 317M 94k 72.86 72.69 65.77 69.65
Ours, SPEARs Base 94M 84k 73.09 73.41 70.66 72.12
Ours, SPEARs Large 327M 84k 72.74 74.80 71.68 72.96

Audio Models
BEATs (Chen et al., 2023) 90M 5k 73.23 62.40 77.52 71.05
Dasheng-Base (Dinkel et al., 2024) 86M 272k 80.18 72.48 84.00 79.31
Dasheng 0.6B (Dinkel et al., 2024) 600M 272k 82.95 74.82 84.73 81.03
Dasheng 1.2B (Dinkel et al., 2024) 1.2B 272k 83.20 75.72 84.86 81.44
Ours, SPEARa Base (5k) 94M 5k 77.83 69.74 80.61 76.37
Ours, SPEARa Large (5k) 327M 5k 78.16 72.94 81.80 78.08
Ours, SPEARa Base 94M 13k 80.33 69.87 80.33 77.01
Ours, SPEARa Large 327M 13k 83.58 72.70 81.85 79.18
Ours, SPEARa Base 94M 13k 83.61 71.98 83.26 79.85
Ours, SPEARa Large 327M 13k 84.97 73.01 84.62 80.83

Speech & Audio Models
USAD Base (Chang et al., 2025) 94M 126k 80.67 73.72 79.31 77.75
USAD Large (Chang et al., 2025) 330M 126k 81.97 74.48 81.7 79.36
Ours, SPEARs+a Base 94M 97k 80.66 73.73 79.29 77.75
Ours, SPEARs+a Large 327M 97k 81.10 76.47 80.42 79.26
Ours, SPEARs+a XLarge 600M 197k 81.74 76.76 80.92 79.72
Ours, SPEARs+a Base 94M 97k 82.58 77.3 81.97 80.55
Ours, SPEARs+a Large 327M 97k 84.38 78.84 82.69 81.78
Ours, SPEARs+a XLarge 600M 197k 84.69 79.72 83.69 82.33

Music, along with the overall average score in Table 6. More information regarding the tasks in
HEAR and detailed results on individual tasks are provided in Appendix F. Apart from the SPEAR
models in Table 2, two additional SPEARa models in Base and Large architectures are pre-trained
using only AudioSet 5k hours, denoted as SPEARa {Base, Large} (5k).

Results As shown in Table 6, all speech-domain models show very limited overall performance
on the general-audio-focused HEAR benchmark, highlighting the need to incorporate general audio
data during pre-training. Nonetheless, our SPEARs models, even the SPEARs Base, yield a higher
overall score than the much bigger WavLM Large pre-trained with coarse k-means tokens, indicating
that the fine-grained discrete tokens manage to capture general-audio-related information despite
being extracted from a speech SSL model.

Our audio-domain SPEARa models demonstrate strong performance on environment-related tasks.
Notably, SPEARa Large achieves 83.58 on the environment category, surpassing the best performing
audio SSL model Dasheng 1.2B (83.2), with only a quarter of the model parameters and far less pre-
training data. However, the performance of SPEARa Large on speech and music tasks still trails
that of Dasheng 1.2B, a gap we attribute to the significantly smaller scale of pre-training data and
model size4. Despite this gap, it is noteworthy that SPEARa benefits from scaling up the audio
training data: increasing the audio data from 5k to 13k hours leads to a substantial improvement in
the overall HEAR score, highlighting the potential of SPEAR for audio SSL at larger scales.

Finally, our dual-domain SPEARs+a models consistently outperform their single-domain coun-
terparts, highlighting the benefits of our unified pre-training framework. The SPEARs+a Large
achieves an average score of 79.26, surpassing both SPEARs Large (72.96) and SPEARs+a Large
(79.18), indicating that SPEAR successfully unifies the representation space of both domains
through joint pre-training on both speech and audio data, making it a more versatile model. Com-
pared to USAD Large trained with multi-teacher knowledge distillation, our SPEARs+a Large pre-

4A comparison of Dasheng and SPEAR using the same amount (5k hours) of training data is in Appendix I,
where we show SPEARa models outperforms Dasheng by a large margin with this amount of training data.
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trained on a smaller corpora achieves a significant absolute improvement of 2.42 on the average
score under the same evaluation setup of using intermediate representations. This again highlights
the strength of SPEAR as a unified SSL framework for learning generic speech and audio representa-
tions jointly through fine-grained masked-token prediction. Another controlled comparison between
SPEAR and USAD (same teachers, similar model size and training data) is presented in Appendix H,
where SPEAR still consistently outperforms USAD. Finally, compared to the much larger Dasheng
1.2B, SPEARs+a XLarge achieves stronger performance on speech-related tasks while trailing on
environment and music tasks, which can be attributed to its smaller model size and imbalanced pre-
training data composition (only 13k hours from the 197k hours are general-audio data). However,
this performance gap can be reversed by leveraging all intermediate layer representations.

5.4 ABLATION STUDIES

In order to provide an in-depth understanding of the core components of SPEAR, we performed
extensive ablation studies. Here, we summarise the key aspects investigated and their corresponding
findings. Detailed experimental setups and analyses are presented in Appendix G.

Different Teacher Models We investigated the impact of utilising teacher models with varying
sizes and training data scales in Appendix G.1.1. The key findings include:

• Stronger teacher models generally lead to a stronger student model. This suggests that it is
necessary to select powerful teacher models for the optimal performance of SPEAR.

• Student models are not upper-bounded by their teacher models. Given the same training
data and model size, the models trained with SPEAR are capable of outperforming their
teachers, suggesting that the fine-grained masked prediction objective defined by SPEAR
helps discover better features than the original teacher.

MVQ vs k-means We conducted a controlled experiment to compare pre-training performance
using MVQ tokens versus k-means tokens (see Appendix G.5). We observe that the model trained
with MVQ tokens consistently achieves better performance across all tasks. This confirms that the
fine-grained nature of MVQ tokens conveys richer information from the teacher model than coarse
k-means tokens. Additionally, a visualisation of the embedding space (Appendix G.4) reveals that
the MVQ quantiser exhibits a much clearer separation of different speakers compared to k-means.

Dual-domain Training Strategy Two extra dual-domain pre-training strategies are compared
against the asymmetrical strategy adopted by SPEAR (see Section 3.2.2), and results are shown
in Appendix G.7. We find that the asymmetrical design adopted by SPEAR achieves a more bal-
anced performance across speech and audio domains due to the dominance of speech data in the
mixed speech audio training set. This motivates us to enlarge the proportion of general audio data
(e.g., by curating a larger general audio dataset) in the training corpora for our future work. Fur-
thermore, we experimented with varying λ (Equation 6) to control the contribution of audio-specific
loss, finding that λ = 0.1 yields the optimal result.

Beyond the studies above, we also investigated the effect of the weighting factor λ in the masked-
prediction pre-training loss (Appendix G.2), the number of codebooks in MVQ (Appendix G.3), and
encoder architectures (Zipformer vs Transformer) for SPEAR (Appendix G.6).

6 CONCLUSIONS

In this work, we propose SPEAR, a unified SSL framework for both speech and general audio
domains, learning unified and generic representations across both domains. By leveraging multi-
codebook vector quantisation to generate fine-grained discrete speech and audio tokens, SPEAR
performs fine-grained masked-token prediction as the pre-training task for representation learning.
Based on this, an asymmetrical dual-domain pre-training pipeline is designed to balance the per-
formance across both domains. To the best of our knowledge, SPEAR is the first SSL framework
to successfully learn unified speech and audio representations from a mixture of speech and audio.
The downstream fine-tuning experiments, along with the evaluation of frozen representations on two
major benchmarks for evaluating speech and general-audio representations (SUPERB and HEAR),
demonstrate the effectiveness of SPEAR in learning unified and generic speech and audio represen-
tations. Our dual-domain model with 600M parameters excels in both domains, making it one of the
most powerful and versatile open-source SSL models for auditory understanding.
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7 ETHICS STATEMENT

We recognise that powerful audio representation models could be misused. The technology pre-
sented could serve as a foundation for applications we do not endorse, such as non-consensual
speaker identification, mass surveillance, or the generation of synthetic audio for disinformation.
Our goal in releasing these models is to enable transparency and accelerate positive academic inno-
vation. We strongly condemn any application of our research to unethical ends.

