

000 001 002 003 004 005 SPEAR: A UNIFIED SSL FRAMEWORK FOR LEARN- 006 ING SPEECH AND AUDIO REPRESENTATIONS 007 008 009

010 **Anonymous authors**
011 Paper under double-blind review
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

ABSTRACT

Self-Supervised Learning (SSL) excels at learning generic representations of acoustic signals, yet prevailing methods remain domain-specific, tailored to either speech or general audio, hindering the development of a unified representation model with a comprehensive capability over both domains. To address this, we present SPEAR (SPEech and Audio Representations), the first SSL framework to successfully learn unified speech and audio representations from a mixture of speech and audio data. SPEAR proposes a unified pre-training objective based on masked prediction of fine-grained discrete tokens for both speech and general audio. These tokens are derived from continuous speech and audio representations using a Multi-codebook Vector Quantisation (MVQ) method, retaining rich acoustic detail essential for modelling both speech and complex audio events. SPEAR is applied to pre-train both single-domain and unified speech-and-audio SSL models. Our speech-domain model establishes a new state-of-the-art on the SUPERB benchmark, a speech processing benchmark for SSL models, matching or surpassing the highly competitive WavLM Large on 12 out of 15 tasks with the same pre-training corpora and a similar model size. Crucially, our unified model learns complementary features and demonstrates comprehensive capabilities across two major benchmarks, SUPERB and HEAR, for evaluating audio representations. By further scaling up the model size and pre-training data, we present a unified model with 600M parameters that excels in both domains, establishing it as one of the most powerful and versatile open-source SSL models for auditory understanding. The inference code and pre-trained models will be made publicly available.

1 INTRODUCTION

The drive towards foundation models trained on broad data with generic features that can be adapted to many tasks is one of the most significant trends in AI, having been demonstrably successful in natural language processing (Brown et al., 2020) and computer vision (Kirillov et al., 2023). In the auditory domain, speech conveys linguistic and paralinguistic information, while general audio provides environmental context and sound events crucial for situational awareness. Critically, they are rarely isolated in real-world scenarios (Bregman, 1994). Therefore, developing a unified encoder with comprehensive capabilities across both domains is important for modern AI systems with holistic auditory perception function (Comanici et al., 2025).

Self-supervised learning (SSL) has emerged as an effective paradigm for learning generic representations in the field of speech and audio processing (Baevski et al., 2020; 2022; Huang et al., 2022; Dinkel et al., 2024). By leveraging a large amount of unlabelled data during pre-training, SSL models can achieve very high performance on tasks with limited supervised data (Chen et al., 2020b; Baevski et al., 2020). In speech processing, one dominant approach is masked token prediction (Hsu et al., 2021; Chung et al., 2021; Chiu et al., 2022). This approach involves quantisation techniques, such as k-means clustering (Hsu et al., 2021) or random projection quantisation (Chiu et al., 2022), to generate coarse-grained discrete tokens from the raw speech signal or intermediate SSL representations. Although the quantisation process discards some acoustic details, such as prosody and paralinguistic information (Xin et al., 2024), these tokens still effectively capture the phonetic content of speech (Baevski et al., 2020; Hsu et al., 2021). This makes the pre-training strategy highly suitable for the speech domain and has enabled models to achieve excellent performance on a wide range of downstream speech processing tasks (Chen et al., 2022; Yang et al., 2021).

054 However, such coarse-grained tokens are inadequate for general audio. In contrast to speech, general
 055 audio exhibits more irregular and complex spectro-temporal patterns (Attias & Schreiner, 1996)
 056 that are difficult to capture with coarse-grained discrete units (e.g., k-means). While BEATs (Chen
 057 et al., 2023) adapts discrete token prediction for audio, it requires a complex iterative process to
 058 train a dedicated audio tokeniser. **EncodecMAE** (Pepino et al., 2025) instead uses the off-the-
 059 shelf **Encodec** (Défossez et al., 2023) tokens as pre-training targets and shows promising results
 060 in general audio representation learning. However, when applied to speech data, the model exhibits
 061 only limited speech-related capability. Other audio SSL models forgo token prediction in favour of
 062 other objectives, such as masked autoencoder (MAE) (Huang et al., 2022; Dinkel et al., 2024) or
 063 bootstrapping-based methods (Li et al., 2024a). **This divergence in performance and objectives has**
 064 **prevented the emergence of a unified SSL approach for both the speech and general audio domains.**

065 To address this lack of unification, we propose **SPEAR** (SPEech and Audio Representations), a uni-
 066 fied SSL framework for both speech and general audio. **We hypothesise that masked prediction of**
 067 ***fine-grained discrete tokens* could be a unified SSL pre-training task for both domains.** Our approach
 068 applies multi-codebook vector quantisation (MVQ) (Guo et al., 2023) to the intermediate repres-
 069 entations of existing speech and audio SSL models to obtain fine-grained discrete tokens, which then
 070 serve as the targets for a masked prediction objective. MVQ decomposes the representation space
 071 into multiple subspaces spanned by parallel codebooks. This multi-codebook design enables MVQ
 072 tokens to retain far more detail than coarse-grained discrete units, making SPEAR suitable for both
 073 speech and general audio. The pre-training objective can be viewed as performing multiple masked
 074 language modelling (Devlin et al., 2019) tasks simultaneously, one for each MVQ codebook. A key
 075 aspect of SPEAR is the joint pre-training on speech and audio, where the model learns to predict
 076 two sets of MVQ tokens derived from separate expert models from two domains. Together with a
 077 specially designed asymmetrical pre-training strategy, the dual-target objective enables SPEAR to
 078 learn a single, unified representation space bridging both domains. Finally, to enhance the model’s
 079 versatility for tasks requiring different temporal granularities (Shi et al., 2024a), we integrate a
 080 multi-temporal resolution encoder (Yao et al., 2024), allowing the model to process the input signal
 081 at variable frame rates in intermediate layers.

082 Our contributions can be highlighted as follows:

- 083 • We propose SPEAR, the first unified SSL framework for both speech and general audio
 084 that successfully learns high-quality unified representations for both domains.
- 085 • We conduct extensive experiments and validate the effectiveness of SPEAR in both single-
 086 domain and unified settings. Notably, our speech-domain model achieves the same or better
 087 performance than the competitive WavLM Large (Chen et al., 2022) on 12 out of 15 SU-
 088 PERB (Yang et al., 2021; Tsai et al., 2022) tasks under a fair comparison. Our audio model
 089 approaches the best-performing SSL models on the HEAR (Turian et al., 2022) benchmark,
 090 and even outperforms them on environment-related tasks while using far less data.
- 091 • We demonstrate that SPEAR unifies joint speech and audio pre-training, resulting in a
 092 model with a comprehensive capability over both domains. Furthermore, we show that this
 093 synergy is enhanced when scaling up model parameters and pre-training data.

094 Inference code and pre-trained models will be made open-source to facilitate future research.

095 2 RELATED WORK

096 **SSL for Speech and Audio** As introduced in Section 1, SSL has been widely adopted for learning
 097 generic representations in both the speech domain (Baevski et al., 2020; Hsu et al., 2021; Chen
 098 et al., 2022) and audio domain (Huang et al., 2022; Dinkel et al., 2024). Yet, existing SSL methods
 099 are typically domain-specific, and a unified framework for both domains remains absent. Bootstrap-
 100 ping approaches (Grill et al., 2020; Caron et al., 2021; Niizumi et al., 2021) have shown promise,
 101 achieving strong performance in speech (Baevski et al., 2022; 2023) and audio (Chen et al., 2024; Li
 102 et al., 2024a) independently, but have not been successfully applied to joint SSL on both domains.
 103 While Gong et al. (2022) explored using both speech and audio data for SSL, their main focus was
 104 to improve general audio capability. To the best of our knowledge, our proposed SPEAR framework
 105 is the first to establish a unified SSL pre-training framework for both speech and general audio.

106 **Masked-Token-Prediction-based SSL** Masked-token prediction is a widely used pretext task in
 107 SSL (Devlin et al., 2019). In the field of speech and audio, prevailing methods rely on coarse-grained

108 acoustic tokens generated via k-means clustering (Hsu et al., 2021; Chung et al., 2021) or random-
 109 projection quantisation (Chiu et al., 2022; Chen et al., 2023). In the music domain, MERT (Li et al.,
 110 2024b) integrates fine-grained Codec tokens (Défossez et al., 2023) as its pre-training targets.
 111 **Similarly, CodecMAE (Pepino et al., 2025) uses an MAE (He et al., 2022) structure to predict the**
 112 **Codec tokens for learning audio representations.** Our framework SPEAR likewise utilises fine-
 113 grained tokens as the pre-training target, but derives them via a non-hierarchical multi-codebook
 114 vector quantisation method, **while also extending the domains to both speech and audio.**

115
 116 **Knowledge Distillation** Knowledge distillation (KD) (Hinton et al., 2014) is frequently employed
 117 as a model compression technique (Jiao et al., 2020; Chang et al., 2022; Yang et al., 2022). SPEAR
 118 is related to multi-teacher KD, since its pre-training targets are obtained from two domain-specific
 119 teacher models. Multi-teacher KD has been explored to combine knowledge from multiple domains
 120 within a single model (Ranzinger et al., 2024). In the speech and audio domain, Yang et al. (2025)
 121 proposes to train a single model by performing KD on three supervised teachers specialising in
 122 speech, speaker, and audio event, respectively. **USAD (Chang et al., 2025), a contemporaneous**
 123 **work closely related to SPEAR, distils knowledge from two separate SSL models for speech and**
 124 **audio modalities into a single model to learn unified speech audio representations.** However, USAD
 125 primarily focuses on feature matching, using objectives such as the L1 loss or cosine similarity
 126 to align the student representation space with that of the teacher. Our method differs from them
 127 by coupling KD with a well-established **masked-token prediction** SSL objective for representation
 128 learning, rather than explicitly matching teacher representations.

129 3 SPEAR

130
 131 In this section, we introduce the proposed SPEAR framework. We hypothesise that a masked pre-
 132 diction objective can serve as a unified SSL solution for both speech and general audio, provided
 133 the discrete tokens are sufficiently fine-grained to retain critical acoustic detail from both domains.
 134 This motivates our choice of a powerful quantisation method, which is described below.

135 3.1 MULTI-CODEBOOK VECTOR QUANTISATION

136
 137 To generate fine-grained discrete targets for our masked prediction SSL objective, we employ multi-
 138 codebook vector quantisation (MVQ) (Guo et al., 2023), a trainable quantisation method originally
 139 proposed to compress high-dimensional feature vectors for storage optimisation. To the best of our
 140 knowledge, the application of MVQ in the context of SSL pre-training has never been explored.
 141 MVQ utilises N parallel codebooks, each containing K trainable code vectors. Given an input
 142 feature vector $\mathbf{x} \in \mathbb{R}^d$, MVQ encodes it into a tuple of N discrete tokens, i.e. $\mathbf{z} = \text{Encode}(\mathbf{x}; \mathcal{Q}) =$
 143 (z_1, \dots, z_N) . Each token z_n is an integer index in the range $[0, K - 1]$ specifying which code
 144 vector to select from the n -th codebook. These selected vectors can then be used to approximate the
 145 original feature vector \mathbf{x} via a direct-sum scheme (Barnes & Watkins, 1995).

146 Intuitively, this process partitions the feature space into N distinct subspaces, each governed by a
 147 corresponding codebook. The multi-codebook structure produces significantly more fine-grained
 148 representations than coarse methods like k-means, as the number of representable states grows ex-
 149 ponentially as K^N . Compared to other multi-codebook quantisation methods like RVQ (Défossez
 150 et al., 2023), the codebooks in MVQ are non-hierarchical, reducing inter-codebook correlation and
 151 making each codebook equally important. The MVQ quantiser is trained by minimising the re-
 152 construction error, supplemented by a diversity loss to encourage uniform code usage within each
 153 codebook. For a complete description of MVQ encoding and training mechanisms, we refer readers
 154 to the original paper (Guo et al., 2023) and the extended summary in Appendix B.

155 3.2 MULTI-CODEBOOK FINE-GRAINED MASKED TOKEN PREDICTION

156 3.2.1 SINGLE DOMAIN PRE-TRAINING

157
 158 The pre-training objective is to train a single student encoder \mathcal{S} , to predict fine-grained discrete
 159 tokens extracted from a pre-trained SSL teacher model \mathcal{T} in a masked-token prediction manner.
 160 Since the teacher used for generating the pre-training targets was trained without any labelled data,
 161 SPEAR is treated as an SSL approach. An illustration of the overall framework is shown in Figure 1.

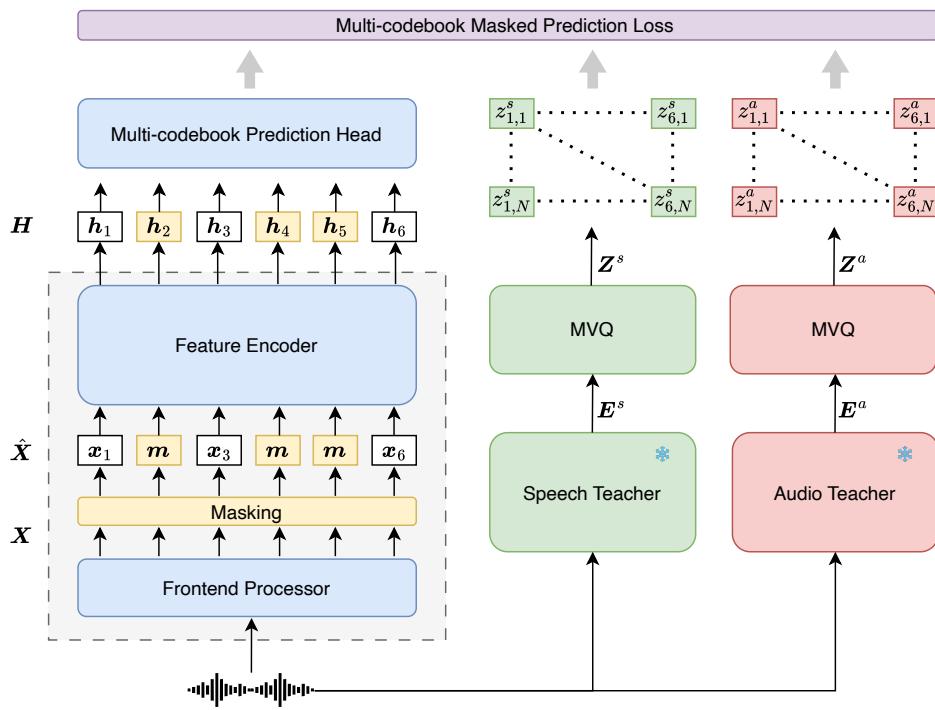


Figure 1: The SPEAR framework for dual-domain pre-training. Teacher models are frozen. For single-domain pre-training, only one teacher from the corresponding field is employed for generating pre-training targets. After pre-training, the components in the grey box are retained as the encoder.

The student encoder \mathcal{S} consists of a frontend processor and a feature encoder \mathcal{F} (specifically, a Zipformer (Yao et al., 2024)). The frontend processor converts the raw input waveform w into frame-level acoustical representations $X = \{x_1, \dots, x_T\}$ of length T . A masking operation is applied to X by randomly sampling a set of frames \mathcal{M} and replacing $\{x_t | t \in \mathcal{M}\}$ with a learnable mask embedding m , creating the masked input \hat{X} . The feature encoder \mathcal{F} then processes \hat{X} to produce a sequence of contextualised representations $H = \{h_1, \dots, h_T\}$, where $h_t \in \mathbb{R}^d$.

To generate the prediction targets, the same raw audio waveform w is fed into the teacher model \mathcal{T} , producing a sequence of frame-level representations $E = \mathcal{T}(w) = \{e_1, \dots, e_T\}$. We assume the teacher and student models share the same frame rate¹. These representations E are then quantised frame-by-frame using a pre-trained MVQ quantiser \mathcal{Q} to produce a sequence of fine-grained discrete tokens $Z = \{z_1, \dots, z_T\}$ as the pre-training targets, where $z_t = \text{Encode}(e_t; \mathcal{Q})$.

