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Abstract

This report presents our approach for the Corner Case
Scene Understanding track of the Autonomous Driving
Challenge at the ECCV 2024 Workshop. The advent of mul-
timodal large-scale language models (MLLMs) like GPT-
4V has showcased remarkable multimodal perception and
understanding capabilities, even in dynamic street scenes.
However, applying MLLMs to address the corner cases
in autonomous driving remains a largely unexplored area.
Using the CODA-LM dataset, which features visual im-
ages paired with textual descriptions and analyses of cor-
ner cases, we adopted InternVL-2.0 as our base model and
conducted domain-specific fine-tuning tailored to driving
scenes. In this work, we enhance spatial correlation utiliza-
tion within images by leveraging position and depth infor-
mation to improve driving scene perception. Additionally,
we incorporate chain-of-thought reasoning for greater ac-
curacy and develop a context learning mechanism based on
scene-aware retrieval, which further refines the model’s un-
derstanding. This comprehensive strategy culminated in a
final score of 68.97 on the leaderboard. Our code will be
released at https://github.com/OpenVisualLab/NexusAD.

1. Introduction

Large Vision-Language Models (LVLMs) have the poten-
tial to greatly enhance autonomous driving by integrating
visual and linguistic information, thereby improving sys-
tem performance, safety, and alignment with human in-
tent through effective perception, prediction, and decision-
making. Recent advancements like DriveLM [14], LM-
Drive [13], DriveVLM [15], OmniDrive [16], ELM [22],
CODA-LM [10], among others, have accelerated progress
in this field, underscoring LVLMs’ ability to create more in-
telligent and reliable systems. However, even leading mod-
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els like GPT-4V struggle with corner cases, such as adverse
weather or unseen categories, indicating the need for further
research to enhance LVLMSs’ capabilities.

Building on the advancements in LVLMs, the Corner
Case Scene Understanding Track of the ECCV 2024 Au-
tonomous Driving Challenge offers a platform to explore
the practical application of this technology. This track em-
phasizes the integration of advanced vision-language mod-
els into real-world autonomous driving scenarios. Using the
CODA-LM [10] dataset, which is derived from CODA [8]
and comprises around 10K images with textual descriptions
of global driving scenarios, corner case analyses, and future
driving recommendations, participants are tasked with de-
veloping models that effectively integrate language modal-
ities. The goal is to address complex driving challenges
and foster the creation of more reliable and interpretable
autonomous driving systems.

To address the challenge of capturing intrinsic relation-
ships between similar complex scenarios for accurate en-
vironmental perception and cognition, as well as achiev-
ing generalizable and explainable driving behavior, our pro-
posed solution is summarized as follows. (1) We first uti-
lize object detection and depth estimation models to extract
spatial information from images, which is then converted
into structured textual formats that are more interpretable
for large language models. (2) We perform scene-aware
retrieval-augmented to identify the most relevant sam-
ples as contextual examples, which is crucial for enhanc-
ing the model’s understanding of extreme driving scenarios.
(3) We construct a high-quality dataset for fine-tuning us-
ing carefully designed step-by-step prompts that guide the
model in comprehending complex driving scenarios. (4) We
employ parameter-efficient fine-tuning to refine the vision-
language model and integrate it into a structured inference
pipeline, enhancing reasoning and performance through vi-
sual and linguistic data.

The report is structured as follows: Section 2 describes
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the competition datasets, along with the evaluation meth-
ods. Section 3 introduces the base models of our NexusAD,
and details the improvements and specifics of our imple-
mentation. Section 4 outlines the fine-tuning process and
presents the experimental results and performance analysis.
Finally, Section 5 summarizes our contributions.