8 REPRODUCIBILITY STATEMENT

To ensure the reproducibility of our research and to support further advancements in the field, we
will make our resources publicly available, including the inference code and the model checkpoints.
All essential training details, including model configurations and hyperparameters, have been thor-
oughly documented in the main paper as well as Appendix C.2 and Appendix C.3. We hope that
by providing these resources, more researchers can contribute to the development of this exciting
research area. Details regarding access and implementation will be updated after the double-blind
review. We invite the community to build upon our work to further advance the research field.
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A LLM USAGE

We used LLMs in paper presentation for the purpose of correcting grammatical errors and spelling.

B MULTI-CODEBOOK VECTOR QUANTISATION

Here, we present more details regarding the MVQ quantiser to supplement Section 3.1.

B.1 ENCODE AND DECODE

A Multi-codebook Vector quantisation (MVQ) module consists of N codebooks, each containing K
codebook vectors. Given a d-dimensional representation x ∈ Rd, the MVQ quantiser Q encodes it
to a sequence of integers (i.e, tokens) from a finite discrete value space [0, . . . ,K−1].5 The encoded
integers are denoted as MVQ tokens, which can be used for reconstructing the original input through
a Decode(·) operation:

z = Encode(x;Q), (7)
x̂ = Decode(z;Q). (8)

The MVQ quantiser performs a mapping f : Rd → CN , where C denotes a fixed-sized discrete
value space {0, . . . ,K−1}. z = {z1, . . . , zN} ∈ CN is the MVQ tokens with zn ∈ {0, . . . ,K−1}
and x̂ is the reconstructed input. The reconstruction operation follows a direct-sum scheme, where
one codebook vector is selected from each codebook, resulting in a summation over N codebook
vectors:

x̂ =

N∑
n=1

Cn
zn , (9)

where Cn
zn

∈ Rd is the zn-th entry code vector in the n-th codebook. Each codebook Cn =
{cn0 , . . . , cnK−1} is a matrix consisting of K code vectors. As can be seen, zn denotes the encoded
index of the code vector in the n-th codebook, i.e., which code vector to choose from the n-th
codebook for reconstruction.

The encoding process aims to find z that leads to the lowest reconstruction error: E[||x̂ − x||22].
Naively enumerating all combinations of zn is impractical, so a heuristic encoding algorithm is
utilised to reduce the search space while maintaining a relatively low reconstruction error. The

5For storage efficiency, we always use K = 256 since the indices can be stored with uint8 format. However,
it is theoretically possible to increase K to a bigger number.
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MVQ quantiser employs N neural classifiers Gn to first generate an initial estimation of the encoded
index for each codebook, denoted as zinit, and iteratively refines zinit for a fixed number of steps,
e.g., 5. The mechanism of the refinement algorithm is out of the scope of our work, and we direct
readers to the original MVQ paper (Guo et al., 2023) for more details.

B.2 MVQ TRAINING

The trainable parameters in the MVQ quantiser are the codebooks Cn and N neural classifiers
Gn. For each input float vector x and its encoding z = Encode(x), the training loss for MVQ is
formulated as follows:

L = Lresidual + Lprediction + βLreg (10)

= ||x−Decode(z;Q)||22 +
N∑

n=1

− log Gn(x)zn + βLreg, (11)

where Gn(x)zn is the predicted probability of choosing zn. The first term Lresidual is the L2-squared
reconstruction loss and optimises the code vectors. The second term Lprediction encourages the
neural classifiers to select the encoded indexes z obtained through the refinement algorithm. By
doing so, the initial estimate zinit predicted by Gn is expected to be close to the actual encodings z,
most likely with a lower reconstruction error. The last term Lreg is an auxiliary regularisation loss to
encourage a balanced code usage within each codebook, and β is the scale for this auxiliary loss.

C MODEL SPECIFICATION AND TRAINING SETTINGS

C.1 MODEL SPECIFICATION

The model specifications of Base, Large, and XLarge variants of SPEAR are presented in Table 7.
The model configuration is determined by the configuration of the Zipformer (Yao et al., 2024)
encoder, which adopts a stack-wise design, with each stack consisting of multiple layers operating at
a specific downsampling factor. The Zipformer Encoder is characterised by the following attributes:

• Model Dimension: the dimensionality of the output representations.
• Feedforward Dimension: the dimensionality of the feedforward module.
• Attention Heads: the number of attention heads.
• Encoder Layers: the number of Zipformer layers per stack.
• Downsampling Ratio: the relative temporal downsampling factor to the input representa-

tions (i.e., 100 Hz filterbank features).
• CNN Kernel Size: the kernel size of the convolutional module in each layer.

Table 7: The configurations of the Zipformer encoder in different versions of SPEAR.

Base Large XLarge

Number of parameters 94M 327M 600M
Model dimension 512 1024 1280
Feedforward dimension 1536 3072 3840
Attention heads 8 8 8
Encoder layers 1,2,3,3,1,1,1 1,2,2,3,1,1,1 1,2,3,4,1,1,1
Downsampling ratio 1,2,4,8,4,2,1
CNN kernel size 31,31,15,15,15,31,31

C.2 PRE-TRAINING RESOURCES AND CONFIGURATIONS

The training hyperparameters and the required computing resources for training SPEAR are pre-
sented in Table 8. All models in SPEAR are trained using the NVIDIA A800 (80GB) GPUs. As
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shown in WavLM (Chen et al., 2022), applying data augmentations to the input audio can improve
the pre-training performance. Therefore, we apply both in-batch utterance mixing and noise mix-
ing during training. MUSAN (Snyder et al., 2015) is used as the noise dataset. The optimiser and
scheduler settings follow Yao et al. (2024), where the ScaledAdam optimiser and Eden scheduler
are used.

Table 8: Hyperparameters and computing resources required for pre-training. Batch size denotes the
total duration of speech (audio) in seconds. Approximate total GPU hours (not elapsed time) also
reported.

Speech Pre-train Audio Pre-train Speech & Audio Pre-train

Base Large Base Large Base Large XLarge

Hyperparameters
Learning rate 0.045
Total steps 400k 500k 250k 250k 400k 500k 500k
Batch size 4.8k 4.8k 4.8k 4.8k 6.4k 6.4k 6.4k
Utterance mix prob 0.1 0.1 - - - - -
Noise mix prob 0.1 0.2 0.5 0.5 0.5 0.5 0.5
α (see Equation 2) 0.5
λ (see Equation 6) - - - - 0.1 0.1 0.1

Computing Resources
Num GPUs 8 8 8 8 8 16 32
GPU hours (approx.) 460 900 290 560 660 2,000 3,800

C.3 FINE-TUNING CONFIGURATIONS

The fine-tuning configurations for the downstream ASR tasks and AT tasks presented in Section 5.1
are shown in Table 9. We used Pruned RNN-T (Kuang et al., 2022), a memory-efficient variant
of RNN-T for optimisation. An asynchronous learning rate policy is adopted during fine-tuning
by setting a smaller learning rate for the pre-trained encoder parameters. In ASR experiments, 3-
fold speed perturbation is applied to the training data. In AS-2M, we follow prior work (Gong
et al., 2021) to adopt a weighted sampler to cope with the imbalanced label distribution in the full
AudioSet. Mixup (Zhang et al., 2018) with a probability of 0.5 is used in AT fine-tuning.

Table 9: Fine-tuning configurations. “Encoder LR scale” denotes the relative ratio of the encoder
learning rate. Batch size is measured in seconds.