The student model is trained to predict the target tokens Z from the contextualised representations H . The multi-codebook masked prediction loss is formulated as the sum of N independent prediction losses, one for each codebook in the MVQ quantiser. Each of these losses is a cross-entropy objective calculated over all frames, with an adjustable weight α for masked and unmasked frames²:

$$\mathcal{L}_{\text{single}}(H, Z) = \frac{1}{N} \sum_{n=1}^N [\alpha \mathcal{L}_m^n(H, Z) + (1 - \alpha) \mathcal{L}_u^n(H, Z)] \quad (1)$$

$$= \frac{1}{N} \sum_{n=1}^N \left[\alpha \sum_{t \in \mathcal{M}} -\log p_n(z_{t,n} | h_t) + (1 - \alpha) \sum_{t \notin \mathcal{M}} -\log p_n(z_{t,n} | h_t) \right], \quad (2)$$

where \mathcal{L}_m^n and \mathcal{L}_u^n are the loss on masked and unmasked frames for the n -th codebook, respectively. $p_n(z_{t,n} | h_t)$ is the predicted probability of the correct token $z_{t,n}$ at time t for the n -th codebook,

¹This can be achieved by interpolating the teacher representations if the frame rates differ.

²The effect of α is investigated in Appendix G.2

216 which is computed via a softmax function over the logits from a projection matrix \mathbf{W}_n :

$$p_n(\cdot | \mathbf{h}_t) = \text{softmax}(\mathbf{W}_n \mathbf{h}_t), \quad (3)$$

219 where $\mathbf{W}_n \in \mathbb{R}^{K \times d}$ is the projection matrix of the prediction head for the n -th codebook.

220 3.2.2 UNIFIED DUAL-DOMAIN PRE-TRAINING

222 The framework is extended to dual-domain pre-training on a mixture of speech and general au-
223 dio data for learning unified representations of both domains. Specifically, we employ two expert
224 teacher models, \mathcal{T}^s (speech) and \mathcal{T}^a (general audio), along with their corresponding pre-trained
225 MVQ quantisers, \mathcal{Q}^s and \mathcal{Q}^a . Note that the number of codebooks could be different for \mathcal{Q}^s and \mathcal{Q}^a .

226 For each input waveform, the teacher representations \mathbf{E}^s and \mathbf{E}^a are extracted. Two sets of fine-
227 grained target tokens are obtained by applying the corresponding quantiser on \mathbf{E}^s and \mathbf{E}^a :

$$\mathbf{Z}^s = \{\text{Encode}(\mathbf{e}_1^s; \mathcal{Q}^s), \dots, \text{Encode}(\mathbf{e}_T^s; \mathcal{Q}^s)\} \quad (4)$$

$$\mathbf{Z}^a = \{\text{Encode}(\mathbf{e}_1^a; \mathcal{Q}^a), \dots, \text{Encode}(\mathbf{e}_T^a; \mathcal{Q}^a)\}. \quad (5)$$

231 During dual-domain pre-training, the speech tokens \mathbf{Z}^s are used as universal prediction targets for
232 all input data, whereas the audio tokens \mathbf{Z}^a are only used for loss computation when the input is
233 general audio. This asymmetric approach helps the model achieve balanced performance across
234 both domains (see Appendix G.7.1 for a comparison of three dual-domain pre-training strategies).
235 The dual-domain training objective is formulated as follows:

$$\mathcal{L}_{\text{dual}}(\mathbf{H}, \mathbf{Z}^s, \mathbf{Z}^a) = \mathcal{L}_{\text{single}}(\mathbf{H}, \mathbf{Z}^s) + \mathbf{1}_{\text{is_audio}} \cdot \lambda \cdot \mathcal{L}_{\text{single}}(\mathbf{H}, \mathbf{Z}^a), \quad (6)$$

236 where $\mathcal{L}_{\text{single}}$ is the single-domain masked prediction loss defined in Equation 2. The term $\mathbf{1}_{\text{is_audio}}$ is
237 an indicator function that returns 1 if the input is general audio and 0 otherwise. λ is a hyperparam-
238 eter for balancing the contribution of the general-audio-specific loss. By learning to predict both \mathbf{Z}^s
239 and \mathbf{Z}^a , the student model can learn a joint feature space for both domains.

242 4 EXPERIMENTAL SETUP

244 **Data** Pre-training is performed on a mixture of public unlabelled English speech datasets and gen-
245 eral audio datasets, as shown in Table 1. Due to the limited amount of public general audio datasets,
246 we incorporate two music datasets, Music4all (Santana et al., 2020) and MTG-Jamendo (Bogdanov
247 et al., 2019), to enrich the general audio data.

248 Table 1: Pre-training corpora used in SPEAR. Left: Speech datasets; Right: Audio datasets.

250 Speech Dataset	251 Hours	250 Audio Dataset	251 Hours
252 Libriheavy (Kang et al., 2024)	253 $\sim 50k$	252 AudioSet (Gemmeke et al., 2017)	253 $\sim 5k$
253 GigaSpeech (Chen et al., 2021)	254 $\sim 10k$	253 VGGsound (Chen et al., 2020a)	254 $\sim 0.5k$
254 VoxPopuli (en) (Wang et al., 2021)	255 $\sim 24k$	254 Freesound (Wu et al., 2023)	255 $\sim 2.8k$
255 Yodas-granary (en) (Koluguri et al., 2025)	256 $\sim 100k$	255 Music4all (Santana et al., 2020)	256 $\sim 1k$
		256 MTG-Jamendo (Bogdanov et al., 2019)	257 $\sim 3.8k$

257 **Model Architecture** As shown in (Shi et al., 2024a), modelling speech representations at different
258 time resolutions is beneficial to the comprehensive capabilities of speech SSL models. Therefore,
259 Zipformer (Yao et al., 2024) is selected as the feature encoder in SPEAR due to its dynamic down-
260 sampling mechanism in the intermediate layers. The model receives 128-dimensional filter-bank
261 features as input and produces frame-level representations at a 50 Hz frame rate.

262 **Pre-training Configuration** We pre-train three model scales under the SPEAR framework: Base
263 (94M), Large (327M), and XLarge (600M). At the Base and Large scales, we pre-train both single-
264 domain and dual-domain models. To further explore the benefits of scaling, we additionally train
265 an XLarge dual-domain model on a larger dataset. The pre-training data used for different scales of
266 SPEAR models are given in Table 2. The data mixtures are defined as follows: Speech-84k com-
267 prises Libriheavy, GigaSpeech, and VoxPopuli (en); Audio-13k includes all general audio datasets
268 listed in Table 1; Mix-97k combines Speech-84k and Audio-13k; and Mix-197k additionally in-
269 cludes the Yodas-granary dataset. Detail regarding the encoder configurations is provided in Ap-
270 pendix C.1, and hyperparameters for pre-training are presented in Appendix C.2.

270
271
272 Table 2: Pre-training configurations for different SPEAR settings.
273
274
275
276
277
278

Model	Domain(s)	Data Mixture	Total Hours
SPEAR _s -{Base, Large}	Speech	Speech-84k	~84k
SPEAR _a -{Base, Large}	Audio	Audio-13k	~13k
SPEAR _{s+a} -{Base, Large}	Speech & Audio	Mix-97k	~97k
SPEAR _{s+a} XLarge	Speech & Audio	Mix-197k	~197k

279
280 Table 3: Teacher models and MVQ-quantiser configurations for generating pre-training targets.
281
282
283
284
285

Teacher Model	# Params	Pre-train Data	Model Config			MVQ Config	
			Domain	Model Dim	Frame Rate	<i>N</i>	<i>K</i>
WavLM Large	317M	94k	Speech	1024	50 Hz	16	256
Dasheng 1.2B	1.2B	272k	Audio	1536	25 Hz	8	256

286
287 **Teacher Models and MVQ quantiser** WavLM Large (Chen et al., 2022) and Dasheng
288 1.2B (Dinkel et al., 2024) are utilised to generate pre-training targets for speech and audio do-
289 mains, respectively. Model details and corresponding MVQ quantiser configurations are provided
290 in Table 3. WavLM Large is pre-trained on 94k hours of unlabelled English speech data, including
291 Libri-light (Kahn et al., 2020), GigaSpeech, and Voxpopuli (en). It can be fairly contrasted with
292 SPEAR models trained on Speech-84k since Libriheavy is the segmented version of Libri-light. The
293 speech MVQ quantiser with 16 codebooks is trained using the 21st layer representations of WavLM
294 Large on 100 hours of data sampled from LibriSpeech (Panayotov et al., 2015). Dasheng 1.2B is
295 an audio SSL model pre-trained with an MAE (Huang et al., 2022) objective on an exceptionally
296 large amount of general audio data of over 272k hours. The audio MVQ quantiser is trained on
297 the last-layer representations with 8 codebooks on 50 hours of AudioSet balanced set. Ablation
298 studies on different choices of teacher models for pre-training target generation and MVQ quantiser
299 configurations are presented in Appendix G.1.1 and Appendix G.3.

300
301

5 RESULTS

302 To validate the effectiveness of the SPEAR framework, we assess its performance through both full
303 fine-tuning and frozen representation evaluations on two major benchmarks for evaluating speech
304 and audio representations: SUPERB Yang et al. (2021); Tsai et al. (2022) and HEAR (Turian et al.,
305 2022). [Finally, ablation studies on core components of SPEAR can be found in Section 5.4.](#)

306
307

5.1 DOWNSTREAM FINE-TUNING

308 We evaluate the performance of the pre-trained models on two key downstream fine-tuning tasks:
309 **automatic speech recognition** (ASR) for speech capabilities and **audio tagging** (AT) for general
310 audio understanding capabilities. The downstream fine-tuning results for the single-domain and
311 dual-domain models are presented in Table 4 and configurations are shown in Appendix C.3.

312 **ASR** ASR performance is evaluated on LibriSpeech (Panayotov et al., 2015), where the model is
313 fine-tuned on the train-clean-100 subset (LS-100) or the full 960 hours (LS-960) of LibriSpeech.
314 A lightweight, stateless RNN-T decoder (Graves, 2012; Ghodsi et al., 2020) with fewer than 3M
315 parameters using an output vocabulary of 500-class byte-pair-encoding (Sennrich et al., 2016) units
316 is attached to the pre-trained models unless otherwise noted. During fine-tuning, the pre-trained SSL
317 model is also updated. The projection heads for predicting MVQ tokens are discarded. Performance
318 is measured by the Word Error Rate (WER) on the test-clean and test-other splits of LibriSpeech,
319 using beam search decoding with no external language model. We mainly compare with the WavLM
320 models pre-trained on similar corpora at similar model sizes. Additional results of ASR fine-tuning
321 with a CTC (Graves et al., 2006) decoder can be found in Appendix D.

322 **Audio Tagging** To evaluate audio capabilities, our models are fine-tuned on AudioSet for AT
323 following the procedure in Gong et al. (2021). We perform fine-tuning on both the balanced subset
(AS-20k) and the full dataset (AS-2M). A linear projection layer is added on top of the encoder to

324 Table 4: Fine-tuning results on LibriSpeech ASR task and AudioSet AT task. For ASR, WERs under
 325 “clean” and “other” denote the WERs on test-clean and test-other sets. \triangle : Model fine-tuned from
 326 the public checkpoint. Best results in **bold**, 2nd best results underlined.

328 Model	# Params	Pre-train data	LS-100		LS-960		AS-20k	AS-2M
			329 clean	other	330 clean	other		
Speech SSL Models								
331 WavLM Base + \triangle (Chen et al., 2022)	95M	94k	4.0	8.4	2.9	5.4	-	-
332 HubERT Large \triangle (Hsu et al., 2021)	317M	60k	-	-	1.8	3.9	-	-
333 WavLM Large \triangle (Chen et al., 2022)	317M	94k	3.0	6.1	1.8	3.8	-	-
334 Ours, SPEAR _s Base	94M	84k	3.0	5.8	1.9	4.0	26.9	43.6
335 Ours, SPEAR _s Large	327M	84k	<u>2.6</u>	<u>4.7</u>	<u>1.7</u>	<u>3.3</u>	26.4	43.9
Audio SSL Models								
336 BEATs (Chen et al., 2023)	90M	5k	-	-	-	-	38.9	48.6
337 EAT (Chen et al., 2024)	88M	5k	-	-	-	-	40.2	48.6
338 ATST Frame (Li et al., 2024a)	86M	5k	-	-	-	-	39.0	48.0
339 Dasheng-Base \triangle (Dinkel et al., 2024)	86M	272k	-	-	-	-	-	49.7
340 Dasheng-1.2B\triangle (Dinkel et al., 2024)	1.2B	272k	7.7	20.0	3.4	8.7	-	50.0
341 Ours, SPEAR _a Base	94M	13k	11.2	23.0	-	-	39.2	49.3
342 Ours, SPEAR _a Large	327M	13k	7.4	18.6	-	-	39.3	49.8
Speech & Audio SSL Models								
343 Ours, SPEAR _{s+a} Base	94M	97k	3.1	6.1	1.9	4.2	39.1	48.4
344 Ours, SPEAR _{s+a} Large	327M	97k	<u>2.6</u>	4.8	<u>1.7</u>	3.4	39.2	49.6
345 Ours, SPEAR _{s+a} XLarge	600M	197k	2.5	4.6	1.6	2.9	<u>39.4</u>	50.0

346 predict the class probability of 527 sound event classes. Binary cross-entropy is used as the training
 347 objective, and the mean average precision (mAP) is measured on the AudioSet evaluation set. We
 348 compare SPEAR models with existing state-of-the-art audio SSL models.

349 **Results** The results presented in Table 4 demonstrate that SPEAR learns high-quality speech and
 350 audio representations that transfer well to the downstream tasks. For speech, our SPEAR_s Base
 351 and Large achieve relative WER reductions of 25.9% and 13.2% on the test-other set in LS-960
 352 compared to their WavLM counterparts, with similar model size and pre-training data. For general
 353 audio, the SPEAR_a Base model achieves an mAP of 49.3 on AS-2M, surpassing all other audio SSL
 354 models [with similar sizes³](#) (except Dasheng Base, which is pre-trained with 20 times more general
 355 audio data), and SPEAR_a Large improves further to 49.8 on AS-2M. These results highlight the
 356 effectiveness of using fine-grained MVQ tokens as pre-training targets in SPEAR.

357 Moreover, the dual-domain models successfully learn a unified representation space capable of han-
 358 dling both tasks with minimal performance loss, achieving ASR and AT performance comparable to
 359 their single-domain counterparts, and this performance gap diminishes as model capacity increases.
 360 Specifically, the WER for SPEAR_{s+a} Large model on test-other is only 0.1 higher than the speech-
 361 domain specialist SPEAR_s Large, while its mAP is only 0.2 lower than the SPEAR_a Large. This
 362 demonstrates that with sufficient model capacity, our dual-domain pre-training scheme enables a
 363 single model to learn a unified representation space with strong capability for both domains. It
 364 should be noted that this versatility is particularly important, since the single-domain models yield
 365 poor cross-domain capability (see SPEAR_s on AT or SPEAR_a [and Dasheng on ASR](#)). Finally, our
 366 largest model SPEAR_{s+a} XLarge further improves the performance on ASR and AT, setting a new
 367 state-of-the-art for SSL models on AS-2M AT task by achieving an mAP of 50.0.

368 In summary, the experiments in Table 4 suggest that the representations learnt through SPEAR adapt
 369 well to both domains after fine-tuning, proving its strong capability of learning both domain-specific
 370 and unified representations that excel in both speech and general audio domains.

372 5.2 SUPERB EVALUATION

373 **Setup** Experiments are carried out on SUPERB (Yang et al., 2021; Tsai et al., 2022), a benchmark
 374 for evaluating SSL models on a wide range of speech processing tasks. We follow the standard
 375 SUPERB evaluation protocol, using a weighted sum of the frozen intermediate representations from

376 377 ³A strict comparable AT fine-tuning setup with all models pre-trained [with the same dataset](#) is shown in
 Appendix G.1.1, where our Base-scaled SPEAR_a model consistently outperforms SOTA audio SSL models.