2. Dataset

For the corner case scene understanding track, we use the
CODA-LM [10] dataset as the training dataset. CODA-LM
is a large-scale multimodal dataset specifically designed for
corner cases in autonomous driving. It provides an auto-
mated and systematic evaluation framework for assessing
the performance of large vision-language models (LVLMs)
in handling complex driving scenarios. Carefully crafted
prompts guide GPT-4V to generate high-quality text pre-
annotations, which are then verified and refined by human
annotators. This dataset consists of 4,884 training images,
4,384 validation images, 50 mini-set images, and 500 test
images, with most images having a resolution of approx-
imately 1280x720 pixels. And the challenge is designed
around three main tasks: general perception(GP), regional
perception(RP), and driving suggestions(DS). The perfor-
mance of the LVLMs is evaluated using text-only GPT-4 as
the “judge,” an approach that shows stronger alignment with
human judgment. The final score is assessed on the test set
and is composed of the average scores from the three tasks.

3. Method
3.1. Foundation Model

In this paper, we utilize the InternVL2-26B [1] model as
the foundation for corner case perception and understanding
in autonomous driving. The InternVL2 family is a series
of state-of-the-art vision-language models known for their
superior semantic understanding and cross-modal reason-
ing capabilities. It comprises a vision encoder that converts
images into feature representations and a language decoder
that integrates these features with natural language to pro-
duce outputs. This model excels in handling diverse sce-
narios, including dialogue, detailed descriptions, and com-
plex reasoning tasks, due to its dynamic high-resolution vi-
sual encoding and robust semantic comprehension. For this
challenge, we enhance corner case perception by dividing
images from the ego vehicle into six 448 x 448 sub-images,
each processed into 256 image tokens using a vision trans-
former multi-layer perceptron (ViT-MLP) and pixel shuffle.

3.2. Preliminary Visual Perception

For visual perception in autonomous driving scenarios, our
initial approach considered classic methods such as BEV-
Former [11, 18], VoxFormer [9], or TPVFormer [5] for 3D

object detection or semantic occupancy prediction. How-
ever, during practical implementation, we found that start-
ing with 2D detection on the image and then estimating the
depth of the detected objects yielded more accurate results.
This approach also better aligns with the object categories
in the competition dataset.

Visual Grounding. The InternVL2 model [1] supports
grounding tasks, enabling queries like “Find <bbox>" to
locate <ref-object> or “Find <ref-object>" to ob-
tain coordinates <bbox>." However, when tested on the
CODA-LM dataset, which emphasizes extreme scenarios in
autonomous driving, the model’s performance was subopti-
mal. While it excelled in object recognition, its localization
precision was lacking. Trained on general object datasets
like ref-COCO [20], the model tends to prioritize common
objects, often missing long-tail targets in extreme scenar-
i0s. To address this, we selected Grounding DINO [12] as
the initial object detector for the base perception module,
ensuring more comprehensive detection results. We used
the predefined categories in the CODA dataset as input to
the detection model, retrieving the locations of all relevant
objects in the image.

Depth Estimation. Accurate distance estimation of road
objects, particularly obstacles, is vital for autonomous driv-
ing safety. To enhance object depth accuracy, we utilize
the open-source DepthAnything v2 [19] to estimate image
depth (see Figure 1). Depth estimates are obtained for each
target based on their positions in the detection results. These
depth values are categorized into four levels: “long range,”
“mid range,” “short range,” and “immediate,” and integrated
into the object’s descriptive metadata. The detection and
depth information are then formatted according to the seven
major categories defined by CODA-LM, with details pro-
vided in section 6.1 of the supplementary materials.