ASR AT

LS-100 LS-960 AS-20k AS-2M

Learning rate 0.045
Encoder LR scale 0.1 0.1 0.2 0.1
Num epochs 90 90 20 40
Batch size 2000 4800 2000 4000
MUSAN (Snyder et al., 2015) ✓
SpecAugment (Park et al., 2019) ✓
Weighted sampling (Gong et al., 2021) - - ✓ ✓
MixUp (Zhang et al., 2018) - - 0.5 0.5

D LIBRISPEECH FINE-TUNING EXPERIMENTS

To evaluate the adaptation capability of SPEAR under limited supervision, we fine-tune the models
on 10h and 100h subsets of the LibriSpeech corpus. Following prior work (Hsu et al., 2021; Chen
et al., 2022), we use the same CTC decoder with graphemes as modelling units and the same decod-
ing process for fair comparison. The CTC vocabulary consists of the 26 English letters, a space, an
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apostrophe, and a blank symbol. Decoding with an external language model is performed using the
wav2letter++ beam search decoder (Pratap et al., 2019), formulated as:

log pCTC(y | x) + w1 log pLM(y) + w2 |y|, (12)

where x is the input audio, y is the predicted text sequence, |y| denotes its length, and w1, w2 are
the language model and word score coefficients, respectively.

Table 10: LibriSpeech fine-tuning results with limited supervised data. Best results in bold, and
second-best results are underlined in each section.

Model # Params LM LS-100 LS-10

test-clean test-other test-clean test-other

WavLM Base (Chen et al., 2022) 95M None 5.7 12.0 9.8 16.0
WavLM Base+ (Chen et al., 2022) 95M None 4.6 10.1 9.0 14.7
Ours, SPEARs Base 94M None 3.1 6.0 5.2 8.2
Ours, SPEARs+a Base 94M None 3.3 6.6 5.6 9.2
Ours, SPEARs Large 327M None 2.6 4.8 4.6 6.9
Ours, SPEARs+a Large 327M None 2.6 4.9 4.9 7.3
Ours, SPEARs+a XLarge 600M None 2.6 4.9 4.8 6.9
HuBERT Base (Hsu et al., 2021) 95M 4-gram 3.4 8.1 4.3 9.4
WavLM Base (Chen et al., 2022) 95M 4-gram 3.4 7.7 4.3 9.2
WavLM Base+ (Chen et al., 2022) 95M 4-gram 2.9 6.8 4.2 8.8
WavLM Large (Chen et al., 2022) 317M 4-gram 2.3 4.6 2.9 5.5
Ours, SPEARs Base 94M 4-gram 2.4 5.0 3.2 6.0
Ours, SPEARs+a Base 94M 4-gram 2.7 5.3 3.6 6.9
Ours, SPEARs Large 327M 4-gram 2.3 4.2 2.9 5.1
Ours, SPEARs+a Large 327M 4-gram 2.4 4.4 3.1 5.6
Ours, SPEARs+a XLarge 600M 4-gram 2.3 4.3 2.9 5.2

Result Interpretation As shown in Table 10, the speech-domain SPEARs models consistently
outperform their WavLM counterparts under both Base and Large scales, regardless of decoding
with an external 4-gram language model. Our SPEARs Large yields the lowest WERs on both LS-
10 and LS-100 setups, implying that the MVQ tokens used during pre-training transfer rich semantic
information to the student model. Interestingly, the speech-domain SPEARs models slightly outper-
form their dual-domain SPEARs+a counterparts in this CTC setting, especially when supervision is
scarce. We hypothesise this stems from the nature of the representation space: a unified representa-
tion space for speech and general audio is inherently more complex than one specialised for speech.
Consequently, adapting the unified representation space for the ASR task becomes more challenging
with insufficient supervised data, particularly when using a simple, letter-based CTC decoder.

E SUPERB EVALUATION

In this section, we provide more detail about the SUPERB benchmark (Yang et al., 2021; Tsai et al.,
2022) as a supplement to Section 5.2 and present the complete results on SUPERB benchmark. A
summary of the SUPERB tasks is shown in Table 11. Complete results of SPEAR models along
with other existing speech SSL models are shown in Table 12 and Table 13.

Result Interpretation As shown in Table 12 and Table 13, our speech-domain model SPEARs
demonstrates very high performance on understanding, paralinguistics, and enhancement tasks on
SUPERB. Our speech-domain model SPEARs Large achieves the same or better performance on
12 out of 15 tasks on SUPERB (except for ST, QbE, and VC) compared to WavLM Large, the
previous state-of-the-art model on SUPERB, with the same pre-training corpora and similar model
size. This again suggests that the performance of the SPEAR framework is not constrained by the
teacher model, since SPEARs+a Large is pre-trained with fine-grained targets generated by WavLM
Large. It has also been observed that performing dual-domain training leads to slight performance
degradation on understanding and paralinguistic tasks compared to the speech-only models. How-
ever, improvement on KWS and enhancement tasks is also observed, suggesting a positive task
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Table 11: Detailed task information in SUPERB.

Task Name Metric(s)

Speaker Identification (SID) Accuracy

Automatic Speaker Verification (ASV) Equal Error Rate (EER)

Speaker Diarization (SD) Diarization error rate (DER)

Emotion Recognition (ER) Accuracy

Phoneme Recognition (PR) Phone Error Rate (PER)

Automatic Speech Recognition (ASR) Word Error Rate (WER)

Out-of-domain ASR (ar/es/zh) Word (character) Error Rate

Keyword Spotting (KS) Accuracy

Query by Example Spoken Term Detection (QbE) Maximum Term Weighted Value (MTWV)

Speech Translation (ST) BLEU

Intent Classification (IC) Accuracy

Slot Filling (SF) F1, Character Error Rate (CER)

Speech Enhancement (SE) Perceptual Evaluation of Speech Quality (PESQ)
Short-Time Objective Intelligibility (STOI)

Speech Separation (SS) Scale-invariant Signal-to-distortion Ratio improvement (SI-SDRi)

Voice Conversion (VC) MCD (Mel Cepstral Distortion), WER, EER

Table 12: Full results of understanding tasks on the SUPERB benchmark. Best results in bold, the
2nd best results are underlined.

Model # Params Pre-train
Data

Understanding

PR ASR OOD-ASR KS QbE ST IC SF

PER ↓ WER ↓ WER ↓ Acc ↑ MTWV ↑ BLEU ↑ Acc ↑ F1 ↑ CER ↑

FBANK 0 - 82.01 23.18 63.58 8.63 0.0058 2.32 9.10 69.64 52.94

Existing Speech SSL models
WavLM Base+ (Chen et al., 2022) 95M 94k 3.92 5.59 38.32 97.37 0.0988 24.25 99.00 90.58 21.20
wav2vec 2.0 Large (Baevski et al., 2020) 317M 60k 4.25 3.75 44.89 96.66 0.0480 12.48 95.28 87.11 27.31
HuBERT Large (Hsu et al., 2021) 317M 60k 3.53 3.62 44.08 95.29 0.0353 20.10 98.76 89.81 21.76
WavLM Large (Chen et al., 2022) 317M 94k 3.06 3.44 32.27 97.86 0.0886 26.57 99.31 92.21 18.36

Ours, Speech SSL models
SPEARs Base 94M 84k 3.44 3.46 34.35 97.50 0.0772 24.37 99.17 90.96 19.22
SPEARs Large 327M 84k 2.56 3.27 31.70 97.89 0.0768 26.20 99.47 92.25 17.86

Ours, Speech & Audio SSL models
SPEARs+a Base 94M 97k 3.89 3.76 35.48 97.58 0.0801 24.07 98.05 90.54 20.14
SPEARs+a Large 327M 97k 3.08 3.39 31.22 97.92 0.0712 25.64 99.40 92.07 18.04
SPEARs+a XLarge 600M 197k 2.94 3.19 30.69 98.12 0.0745 26.66 99.61 92.86 17.23

synergy in these tasks. Finally, our largest dual-domain model, SPEARs+a XLarge, improves upon
SPEARs+a Large, and further improves the best results of 12 SUPERB tasks, confirming that the
SPEAR framework scales effectively with both model and data size.