378 Table 5: Results on SUPERB. Best results in **bold**, 2nd best underlined. F1 reported for SF and
 379 PESQ for SE. Other task metrics described in Appendix E. USAD models from Chang et al. (2025).
 380

381 Model	# Param	Pre-train data	Understanding						Paralinguistic			Enhancement	
			382 PR↓	382 ASR↓	382 IC↑	382 KS↑	382 SF↑	382 ST↑	382 SID↑	382 SV↓	382 ER↑	382 SE↑	382 SS↑
Speech SSL models													
384 WavLM Base+	95M	94k	3.5	3.92	99.00	97.37	90.6	24.3	89.4	4.07	68.7	2.63	10.85
385 WavLM Large	317M	94k	3.1	3.44	99.31	97.86	92.2	<u>26.6</u>	<u>95.5</u>	3.77	70.6	2.70	11.19
386 Ours, SPEAR _S Base	94M	84k	3.4	3.46	99.17	97.50	91.0	24.4	90.5	3.75	69.2	2.64	10.84
Ours, SPEAR _S Large	327M	84k	2.6	<u>3.27</u>	<u>99.47</u>	97.89	<u>92.8</u>	26.2	<u>95.5</u>	<u>3.14</u>	72.1	2.71	11.20
Audio SSL models													
388 BEATs	90M	5k	36.4	36.4	97.70	53.40	-	-	57.1	-	64.5	-	-
EAT	88M	5k	55.0	25.9	92.80	62.50	-	-	45.0	-	62.5	-	-
389 ATST Frame	86M	5k	20.4	18.8	95.10	85.40	-	-	69.8	-	64.4	-	-
Dasheng 1.2B	1.2B	272k	14.3	13.8	98.13	97.73	-	-	92.4	-	68.7	-	-
Speech+Audio Models													
392 USAD Base	94M	126k	5.1	7.70	98.30	97.10	-	-	88.6	-	68.0	-	-
393 USAD Large	330M	126k	4.0	6.50	98.40	97.10	-	-	91.2	-	68.4	-	-
394 Ours, SPEAR _{S+a} Base	94M	97k	3.9	3.76	98.05	97.58	90.5	24.1	90.0	3.85	69.4	2.66	10.89
Ours, SPEAR _{S+a} Large	327M	97k	3.1	3.39	99.40	<u>97.92</u>	92.1	25.6	95.0	3.30	71.6	2.72	11.12
Ours, SPEAR _{S+a} XLarge	600M	97k	<u>2.9</u>	3.19	99.61	98.12	92.9	26.7	96.3	2.86	73.3	2.72	11.24

397 the SSL models. For better readability, we group the SUPERB tasks into three categories: Understanding,
 398 Paralinguistic, and Enhancement. We select representative tasks within each category and
 399 report their results in Table 5. The primary comparison is made against the WavLM Large, which is
 400 the current SOTA on SUPERB. Further details on the SUPERB evaluation, including the individual
 401 task information and complete results on SUPERB, can be found in Appendix E.

402 **Results** As can be seen from Table 5, SPEAR improves across the range of speech tasks, achieving
 403 notable gains across all three task categories. With the same model size and pre-training corpora,
 404 our speech-domain SPEAR_S Large model outperforms the current state-of-the-art WavLM Large on
 405 nearly every task. The improvement in paralinguistic capabilities is particularly noteworthy. For
 406 instance, SPEAR_S Large achieves a 16.7% relative reduction of equal-error-rate on speaker verifica-
 407 tion (SV) and a 1.48% absolute accuracy improvement on emotion recognition (ER). This suggests
 408 that our fine-grained masked-token prediction objective helps the model learn richer paralinguistic
 409 information beyond speech content alone, than by using k-means clustered tokens. An analysis of
 410 the feature subspaces learned through the fine-grained MVQ tokens is conducted in Appendix G.4.

411 It is evident that audio-only SSL models generally underperform on the SUPERB benchmark. Even
 412 with a very large pre-training corpus of 272k hours, Dasheng 1.2B consistently performs more
 413 poorly than our much smaller SPEAR_S Large, especially on tasks requiring higher-level semantic or
 414 phonetic understanding. This gap could be attributed to the MAE (He et al., 2022) objective used by
 415 Dasheng, which attempts to reconstruct the input acoustic features, making the model focus more on
 416 low-level acoustic details rather than high-level semantic structures necessary for speech under-
 417 standing. In contrast, the fine-grained masked-token prediction objective in SPEAR allows the model to
 418 learn semantic structures while retaining acoustic details. Therefore, our dual-domain SPEAR mod-
 419 els maintain strong performance on SUPERB. Despite a slight degradation in some understanding
 420 and paralinguistic tasks, the SPEAR_{S+a} Large notably outperforms its speech-only counterpart on
 421 keyword spotting (KS) and speech enhancement (SE), indicating a positive synergy from the dual-
 422 domain pre-training on these tasks. SPEAR_{S+a} Large also outperforms USAD Large (Chang et al.,
 423 2025) comprehensively, another unified speech and audio model trained via matching the represen-
 424 tations of two teacher models, demonstrating the advantage of the SSL objective defined by SPEAR.
 425 Finally, by scaling up the model size and training data, SPEAR_{S+a} XLarge, our largest dual-domain
 426 model, pushes the performance boundary even further, establishing new state-of-the-art on multiple
 427 SUPERB tasks, while being more versatile than speech-only models.

428 5.3 HEAR EVALUATION

429 **Setup** To assess the general audio capabilities of our models, experiments are conducted on the
 430 HEAR benchmark (Turian et al., 2022), which evaluates audio representations across 19 diverse
 431 tasks. The final-layer representations are used for evaluation unless otherwise specified. For clarity,
 the average scores for each of the three task categories are reported: Environment, Speech and

432 Table 6: Results on the HEAR benchmark. The group-wise average score and the overall average
 433 score are reported. Rows with grey background: results obtained by using concatenation of all
 434 layers’ features. Best results in **bold**, 2nd best results underlined.

436 Model	# Params	Pre-train Data	Env	Speech	Music	Average
Speech Models						
438 WavLM Base+ (Chen et al., 2022)	95M	94k	57.28	68.14	61.31	62.69
439 WavLM Large (Chen et al., 2022)	317M	94k	72.86	72.69	65.77	69.65
440 Ours, SPEAR _s Base	94M	84k	73.09	73.41	70.66	72.12
441 Ours, SPEAR _s Large	327M	84k	72.74	74.80	71.68	72.96
Audio Models						
442 BEATs (Chen et al., 2023)	90M	5k	73.23	62.40	77.52	71.05
443 Dasheng-Base (Dinkel et al., 2024)	86M	272k	80.18	72.48	84.00	79.31
444 Dasheng 0.6B (Dinkel et al., 2024)	600M	272k	82.95	74.82	<u>84.73</u>	81.03
445 Dasheng 1.2B (Dinkel et al., 2024)	1.2B	272k	83.20	75.72	84.86	81.44
446 Ours, SPEAR _a Base (5k)	94M	<u>5k</u>	<u>77.83</u>	69.74	80.61	76.37
447 Ours, SPEAR _a Large (5k)	327M	<u>5k</u>	78.16	72.94	81.80	78.08
448 Ours, SPEAR _a Base	94M	13k	80.33	69.87	80.33	77.01
449 Ours, SPEAR _a Large	327M	13k	83.58	72.70	81.85	79.18
450 Ours, SPEAR _a Base	94M	13k	83.61	71.98	83.26	79.85
451 Ours, SPEAR _a Large	327M	13k	84.97	73.01	84.62	80.83
Speech & Audio Models						
452 USAD Base (Chang et al., 2025)	94M	126k	80.67	73.72	79.31	77.75
453 USAD Large (Chang et al., 2025)	330M	126k	81.97	74.48	81.7	79.36
454 Ours, SPEAR _{s+a} Base	94M	97k	80.66	73.73	79.29	77.75
455 Ours, SPEAR _{s+a} Large	327M	97k	81.10	76.47	80.42	79.26
456 Ours, SPEAR _{s+a} XLarge	600M	197k	81.74	76.76	80.92	79.72
457 Ours, SPEAR _{s+a} Base	94M	97k	82.58	77.3	81.97	80.55
458 Ours, SPEAR _{s+a} Large	327M	97k	84.38	<u>78.84</u>	82.69	<u>81.78</u>
459 Ours, SPEAR _{s+a} XLarge	600M	197k	84.69	79.72	83.69	82.33

460 Music, along with the overall average score in Table 6. More information regarding the tasks in
 461 HEAR and detailed results on individual tasks are provided in Appendix F. Apart from the SPEAR
 462 models in Table 2, two additional SPEAR_a models in Base and Large architectures are pre-trained
 463 using only AudioSet 5k hours, denoted as SPEAR_a {Base, Large} (5k).

464 **Results** As shown in Table 6, all speech-domain models show very limited overall performance
 465 on the general-audio-focused HEAR benchmark, highlighting the need to incorporate general audio
 466 data during pre-training. Nonetheless, our SPEAR_s models, even the SPEAR_s Base, yield a higher
 467 overall score than the much bigger WavLM Large pre-trained with coarse k-means tokens, indicating
 468 that the fine-grained discrete tokens manage to capture general-audio-related information despite
 469 being extracted from a speech SSL model.

470 Our audio-domain SPEAR_a models demonstrate strong performance on environment-related tasks.
 471 Notably, SPEAR_a Large achieves 83.58 on the environment category, surpassing the best performing
 472 audio SSL model Dasheng 1.2B (83.2), with only a quarter of the model parameters and far less pre-
 473 training data. However, the performance of SPEAR_a Large on speech and music tasks still trails
 474 that of Dasheng 1.2B, a gap we attribute to the significantly smaller scale of pre-training data and
 475 model size⁴. **Despite this gap, it is noteworthy that SPEAR_a benefits from scaling up the audio**
 476 **training data: increasing the audio data from 5k to 13k hours leads to a substantial improvement in**
 477 **the overall HEAR score, highlighting the potential of SPEAR for audio SSL at larger scales.**

478 Finally, our dual-domain SPEAR_{s+a} models consistently outperform their single-domain counter-
 479 parts, highlighting the benefits of our unified pre-training framework. The SPEAR_{s+a} Large
 480 achieves an average score of 79.26, surpassing both SPEAR_s Large (72.96) and SPEAR_{s+a} Large
 481 (79.18), indicating that SPEAR successfully unifies the representation space of both domains
 482 through joint pre-training on both speech and audio data, making it a more versatile model. Com-
 483 pared to USAD Large trained with multi-teacher knowledge distillation, our SPEAR_{s+a} Large pre-

484 ⁴A comparison of Dasheng and SPEAR using the same amount (5k hours) of training data is in Appendix I,
 485 where we show SPEAR_a models outperforms Dasheng by a large margin with this amount of training data.

486 trained on a smaller corpora achieves a significant absolute improvement of 2.42 on the average
 487 score under the same evaluation setup of using intermediate representations. This again highlights
 488 the strength of SPEAR as a unified SSL framework for learning generic speech and audio representa-
 489 tions jointly **through fine-grained masked-token prediction**. **Another controlled comparison between**
 490 **SPEAR and USAD (same teachers, similar model size and training data) is presented in Appendix H,**
 491 **where SPEAR still consistently outperforms USAD**. Finally, compared to the much larger Dasheng
 492 1.2B, $SPEAR_{s+a}$ XLarge achieves stronger performance on speech-related tasks while trailing on
 493 environment and music tasks, which can be attributed to its smaller model size and imbalanced pre-
 494 training data composition (only 13k hours from the 197k hours are general-audio data). However,
 495 this performance gap can be reversed by leveraging all intermediate layer representations.
 496

497 5.4 ABLATION STUDIES

498 In order to provide an in-depth understanding of the core components of SPEAR, we performed
 499 extensive ablation studies. Here, we summarise the key aspects investigated and their corresponding
 500 findings. Detailed experimental setups and analyses are presented in Appendix G.

501 **Different Teacher Models** We investigated the impact of utilising teacher models with varying
 502 sizes and training data scales in Appendix G.1.1. The key findings include:

- 504 • *Stronger teacher models generally lead to a stronger student model.* This suggests that it is
 505 necessary to select powerful teacher models for the optimal performance of SPEAR.
- 506 • *Student models are not upper-bounded by their teacher models.* Given the same training
 507 data and model size, the models trained with SPEAR are capable of outperforming their
 508 teachers, suggesting that the fine-grained masked prediction objective defined by SPEAR
 509 helps discover better features than the original teacher.

510 **MVQ vs k-means** We conducted a controlled experiment to compare pre-training performance
 511 using MVQ tokens versus k-means tokens (see Appendix G.5). We observe that the model trained
 512 with MVQ tokens consistently achieves better performance across all tasks. This confirms that *the*
 513 *fine-grained nature of MVQ tokens conveys richer information from the teacher model than coarse*
 514 *k-means tokens*. Additionally, a visualisation of the embedding space (Appendix G.4) reveals that
 515 the MVQ quantiser exhibits a much clearer separation of different speakers compared to k-means.

516 **Dual-domain Training Strategy** Two extra dual-domain pre-training strategies are compared
 517 against the asymmetrical strategy adopted by SPEAR (see Section 3.2.2), and results are shown
 518 in Appendix G.7. We find that *the asymmetrical design adopted by SPEAR achieves a more bal-
 519 anced performance across speech and audio domains due to the dominance of speech data in the*
 520 *mixed speech audio training set*. This motivates us to enlarge the proportion of general audio data
 521 (e.g., by curating a larger general audio dataset) in the training corpora for our future work. Fur-
 522 thermore, we experimented with varying λ (Equation 6) to control the contribution of audio-specific
 523 loss, finding that $\lambda = 0.1$ yields the optimal result.

524 Beyond the studies above, we also investigated the effect of the weighting factor λ in the masked-
 525 prediction pre-training loss (Appendix G.2), the number of codebooks in MVQ (Appendix G.3), and
 526 encoder architectures (Zipformer vs Transformer) for SPEAR (Appendix G.6).

527 6 CONCLUSIONS

528 In this work, we propose SPEAR, a unified SSL framework for both speech and general audio
 529 domains, learning unified and generic representations across both domains. By leveraging multi-
 530 codebook vector quantisation to generate fine-grained discrete speech and audio tokens, SPEAR
 531 performs fine-grained masked-token prediction as the pre-training task for representation learning.
 532 Based on this, an asymmetrical dual-domain pre-training pipeline is designed to balance the per-
 533 formance across both domains. To the best of our knowledge, SPEAR is the first SSL framework
 534 to successfully learn unified speech and audio representations from a mixture of speech and audio.
 535 The downstream fine-tuning experiments, along with the evaluation of frozen representations on two
 536 major benchmarks for evaluating speech and general-audio representations (SUPERB and HEAR),
 537 demonstrate the effectiveness of SPEAR in learning unified and generic speech and audio repres-
 538 entations. Our dual-domain model with 600M parameters excels in both domains, making it one of the
 539 most powerful and versatile open-source SSL models for auditory understanding.