3.3. Scene-aware Retrieval-Augmented Generation

Retrieval Augmented Generation (RAG) [7] effectively en-
hances large language models by combining pre-trained
parameters with non-parametric memory, making it well-
suited for handling knowledge-intensive tasks. In au-
tonomous driving, accurate perception and scene under-
standing are crucial for ensuring safe operation. A
promising approach to achieve these capabilities is through
a context-guided model that integrates retrieved expert
demonstrations, enabling high-performance, interpretable,
and generalizable autonomous driving [21]. Initially, we
considered using GraphRAG [2], but its computational de-
mands for local deployment proved prohibitive. Addition-
ally, direct index query methods were generally ineffective,
making it difficult for the model to retrieve content that is
truly relevant for decision-making. To address these chal-
lenges, we designed a retrieval method grounded in image
semantics and scene similarity. This method selects the
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Figure 1. Overview of the proposed NexusAD framework. It mainly consists of four phases: preliminary visual perception, scene-aware
retrieval enhancement, driving prompt optimization, and fine-tuning/inference process.

most relevant samples for the current scene, providing es-
sential contextual information. Specifically, we first extract
image features via the pre-trained InternViT-6B [1], which
produces semantically aligned vector features. Recogniz-
ing that the distribution of road users significantly impacts
perception and understanding, particularly in corner cases,
we developed a scene-matching algorithm that emphasizes
the category, orientation, and distance of targets relative to
the vehicle. As demonstrated in Figure 1, our method effec-
tively identifies the most pertinent samples for the current
scene, enabling the model to assimilate contextual informa-
tion more effectively and produce higher-quality responses.
More examples of scene-aware retrieval-augmented visual-
izations are provided in section 8 of the supplementary ma-
terials.

3.4. Driving Prompt Optimization

Chain of Thought Prompting (CoT) [6, 17] has demon-
strated significant improvements in the performance of
large models on arithmetic, common sense, and symbolic
reasoning tasks. By guiding models through intermediate
reasoning steps, CoT enables them to achieve superior re-
sults compared to standard prompts. [14] In this section, we
present our approach to constructing step-by-step prompts
[3] designed to enhance the quality of model-generated an-
swers. We first describe the formulation of a structured,
category-aware output and then discuss the critical consid-
erations for each of the three tasks. In addition, we have

considered guidance on the content of concern for extreme
scenarios of autonomous driving in the task prompts.

Format Qutput. The CODA-LM paper employs a label-
ing strategy that categorizes perceptual information into
seven key areas, covering target descriptions and their im-
plications for autonomous vehicles. This strategy utilizes
GPT-4V to generate globally perceived responses, follow-
ing a phased, step-by-step approach to mitigate the illusion
problem in large models and improve answer quality. In
line with this, we adopted a similar two-stage pipeline dur-
ing the fine-tuning phase, instructing the model to generate
output in a JSON format that aligns with the seven major
categories. The output format for the intermediate stage is
detailed in section 6.2 of the supplementary materials.

Prompt of General Perception. General perception eval-
uates the LVLM’s ability to comprehensively understand
key road entities. In this section, we designed a descrip-
tion of the perception task based on the original prompt
provided by the official guidelines and utilized samples ob-
tained through scene similarity retrieval as context for guid-
ing the model. Our approach directs the model to ana-
lyze the given driving scene from the perspective of the
autonomous vehicle, focusing on aspects such as the ap-
pearance, position, orientation, and impact of road entities
on the vehicle. Additionally, we incorporated specific guid-
ance for the model to handle special situations, such as ob-
stacles, requiring heightened attention to these elements. To
mitigate potential issues of contextual hallucination, we in-



cluded instructions in the prompts to suppress illusions, en-
suring that the model validates its responses against the im-
age content. Specific prompts can be found in the supple-
mentary materials 7.1.

Prompt of Regional Perception. Regional perception
measures the LVLM’s ability to understand objects within
specific bounding boxes and explains how these objects
impact autonomous driving behavior. To avoid issues of
contextual hallucination caused by example-based learn-
ing, we did not utilize context learning in regional percep-
tion. Instead, we designed specific steps and guidance based
on the competition’s focus categories to obtain responses
more aligned with autonomous driving scenarios. Detailed
prompts can be found in the supplementary materials 7.2.