It is worth noting that our results on the Voice Conversion (VC) task are not directly comparable to
previous SSL models due to a change in the VC recipe within the SUPERB codebase, as pointed out
by Shi et al. (2024a). Within our own experiments, we observe that our Large and XLarge variants
underperform the Base model on VC. This is potentially due to overfitting on the small training
dataset, an issue also observed in MR-HUBERT (Shi et al., 2024a). We leave the investigation of
using our models for generation tasks as an important direction for future work, since a unified
capability for both understanding and generation is highly desirable.
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Table 13: Full results of paralinguistics, enhancement, and Generation tasks on the SUPERB bench-
mark. Best results in bold, the 2nd best results are underlined.

Model # Params Pre-train
Data

Paralinguistics Enhancement Generation

SID ASV SD ER SE SS VC

Acc ↑ EER ↓ DER ↓ Acc ↑ PESQ ↑ STOI ↑ SI-SDRi ↑ MCD ↓ WER ↓ ASV ↑

FBANK 0 - 0 9.56 10.05 35.39 2.55 93.6 9.23 8.47 38.3 77.25

Existing Speech SSL models
WavLM Base+ (Chen et al., 2022) 95M 94k 89.42 4.07 3.50 68.65 2.63 94.3 10.85 7.40 8.1 99.00
wav2vec 2.0 Large (Baevski et al., 2020) 317M 60k 86.14 5.65 5.62 65.64 2.52 94.0 10.02 7.63 15.8 97.25
HuBERT Large (Hsu et al., 2021) 317M 60k 90.33 5.98 5.75 67.62 2.64 94.2 10.45 7.22 9.0 99.25
WavLM Large (Chen et al., 2022) 317M 94k 95.49 3.77 3.24 70.62 2.70 94.5 11.19 7.30 9.9 99.00

Ours, Speech SSL models
SPEARs Base 94M 84k 90.5 3.75 3.57 69.21 2.64 94.3 10.84 7.40 10.1 99.00
SPEARs Large 327M 84k 95.49 3.14 3.20 72.10 2.71 94.5 11.20 7.33 10.4 99.00

Ours, Speech & Audio SSL models
SPEARs+a Base 94M 97k 90.02 3.85 4.13 69.40 2.66 94.5 10.89 7.34 10.2 99.00
SPEARs+a Large 327M 97k 95.01 3.30 3.80 71.57 2.72 94.6 11.12 7.42 10.7 99.00
SPEARs+a XLarge 600M 197k 96.34 2.86 3.17 73.29 2.72 94.6 11.24 7.44 10.9 99.00

F HEAR EVALUATION

Here, we provide further details on Holistic Evaluation of Audio Representations (HEAR) (Turian
et al., 2022), a benchmark for evaluating audio representations as a supplement to Section 5.3.
HEAR encompasses 19 tasks, which can be categorised into 3 groups: environment, speech, and
music. Following prior work (Anton et al., 2023; Dinkel et al., 2024), we discard the Beehive task
due to its overly long utterances and small sample size, leading to inconsistent results. The tasks can
also be divided into frame-level tasks and clip-level tasks. The detailed task information is shown in
Table 14 and the complete results on the HEAR benchmark are shown in Table 15.

Table 14: Individual task information in HEAR. ∗: frame-level task. Otherwise, clip-level task.

Task Name Group Description Metric

Beijing Opera Percussion (BJ) Music Classification of 6 Beijing Opera percussion instruments Accuracy
CREMA-D (CD) Speech Speech emotion recognition Accuracy
DCASE 2016 Task2 (D16)∗ Environment Office sound event detection in synthesized scenes Onset FMS
ESC-50 (ESC) Environment Environmental sound classification Accuracy
FSD50K (FSD) Environment Broad-domain audio multi-labeling mAP
Gunshot Triangulation (Gun) Environment Identify location of microphone recording a gunshot Accuracy
GTZAN Genre (GZ-Gen) Music Music genre classification. Accuracy
GTZAN Music Speech (GZ-MS) Music Classification of audio into music or speech. Accuracy
LibriCount (LC) Speech Multiclass speaker count identification. Accuracy
MAESTRO 5h (MST)∗ Music Music transcription Onset FMS
Mridingham Stroke (Mri-S) Music Non-Western pitched percussion, classification of stroke Accuracy
Mridingham Tonic (Mri-T) Music Non-Western pitched percussion, classification of tonic Accuracy
NSynth Pitch, 5h (NS-5) Music Pitch classification of synthesized sounds. Pitch Acc
NSynth Pitch, 50h (NS-50) Music Pitch classification of synthesized sounds. Pitch Acc
Speech Commands (v2), 5h (SC-5) Speech Spoken commands classification. Accuracy
Speech Commands (v2), full (SC-F) Speech Spoken commands classification. Accuracy
Vocal Imitations (VI) Speech Classification of vocal imitation to type of sound imitated mAP
VoxLingua107 Top 10 (VL) Speech Spoken language identification. Accuracy

Result Interpretation Our audio-domain models demonstrate strong performance on the
environment-related tasks. Specifically, SPEARs+a Large outperforms its teacher model, Dasheng
1.2B, on D16, ESC, and FSD, three well-known tasks for environmental audio understanding. It
should be noted that this is achieved under the premise that Dasheng 1.2B is a much bigger model
trained on over 20 times more data. The performance of SPEARa Large is lower on speech and au-
dio tasks compared to Dasheng 1.2B, due to the limited amount of general audio data in our setup.
However, we anticipate SPEAR to outperform Dasheng 1.2B given a similar amount of general
audio data for pre-training, which we leave as an important direction for future work.

By performing unified speech and audio pre-training that incorporates more speech data, the dual-
domain model SPEARs+a yields a notable improvement on speech-related tasks over the audio-
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Table 15: Results on the HEAR benchmark. The last column is the average performance across all
tasks. All results are the higher the better. Rows in grey: evaluated by concatenating the intermediate
layers. Best results in bold, the 2nd best results are underlined.

Model # Params BJ CD D16 ESC FSD GZ-Gen GZ-MS Gun LC MST Mri-S Mri-T NS-50 NS-5 SC-5 SC-F VI VL Avg

Speech Model
WavLM Base+ 96M 87.3 68.7 49.9 60.1 32.8 75.0 98.5 86.3 62.5 4.3 89.8 78.9 35.1 21.6 94.4 95.1 14.2 74.0 62.7
HuBERT Large 317M 92.4 74.5 44.0 64.5 35.8 74.7 92.8 94.4 64.3 3.1 95.1 85.9 39.4 19.8 91.5 92.8 17.5 73.3 64.2
WavLM Large 317M 91.5 75.5 85.1 68.6 40.1 80.0 94.4 97.6 70.3 8.8 96.0 88.8 43.8 23.0 94.8 96.1 19.5 79.9 69.7
SPEARs Base 94M 94.5 79.5 92.0 74.8 43.4 83.9 96.0 82.1 66.5 6.3 95.6 90.5 61.7 36.8 95.9 96.4 20.3 81.9 72.1
SPEARs Large 327M 91.5 80.9 84.2 73.9 43.3 82.5 96.1 89.6 71.1 8.6 95.8 89.7 67.7 41.6 95.5 95.7 20.7 85.0 73.0