540 7 ETHICS STATEMENT
541542 We recognise that powerful audio representation models could be misused. The technology pre-
543 sented could serve as a foundation for applications we do not endorse, such as non-consensual
544 speaker identification, mass surveillance, or the generation of synthetic audio for disinformation.
545 Our goal in releasing these models is to enable transparency and accelerate positive academic inno-
546 vation. We strongly condemn any application of our research to unethical ends.
547548 8 REPRODUCIBILITY STATEMENT
549550 To ensure the reproducibility of our research and to support further advancements in the field, we
551 will make our resources publicly available, including the inference code and the model checkpoints.
552 All essential training details, including model configurations and hyperparameters, have been thor-
553oughly documented in the main paper as well as Appendix C.2 and Appendix C.3. We hope that
554 by providing these resources, more researchers can contribute to the development of this exciting
555 research area. Details regarding access and implementation will be updated after the double-blind
556 review. We invite the community to build upon our work to further advance the research field.
557558 REFERENCES
559560 Jonah Anton, Harry Coppock, Pancham Shukla, and Björn W Schuller. Audio Barlow Twins: Self-
561 supervised audio representation learning. In *Proc. ICASSP*, Rhodes, 2023.
562 Hagai Attias and Christoph Schreiner. Temporal low-order statistics of natural sounds. In *Proc.
563 NeurIPS*, 1996.
564 Alexei Baevski, Yuhao Zhou, Abdelrahman Mohamed, and Michael Auli. wav2vec 2.0: A frame-
565 work for self-supervised learning of speech representations. In *Proc. NeurIPS*, Vancouver, 2020.
566 Alexei Baevski, Wei-Ning Hsu, Qiantong Xu, Arun Babu, Jiatao Gu, and Michael Auli. Data2vec:
567 A general framework for self-supervised learning in speech, vision and language. In *Proc. ICML*,
568 Baltimore, 2022.
569 Alexei Baevski, Arun Babu, Wei-Ning Hsu, and Michael Auli. Efficient self-supervised learn-
570 ing with contextualized target representations for vision, speech and language. In *Proc. ICML*,
571 Hawaii, 2023.
572 Christopher F Barnes and John P Watkins. Embedded wavelet zerotree coding with direct sum
573 quantization structures. In *Proceedings DCC'95 Data Compression Conference*, Snowbird, 1995.
574 Dmitry Bogdanov, Minz Won, Philip Tovstogan, Alastair Porter, and Xavier Serra. The MTG-
575 Jamendo dataset for automatic music tagging. In *Proc. ICML*, Long Beach, 2019.
576 Albert S Bregman. *Auditory scene analysis: The perceptual organization of sound*. MIT press,
577 1994.
578 Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
579 Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
580 few-shot learners. In *Proc. NeurIPS*, Vancouver, 2020.
581 Mathilde Caron, Hugo Touvron, Ishan Misra, Hervé Jégou, Julien Mairal, Piotr Bojanowski, and
582 Armand Joulin. Emerging properties in self-supervised vision transformers. In *Proc. ICCV*,
583 Montreal, 2021.
584 Heng-Jui Chang, Shu-wen Yang, and Hung-yi Lee. Distilhubert: Speech representation learning by
585 layer-wise distillation of hidden-unit BERT. In *Proc. ICASSP*, Singapore, 2022.
586 Heng-Jui Chang, Saurabhchand Bhati, James Glass, and Alexander H Liu. USAD: Universal speech
587 and audio representation via distillation. *To appear at Proc. ASRU*, 2025.
588 Guoguo Chen, Shuzhou Chai, Guanbo Wang, Jiayu Du, et al. GigaSpeech: An evolving, multi-
589 domain ASR corpus with 10,000 hours of transcribed audio. In *Proc. Interspeech*, 2021.

594 Honglie Chen, Weidi Xie, Andrea Vedaldi, and Andrew Zisserman. Vggsound: A large-scale audio-
 595 visual dataset. In *Proc. ICASSP*, Barcelona, 2020a.

596

597 Sanyuan Chen, Chengyi Wang, Zhengyang Chen, Yu Wu, Shujie Liu, Zhuo Chen, Jinyu Li, Naoyuki
 598 Kanda, Takuya Yoshioka, Xiong Xiao, et al. WavLM: Large-scale self-supervised pre-training for
 599 full stack speech processing. *IEEE Journal of Selected Topics in Signal Processing*, 16(6):1505–
 600 1518, 2022.

601 Sanyuan Chen, Yu Wu, Chengyi Wang, Shujie Liu, Daniel Tompkins, Zhuo Chen, and Furu Wei.
 602 BEATs: Audio pre-training with acoustic tokenizers. In *Proc. ICML*, Hawaii, 2023.

603

604 Ting Chen, Simon Kornblith, Kevin Swersky, Mohammad Norouzi, and Geoffrey E Hinton. Big
 605 self-supervised models are strong semi-supervised learners. In *Proc. NeurIPS*, 2020b.

606 Wenxi Chen, Yuzhe Liang, Ziyang Ma, Zhisheng Zheng, and Xie Chen. EAT: self-supervised pre-
 607 training with efficient audio transformer. In *Proc. IJCAI*, Jeju, 2024.

608

609 Chung-Cheng Chiu, James Qin, Yu Zhang, Jiahui Yu, and Yonghui Wu. Self-supervised learning
 610 with random-projection quantizer for speech recognition. In *Proc. ICML*, Baltimore, 2022.

611 Yu-An Chung, Yu Zhang, Wei Han, Chung-Cheng Chiu, James Qin, Ruoming Pang, and Yonghui
 612 Wu. w2v-BERT: Combining contrastive learning and masked language modeling for self-
 613 supervised speech pre-training. In *Proc. ASRU*, 2021.

614

615 Gheorghe Comanici, Eric Bieber, Mike Schaeckermann, Ice Pasupat, Noveen Sachdeva, Inderjit
 616 Dhillon, Marcel Blistein, Ori Ram, Dan Zhang, Evan Rosen, et al. Gemini 2.5: Pushing the
 617 frontier with advanced reasoning, multimodality, long context, and next generation agentic capa-
 618 bilities. *arXiv preprint arXiv:2507.06261*, 2025.

619 Alexandre Défossez, Jade Copet, Gabriel Synnaeve, and Yossi Adi. High fidelity neural audio
 620 compression. *Transactions on Machine Learning Research*, 2023.

621

622 Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: Pre-training of deep
 623 bidirectional transformers for language understanding. In *Proc. NAACL*, Minneapolis, 2019.

624 Heinrich Dinkel, Zhiyong Yan, Yongqing Wang, Junbo Zhang, Yujun Wang, and Bin Wang. Scaling
 625 up masked audio encoder learning for general audio classification. In *Proc. Interspeech*, Kos
 626 Island, 2024.

627

628 Jort F Gemmeke, Daniel PW Ellis, Dylan Freedman, Aren Jansen, Wade Lawrence, R Channing
 629 Moore, Manoj Plakal, and Marvin Ritter. Audio set: An ontology and human-labeled dataset for
 630 audio events. In *Proc. ICASSP*, New Orleans, 2017.

631 Mohammadreza Ghodsi, Xiaofeng Liu, James Apfel, Rodrigo Cabrera, and Eugene Weinstein.
 632 RNN-transducer with stateless prediction network. In *Proc. ICASSP*, Barcelona, 2020.

633

634 Yuan Gong, Yu-An Chung, and James Glass. AST: Audio Spectrogram Transformer. In *Proc.*
 635 *Interspeech*, Brno, 2021.

636

637 Yuan Gong, Cheng-I Lai, Yu-An Chung, and James Glass. SSAST: Self-supervised audio spectro-
 638 gram transformer. In *Proc. AAAI*, 2022.

639 A. Graves. Sequence transduction with recurrent neural networks. In *Proc. ICML Workshop on*
 640 *Representation Learning*, Edinburgh, 2012.

641 Alex Graves, Santiago Fernández, Faustino Gomez, and Jürgen Schmidhuber. Connectionist tempo-
 642 ral classification: labelling unsegmented sequence data with recurrent neural networks. In *Proc.*
 643 *ICML*, Pittsburgh, 2006.

644

645 Jean-Bastien Grill, Florian Strub, Florent Altché, Corentin Tallec, Pierre Richemond, Elena
 646 Buchatskaya, Carl Doersch, Bernardo Avila Pires, Zhaohan Guo, Mohammad Gheshlaghi Azar,
 647 et al. Bootstrap your own latent-a new approach to self-supervised learning. In *Proc. NeurIPS*,
 Vancouver, 2020.

648 Liyong Guo, Xiaoyu Yang, Quandong Wang, Yuxiang Kong, Zengwei Yao, Fan Cui, Fangjun
 649 Kuang, Wei Kang, Long Lin, Mingshuang Luo, et al. Predicting multi-codebook vector quan-
 650 tization indexes for knowledge distillation. In *Proc. ICASSP*, Rhodes, 2023.

651

652 Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollár, and Ross Girshick. Masked
 653 autoencoders are scalable vision learners. In *Proc. CVPR*, New Orleans, 2022.

654

655 Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a neural network. In
 656 *Proc. NIPS Deep Learning Workshop*, Montreal, 2014.

657

658 Wei-Ning Hsu, Benjamin Bolte, Yao-Hung Hubert Tsai, Kushal Lakhota, Ruslan Salakhutdinov,
 659 and Abdelrahman Mohamed. HuBERT: Self-supervised speech representation learning by
 660 masked prediction of hidden units. *IEEE/ACM transactions on audio, speech, and language pro-
 cessing*, 29:3451–3460, 2021.

661

662 Po-Yao Huang, Hu Xu, Juncheng Li, Alexei Baevski, Michael Auli, Wojciech Galuba, Florian
 663 Metze, and Christoph Feichtenhofer. Masked autoencoders that listen. *Proc. NeurIPS*, 2022.

664

665 Xiaoqi Jiao, Yichun Yin, Lifeng Shang, Xin Jiang, Xiao Chen, Linlin Li, Fang Wang, and Qun Liu.
 666 TinyBERT: Distilling BERT for natural language understanding. In *Findings of EMNLP*, Online,
 2020.

667

668 Jacob Kahn, Morgane Rivière, Weiyi Zheng, Evgeny Kharitonov, Qiantong Xu, Pierre-Emmanuel
 669 Mazaré, Julien Karadai, Vitaliy Liptchinsky, Ronan Collobert, Christian Fuegen, Tatiana
 670 Likhomanenko, Gabriel Synnaeve, Armand Joulin, Abdelrahman Mohamed, and Emmanuel
 671 Dupoux. Libri-light: A benchmark for ASR with limited or no supervision. In *Proc. ICASSP*,
 672 Barcelona, 2020.

673

674 Wei Kang, Xiaoyu Yang, Zengwei Yao, Fangjun Kuang, Yifan Yang, Liyong Guo, Long Lin, and
 675 Daniel Povey. Libriheavy: A 50,000 hours ASR corpus with punctuation casing and context. In
 676 *Proc. ICASSP*, Seoul, 2024.

677

678 Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi Mao, Chloe Rolland, Laura Gustafson, Tete
 679 Xiao, Spencer Whitehead, Alexander C Berg, Wan-Yen Lo, et al. Segment anything. In *Proc.
 680 ICCV*, Paris, 2023.

681

682 Nithin Rao Koluguri, Monica Sekoyan, George Zelenfroynd, Sasha Meister, Shuoyang Ding, Sofia
 683 Kostandian, He Huang, Nikolay Karpov, Jagadeesh Balam, Vitaly Lavrukhin, Yifan Peng, Sara
 Papi, Marco Gaido, Alessio Brutti, and Boris Ginsburg. Granary: Speech recognition and trans-
 684 lation dataset in 25 European languages. In *Proc. Interspeech*, Amsterdam, 2025.

685

686 Fangjun Kuang, Liyong Guo, Wei Kang, Long Lin, Mingshuang Luo, Zengwei Yao, and Daniel
 687 Povey. Pruned RNN-T for fast, memory-efficient ASR training. In *Proc. Interspeech*, Incheon,
 688 2022.

689

690 Xian Li, Nian Shao, and Xiaofei Li. Self-supervised audio teacher-student transformer for both
 691 clip-level and frame-level tasks. *IEEE/ACM Transactions on Audio, Speech, and Language Pro-
 cessing*, 32:1336–1351, 2024a.

692

693 Yizhi Li, Ruibin Yuan, Ge Zhang, Yinghao Ma, Xingran Chen, Hanzhi Yin, Chenghao Xiao,
 694 Chenghua Lin, Anton Ragni, Emmanouil Benetos, et al. MERT: Acoustic music under-
 695 standing model with large-scale self-supervised training. In *Proc. ICLR*, Vienna, 2024b.

696

697 Leland McInnes, John Healy, Nathaniel Saul, and Lukas Großberger. UMAP: Uniform manifold
 698 approximation and projection for dimension reduction. *Journal of Open Source Software*, 3(29):
 699 861, 2018.

700

701 Pooneh Mousavi, Gallil Maimon, Adel Moumen, Darius Petermann, Jiatong Shi, Haibin Wu, Haici
 702 Yang, Anastasia Kuznetsova, Artem Ploujnikov, Ricard Marixer, Bhuvana Ramabhadran, Ben-
 703 jamin Elizalde, Loren Lugosch, Jinyu Li, Cem Subakan, Phil Woodland, Minje Kim, Hung yi Lee,
 704 Shinji Watanabe, Yossi Adi, and Mirco Ravanelli. Discrete audio tokens: More than a survey!
 705 *Transactions on Machine Learning Research*, 2025. ISSN 2835-8856.

702 Daisuke Niizumi, Daiki Takeuchi, Yasunori Ohishi, Noboru Harada, and Kunio Kashino. Byol for
 703 audio: Self-supervised learning for general-purpose audio representation. In *Proc. IJCNN*, 2021.
 704

705 Vassil Panayotov, Guoguo Chen, Daniel Povey, and Sanjeev Khudanpur. LibriSpeech: an ASR
 706 corpus based on public domain audio books. In *Proc. ICASSP*, Brisbane, 2015.

707 Daniel S Park, William Chan, Yu Zhang, Chung-Cheng Chiu, Barret Zoph, Ekin D Cubuk, and
 708 Quoc V Le. SpecAugment: A simple data augmentation method for automatic speech recognition.
 709 In *Proc. Interspeech*, Graz, 2019.

710 Leonardo Pepino, Pablo Riera, and Luciana Ferrer. [EncodecMAE: Leveraging neural codecs for
 712 universal audio representation learning](#). In *Proc. Interspeech*, Rotterdam, 2025.

711 Vineel Pratap, Awni Y. Hannun, Qiantong Xu, et al. Wav2letter++: A fast open-source speech
 714 recognition system. In *Proc. ICASSP*, Brighton, 2019.

715 Mike Ranzinger, Greg Heinrich, Jan Kautz, and Pavlo Molchanov. AM-RADIO: Agglomerative
 717 vision foundation model reduce all domains into one. In *Proc. CVPR*, Seattle, 2024.

718

719 Igor Andre Pegoraro Santana, Fabio Pinhelli, Juliano Donini, Leonardo Gabiato Catharin, Rafael Bi-
 720 azus Mangolin, G. Costa Yandre M. Valeria Delisandra Feltrim, and Marcos Aurélio Domingues.
 721 Music4all: A new music database and its applications. In *Proc. IWSSIP*, Rio de Janeiro, 2020.

722

723 Rico Sennrich, Barry Haddow, and Alexandra Birch. Neural machine translation of rare words with
 724 subword units. In *Proc. ACL*, Berlin, 2016.

725

726 Jiatong Shi, Hirofumi Inaguma, Xutai Ma, Ilia Kulikov, and Anna Sun. Multi-resolution HuBERT:
 727 Multi-resolution speech self-supervised learning with masked unit prediction. In *Proc. ICLR*,
 728 Vienna, 2024a.

729

730 Jiatong Shi, Xutai Ma, Hirofumi Inaguma, Anna Sun, and Shinji Watanabe. Mmm: Multi-layer
 731 multi-residual multi-stream discrete speech representation from self-supervised learning model.
 In *Proc. Interspeech*, Kos Island, 2024b.

732

733 David Snyder, Guoguo Chen, and Daniel Povey. Musan: A music, speech, and noise corpus. *arXiv
 preprint arXiv:1510.08484*, 2015.

734

735 Hsiang-Sheng Tsai, Heng-Jui Chang, Wen-Chin Huang, Zili Huang, Kushal Lakhotia, Shu-wen
 736 Yang, Shuyan Dong, Andy Liu, Cheng-I Lai, Jiatong Shi, Xuankai Chang, Phil Hall, Hsuan-Jui
 737 Chen, Shang-Wen Li, Shinji Watanabe, Abdelrahman Mohamed, and Hung-yi Lee. SUPERB-
 738 SG: Enhanced speech processing universal PERformance benchmark for semantic and generative
 739 capabilities. In *Proc. ACL*, Dublin, 2022.

740

741 Joseph Turian, Jordie Shier, Humair Raj Khan, Bhiksha Raj, Björn W. Schuller, Christian J. Stein-
 742 metz, Colin Malloy, George Tzanetakis, Gissel Velarde, Kirk McNally, Max Henry, Nicolas Pinto,
 743 Camille Noufi, Christian Clough, Dorien Herremans, Eduardo Fonseca, Jesse Engel, Justin Sala-
 744 mon, Philippe Esling, Pranay Manocha, Shinji Watanabe, Zeyu Jin, and Yonatan Bisk. HEAR:
 745 Holistic evaluation of audio representations. In *NeurIPS 2021 Competitions and Demonstrations
 Track*, 2022.