Prompt of Driving Suggestion. Evaluating the ability of
LVLM to generate driving suggestions is a critical aspect
of the autonomous driving planning process. Compared
to perception tasks, driving suggestions require a deeper
understanding of driving scene rules and stronger reason-
ing capabilities. Therefore, while optimizing the task de-
scription and providing context examples for learning, we
placed particular emphasis on driving-related rules in the
prompts, such as maintaining a safe distance, adjusting
speed, and identifying and following lane markings. Addi-
tionally, to better align with the driving advice annotations
in the dataset, we instructed the model to output only the fi-
nal suggestions, omitting the intermediate reasoning steps.
Detailed prompts can be found in the supplementary mate-
rials 7.3.

4. Experiments
4.1. Fine-tuning & Inference Process

We used the SWIFT (Scalable lightWeight Infrastructure
for Fine-Tuning) to fine-tune the InternVL-2.0 [1] model
based on the training and validation subsets of the CODA-
LM [10] dataset. Due to considerations of computational
and parameter efficiency, as well as limitations imposed by
the available gpu memory, we opted not to use full parame-
ter fine-tuning, which typically offers better theoretical per-
formance. Instead, we employed LoRA [4], an efficient
parameter fine-tuning method, to adjust all fully connected
layers in the components of the InternVL2-26B model. For
the LoRA configuration, we set the rank to 8 and alpha to
32. We implemented a cosine learning rate scheduler, start-
ing with an initial rate of 2e-4 and including a warm-up
phase in the first 5% of the training steps. During the ex-
periment, the random seed was set to 42, the context length
to 4096, the batch size to 1, the gradient accumulation steps
to 16, and the maximum number of epochs to 10. For the
inference process, we deployed the model using LMDeploy,
with the system prompt identical to that used during train-
ing: “You are a seasoned driver, skilled at handling cor-

Method FS GP RP DS

GPT-4V 59.02 57.50 56.26 63.30
CODA-VLM 63.62 55.04 77.68 58.14

InternVL-2.0-26B  52.11 43.39 6491 48.04
NexusAD (Ours) 68.97 57.58 84.31 65.02

Table 1. The table shows the best results for our system on the
test set. (FS: Final Score; GP: General Perception; RP: Regional
Perception; DS: Driving Suggestion.)

ner cases.” All of our experiments were conducted using
the PyTorch framework on a computing platform equipped
with an Intel Xeon Platinum 8350 CPU, 4 NVIDIA A100
GPUs, and 1024GB of memory.

4.2. Results on the Leaderboard

Table 1 presents the score results on the test set, ranked ac-
cording to the competition standings. CODA-VLM [10]
serves as the organizer baseline, while InternVL-2.0-26B
[1] represents the baseline adopted in our approach. The
table demonstrates that our improved methods and ideas
have led to significant enhancements across all three tasks
compared to the baseline model. Notably, our approach
surpasses the performance of the powerful closed-source
model GPT-4V. By leveraging structured spatial perception
information, enhanced contextual learning for retrieval, and
meticulously designed step-by-step guidance prompts, we
achieved improvements of 14.19, 19.40, and 16.98 in gen-
eral perception, region perception, and driving suggestion
tasks, respectively, relative to the baseline model. Ulti-
mately, we attained a final score of 68.97.

5. Conclusion

This report details our approach for ECCV 2024 workshop
on multimodal perception and comprehension of corner
cases in autonomous driving. We utilized the open-source
multimodal model InternVL-2.0 and applied parameter ef-
ficient fine-tuning on the CODA-LM dataset to address cor-
ner cases in autonomous driving. Our methodology inte-
grates detection and depth information, converting it into
language patterns to enhance the model’s performance on
scene perception. We employed scene-aware retrieval to se-
lect the most relevant samples from the training set, pro-
viding the model with richer contextual information. Addi-
tionally, we designed prompts to guide the model through
step-by-step reasoning, resulting in improved answer qual-
ity. The proposed NexusAD effectively captures complex
associations in corner case driving scene, achieving a no-
table score on the final leaderboard.
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