Audio Model
BEATs 90M 95.8 68.1 43.0 81.9 51.4 87.0 98.5 90.5 74.6 0.0 96.1 96.0 82.0 68.6 88.2 91.5 13.5 43.8 69.3
ATST-Frame 86M 95.8 76.7 95.7 89.0 55.7 88.3 100.0 94.3 78.1 24.4 97.5 94.1 - 68.6 92.6 95.1 22.3 66.9 -
Dasheng base 86M 93.6 78.7 93.9 82.9 51.0 89.2 99.2 92.9 76.6 43.9 96.1 94.9 83.3 71.8 95.9 97.1 16.7 69.9 79.3
Dasheng 0.6B 600M 94.9 81.2 94.4 85.9 53.9 88.6 97.6 97.6 80.7 43.5 96.6 96.2 85.8 74.6 97.0 97.5 17.8 74.7 81.0
Dasheng 1.2B 1.2B 96.2 81.6 94.2 85.3 54.2 88.8 97.7 99.1 79.6 43.3 96.8 96.1 85.6 74.4 97.1 97.9 19.4 78.7 81.4
SPEARa, Base 94M 93.6 77.2 93.6 85.5 52.9 90.1 92.2 89.3 77.2 22.8 96.7 96.5 83.7 70.0 93.8 95.1 18.8 57.1 77.0
SPEARa, Large 327M 94.9 79.8 94.5 86.6 54.4 89.1 96.8 98.8 79.6 23.6 96.9 96.3 86.4 70.8 95.3 96.3 19.0 66.2 79.2
SPEARa, Base 94M 96.2 79.0 95.4 87.4 55.3 89.4 100.0 96.4 81.6 23.8 97.0 97.5 87.5 74.8 94.9 95.9 19.9 60.7 79.6
SPEARa, Large 327M 95.8 79.9 96.5 89.6 57.4 90.7 98.5 96.4 82.4 25.6 97.4 98.1 89.6 81.4 95.8 96.9 20.5 62.7 80.8

Speech + Audio Model
USAD Base 94M 95.8 80.0 93.6 82.2 52.2 94.0 100.0 86.3 78.7 26.7 97.3 95.7 81.6 57.0 96.6 97.6 19.5 76.0 78.4
USAD Large 330M 94.1 79.5 93.9 83.4 53.0 87.4 100.0 97.6 79.1 38.4 97.4 96.1 83.2 57.0 97.0 97.5 18.5 75.3 79.4
SPEARs+a, Base 95M 92.0 78.6 93.8 83.8 49.9 86.5 96.9 95.2 70.8 24.7 96.8 94.1 78.9 64.6 97.0 96.7 21.9 77.3 77.8
SPEARs+a, Large 327M 94.9 81.4 93.8 85.1 51.4 87.6 96.4 94.1 76.2 26.9 96.8 96.0 80.0 64.8 97.5 97.2 22.6 83.9 79.3
SPEARs+a, XLarge 600M 94.5 81.6 95.5 84.8 52.4 88.5 98.5 94.4 77.7 27.7 97.0 96.5 81.5 63.4 97.2 98.1 22.6 83.6 79.7
SPEARs+a, Base 95M 95.3 82.0 95.1 85.9 54.2 88.8 100.0 95.2 76.2 26.8 97.2 96.0 82.2 69.4 97.3 98.2 24.6 85.6 80.6
SPEARs+a, Large 327M 94.9 83.8 95.9 87.6 56.4 89.2 99.2 97.6 78.7 27.9 97.4 97.5 85.3 70.2 98.1 98.3 25.7 88.5 81.8
SPEARs+a, XLarge 600M 95.3 83.6 96.0 89.4 57.1 91.0 100.0 96.3 80.7 27.7 97.4 97.9 86.0 74.2 98.4 98.6 26.6 90.4 82.3

domain model SPEARa, as evidenced by tasks such as CD, SF-5, VI, and VL. We also observe a
sharp increase for MST, a music transcription task, from SPEARa Large with 23.6 to SPEARs+a
Large with 27.7. This suggests that the joint pre-training on speech and audio data enhances the
model’s capability of performing fine-grained music tasks. Despite achieving a better overall score
on HEAR, we do notice that the dual-domain model suffers from performance degradation in some
environment and music-related tasks. This further motivates us to use a more balanced dataset
containing more general audio data in future work.

Finally, our largest dual-domain model SPEARs+a XLarge achieves further performance improve-
ment over SPEARs+a Large, demonstrating that scaling data and model size is effective for SPEAR.

G ABLATION STUDIES

Ablation studies on the following components are performed to provide an in-depth understanding
of SPEAR framework:

• Teacher Model Selection: We compared pre-training with MVQ tokens extracted from
different SSL teacher models (see Appendix G.1.1) and different layers of teacher models
(see Appendix G.1.2).

• Masked Prediction Pre-training Loss: We investigated how to balance the pre-training
loss on the masked and unmasked positions for SPEAR (see Appendix G.2).

• Number of Codebooks: We studied the effect of varying the number of codebooks in the
MVQ quantiser on the pre-training performance (see Appendix G.3).

• Feature Subspaces: We compared the feature subspaces reconstructed by the MVQ quan-
tiser and a k-means clustering model (see Appendix G.4).

• MVQ Tokens vs k-means Tokens: We compared using fine-grained MVQ tokens and
k-means tokens as pre-training targets (see Appendix G.5).

• Encoder Architectures: We compared using Zipformer and Transformer as the encoder
backbone for SPEAR (see Appendix G.6).

• Dual-domain Pre-training: We investigated how the losses from speech and audio do-
mains should be balanced in the dual-domain pre-training (see Appendix G.7).
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G.1 TEACHER MODELS AND LAYERS

G.1.1 TEACHER MODEL SELECTION

In this group of ablation studies, different choices of SSL models are compared for generating pre-
training targets under the SPEAR framework. In addition to WavLM Large and Dasheng 1.2B as
presented in Table 3, HuBERT-Large (Hsu et al., 2021) and ATST-frame (Li et al., 2024a), which
are pre-trained with different SSL objectives and data scales, are used for generating fine-grained
discrete targets for speech and audio data, respectively.

Table 16: Performance on SUPERB benchmark of speech-domain models trained with MVQ tokens
extracted from different models. Best results in bold, 2nd best results are underlined.

Model # Params Targets Pre-train
Data

SUPERB

ASR ↓ KS↑ IC↑ ASV↓ SID↑ SD ↓ ER↑
Speech SSL Models
HuBERT Large 317M - 60k 3.62 95.29 98.76 5.98 90.33 5.75 67.62
WavLM Large 317M - 94k 3.44 97.86 99.31 3.77 95.49 3.24 70.62

Ours
LARGE-H-1 327M HuBERT Large 50k 3.24 97.05 99.47 4.11 91.52 3.84 69.86
LARGE-H-2 327M HuBERT Large 84k 3.17 97.79 99.51 3.49 94.42 3.24 70.91
SPEARs Large 327M WavLM Large 84k 3.27 97.89 99.47 3.14 95.49 3.20 71.88

HuBERT HuBERT (Hsu et al., 2021) is a speech SSL model pre-trained using masked language
modelling (MLM) loss on 60k hours of speech from Libri-light Kahn et al. (2020). In contrast
to WavLM Large, HuBERT-Large is pre-trained on less diverse data (only read speech) without
augmentations, resulting in weaker overall performance, especially on speaker-related tasks. A
comprehensive comparison of HuBERT Large and WavLM Large on SUPERB can be found in
Table 12 and Table 13.

Following Table 3, the representation from the 21st layer of HuBERT Large is used to train an MVQ
quantiser with 16 codebooks for generating the pre-training targets. We train the following two
Large models with pre-training targets generated from the HuBERT Large:

• LARGE-H-1: Pre-trained on Libriheavy without data augmentation. This model is used to
contrast with HuBERT Large.

• LARGE-H-2: Pre-trained on Speech-84k using the same data augmentation as SPEARs
Large, enabling a fair comparison with SPEARs Large and WavLM Large.

The pre-training performance is evaluated on SUPERB, and the results are shown in Table 16. As
can be seen, MVQ tokens extracted from HuBERT Large are also effective pre-training targets.
LARGE-H-1 outperforms its teacher HuBERT Large on all SUPERB tasks by a large margin on the
premise of using the same amount of pre-training data. Notably, LARGE-H-1 demonstrates strong
ASR performance, achieving the lowest WER on SUPERB ASR task, even surpassing SPEARs
Large trained with more data, suggesting that the MVQ tokens extracted from HuBERT Large could
have a stronger focus on semantic information (Mousavi et al., 2025).