746

747 Changhan Wang, Morgane Riviere, Ann Lee, Anne Wu, Chaitanya Talnikar, Daniel Haziza, Mary
 748 Williamson, Juan Pino, and Emmanuel Dupoux. VoxPopuli: A large-scale multilingual speech
 749 corpus for representation learning, semi-supervised learning and interpretation. In *Proc. ACL*,
 750 Online, 2021.

751

752 Yusong Wu, Ke Chen, Tianyu Zhang, Yuchen Hui, Taylor Berg-Kirkpatrick, and Shlomo Dubnov.
 753 Large-scale contrastive language-audio pretraining with feature fusion and keyword-to-caption
 754 augmentation. In *Proc. ICASSP*, Rhodes, 2023.

755

Z Xin, Z Dong, L Shimin, Z Yaqian, and Q Xipeng. Speechtokenizer: Unified speech tokenizer for
 speech language models. In *Proc. ICLR*, Vienna, 2024.

756 Shu-wen Yang, Po-Han Chi, Yung-Sung Chuang, Cheng-I Jeff Lai, Kushal Lakhotia, Yist Y. Lin,
 757 Andy T. Liu, Jiatong Shi, Xuankai Chang, Guan-Ting Lin, Tzu-Hsien Huang, Wei-Cheng Tseng,
 758 Ko-tik Lee, Da-Rong Liu, Zili Huang, Shuyan Dong, Shang-Wen Li, Shinji Watanabe, Abdelrahman
 759 Mohamed, and Hung-yi Lee. SUPERB: Speech processing universal performance bench-
 760 mark. In *Proc. Interspeech*, Brno, 2021.

761 Xiaoyu Yang, Qiuja Li, and Philip C Woodland. Knowledge distillation for neural transducers from
 762 large self-supervised pre-trained models. In *Proc ICASSP*, Rhodes, 2022.

764 Xiaoyu Yang, Qiuja Li, Chao Zhang, and Philip C Woodland. MT2KD: Towards a general-purpose
 765 encoder for speech, speaker, and audio events. *IEEE Transactions on Audio, Speech and Lan-*
 766 *guage Processing*, 2025.

767 Zengwei Yao, Liyong Guo, Xiaoyu Yang, Wei Kang, Fangjun Kuang, Yifan Yang, Zengrui Jin, Long
 768 Lin, and Daniel Povey. Zipformer: A faster and better encoder for automatic speech recognition.
 769 In *Proc. ICLR*, Vienna, 2024.

771 Hongyi Zhang, Moustapha Cisse, Yann N Dauphin, and David Lopez-Paz. mixup: Beyond empirical
 772 risk minimization. In *Proc. ICLR*, Vancouver, 2018.

774 A LLM USAGE

776 We used LLMs in paper presentation for the purpose of correcting grammatical errors and spelling.

779 B MULTI-CODEBOOK VECTOR QUANTISATION

781 Here, we present more details regarding the MVQ quantiser to supplement Section 3.1.

783 B.1 ENCODE AND DECODE

785 A Multi-codebook Vector quantisation (MVQ) module consists of N codebooks, each containing K
 786 codebook vectors. Given a d -dimensional representation $\mathbf{x} \in \mathbb{R}^d$, the MVQ quantiser \mathcal{Q} encodes it
 787 to a sequence of integers (i.e, tokens) from a finite discrete value space $[0, \dots, K-1]$.⁵ The encoded
 788 integers are denoted as MVQ tokens, which can be used for reconstructing the original input through
 789 a $\text{Decode}(\cdot)$ operation:

$$790 \mathbf{z} = \text{Encode}(\mathbf{x}; \mathcal{Q}), \quad (7)$$

$$791 \hat{\mathbf{x}} = \text{Decode}(\mathbf{z}; \mathcal{Q}). \quad (8)$$

793 The MVQ quantiser performs a mapping $f : \mathbb{R}^d \rightarrow \mathbb{C}^N$, where \mathbb{C} denotes a fixed-sized discrete
 794 value space $\{0, \dots, K-1\}$. $\mathbf{z} = \{z_1, \dots, z_N\} \in \mathbb{C}^N$ is the MVQ tokens with $z_n \in \{0, \dots, K-1\}$
 795 and $\hat{\mathbf{x}}$ is the reconstructed input. The reconstruction operation follows a direct-sum scheme, where
 796 one codebook vector is selected from each codebook, resulting in a summation over N codebook
 797 vectors:

$$798 \hat{\mathbf{x}} = \sum_{n=1}^N \mathbf{C}_{z_n}^n, \quad (9)$$

801 where $\mathbf{C}_{z_n}^n \in \mathbb{R}^d$ is the z_n -th entry code vector in the n -th codebook. Each codebook $\mathbf{C}^n =$
 802 $\{\mathbf{c}_0^n, \dots, \mathbf{c}_{K-1}^n\}$ is a matrix consisting of K code vectors. As can be seen, z_n denotes the encoded
 803 index of the code vector in the n -th codebook, i.e., which code vector to choose from the n -th
 804 codebook for reconstruction.

805 The encoding process aims to find \mathbf{z} that leads to the lowest reconstruction error: $E[||\hat{\mathbf{x}} - \mathbf{x}||_2^2]$.
 806 Naively enumerating all combinations of z_n is impractical, so a heuristic encoding algorithm is
 807 utilised to reduce the search space while maintaining a relatively low reconstruction error. The

809 ⁵For storage efficiency, we always use $K = 256$ since the indices can be stored with uint8 format. However,
 it is theoretically possible to increase K to a bigger number.

MVQ quantiser employs N neural classifiers \mathcal{G}_n to first generate an initial estimation of the encoded index for each codebook, denoted as \mathbf{z}_{init} , and iteratively refines \mathbf{z}_{init} for a fixed number of steps, e.g., 5. The mechanism of the refinement algorithm is out of the scope of our work, and we direct readers to the original MVQ paper (Guo et al., 2023) for more details.

B.2 MVQ TRAINING

The trainable parameters in the MVQ quantiser are the codebooks \mathbf{C}^n and N neural classifiers \mathcal{G}_n . For each input float vector \mathbf{x} and its encoding $\mathbf{z} = \text{Encode}(\mathbf{x})$, the training loss for MVQ is formulated as follows:

$$\mathcal{L} = \mathcal{L}_{\text{residual}} + \mathcal{L}_{\text{prediction}} + \beta \mathcal{L}_{\text{reg}} \quad (10)$$

$$= \|\mathbf{x} - \text{Decode}(\mathbf{z}; \mathcal{Q})\|_2^2 + \sum_{n=1}^N -\log \mathcal{G}_n(\mathbf{x})_{z_n} + \beta \mathcal{L}_{\text{reg}}, \quad (11)$$

where $\mathcal{G}_n(\mathbf{x})_{z_n}$ is the predicted probability of choosing z_n . The first term $\mathcal{L}_{\text{residual}}$ is the L2-squared reconstruction loss and optimises the code vectors. The second term $\mathcal{L}_{\text{prediction}}$ encourages the neural classifiers to select the encoded indexes \mathbf{z} obtained through the refinement algorithm. By doing so, the initial estimate \mathbf{z}_{init} predicted by \mathcal{G}_n is expected to be close to the actual encodings \mathbf{z} , most likely with a lower reconstruction error. The last term \mathcal{L}_{reg} is an auxiliary regularisation loss to encourage a balanced code usage within each codebook, and β is the scale for this auxiliary loss.

C MODEL SPECIFICATION AND TRAINING SETTINGS

C.1 MODEL SPECIFICATION

The model specifications of Base, Large, and XLarge variants of SPEAR are presented in Table 7. The model configuration is determined by the configuration of the Zipformer (Yao et al., 2024) encoder, which adopts a stack-wise design, with each stack consisting of multiple layers operating at a specific downsampling factor. The Zipformer Encoder is characterised by the following attributes:

- **Model Dimension:** the dimensionality of the output representations.
- **Feedforward Dimension:** the dimensionality of the feedforward module.
- **Attention Heads:** the number of attention heads.
- **Encoder Layers:** the number of Zipformer layers per stack.
- **Downsampling Ratio:** the relative temporal downsampling factor to the input representations (i.e., 100 Hz filterbank features).
- **CNN Kernel Size:** the kernel size of the convolutional module in each layer.

Table 7: The configurations of the Zipformer encoder in different versions of SPEAR.

	Base	Large	XLarge
Number of parameters	94M	327M	600M
Model dimension	512	1024	1280
Feedforward dimension	1536	3072	3840
Attention heads	8	8	8
Encoder layers	1,2,3,3,1,1,1	1,2,2,3,1,1,1	1,2,3,4,1,1,1
Downsampling ratio		1,2,4,8,4,2,1	
CNN kernel size	31,31,15,15,15,31,31		

C.2 PRE-TRAINING RESOURCES AND CONFIGURATIONS

The training hyperparameters and the required computing resources for training SPEAR are presented in Table 8. All models in SPEAR are trained using the NVIDIA A800 (80GB) GPUs. As

864 shown in WavLM (Chen et al., 2022), applying data augmentations to the input audio can improve
 865 the pre-training performance. Therefore, we apply both in-batch utterance mixing and noise mix-
 866 ing during training. MUSAN (Snyder et al., 2015) is used as the noise dataset. The optimiser and
 867 scheduler settings follow Yao et al. (2024), where the ScaledAdam optimiser and Eden scheduler
 868 are used.

869
 870 Table 8: Hyperparameters and computing resources required for pre-training. Batch size denotes the
 871 total duration of speech (audio) in seconds. Approximate total GPU hours (not elapsed time) also
 872 reported.

	Speech Pre-train		Audio Pre-train		Speech & Audio Pre-train		
	Base	Large	Base	Large	Base	Large	XLarge
Hyperparameters							
Learning rate					0.045		
Total steps	400k	500k	250k	250k	400k	500k	500k
Batch size	4.8k	4.8k	4.8k	4.8k	6.4k	6.4k	6.4k
Utterance mix prob	0.1	0.1	-	-	-	-	-
Noise mix prob	0.1	0.2	0.5	0.5	0.5	0.5	0.5
α (see Equation 2)				0.5			
λ (see Equation 6)	-	-	-	-	0.1	0.1	0.1
Computing Resources							
Num GPUs	8	8	8	8	8	16	32
GPU hours (approx.)	460	900	290	560	660	2,000	3,800

C.3 FINE-TUNING CONFIGURATIONS

890 The fine-tuning configurations for the downstream ASR tasks and AT tasks presented in Section 5.1
 891 are shown in Table 9. We used Pruned RNN-T (Kuang et al., 2022), a memory-efficient variant
 892 of RNN-T for optimisation. An asynchronous learning rate policy is adopted during fine-tuning
 893 by setting a smaller learning rate for the pre-trained encoder parameters. In ASR experiments, 3-
 894 fold speed perturbation is applied to the training data. In AS-2M, we follow prior work (Gong
 895 et al., 2021) to adopt a weighted sampler to cope with the imbalanced label distribution in the full
 896 AudioSet. Mixup (Zhang et al., 2018) with a probability of 0.5 is used in AT fine-tuning.

897 Table 9: Fine-tuning configurations. “Encoder LR scale” denotes the relative ratio of the encoder
 898 learning rate. Batch size is measured in seconds.

	ASR		AT	
	LS-100	LS-960	AS-20k	AS-2M
Learning rate				
Encoder LR scale	0.1	0.1	0.2	0.1
Num epochs	90	90	20	40
Batch size	2000	4800	2000	4000
MUSAN (Snyder et al., 2015)			✓	
SpecAugment (Park et al., 2019)			✓	
Weighted sampling (Gong et al., 2021)	-	-	✓	✓
MixUp (Zhang et al., 2018)	-	-	0.5	0.5

D LIBRISPEECH FINE-TUNING EXPERIMENTS

915 To evaluate the adaptation capability of SPEAR under limited supervision, we fine-tune the models
 916 on 10h and 100h subsets of the LibriSpeech corpus. Following prior work (Hsu et al., 2021; Chen
 917 et al., 2022), we use the same CTC decoder with graphemes as modelling units and the same decod-
 ing process for fair comparison. The CTC vocabulary consists of the 26 English letters, a space, an

918 apostrophe, and a blank symbol. Decoding with an external language model is performed using the
 919 wav2letter++ beam search decoder (Pratap et al., 2019), formulated as:
 920

$$921 \quad \log p_{\text{CTC}}(\mathbf{y} \mid \mathbf{x}) + w_1 \log p_{\text{LM}}(\mathbf{y}) + w_2 |\mathbf{y}|, \quad (12)$$

922 where \mathbf{x} is the input audio, \mathbf{y} is the predicted text sequence, $|\mathbf{y}|$ denotes its length, and w_1, w_2 are
 923 the language model and word score coefficients, respectively.
 924

925 Table 10: LibriSpeech fine-tuning results with limited supervised data. Best results in **bold**, and
 926 second-best results are underlined in each section.
 927

928 Model	# Params	LM	929 LS-100		930 LS-10	
			931 test-clean	932 test-other	933 test-clean	934 test-other
935 WavLM Base (Chen et al., 2022)	95M	None	5.7	12.0	9.8	16.0
936 WavLM Base+ (Chen et al., 2022)	95M	None	4.6	10.1	9.0	14.7
937 Ours, SPEAR _s Base	94M	None	<u>3.1</u>	6.0	5.2	8.2
938 Ours, SPEAR _{s+a} Base	94M	None	3.3	6.6	5.6	9.2
939 Ours, SPEAR _s Large	327M	None	2.6	4.8	4.6	6.9
940 Ours, SPEAR _{s+a} Large	327M	None	2.6	<u>4.9</u>	4.9	<u>7.3</u>
941 Ours, SPEAR _{s+a} XLarge	600M	None	2.6	<u>4.9</u>	4.8	6.9
942 HuBERT Base (Hsu et al., 2021)	95M	4-gram	3.4	8.1	4.3	9.4
943 WavLM Base (Chen et al., 2022)	95M	4-gram	3.4	7.7	4.3	9.2
944 WavLM Base+ (Chen et al., 2022)	95M	4-gram	2.9	6.8	4.2	8.8
945 WavLM Large (Chen et al., 2022)	317M	4-gram	2.3	4.6	2.9	5.5
946 Ours, SPEAR _s Base	94M	4-gram	<u>2.4</u>	5.0	3.2	6.0
947 Ours, SPEAR _{s+a} Base	94M	4-gram	<u>2.7</u>	5.3	3.6	6.9
948 Ours, SPEAR _s Large	327M	4-gram	2.3	4.2	2.9	5.1
949 Ours, SPEAR _{s+a} Large	327M	4-gram	<u>2.4</u>	4.4	<u>3.1</u>	5.6
950 Ours, SPEAR _{s+a} XLarge	600M	4-gram	2.3	4.3	2.9	<u>5.2</u>

945
 946 **Result Interpretation** As shown in Table 10, the speech-domain SPEAR_s models consistently
 947 outperform their WavLM counterparts under both Base and Large scales, regardless of decoding
 948 with an external 4-gram language model. Our SPEAR_s Large yields the lowest WERs on both LS-
 949 10 and LS-100 setups, implying that the MVQ tokens used during pre-training transfer rich semantic
 950 information to the student model. Interestingly, the speech-domain SPEAR_s models slightly outper-
 951 form their dual-domain SPEAR_{s+a} counterparts in this CTC setting, especially when supervision is
 952 scarce. We hypothesise this stems from the nature of the representation space: a unified representa-
 953 tion space for speech and general audio is inherently more complex than one specialised for speech.
 954 Consequently, adapting the unified representation space for the ASR task becomes more challenging
 955 with insufficient supervised data, particularly when using a simple, letter-based CTC decoder.
 956

957 E SUPERB EVALUATION

958 In this section, we provide more detail about the SUPERB benchmark (Yang et al., 2021; Tsai et al.,
 959 2022) as a supplement to Section 5.2 and present the complete results on SUPERB benchmark. A
 960 summary of the SUPERB tasks is shown in Table 11. Complete results of SPEAR models along
 961 with other existing speech SSL models are shown in Table 12 and Table 13.
 962