By increasing the amount of pre-training data, LARGE-H-2 further improves over LARGE-H-1.
However, LARGE-H-2 yields a weaker overall performance on SUPERB compared to SPEARs
Large, which is pre-trained with MVQ tokens extracted from WavLM Large. This suggests that
MVQ tokens extracted from stronger speech representations translate to a stronger per-training per-
formance under SPEAR framework.

ATST-frame ATST-frame (Li et al., 2024a) is an audio SSL model pre-trained with BYOL (Grill
et al., 2020) objective on 5k hours of AS-2M with 86M parameters. The model generates 768-d
frame-level audio representations at a 25Hz frame rate. We train the following two Base models for
comparison:

• BASE-AUDIO-1: Pre-trained on AS-2M with MVQ tokens extracted from the last layer of
ATST-frame using 8 codebooks.
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• BASE-AUDIO-2: Pre-trained on AS-2M with MVQ tokens extracted from the last layer of
Dasheng 1.2B using 8 codebooks.

The results of AT fine-tuning on AudioSet and HEAR benchmark are presented in Table 17.

Table 17: Performance of audio-domain models pre-trained with MVQ tokens extracted from differ-
ent teacher models on AudioSet AT tasks and HEAR. All results are the higher the better. ∗: For fair
comparison with ATST-frame, HEAR evaluation is performed using the concatenation of all layers’
representations. Best results in bold.

Model # Params Targets Pre-train
Data

AudioSet HEAR∗

AS-20k AS-2M ESC FSD GZ-Gen NS-5 LC SC-5

Audio SSL Models
EAT (Chen et al., 2024) 86M - 5k 40.2 48.6 - - - - - -
ATST-frame 88M - 5k 39.0 48.0 89.0 55.7 88.3 68.6 78.1 92.6

Ours
BASE-AUDIO-1 94M ATST-frame 5k 40.3 49.6 89.4 57.2 89.5 64.4 79.4 94.3
BASE-AUDIO-2 94M Dasheng 1.2B 5k 39.1 49.3 88.9 56.6 90.1 72.2 81.2 94.3

As can be seen in Table 17, BASE-AUDIO-1 exhibits very strong performance on AudioSet AT tasks,
achieving higher mAP than its teacher ATST-frame. By yielding an mAP of 40.3 on AS-20k and
49.6 on AS-2M, BASE-AUDIO-1 outperforms EAT (Chen et al., 2024), setting a new state-of-the-art
for audio SSL models pre-trained only on AS-2M. This validates the effectiveness of SPEAR as
an audio SSL approach, as it shows that the student model can consistently outperform its teacher
model used for generating the pre-training targets.

However, despite achieving a higher mAP on AudioSet, BASE-AUDIO-1 shows weaker generalisa-
tion capability than BASE-AUDIO-2, the model pre-trained with MVQ tokens from Dasheng-1.2B.
This is shown by its lower performance on HEAR tasks from the speech and music domains (e.g.,
GZ-Gen, NS-5, LC, and SC-5). We attribute this to the fact that the Dasheng 1.2B model produces
more generic audio representations due to the vast amount of pre-training data and enormous model
size, and this quality is encapsulated in the MVQ tokens derived from the MVQ quantiser. This sug-
gests that the choice of teacher model plays a critical role in our framework’s pre-training quality, as
high-quality, generic features can be transferred to the student via the MVQ tokens, even when the
student is trained on significantly less data.

Conclusion From Table 16 and Table 17, we conclude that the performance of SPEAR depends
on the choices of teacher models for generating the pre-training targets. Under both speech-domain
and audio-domain experiments, using a more powerful and generic teacher for pre-training targets
generation leads to a better student model, indicating the necessity of using better teacher models
for optimal performance. We also show that the performance of SPEAR framework is not upper-
bounded by the teacher model, as our student models are always capable of outperforming their
corresponding teacher model for generating the pre-training targets.

G.1.2 TEACHER LAYER SELECTION

In this ablation study, experiments are carried out to compare different teacher layers for extracting
pre-training targets. In our initial setuo, the teacher layer is selected based on the downstream fine-
tuning performance, i.e. ASR for speech teacher and AT for audio teacher. All experiments are
conducted using the Base architecture and the results are shown in Table 18.

For the speech teacher, we evaluate the 18th, 21st, and 24th (last) layers of WavLM Large and
report the WERs on LS-100 fine-tuning tasks. The 21st layer is selected since it achieves the lowest
WERs. Note that this choice aligns with the findings of Shi et al. (2024b), who also report the
discrete tokens derived from the 21st layer of WavLM Large to yield strong ASR performance. For
the audio teacher, we compare using the 25th, 35th, and 40th (last) layers of Dasheng-1.2B and
report the mAP on the AS-20k fine-tuning task. The 40th layer is selected since it yields the highest
mAP.
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Table 18: Layer selection for speech teacher (WavLM) and audio teacher (Dasheng).

(a) WavLM layer comparison on LS-100 (WER).

WavLM layer test-clean ↓ test-other ↓
18 3.1 6.1
21 (adopted) 3.0 5.8
24 3.1 6.0

(b) Dasheng layer comparison on AS-20k (mAP).

Dasheng layer mAP ↑
25 38.4
35 38.7
40 (adopted) 39.2

G.2 PRE-TRAINING LOSS

The hyperparameter α in Equation 2 controls the contribution of the prediction loss on the masked
and unmasked frames. To investigate its influence w.r.t SPEAR, we conducted experiments on
single-domain models, varying α from 0.0 (predicting only unmasked frames) to 1.0 (predicting
only masked frames). The speech-domain models are pre-trained on LibriSpeech, while the audio
models are pre-trained on AS-2M. The same MVQ tokens from Table 3 are used. We evaluate the
downstream fine-tuning performance on LS-100 fine-tuning and AT, results presented in Figure 2.
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Figure 2: Effect of α on two downstream fine-tuning tasks. Left: WERs of test-other on LS-100
ASR fine-tuning task; Right: mAP on AudioSet evaluation set on AS-balanced fine-tuning task.

As shown in Figure 2, a balanced contribution of prediction loss on masked and unmasked frames
with α = 0.5 yields the best downstream performance. This observation diverges from the findings
in HuBERT (Hsu et al., 2021), where computing prediction loss merely on masked frames (i.e.
α = 1.0) was optimal. We hypothesise this difference stems from the fine-grained nature of the
MVQ tokens. Compared to the coarse units generated from k-means clustering, predicting fine-
grained MVQ tokens is a significantly more challenging pretext task. Including the easier objective
of predicting tokens at unmasked positions helps to regularize the model and stabilize the learning
process. However, the pretext task must remain sufficiently challenging: setting α = 0.0 makes the
objective too simple, degrading it to a non-contextual prediction task that is ineffective for learning
powerful representations. Thus, a balanced α is crucial for the success of the SPEAR framework.

G.3 NUMBER OF CODEBOOKS

The relationship between the number of codebooks N and the pre-training performance is investi-
gated here. Experiments are carried out under single-domain settings with N varying from 4 to 16,
using the Base size model.

For speech-domain experiments, the same representations from the 21st layer of WavLM Large
are used to train the MVQ quantiser. We pre-train the models on LS-960 for 300k updates. The
performances on the following three tasks are evaluated: ASR fine-tuning on LS-100, speaker iden-
tification (SID), and emotion recognition (ER) from SUPERB, which serve as indicators of the
model’s understanding and paralinguistic capabilities. The results are shown in Table 19. As can be
seen, increasing the number of codebooks for speech pre-training consistently enhances the model
performance. The WER on the test-other set is reduced by 6.4% with N increasing from 4 to 16.
Moreover, models trained with a larger N also exhibit stronger paralinguistic capabilities, which are

24



1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

Table 19: Results of SPEAR speech-domain pre-training with different numbers of codebooks N .
Best results in bold.

N
LS-100 SUPERB

test-clean↓ test-other↓ SID↑ ER↑
4 3.34 7.01 83.12 67.24
8 3.19 6.77 84.83 67.76

16 3.08 6.55 86.35 68.29

Table 20: Results of audio-domain pre-training with different numbers of codebooks N . All results
are the higher the better. Best results in bold.

N
AudioSet HEAR

AS-20k AS-2M Environment Speech Music Average

4 39.2 49.1 77.63 68.09 80.30 75.63
8 39.2 49.3 80.33 69.87 80.70 77.01

16 38.9 49.0 80.25 69.92 80.64 76.97

manifested through their performance on SID and ER. This implies that increasing N to 32 could
lead to further performance improvement for speech-domain models.

Similar experiments are conducted for audio-domain pre-training. Following Table 3, the last layer
of Dasheng 1.2B is used to train the MVQ quantiser with 4, 8, and 16 codebooks. The models are
evaluated on the AudioSet fine-tuning task, and the results are shown in Table 20. As can be seen, in-
creasing N from 4 to 8 improves the downstream AT fine-tuning performance and the HEAR scores.
However, further increasing N to 16 degrades the pre-training performance, leading to a lower mAP
and average HEAR score compared to N = 8. We hypothesise that representations of audio SSL
models encapsulate less information compared to speech representations in general. Therefore, us-
ing a moderate number of codebooks seems to be enough for audio-domain pre-training. A too
large N might force some codebooks to capture the nuances in the audio teacher representations and
introduce noise to the pre-training.

G.4 FEATURE SUBSPACES OF MVQ TOKENS

In order to investigate if the codebooks in the MVQ quantiser have captured useful characteristics
from the speech and audio representations, we visualise the reconstructed embedding space of the
MVQ quantiser on a 2-D plane using UMAP (McInnes et al., 2018). Specifically, we visualise
the speaker embeddings encoded by the MVQ quantiser of 10 speakers randomly drawn from Lib-
riSpeech dev-clean sets, with each speaker having 25 utterances. The speech MVQ quantiser from
Table 3 is used. The speaker embeddings are computed with the procedure described below. First,
we use the speech MVQ quantiser (see Table 3) to encode the frame-level embeddings generated by
WavLM Large into the MVQ tokens. Then, we compute the reconstructed frame-level embeddings
by summing over the encoded code vector from each codebook. The speaker embedding for each
utterance is obtained by calculating the mean embedding vector over all frames. As a comparison,
we also visualize the speaker embedding space represented through a k-means clustering model.
The 500-cluster k-means model used for generating the pre-training targets for WavLM Large is
adopted, which is trained on the 9th layer representations of HuBERT Base. We use the cluster cen-
troid to represent each frame and average the frame-level embeddings along the temporal dimension
to obtain a single speaker embedding for each utterance.

The visualisations are shown in Figure 3c. As can be seen, the MVQ quantiser successfully retains
speaker characteristics, showing a clear separation between different speakers. It is noteworthy that a
single codebook with 256 codes is capable of capturing certain levels of the speaker characteristics,
showing reasonable separation between different speakers in Figure 3b. However, the k-means
centroids fail to distinguish different speakers, showing poor separation for different speakers. This
observation aligns with the fact that our speech-domain model SPEARs Large achieves far better
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(a) MVQ reconstruction (b) 12th codebook of MVQ (c) K-means reconstruction

Figure 3: Comparing the reconstructed embedding space obtained through different MVQ quanti-
sation and k-means. The speaker embeddings of 10 speakers drawn from LibriSpeech dev-clean are
visualized using UMAP on a 2D plane, with each colour representing a single speaker. (a): Recon-
struction using all codebooks of MVQ; (b): Reconstruction using only the 12th codebook of MVQ;
(c): Reconstruction using k-means centroids.

performance on ASV compared to WavLM Large, a task requiring distinguishing different speakers
by comparing the speaker embedding similarity.

G.5 MVQ TOKENS AND K-MEANS TOKENS

To isolate the impact of the quantization target, we conduct a controlled ablation comparing our
MVQ tokens against standard k-means tokens. Both target types are derived from the same layer
(the 21st layer) of WavLM Large, with the k-means baseline utilising 2000 clusters. Using the Base
architecture, both models are pre-trained for 300k updates on LibriSpeech under identical augmenta-
tion strategies (noise mixing, utterance mixing, and masking). Notably, for the k-means experiment,
we adopt the standard configuration by computing the loss solely on masked positions (Hsu et al.,
2021). The results on the LS-100 ASR fine-tuning task and the SUPERB benchmark are shown in
Table 21.

Table 21: Comparison of MVQ tokens and k-means as pre-training target.

Target LibriSpeech finetune SUPERB

test-clean test-other PR ↓ IC ↑ KWS ↑ SID ↑ ER ↑
k-means, 2000 clusters 3.5 7.2 4.0 97.92 96.79 86.6 67.56
MVQ, 16 codebooks 3.1 7.0 3.4 98.37 96.83 88.4 68.29

It can be seen that the model trained with MVQ tokens achieves better performance on all tasks,
especially the two paralinguistic tasks: SID and ER. This aligns with our findings in Appendix G.4,
where it is shown that the fine-grained MVQ tokens retain richer paralinguistic information than the
coarse k-means tokens.

G.6 ENCODER ARCHITECTURE

This ablation study investigates the effect of different encoder architectures. Specifically, the Zip-
former architecture (with filterbank input) is compared with the Transformer model (with waveform
input), a commonly used architecture for SSL models (Baevski et al., 2020; Chen et al., 2022) in the
speech domain. The transformer implementation follows the WavLM, which is an improved version
of wav2vec 2.0. We pre-trained the two models using the same MVQ pre-training loss under the
SPEAR framework on LS-960 data for 300k updates. The results on the LS-100 ASR fine-tuning
task and the SUPERB benchmark are reported in Table 22.

To decouple the influence of the encoder architecture from our pre-training framework, this abla-
tion compares the Zipformer (utilising filterbank inputs) against a standard Transformer backbone
(utilising waveform inputs). The Transformer implementation adopts the architecture adopted in
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WavLM (Chen et al., 2022). We pre-train both models on the full LibriSpeech 960h corpus (LS-
960) for 300k updates, maintaining the same MVQ-based pre-training objective. The results on
LS-100 ASR fine-tuning and the SUPERB benchmark are presented in Table 22.

Table 22: Comparison of Zipformer and Transformer as encoder backbone.

Encoder Backbone LibriSpeech finetune SUPERB

test-clean test-other PR ↓ IC ↑ KWS ↑ SID ↑ ER ↑
Transformer 4.1 9.0 3.4 97.79 97.27 89.8 66.27
Zipformer 3.1 7.0 3.4 98.37 96.83 88.4 68.29

On the SUPERB tasks, which evaluate frozen representations, both architectures exhibit comparable
performance: the Transformer proves stronger on SID, whilst the Zipformer excels on ER. However,
the Zipformer demonstrates a distinct advantage in downstream ASR fine-tuning, a result consistent
with its ASR-centric design (Yao et al., 2024). Moreover, the Zipformer is more computationally
efficient due to its intermediate downsampling operations. For instance, pre-training the Zipformer
requires approximately 350 GPU hours, roughly 60% of the 600 hours required for the Transformer.
Consequently, the stronger ASR fine-tuning performance and computational efficiency motivate our
selection of the Zipformer as the backbone architecture for SPEAR.

G.7 DUAL-DOMAIN PRE-TRAINING

G.7.1 ASYMMETRICAL PRE-TRAINING LOSS

As mentioned in Section 3.2.2, we adopt an asymmetrical pre-training loss in Equation 6 for dual-
domain pre-training. The following strategies for dual-domain pre-training are investigated:

• JOINT: Each training input w induces two losses, computed against the Zs and Za, re-
gardless of the domain of w.