963 **Result Interpretation** As shown in Table 12 and Table 13, our speech-domain model SPEAR_s
 964 demonstrates very high performance on understanding, paralinguistics, and enhancement tasks on
 965 SUPERB. Our speech-domain model SPEAR_s Large achieves the same or better performance on
 966 12 out of 15 tasks on SUPERB (except for ST, QbE, and VC) compared to WavLM Large, the
 967 previous state-of-the-art model on SUPERB, with the same pre-training corpora and similar model
 968 size. This again suggests that the performance of the SPEAR framework is not constrained by the
 969 teacher model, since SPEAR_{s+a} Large is pre-trained with fine-grained targets generated by WavLM
 970 Large. It has also been observed that performing dual-domain training leads to slight performance
 971 degradation on understanding and paralinguistic tasks compared to the speech-only models. How-
 972 ever, improvement on KWS and enhancement tasks is also observed, suggesting a positive task

972 Table 11: Detailed task information in SUPERB.
973

974 Task Name	975 Metric(s)
975 Speaker Identification (SID)	976 Accuracy
976 Automatic Speaker Verification (ASV)	977 Equal Error Rate (EER)
977 Speaker Diarization (SD)	978 Diarization error rate (DER)
978 Emotion Recognition (ER)	979 Accuracy
979 Phoneme Recognition (PR)	980 Phone Error Rate (PER)
980 Automatic Speech Recognition (ASR)	981 Word Error Rate (WER)
981 Out-of-domain ASR (ar/es/zh)	982 Word (character) Error Rate
982 Keyword Spotting (KS)	983 Accuracy
983 Query by Example Spoken Term Detection (QbE)	984 Maximum Term Weighted Value (MTWV)
984 Speech Translation (ST)	985 BLEU
985 Intent Classification (IC)	986 Accuracy
986 Slot Filling (SF)	987 F1, Character Error Rate (CER)
987 Speech Enhancement (SE)	988 Perceptual Evaluation of Speech Quality (PESQ) 989 Short-Time Objective Intelligibility (STOI)
989 Speech Separation (SS)	990 Scale-invariant Signal-to-distortion Ratio improvement (SI-SDRi)
990 Voice Conversion (VC)	991 MCD (Mel Cepstral Distortion), WER, EER

992
993
994
995 Table 12: Full results of understanding tasks on the SUPERB benchmark. Best results in **bold**, the
996 2nd best results are underlined.
997

998 Model	# Params	999 Pre-train 1000 Data	Understanding								
			PR	ASR	OOD-ASR	KS	QbE	ST	IC	SF	
			PER ↓	WER ↓	WER ↓	Acc ↑	MTWV ↑	BLEU ↑	Acc ↑	FI ↑	CER ↑
1001 FBANK	1002 0	1003 -	1004 82.01	1005 23.18	1006 63.58	1007 8.63	1008 0.0058	1009 2.32	1010 9.10	1011 69.64	1012 52.94
<i>Existing Speech SSL models</i>											
1003 WavLM Base+ (Chen et al., 2022)	1004 95M	1005 94k	1006 3.92	1007 5.59	1008 38.32	1009 97.37	1010 0.0988	1011 24.25	1012 99.00	1013 90.58	1014 21.20
1004 wav2vec 2.0 Large (Baevski et al., 2020)	1005 317M	1006 60k	1007 4.25	1008 3.75	1009 44.89	1010 96.66	1011 0.0480	1012 12.48	1013 95.28	1014 87.11	1015 27.31
1005 HuBERT Large (Hsu et al., 2021)	1006 317M	1007 60k	1008 3.53	1009 3.62	1010 44.08	1011 95.29	1012 0.0353	1013 20.10	1014 98.76	1015 89.81	1016 21.76
1006 WavLM Large (Chen et al., 2022)	1007 317M	1008 94k	1009 3.06	1010 3.44	1011 32.27	1012 97.86	1013 <u>0.0886</u>	1014 <u>26.57</u>	1015 99.31	1016 92.21	1017 18.36
<i>Ours, Speech SSL models</i>											
1007 SPEAR _s Base	1008 94M	1009 84k	1010 3.44	1011 3.46	1012 34.35	1013 97.50	1014 0.0772	1015 24.37	1016 99.17	1017 90.96	1018 19.22
1008 SPEAR _s Large	1009 327M	1010 84k	1011 2.56	1012 <u>3.27</u>	1013 31.70	1014 97.89	1015 0.0768	1016 26.20	1017 99.47	1018 92.25	1019 17.86
<i>Ours, Speech & Audio SSL models</i>											
1010 SPEAR _{s+a} Base	1011 94M	1012 97k	1013 3.89	1014 3.76	1015 35.48	1016 97.58	1017 0.0801	1018 24.07	1019 98.05	1020 90.54	1021 20.14
1011 SPEAR _{s+a} Large	1012 327M	1013 97k	1014 3.08	1015 3.39	1016 <u>31.22</u>	1017 <u>97.92</u>	1018 0.0712	1019 25.64	1020 99.40	1021 92.07	1022 18.04
1012 SPEAR _{s+a} XLarge	1013 600M	1014 197k	1015 <u>2.94</u>	1016 3.19	1017 30.69	1018 98.12	1019 0.0745	1020 26.66	1021 99.61	1022 92.86	1023 17.23

1015
1016
1017 synergy in these tasks. Finally, our largest dual-domain model, SPEAR_{s+a} XLarge, improves upon
1018 SPEAR_{s+a} Large, and further improves the best results of 12 SUPERB tasks, confirming that the
1019 SPEAR framework scales effectively with both model and data size.

1020 It is worth noting that our results on the Voice Conversion (VC) task are not directly comparable to
1021 previous SSL models due to a change in the VC recipe within the SUPERB codebase, as pointed out
1022 by Shi et al. (2024a). Within our own experiments, we observe that our Large and XLarge variants
1023 underperform the Base model on VC. This is potentially due to overfitting on the small training
1024 dataset, an issue also observed in MR-HUBERT (Shi et al., 2024a). We leave the investigation of
1025 using our models for generation tasks as an important direction for future work, since a unified
1026 capability for both understanding and generation is highly desirable.

1026 Table 13: Full results of paralinguistics, enhancement, and Generation tasks on the SUPERB bench-
 1027 mark. Best results in **bold**, the 2nd best results are underlined.

Model	# Params	Pre-train Data	Paralinguistics				Enhancement		Generation			
			SID	ASV	SD	ER	SE	SS	VC			
			Acc ↑	EER ↓	DER ↓	Acc ↑	PESQ ↑	STOI ↑	SI-SDRi ↑	MCD ↓	WER ↓	ASV ↑
FBANK	0	-	0	9.56	10.05	35.39	2.55	93.6	9.23	8.47	38.3	77.25
<i>Existing Speech SSL models</i>												
WavLM Base+ (Chen et al., 2022)	95M	94k	89.42	4.07	3.50	68.65	2.63	94.3	10.85	7.40	8.1	99.00
wav2vec 2.0 Large (Baevski et al., 2020)	317M	60k	86.14	5.65	5.62	65.64	2.52	94.0	10.02	7.63	15.8	97.25
HuBERT Large (Hsu et al., 2021)	317M	60k	90.33	5.98	5.75	67.62	2.64	94.2	10.45	7.22	9.0	99.25
WavLM Large (Chen et al., 2022)	317M	94k	<u>95.49</u>	3.77	3.24	70.62	2.70	<u>94.5</u>	11.19	<u>7.30</u>	<u>9.9</u>	<u>99.00</u>
<i>Ours, Speech SSL models</i>												
SPEAR _s Base	94M	84k	90.5	3.75	3.57	69.21	2.64	94.3	10.84	7.40	10.1	99.00
SPEAR _s Large	327M	84k	<u>95.49</u>	<u>3.14</u>	<u>3.20</u>	<u>72.10</u>	<u>2.71</u>	<u>94.5</u>	<u>11.20</u>	7.33	10.4	<u>99.00</u>
<i>Ours, Speech & Audio SSL models</i>												
SPEAR _{s+a} Base	94M	97k	90.02	3.85	4.13	69.40	2.66	<u>94.5</u>	10.89	7.34	10.2	99.00
SPEAR _{s+a} Large	327M	97k	95.01	3.30	3.80	71.57	2.72	94.6	11.12	7.42	10.7	<u>99.00</u>
SPEAR _{s+a} XLarge	600M	197k	96.34	2.86	3.17	73.29	2.72	94.6	11.24	7.44	10.9	<u>99.00</u>

F HEAR EVALUATION

1046 Here, we provide further details on Holistic Evaluation of Audio Representations (HEAR) (Turian
 1047 et al., 2022), a benchmark for evaluating audio representations as a supplement to Section 5.3.
 1048 HEAR encompasses 19 tasks, which can be categorised into 3 groups: environment, speech, and
 1049 music. Following prior work (Anton et al., 2023; Dinkel et al., 2024), we discard the Beehive task
 1050 due to its overly long utterances and small sample size, leading to inconsistent results. The tasks can
 1051 also be divided into frame-level tasks and clip-level tasks. The detailed task information is shown in
 1052 Table 14 and the complete results on the HEAR benchmark are shown in Table 15.

1053 Table 14: Individual task information in HEAR. *: frame-level task. Otherwise, clip-level task.

Task Name	Group	Description				Metric
Beijing Opera Percussion (BJ)	Music	Classification of 6 Beijing Opera percussion instruments				Accuracy
CREMA-D (CD)	Speech	Speech emotion recognition				Accuracy
DCASE 2016 Task2 (D16)*	Environment	Office sound event detection in synthesized scenes				Onset FMS
ESC-50 (ESC)	Environment	Environmental sound classification				Accuracy
FSD50K (FSD)	Environment	Broad-domain audio multi-labeling				mAP
Gunshot Triangulation (Gun)	Environment	Identify location of microphone recording a gunshot				Accuracy
GTZAN Genre (GZ-Gen)	Music	Music genre classification.				Accuracy
GTZAN Music Speech (GZ-MS)	Music	Classification of audio into music or speech.				Accuracy
LibriCount (LC)	Speech	Multiclass speaker count identification.				Accuracy
MAESTRO 5h (MST)*	Music	Music transcription				Onset FMS
Mridingham Stroke (Mri-S)	Music	Non-Western pitched percussion, classification of stroke				Accuracy
Mridingham Tonic (Mri-T)	Music	Non-Western pitched percussion, classification of tonic				Accuracy
NSynth Pitch, 5h (NS-5)	Music	Pitch classification of synthesized sounds.				Pitch Acc
NSynth Pitch, 50h (NS-50)	Music	Pitch classification of synthesized sounds.				Pitch Acc
Speech Commands (v2), 5h (SC-5)	Speech	Spoken commands classification.				Accuracy
Speech Commands (v2), full (SC-F)	Speech	Spoken commands classification.				Accuracy
Vocal Imitations (VI)	Speech	Classification of vocal imitation to type of sound imitated				mAP
VoxLingua107 Top 10 (VL)	Speech	Spoken language identification.				Accuracy

1071 **Result Interpretation** Our audio-domain models demonstrate strong performance on the
 1072 environment-related tasks. Specifically, SPEAR_{s+a} Large outperforms its teacher model, Dasheng
 1073 1.2B, on D16, ESC, and FSD, three well-known tasks for environmental audio understanding. It
 1074 should be noted that this is achieved under the premise that Dasheng 1.2B is a much bigger model
 1075 trained on over 20 times more data. The performance of SPEAR_a Large is lower on speech and au-
 1076 dio tasks compared to Dasheng 1.2B, due to the limited amount of general audio data in our setup.
 1077 However, we anticipate SPEAR to outperform Dasheng 1.2B given a similar amount of general
 1078 audio data for pre-training, which we leave as an important direction for future work.

1079 By performing unified speech and audio pre-training that incorporates more speech data, the dual-
 1080 domain model SPEAR_{s+a} yields a notable improvement on speech-related tasks over the audio-

1080 Table 15: Results on the HEAR benchmark. The last column is the average performance across all
1081 tasks. All results are the higher the better. Rows in grey: evaluated by concatenating the intermediate
1082 layers. Best results in **bold**, the 2nd best results are underlined.

Model	# Params	BJ	CD	D16	ESC	FSD	GZ-Gen	GZ-MS	Gun	LC	MST	Mri-S	Mri-T	NS-50	NS-5	SC-5	SC-F	VI	VL	Avg
Speech Model																				
WavLM Base+	96M	87.3	68.7	49.9	60.1	32.8	75.0	98.5	86.3	62.5	4.3	89.8	78.9	35.1	21.6	94.4	95.1	14.2	74.0	62.7
HubERT Large	317M	92.4	74.5	44.0	64.5	35.8	74.7	92.8	94.4	64.3	3.1	95.1	85.9	39.4	19.8	91.5	92.8	17.5	73.3	64.2
WavLM Large	317M	91.5	75.5	85.1	68.6	40.1	80.0	94.4	97.6	70.3	8.8	96.0	88.8	43.8	23.0	94.8	96.1	19.5	79.9	69.7
SPEAR _s Base	94M	94.5	79.5	92.0	74.8	43.4	83.9	96.0	82.1	66.5	6.3	95.6	90.5	61.7	36.8	95.9	96.4	20.3	81.9	72.1
SPEAR _s Large	327M	91.5	80.9	84.2	73.9	43.3	82.5	96.1	89.6	71.1	8.6	95.8	89.7	67.7	41.6	95.5	95.7	20.7	85.0	73.0
Audio Model																				
BEATS	90M	95.8	68.1	43.0	81.9	51.4	87.0	98.5	90.5	74.6	0.0	96.1	96.0	82.0	68.6	88.2	91.5	13.5	43.8	69.3
ATST-Frame	86M	<u>95.8</u>	76.7	95.7	89.0	55.7	88.3	<u>100.0</u>	94.3	78.1	24.4	97.5	94.1	-	68.6	92.6	95.1	22.3	66.9	-
Dasheng base	86M	93.6	78.7	93.9	82.9	51.0	89.2	99.2	92.9	76.6	43.9	96.1	94.9	83.3	71.8	95.9	97.1	16.7	69.9	79.3
Dasheng 0.6B	600M	94.9	81.2	94.4	85.9	53.9	88.6	97.6	97.6	80.7	<u>43.5</u>	96.6	96.2	85.8	74.6	97.0	97.5	17.8	74.7	81.0
Dasheng 1.2B	1.2B	96.2	81.6	94.2	85.3	54.2	88.8	97.7	99.1	79.6	43.3	96.8	96.1	85.6	74.4	97.1	97.9	19.4	78.7	81.4
SPEAR _a , Base	94M	93.6	77.2	93.6	85.5	52.9	90.1	92.2	89.3	77.2	22.8	96.7	96.5	83.7	70.0	93.8	95.1	18.8	57.1	77.0
SPEAR _a , Large	327M	94.9	79.8	94.5	86.6	54.4	89.1	96.8	98.8	79.6	23.6	96.9	96.3	86.4	70.8	95.3	96.3	19.0	66.2	79.2
SPEAR _a , Base	94M	96.2	79.0	95.4	87.4	55.3	89.4	<u>100.0</u>	96.4	81.6	23.8	97.0	97.5	<u>87.5</u>	74.8	94.9	95.9	19.9	60.7	79.6
SPEAR _a , Large	327M	95.8	79.9	96.5	89.6	57.4	90.7	98.5	96.4	82.4	25.6	97.4	98.1	89.6	81.4	95.8	96.9	20.5	62.7	80.8
Speech + Audio Model																				
USAD Base	94M	<u>95.8</u>	80.0	93.6	82.2	52.2	94.0	100.0	86.3	78.7	26.7	97.3	95.7	81.6	57.0	96.6	97.6	19.5	76.0	78.4
USAD Large	330M	94.1	79.5	93.9	83.4	53.0	87.4	100.0	<u>97.6</u>	79.1	38.4	97.4	96.1	83.2	57.0	97.0	97.5	18.5	75.3	79.4
SPEAR _{s+a} , Base	95M	92.0	78.6	93.8	83.8	49.9	86.5	96.9	95.2	70.8	24.7	96.8	94.1	78.9	64.6	97.0	96.7	21.9	77.3	77.8
SPEAR _{s+a} , Large	327M	94.9	81.4	93.8	85.1	51.4	87.6	96.4	94.1	76.2	26.9	96.8	96.0	80.0	64.8	97.5	97.2	22.6	83.9	79.3
SPEAR _{s+a} , XLarge	600M	94.5	81.6	95.5	84.8	52.4	88.5	98.5	94.4	77.7	27.7	97.0	96.5	81.5	63.4	97.2	98.1	22.6	83.6	79.7
SPEAR _{s+a} , Base	95M	95.3	82.0	95.1	85.9	54.2	88.8	100.0	95.2	76.2	26.8	97.2	96.0	82.2	69.4	97.3	98.2	24.6	85.6	80.6
SPEAR _{s+a} , Large	327M	94.9	83.8	95.9	87.6	56.4	89.2	99.2	97.6	78.7	27.9	97.4	97.5	85.3	70.2	98.1	98.3	25.7	88.5	81.8
SPEAR _{s+a} , XLarge	600M	95.3	<u>83.6</u>	96.0	89.4	<u>57.1</u>	91.0	100.0	96.3	80.7	27.7	97.4	97.9	86.0	74.2	98.4	98.6	26.6	90.4	82.3

domain model SPEAR_a, as evidenced by tasks such as CD, SF-5, VI, and VL. We also observe a sharp increase for MST, a music transcription task, from SPEAR_a Large with 23.6 to SPEAR_{s+a} Large with 27.7. This suggests that the joint pre-training on speech and audio data enhances the model’s capability of performing fine-grained music tasks. Despite achieving a better overall score on HEAR, we do notice that the dual-domain model suffers from performance degradation in some environment and music-related tasks. This further motivates us to use a more balanced dataset containing more general audio data in future work.

Finally, our largest dual-domain model SPEAR_{s+a} XLarge achieves further performance improvement over SPEAR_{s+a} Large, demonstrating that scaling data and model size is effective for SPEAR.

G ABLATION STUDIES

Ablation studies on the following components are performed to provide an in-depth understanding of SPEAR framework:

- Teacher Model Selection:** We compared pre-training with MVQ tokens extracted from different SSL teacher models (see Appendix G.1.1) and different layers of teacher models (see Appendix G.1.2).
- Masked Prediction Pre-training Loss:** We investigated how to balance the pre-training loss on the masked and unmasked positions for SPEAR (see Appendix G.2).
- Number of Codebooks:** We studied the effect of varying the number of codebooks in the MVQ quantiser on the pre-training performance (see Appendix G.3).
- Feature Subspaces:** We compared the feature subspaces reconstructed by the MVQ quantiser and a k-means clustering model (see Appendix G.4).
- MVQ Tokens vs k-means Tokens:** We compared using fine-grained MVQ tokens and k-means tokens as pre-training targets (see Appendix G.5).
- Encoder Architectures:** We compared using Zipformer and Transformer as the encoder backbone for SPEAR (see Appendix G.6).
- Dual-domain Pre-training:** We investigated how the losses from speech and audio domains should be balanced in the dual-domain pre-training (see Appendix G.7).

1134 G.1 TEACHER MODELS AND LAYERS
11351136 G.1.1 TEACHER MODEL SELECTION
1137

1138 In this group of ablation studies, different choices of SSL models are compared for generating pre-
1139 training targets under the SPEAR framework. In addition to WavLM Large and Dasheng 1.2B as
1140 presented in Table 3, HuBERT-Large (Hsu et al., 2021) and ATST-frame (Li et al., 2024a), which
1141 are pre-trained with different SSL objectives and data scales, are used for generating fine-grained
1142 discrete targets for speech and audio data, respectively.

1143 Table 16: Performance on SUPERB benchmark of speech-domain models trained with MVQ tokens
1144 extracted from different models. Best results in **bold**, 2nd best results are underlined.

Model	# Params	Targets	Pre-train Data	SUPERB						
				ASR ↓	KS↑	IC↑	ASV↓	SID↑	SD↓	ER↑
Speech SSL Models										
HuBERT Large	317M	-	60k	3.62	95.29	98.76	5.98	90.33	5.75	67.62
WavLM Large	317M	-	94k	3.44	<u>97.86</u>	99.31	3.77	95.49	<u>3.24</u>	70.62
Ours										
LARGE-H-1	327M	HuBERT Large	50k	3.24	97.05	99.47	4.11	91.52	3.84	69.86
LARGE-H-2	327M	HuBERT Large	84k	3.17	97.79	99.51	<u>3.49</u>	94.42	<u>3.24</u>	70.91
SPEAR _S Large	327M	WavLM Large	84k	3.27	97.89	<u>99.47</u>	3.14	95.49	3.20	71.88

1154
1155 **HuBERT** HuBERT (Hsu et al., 2021) is a speech SSL model pre-trained using masked language
1156 modelling (MLM) loss on 60k hours of speech from Libri-light Kahn et al. (2020). In contrast
1157 to WavLM Large, HuBERT-Large is pre-trained on less diverse data (only read speech) without
1158 augmentations, resulting in weaker overall performance, especially on speaker-related tasks. A
1159 comprehensive comparison of HuBERT Large and WavLM Large on SUPERB can be found in
1160 Table 12 and Table 13.

1161 Following Table 3, the representation from the 21st layer of HuBERT Large is used to train an MVQ
1162 quantiser with 16 codebooks for generating the pre-training targets. We train the following two
1163 Large models with pre-training targets generated from the HuBERT Large:
1164

- 1165 • LARGE-H-1: Pre-trained on Libriheavy **without** data augmentation. This model is used to
1166 contrast with HuBERT Large.
- 1167 • LARGE-H-2: Pre-trained on Speech-84k using the same data augmentation as SPEAR_S
1168 Large, enabling a fair comparison with SPEAR_S Large and WavLM Large.

1170 The pre-training performance is evaluated on SUPERB, and the results are shown in Table 16. As
1171 can be seen, MVQ tokens extracted from HubERT Large are also effective pre-training targets.
1172 LARGE-H-1 outperforms its teacher HuBERT Large on all SUPERB tasks by a large margin on the
1173 premise of using the same amount of pre-training data. Notably, LARGE-H-1 demonstrates strong
1174 ASR performance, achieving the lowest WER on SUPERB ASR task, even surpassing SPEAR_S
1175 Large trained with more data, suggesting that the MVQ tokens extracted from HuBERT Large could
1176 have a stronger focus on semantic information (Mousavi et al., 2025).

1177 By increasing the amount of pre-training data, LARGE-H-2 further improves over LARGE-H-1.
1178 However, LARGE-H-2 yields a weaker overall performance on SUPERB compared to SPEAR_S
1179 Large, which is pre-trained with MVQ tokens extracted from WavLM Large. This suggests that
1180 MVQ tokens extracted from stronger speech representations translate to a stronger per-training per-
1181 formance under SPEAR framework.

1182 **ATST-frame** ATST-frame (Li et al., 2024a) is an audio SSL model pre-trained with BYOL (Grill
1183 et al., 2020) objective on 5k hours of AS-2M with 86M parameters. The model generates 768-d
1184 frame-level audio representations at a 25Hz frame rate. We train the following two Base models for
1185 comparison:

- 1186 • BASE-AUDIO-1: Pre-trained on AS-2M with MVQ tokens extracted from the last layer of
1187 ATST-frame using 8 codebooks.

1188 • BASE-AUDIO-2: Pre-trained on AS-2M with MVQ tokens extracted from the last layer of
 1189 Dasheng 1.2B using 8 codebooks.
 1190

1191 The results of AT fine-tuning on AudioSet and HEAR benchmark are presented in Table 17.
 1192

1193 Table 17: Performance of audio-domain models pre-trained with MVQ tokens extracted from differ-
 1194 ent teacher models on AudioSet AT tasks and HEAR. All results are the higher the better. *: For fair
 1195 comparison with ATST-frame, HEAR evaluation is performed using the concatenation of all layers’
 1196 representations. Best results in **bold**.
 1197

Model	# Params	Targets	Pre-train Data	AudioSet			HEAR*				
				AS-20k	AS-2M	ESC	FSD	GZ-Gen	NS-5	LC	SC-5
Audio SSL Models											
EAT (Chen et al., 2024)	86M	-	5k	40.2	48.6	-	-	-	-	-	-
ATST-frame	88M	-	5k	39.0	48.0	89.0	55.7	88.3	68.6	78.1	92.6
Ours											
BASE-AUDIO-1	94M	ATST-frame	5k	40.3	49.6	89.4	57.2	89.5	64.4	79.4	94.3
BASE-AUDIO-2	94M	Dasheng 1.2B	5k	39.1	49.3	88.9	56.6	90.1	72.2	81.2	94.3

1206 As can be seen in Table 17, BASE-AUDIO-1 exhibits very strong performance on AudioSet AT tasks,
 1207 achieving higher mAP than its teacher ATST-frame. By yielding an mAP of 40.3 on AS-20k and
 1208 49.6 on AS-2M, BASE-AUDIO-1 outperforms EAT (Chen et al., 2024), setting a new state-of-the-art
 1209 for audio SSL models pre-trained only on AS-2M. This validates the effectiveness of SPEAR as
 1210 an audio SSL approach, as it shows that the student model can consistently outperform its teacher
 1211 model used for generating the pre-training targets.
 1212

1213 However, despite achieving a higher mAP on AudioSet, BASE-AUDIO-1 shows weaker generalisa-
 1214 tion capability than BASE-AUDIO-2, the model pre-trained with MVQ tokens from Dasheng-1.2B.
 1215 This is shown by its lower performance on HEAR tasks from the speech and music domains (e.g.,
 1216 GZ-Gen, NS-5, LC, and SC-5). We attribute this to the fact that the Dasheng 1.2B model produces
 1217 more generic audio representations due to the vast amount of pre-training data and enormous model
 1218 size, and this quality is encapsulated in the MVQ tokens derived from the MVQ quantiser. This sug-
 1219 gests that the choice of teacher model plays a critical role in our framework’s pre-training quality, as
 1220 high-quality, generic features can be transferred to the student via the MVQ tokens, even when the
 1221 student is trained on significantly less data.
 1222

1223 **Conclusion** From Table 16 and Table 17, we conclude that the performance of SPEAR depends
 1224 on the choices of teacher models for generating the pre-training targets. Under both speech-domain
 1225 and audio-domain experiments, using a more powerful and generic teacher for pre-training targets
 1226 generation leads to a better student model, indicating the necessity of using better teacher models
 1227 for optimal performance. We also show that the performance of SPEAR framework is not upper-
 1228 bounded by the teacher model, as our student models are always capable of outperforming their
 1229 corresponding teacher model for generating the pre-training targets.
 1230

G.1.2 TEACHER LAYER SELECTION

1232 In this ablation study, experiments are carried out to compare different teacher layers for extracting
 1233 pre-training targets. In our initial setuo, the teacher layer is selected based on the downstream fine-
 1234 tuning performance, i.e. ASR for speech teacher and AT for audio teacher. All experiments are
 1235 conducted using the Base architecture and the results are shown in Table 18.
 1236

1237 For the speech teacher, we evaluate the 18th, 21st, and 24th (last) layers of WavLM Large and
 1238 report the WERs on LS-100 fine-tuning tasks. The 21st layer is selected since it achieves the lowest
 1239 WERs. Note that this choice aligns with the findings of Shi et al. (2024b), who also report the
 1240 discrete tokens derived from the 21st layer of WavLM Large to yield strong ASR performance. For
 1241 the audio teacher, we compare using the 25th, 35th, and 40th (last) layers of Dasheng-1.2B and
 1242 report the mAP on the AS-20k fine-tuning task. The 40th layer is selected since it yields the highest
 1243 mAP.
 1244

Table 18: Layer selection for speech teacher (WavLM) and audio teacher (Dasheng).

WavLM layer	test-clean ↓	test-other ↓
18	3.1	6.1
21 (adopted)	3.0	5.8
24	3.1	6.0

Dasheng layer	mAP ↑
25	38.4
35	38.7
40 (adopted)	39.2

G.2 PRE-TRAINING LOSS

The hyperparameter α in Equation 2 controls the contribution of the prediction loss on the masked and unmasked frames. To investigate its influence w.r.t SPEAR, we conducted experiments on single-domain models, varying α from 0.0 (predicting only unmasked frames) to 1.0 (predicting only masked frames). The speech-domain models are pre-trained on LibriSpeech, while the audio models are pre-trained on AS-2M. The same MVQ tokens from Table 3 are used. We evaluate the downstream fine-tuning performance on LS-100 fine-tuning and AT, results presented in Figure 2.

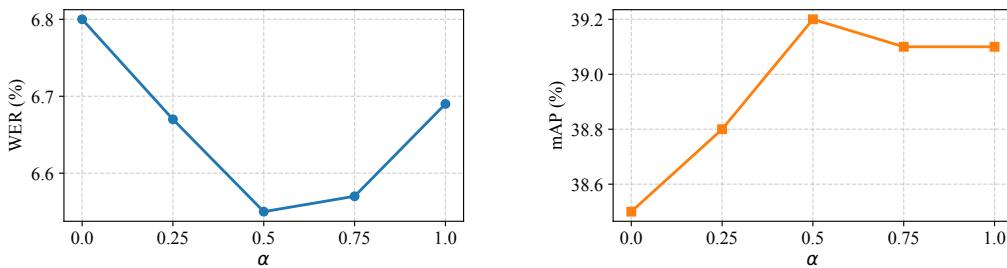


Figure 2: Effect of α on two downstream fine-tuning tasks. Left: WERs of test-other on LS-100 ASR fine-tuning task; Right: mAP on AudioSet evaluation set on AS-balanced fine-tuning task.

As shown in Figure 2, a balanced contribution of prediction loss on masked and unmasked frames with $\alpha = 0.5$ yields the best downstream performance. This observation diverges from the findings in HuBERT (Hsu et al., 2021), where computing prediction loss merely on masked frames (i.e. $\alpha = 1.0$) was optimal. We hypothesise this difference stems from the fine-grained nature of the MVQ tokens. Compared to the coarse units generated from k-means clustering, predicting fine-grained MVQ tokens is a significantly more challenging pretext task. Including the easier objective of predicting tokens at unmasked positions helps to regularize the model and stabilize the learning process. However, the pretext task must remain sufficiently challenging: setting $\alpha = 0.0$ makes the objective too simple, degrading it to a non-contextual prediction task that is ineffective for learning powerful representations. Thus, a balanced α is crucial for the success of the SPEAR framework.

G.3 NUMBER OF CODEBOOKS

The relationship between the number of codebooks N and the pre-training performance is investigated here. Experiments are carried out under single-domain settings with N varying from 4 to 16, using the Base size model.

For speech-domain experiments, the same representations from the 21st layer of WavLM Large are used to train the MVQ quantiser. We pre-train the models on LS-960 for 300k updates. The performances on the following three tasks are evaluated: ASR fine-tuning on LS-100, speaker identification (SID), and emotion recognition (ER) from SUPERB, which serve as indicators of the model’s understanding and paralinguistic capabilities. The results are shown in Table 19. As can be seen, increasing the number of codebooks for speech pre-training consistently enhances the model performance. The WER on the test-other set is reduced by 6.4% with N increasing from 4 to 16. Moreover, models trained with a larger N also exhibit stronger paralinguistic capabilities, which are

1296 Table 19: Results of SPEAR speech-domain pre-training with different numbers of codebooks N .
 1297 Best results in **bold**.

N	LS-100		SUPERB	
	test-clean \downarrow	test-other \downarrow	SID \uparrow	ER \uparrow
4	3.34	7.01	83.12	67.24
8	3.19	6.77	84.83	67.76
16	3.08	6.55	86.35	68.29

1305 Table 20: Results of audio-domain pre-training with different numbers of codebooks N . All results
 1306 are the higher the better. Best results in **bold**.

N	AudioSet			HEAR		
	AS-20k	AS-2M	Environment	Speech	Music	Average
4	39.2	49.1	77.63	68.09	80.30	75.63
8	39.2	49.3	80.33	69.87	80.70	77.01
16	38.9	49.0	80.25	69.92	80.64	76.97

1316 manifested through their performance on SID and ER. This implies that increasing N to 32 could
 1317 lead to further performance improvement for speech-domain models.