• DISJOINT: Each training input w only induces one loss, computed against the targets gen-
erated by the teacher from the same domain as w.

• ASYMMETRICAL: For speech data, losses are computed against both Zs and Za. For
audio data, loss is only computed against Za. This approach is adopted by SPEAR.

Table 23: Results of three strategies for dual-domain pre-training. Best results in bold.

Strategy LS-100 AS-20K↑ SUPERB HEAR

test-clean↓ test-other↓ SID↑ PR↓ Avg↑
JOINT 2.9 5.9 36.8 90.6 3.24 78.7
DISJOINT 3.0 5.8 37.0 87.4 3.40 78.3
ASYMMETRICAL 2.9 5.8 36.9 90.7 3.12 79.0

We perform dual-domain pre-training using the Large size model on the Mix-97k data with the
aforementioned three strategies. The models are evaluated after 100k training steps for quicker sys-
tem verification, where we compare the results of LS-100 ASR fine-tuning, AS-20K AT fine-tuning,
two SUPERB tasks (SID and PR), and the average score on HEAR. The results are shown in Ta-
ble 23. Among the three strategies, ASYMMETRICAL achieves a balanced performance across both
domains. Computing the loss against the speech MVQ tokens for audio data is a useful regularisa-
tion to bridge the domain mismatch between speech and audio, preventing significant performance
degradation on both domains (ASYMMETRICAL vs DISJOINT).

On the other hand, computing pre-training loss against the audio MVQ tokens for speech data in
the JOINT strategy is less useful. Compared to the ASYMMETRICAL strategy, an increase of 0.1
absolute WER and a 0.3 absolute lower average score on HEAR are observed. We suspect that this
is caused by the imbalanced data distribution between speech and audio in Mix-97k, where speech
data makes up 87% of the total data. The dominance of the speech data hinders the effective learning
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of generic audio representations for the JOINT strategy. This motivates us to enlarge the proportion
of general audio data in the total training corpora for our future work.

G.7.2 LOSS WEIGHTING

As shown in Equation 6, the hyperparameter λ controls the contribution of the general-audio
masked-prediction loss during joint training. To determine the optimal balance, we conduct an
ablation study with 3 values of λ using our SPEAR Large architecture and compare the fine-tuning
performance on LS-100 and AS-20k after 100k pre-training steps. The experimental results are
shown in Table 24. We observed that reducing λ from 0.3 to 0.1 yields a 0.3 absolute WER im-
provement on test-other, while the mAP is only reduced by 0.1 absolute. Consequently, we adopted
λ=0.1 in our dual-domain experiments for a balanced performance across both domains.

Table 24: Effect of λ in dual-domain pre-training.

λ
LS-100 AS-20k

test-clean ↓ test-other ↓ mAP ↑
0.3 3.0 5.9 37.0
0.2 3.0 5.7 36.9
0.1 2.9 5.6 36.9

H COMPARISON WITH USAD

In this section, we performed a controlled comparison between SPEAR and USAD (Chang et al.,
2025), another framework for joint speech and audio representation learning also leveraging mul-
tiple domain-specific teachers. Specifically, we trained a new dual-domain SPEAR model with the
Base architecture, named SPEAR (USAD-aligned), mirroring the USAD settings to isolate the im-
pact of the pre-training objective. We used the same teacher models as used in USAD, namely
WavLM Base+ (speech) and ATST-Frame (Li et al., 2024a) (audio) to extract the MVQ tokens as
pre-training targets in SPEAR. We also used a subset of the USAD training corpora, excluding
Fisher and VoxLingua for speech and SoundNet for audio due to availability issues, a summary of
the model configurations and data usage for both models is shown in Table 25

Table 25: Model configurations of SPEAR (USAD-aligned) and USAD. Approximate data amount
in hours.

Model # Params Speech data Audio data Total data

SPEAR (USAD-aligned) 94M 86k 9.3k 95.3k
USAD Base 94M 91k 35k 126k

The comparison between SPEAR (USAD aligned) and USAD on SUPERB and HEAR is shown in
Table 26. As can be seen, SPEAR (USAD-aligned) consistently outperforms USAD Base, despite
only using a subset of the training data used by USAD, suggesting that SPEAR is more effective
than USAD for learning unified speech and audio representations. We attribute this performance
gap to the following two reasons:

• Training objectives: In SPEAR, the student is trained to predict the discrete tokens ex-
tracted from teacher models given a masked input, which is a frequently used pretext task
for SSL. This combination of KD and SSL in SPEAR enables the student to learn generic
representations while benefiting from the knowledge of the two domain-specific teachers,
creating student model even with the capability of surpassing teacher models (e.g. SPEARs
Large outperforms WavLM Large). On the other hand, USAD enforces the student to
mimic the teacher representations through L1 and cosine distance loss. Consequently, the
student performance is theoretically upper-bounded by the teacher performance.

• Joint feature matching is ill-defined for disparate domains: In USAD, the student effec-
tively minimises the distance to two embedding spaces (speech and audio) simultaneously.
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The L1 losses induced by two teachers encourage the student model to find a “mean” of
two representation spaces. Since the feature spaces could be distinct, this “mean” repre-
sentation may lie in a region of the manifold that lacks semantic meaning for either do-
main. SPEAR avoids this risk by quantising representations into discrete tokens via MVQ,
where the tokens exhibit the capability of representing a certain characteristic of the in-
put speech/audio data (see Appendix G.4 where we found a single codebook to contain
rich speaker information). This allows the model to retain distinct, high-fidelity details by
learning to predict the discrete tokens for both domains simultaneously, with lower risk of
destructive interference.

Table 26: Comparison between SPEAR (USAD-aligned) and USAD on SUPERB and HEAR.
HEAR results for both SPEAR (USAD-aligned) and USAD Base are obtained with feature con-
catenation.

Model # Params Data SUPERB HEAR

PR ↓ ASR ↓ IC ↑ KS ↑ SID ↑ ER ↑ Env ↑ Speech ↑ Music ↑ Avg ↑
SPEAR (USAD-aligned) 94M 95.3k 4.6 5.1 98.7 97.4 89.2 69.4 81.1 76.9 80.5 79.4
USAD Base 94M 126k 5.1 7.7 98.3 97.1 88.6 68.0 80.7 73.7 79.3 77.8

I COMPARISON WITH DASHENG

As discussed in Section 5.3, the performance of SPEARa models lags behind Dasheng on the HEAR
benchmark, mainly due to the large difference in the amount of general audio training data (smaller
by a factor of 20). In this section, to validate the effectiveness of SPEAR for audio SSL under a
more comparable setup, we compare SPEAR and Dasheng under the constraint of using the same
pre-training dataset. Specifically, both models are pre-trained on AudioSet (5k hours) and their
performances on HEAR (average score) are reported in Table 27. The results of the Dasheng models
are taken from the original paper (Dinkel et al., 2024), while the results of SPEARa models are taken
from Table 6. As can be seen, SPEARa Large achieves 78.08 on HEAR, 3.21 points higher than
the 4 times bigger Dasheng 1.2B model pre-trained on the same data. Although SPEARa Large
uses the original Dasheng 1.2B pre-trained on larger amount of data to extract the MVQ tokens for
SSL pre-training, this significant gap between SPEARa Large and Dasheng 1.2B in Table 27 still
suggests that our SPEAR framework is highly effective for audio SSL.

Table 27: Performance comparison between Dasheng and SPEAR on HEAR benchmark (average
score). All models are pre-trained on AudioSet with 5k hours data. HEAR results for Dasheng
from Dinkel et al. (2024)

Model Pre-train Data # Params HEAR score ↑
Dasheng Base AudioSet 5k 86M 70.43
Dasheng 1.2B AudioSet 5k 1.2B 74.87
SPEARa Base AudioSet 5k 94M 76.37
SPEARa Large AudioSet 5k 327M 78.08
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