1318 Similar experiments are conducted for audio-domain pre-training. Following Table 3, the last layer
 1319 of Dasheng 1.2B is used to train the MVQ quantiser with 4, 8, and 16 codebooks. The models are
 1320 evaluated on the AudioSet fine-tuning task, and the results are shown in Table 20. As can be seen, in-
 1321 creasing N from 4 to 8 improves the downstream AT fine-tuning performance and the HEAR scores.
 1322 However, further increasing N to 16 degrades the pre-training performance, leading to a lower mAP
 1323 and average HEAR score compared to $N = 8$. We hypothesise that representations of audio SSL
 1324 models encapsulate less information compared to speech representations in general. Therefore, us-
 1325 ing a moderate number of codebooks seems to be enough for audio-domain pre-training. A too
 1326 large N might force some codebooks to capture the nuances in the audio teacher representations and
 1327 introduce noise to the pre-training.

1329 G.4 FEATURE SUBSPACES OF MVQ TOKENS

1330 In order to investigate if the codebooks in the MVQ quantiser have captured useful characteristics
 1331 from the speech and audio representations, we visualise the reconstructed embedding space of the
 1332 MVQ quantiser on a 2-D plane using UMAP (McInnes et al., 2018). Specifically, we visualise
 1333 the speaker embeddings encoded by the MVQ quantiser of 10 speakers randomly drawn from Lib-
 1334 riSpeech dev-clean sets, with each speaker having 25 utterances. The speech MVQ quantiser from
 1335 Table 3 is used. The speaker embeddings are computed with the procedure described below. First,
 1336 we use the speech MVQ quantiser (see Table 3) to encode the frame-level embeddings generated by
 1337 WavLM Large into the MVQ tokens. Then, we compute the reconstructed frame-level embeddings
 1338 by summing over the encoded code vector from each codebook. The speaker embedding for each
 1339 utterance is obtained by calculating the mean embedding vector over all frames. As a comparison,
 1340 we also visualize the speaker embedding space represented through a k-means clustering model.
 1341 The 500-cluster k-means model used for generating the pre-training targets for WavLM Large is
 1342 adopted, which is trained on the 9th layer representations of HuBERT Base. We use the cluster cen-
 1343 troid to represent each frame and average the frame-level embeddings along the temporal dimension
 1344 to obtain a single speaker embedding for each utterance.

1345 The visualisations are shown in Figure 3c. As can be seen, the MVQ quantiser successfully retains
 1346 speaker characteristics, showing a clear separation between different speakers. It is noteworthy that a
 1347 single codebook with 256 codes is capable of capturing certain levels of the speaker characteristics,
 1348 showing reasonable separation between different speakers in Figure 3b. However, the k-means
 1349 centroids fail to distinguish different speakers, showing poor separation for different speakers. This
 observation aligns with the fact that our speech-domain model SPEAR_S Large achieves far better

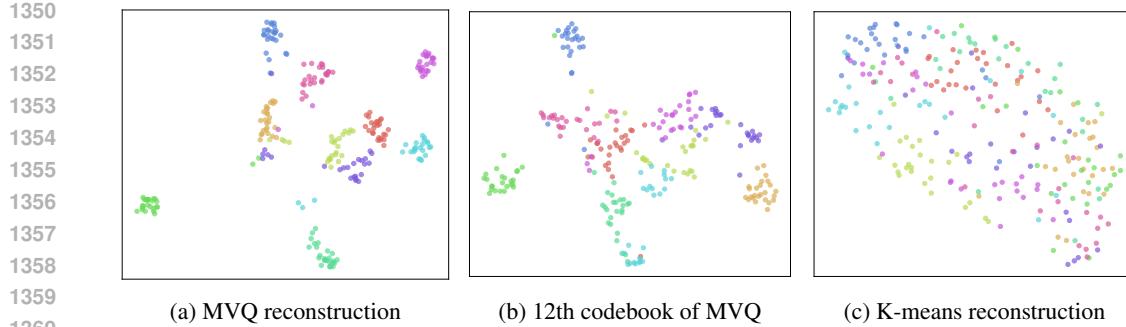


Figure 3: Comparing the reconstructed embedding space obtained through different MVQ quantisation and k-means. The speaker embeddings of 10 speakers drawn from LibriSpeech dev-clean are visualized using UMAP on a 2D plane, with each colour representing a single speaker. (a): Reconstruction using all codebooks of MVQ; (b): Reconstruction using only the 12th codebook of MVQ; (c): Reconstruction using k-means centroids.

performance on ASV compared to WavLM Large, a task requiring distinguishing different speakers by comparing the speaker embedding similarity.

G.5 MVQ TOKENS AND K-MEANS TOKENS

To isolate the impact of the quantization target, we conduct a controlled ablation comparing our MVQ tokens against standard k-means tokens. Both target types are derived from the same layer (the 21st layer) of WavLM Large, with the k-means baseline utilising 2000 clusters. Using the Base architecture, both models are pre-trained for 300k updates on LibriSpeech under identical augmentation strategies (noise mixing, utterance mixing, and masking). Notably, for the k-means experiment, we adopt the standard configuration by computing the loss solely on masked positions (Hsu et al., 2021). The results on the LS-100 ASR fine-tuning task and the SUPERB benchmark are shown in Table 21.

Table 21: Comparison of MVQ tokens and k-means as pre-training target.

Target	LibriSpeech finetune		SUPERB				
	test-clean	test-other	PR ↓	IC ↑	KWS ↑	SID ↑	ER ↑
k-means, 2000 clusters	3.5	7.2	4.0	97.92	96.79	86.6	67.56
MVQ, 16 codebooks	3.1	7.0	3.4	98.37	96.83	88.4	68.29

It can be seen that the model trained with MVQ tokens achieves better performance on all tasks, especially the two paralinguistic tasks: SID and ER. This aligns with our findings in Appendix G.4, where it is shown that the fine-grained MVQ tokens retain richer paralinguistic information than the coarse k-means tokens.

G.6 ENCODER ARCHITECTURE

This ablation study investigates the effect of different encoder architectures. Specifically, the Zipformer architecture (with filterbank input) is compared with the Transformer model (with waveform input), a commonly used architecture for SSL models (Baevski et al., 2020; Chen et al., 2022) in the speech domain. The transformer implementation follows the WavLM, which is an improved version of wav2vec 2.0. We pre-trained the two models using the same MVQ pre-training loss under the SPEAR framework on LS-960 data for 300k updates. The results on the LS-100 ASR fine-tuning task and the SUPERB benchmark are reported in Table 22.

To decouple the influence of the encoder architecture from our pre-training framework, this ablation compares the Zipformer (utilising filterbank inputs) against a standard Transformer backbone (utilising waveform inputs). The Transformer implementation adopts the architecture adopted in

WavLM (Chen et al., 2022). We pre-train both models on the full LibriSpeech 960h corpus (LS-960) for 300k updates, maintaining the same MVQ-based pre-training objective. The results on LS-100 ASR fine-tuning and the SUPERB benchmark are presented in Table 22.

Table 22: Comparison of Zipformer and Transformer as encoder backbone.

Encoder Backbone	LibriSpeech finetune		SUPERB				
	test-clean	test-other	PR ↓	IC ↑	KWS ↑	SID ↑	ER ↑
Transformer	4.1	9.0	3.4	97.79	97.27	89.8	66.27
Zipformer	3.1	7.0	3.4	98.37	96.83	88.4	68.29

On the SUPERB tasks, which evaluate frozen representations, both architectures exhibit comparable performance: the Transformer proves stronger on SID, whilst the Zipformer excels on ER. However, the Zipformer demonstrates a distinct advantage in downstream ASR fine-tuning, a result consistent with its ASR-centric design (Yao et al., 2024). Moreover, the Zipformer is more computationally efficient due to its intermediate downsampling operations. For instance, pre-training the Zipformer requires approximately 350 GPU hours, roughly 60% of the 600 hours required for the Transformer. Consequently, the stronger ASR fine-tuning performance and computational efficiency motivate our selection of the Zipformer as the backbone architecture for SPEAR.

G.7 DUAL-DOMAIN PRE-TRAINING

G.7.1 ASYMMETRICAL PRE-TRAINING LOSS

As mentioned in Section 3.2.2, we adopt an asymmetrical pre-training loss in Equation 6 for dual-domain pre-training. The following strategies for dual-domain pre-training are investigated:

- **JOINT**: Each training input w induces two losses, computed against the Z^s and Z^a , regardless of the domain of w .
- **DISJOINT**: Each training input w only induces one loss, computed against the targets generated by the teacher from the same domain as w .
- **ASYMMETRICAL**: For speech data, losses are computed against both Z^s and Z^a . For audio data, loss is only computed against Z^a . This approach is adopted by SPEAR.

Table 23: Results of three strategies for dual-domain pre-training. Best results in **bold**.

Strategy	LS-100		AS-20K↑	SUPERB		HEAR
	test-clean↓	test-other↓		SID↑	PR↓	
JOINT	2.9	5.9	36.8	90.6	3.24	78.7
DISJOINT	3.0	5.8	37.0	87.4	3.40	78.3
ASYMMETRICAL	2.9	5.8	36.9	90.7	3.12	79.0

We perform dual-domain pre-training using the Large size model on the Mix-97k data with the aforementioned three strategies. The models are evaluated after 100k training steps for quicker system verification, where we compare the results of LS-100 ASR fine-tuning, AS-20K AT fine-tuning, two SUPERB tasks (SID and PR), and the average score on HEAR. The results are shown in Table 23. Among the three strategies, ASYMMETRICAL achieves a balanced performance across both domains. Computing the loss against the speech MVQ tokens for audio data is a useful regularisation to bridge the domain mismatch between speech and audio, preventing significant performance degradation on both domains (ASYMMETRICAL vs DISJOINT).

On the other hand, computing pre-training loss against the audio MVQ tokens for speech data in the JOINT strategy is less useful. Compared to the ASYMMETRICAL strategy, an increase of 0.1 absolute WER and a 0.3 absolute lower average score on HEAR are observed. We suspect that this is caused by the imbalanced data distribution between speech and audio in Mix-97k, where speech data makes up 87% of the total data. The dominance of the speech data hinders the effective learning

of generic audio representations for the JOINT strategy. This motivates us to enlarge the proportion of general audio data in the total training corpora for our future work.

G.7.2 LOSS WEIGHTING

As shown in Equation 6, the hyperparameter λ controls the contribution of the general-audio masked-prediction loss during joint training. To determine the optimal balance, we conduct an ablation study with 3 values of λ using our SPEAR Large architecture and compare the fine-tuning performance on LS-100 and AS-20k after 100k pre-training steps. The experimental results are shown in Table 24. We observed that reducing λ from 0.3 to 0.1 yields a 0.3 absolute WER improvement on test-other, while the mAP is only reduced by 0.1 absolute. Consequently, we adopted $\lambda=0.1$ in our dual-domain experiments for a balanced performance across both domains.

Table 24: Effect of λ in dual-domain pre-training.

λ	LS-100		AS-20k
	test-clean \downarrow	test-other \downarrow	mAP \uparrow
0.3	3.0	5.9	37.0
0.2	3.0	5.7	36.9
0.1	2.9	5.6	36.9

H COMPARISON WITH USAD

In this section, we performed a controlled comparison between SPEAR and USAD (Chang et al., 2025), another framework for joint speech and audio representation learning also leveraging multiple domain-specific teachers. Specifically, we trained a new dual-domain SPEAR model with the Base architecture, named SPEAR (USAD-aligned), mirroring the USAD settings to isolate the impact of the pre-training objective. We used the same teacher models as used in USAD, namely WavLM Base+ (speech) and ATST-Frame (Li et al., 2024a) (audio) to extract the MVQ tokens as pre-training targets in SPEAR. We also used a subset of the USAD training corpora, excluding Fisher and VoxLingua for speech and SoundNet for audio due to availability issues, a summary of the model configurations and data usage for both models is shown in Table 25

Table 25: Model configurations of SPEAR (USAD-aligned) and USAD. Approximate data amount in hours.

Model	# Params	Speech data	Audio data	Total data
SPEAR (USAD-aligned)	94M	86k	9.3k	95.3k
USAD Base	94M	91k	35k	126k

The comparison between SPEAR (USAD aligned) and USAD on SUPERB and HEAR is shown in Table 26. As can be seen, SPEAR (USAD-aligned) consistently outperforms USAD Base, despite only using a subset of the training data used by USAD, suggesting that SPEAR is more effective than USAD for learning unified speech and audio representations. We attribute this performance gap to the following two reasons:

- **Training objectives:** In SPEAR, the student is trained to predict the discrete tokens extracted from teacher models given a masked input, which is a frequently used pretext task for SSL. This combination of KD and SSL in SPEAR enables the student to learn generic representations while benefiting from the knowledge of the two domain-specific teachers, creating student model even with the capability of surpassing teacher models (e.g. SPEAR_{Large} outperforms WavLM Large). On the other hand, USAD enforces the student to mimic the teacher representations through L1 and cosine distance loss. Consequently, the student performance is theoretically upper-bounded by the teacher performance.
- **Joint feature matching is ill-defined for disparate domains:** In USAD, the student effectively minimises the distance to two embedding spaces (speech and audio) simultaneously.

1512
 1513 The L1 losses induced by two teachers encourage the student model to find a “mean” of
 1514 two representation spaces. Since the feature spaces could be distinct, this “mean” repre-
 1515 sentation may lie in a region of the manifold that lacks semantic meaning for either do-
 1516 main. SPEAR avoids this risk by quantising representations into discrete tokens via MVQ,
 1517 where the tokens exhibit the capability of representing a certain characteristic of the in-
 1518 put speech/audio data (see Appendix G.4 where we found a single codebook to contain
 1519 rich speaker information). This allows the model to retain distinct, high-fidelity details by
 1520 learning to predict the discrete tokens for both domains simultaneously, with lower risk of
 1521 destructive interference.
 1522

1523 Table 26: Comparison between SPEAR (USAD-aligned) and USAD on SUPERB and HEAR.
 1524 HEAR results for both SPEAR (USAD-aligned) and USAD Base are obtained with feature con-
 1525 catenation.

Model	# Params	Data	SUPERB						HEAR		
			PR ↓	ASR ↓	IC ↑	KS ↑	SID ↑	ER ↑	Env ↑	Speech ↑	Music ↑
SPEAR (USAD-aligned)	94M	95.3k	4.6	5.1	98.7	97.4	89.2	69.4	81.1	76.9	80.5
USAD Base	94M	126k	5.1	7.7	98.3	97.1	88.6	68.0	80.7	73.7	79.3

I COMPARISON WITH DASHENG

1533 As discussed in Section 5.3, the performance of SPEAR_a models lags behind Dasheng on the HEAR
 1534 benchmark, mainly due to the large difference in the amount of general audio training data (smaller
 1535 by a factor of 20). In this section, to validate the effectiveness of SPEAR for audio SSL under a
 1536 more comparable setup, we compare SPEAR and Dasheng under the constraint of using the same
 1537 pre-training dataset. Specifically, both models are pre-trained on AudioSet (5k hours) and their
 1538 performances on HEAR (average score) are reported in Table 27. The results of the Dasheng models
 1539 are taken from the original paper (Dinkel et al., 2024), while the results of SPEAR_a models are taken
 1540 from Table 6. As can be seen, SPEAR_a Large achieves 78.08 on HEAR, 3.21 points higher than
 1541 the 4 times bigger Dasheng 1.2B model pre-trained on the same data. Although SPEAR_a Large
 1542 uses the original Dasheng 1.2B pre-trained on larger amount of data to extract the MVQ tokens for
 1543 SSL pre-training, this significant gap between SPEAR_a Large and Dasheng 1.2B in Table 27 still
 1544 suggests that our SPEAR framework is highly effective for audio SSL.

1545 Table 27: Performance comparison between Dasheng and SPEAR on HEAR benchmark (average
 1546 score). All models are pre-trained on AudioSet with 5k hours data. HEAR results for Dasheng
 1547 from Dinkel et al. (2024)

Model	Pre-train Data	# Params	HEAR score ↑
Dasheng Base	AudioSet 5k	86M	70.43
Dasheng 1.2B	AudioSet 5k	1.2B	74.87
SPEAR_a Base	AudioSet 5k	94M	76.37
SPEAR_a Large	AudioSet 5k	327M	78.08