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Abstract

We study the unlearning problem in the overpa-
rameterized regime, where many models inter-
polate the data. In this setting, defining the un-
learning solution as any loss minimizer over the
retained data—as in prior work in the underparam-
eterized case—is inadequate, since the original
model may already interpolate the retained data
and satisfy this condition. Further, loss gradients
vanish, rendering prior methods based on loss gra-
dient perturbations ineffective, motivating new un-
learning definitions and algorithms. We define the
unlearning solution as the minimum-complexity
interpolator of the retained data and propose a
framework to recover this solution that minimizes
a regularized objective under a relaxation of the
interpolation constraint, enforcing the perturba-
tion of the original model to be orthogonal to the
model gradients on the retained data. For different
model classes, we provide exact and approximate
unlearning guarantees, and we show that an imple-
mentation of our framework outperforms existing
baselines across unlearning experiments.

1. Introduction

As models are trained on vast datasets, the ability to remove
the influence of specific samples from a trained model is
essential. Machine unlearning algorithms (Cao & Yang,
2015) address this issue by modifying a model trained on a
dataset D to forget a subset of samples, termed the forget
set Dy, yielding a model that behaves as if trained only on
the remaining data, denoted the retain set D, = D \ D I
without having to retrain the model from scratch on D,..

In the underparameterized regime, where the training loss
has a unique minimizer, the unlearning solution is naturally
defined as the unique loss minimizer over D,.. When the
loss is further strongly convex, approximate algorithms have
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been developed using influence functions, which estimate
the effect of removing a sample via a gradient ascent step
preconditioned by the inverse loss Hessian (Bae et al., 2022;
Sekhari et al., 2021; Guo et al., 2020). In contrast, the over-
parameterized regime admits many interpolating solutions,
making loss optimality alone an insufficient unlearning def-
inition: the original model 8* may already minimize the
loss on D, while encoding information about Dy. More-
over, interpolation causes gradients to vanish, rendering
loss-gradient-based methods such as influence function in-
effective (Theorem 2.2). This motivates new definitions and
algorithms tailored to the overparameterized setting.

We define the unlearning solution in the overparameterized
setting as the model which minimizes a complexity measure
R (e.g. the parameter norm), subject to minimizing the
loss over D,.. This ensures the unlearned model reveals no
information about the forgotten data and maintains strong
generalization. We further propose a new algorithmic frame-
work to compute this solution. We focus on settings where
the loss is minimized by any interpolating model, so the loss
minimization constraint reduces to requiring interpolation
over D,.. We then relax the interpolation constraint via a
first-order Taylor expansion around 8%, enforcing the pertur-
bation A of the initial model to be orthogonal to the model
gradients at 8* on D,.. This simplifies the problem and re-
quires only gradient access on D,.. To mitigate error from
this relaxation, we add a regularizer }A‘?(A) to control the
size and direction of the drift. The final objective minimizes
R(6*+A) + R(A) under the relaxed orthogonal gradient
constraint, yielding updated parameters 8* + A.

Contributions. In theory, we show that for linear models
and networks, the relaxed problem recovers the exact un-
learning solution when R measures the ¢2-norm of either
the effective linear predictor or the full parameter vector.
For two-layer perceptrons with non-linear activation where
R measures network width, our framework yields interpo-
lating solutions that match best known upper bounds on
network size. We then translate our framework into a prac-
tical algorithm MinNorm-OG that accesses a subset of D,
aligning with the data access assumptions in prior empirical
work. Our method alternates between minimizing a regu-
larized objective under the orthogonal gradient constraints
and descending the retain set loss. We demonstrate strong
empirical performance across unlearning experiments.
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2. Unlearning in Overparameterized Settings

We first introduce notation (additional standard definitions
in Appendix A) for our unlearning setting, highlighting
why loss optimality alone no longer suffices to define the
ground truth unlearning solution and demonstrating why
loss-gradient-based methods, originally designed for the
underparameterized case, prove ineffective.

We define the training dataset D = {(x;,y;)}";, with
inputs ¢; € R™ and outputs y; € R! from data domain
Z =R™ x R Initial training is performed on D over the
models f(@,-) parameterized by & € R, where f maps
(0, ) to the prediction f(0,x) € R'. We define the train-
ing procedure A : 22 — R9, which takes in a dataset
and returns the parameters 8* corresponding to the trained
model. We assume A is faithful to a known loss function 7,
meaning A(D) = 6* is guaranteed to minimize 7 over D:

A(D) = 6" € argmin J (6 ;D)
0

where J (0 ;D) = %Z(m,y)epﬁ(a;:my) is the aver-
age of the sample-wise loss £ on D. For our discussion,
we consider losses £ (0 ; x, y) which are minimized when
(6, x) = y, meaning that interpolation implies loss mini-
mization (e.g. £,-norm regression).

Given a request for the model to forget a subset of the
training data Dy C D, we apply an unlearning algorithm
M (A,Z,., A(D), Dy) which is given the learning algorithm
A, side information Z,. (e.g., a subset of D,., or loss Hes-
sian on D,), initial solution .A(D), and forget set Dy, and
attempts to recover the unlearning solution, denoted by 6.

2.1. Defining Unlearning Beyond Loss Optimality

In the overparameterized setting, defining the unlearning
solution as any minimizer of 7 (0 ; D, )—as done in prior
work focused on the underparameterized case—is inadequate:
the original model 8*, which interpolates all of D, remains
a valid minimizer on D,. yet encodes information about Dy
(see Appendix C for a concrete illustration). To address
this, we define the unlearning solution as the loss minimizer
which minimizes an additional objective function R(6):

0 € argmin R(0) s.t. 6 € argminJ (0";D,). (1)
) o

This bilevel optimization problem searches for the model
which minimizes the complexity measure R among all mod-
els which minimize the retain set loss. When R admits a
unique solution, this formulation overcomes the prior issues
of non-uniqueness and the risk of revealing information
from the forget set. For our theoretical results, we focus
on R as a regularization function that penalizes model com-
plexity. This way, the solution 8 to (1) corresponds to the
simplest interpolating model over D,., a desirable property
in overparameterized settings (Hastie et al., 2022).

2.2. Loss Gradient Methods Deployed Under
Overparameterization

For the unlearning solution defined in (1), existing methods
based on loss gradient perturbations fail to achieve mean-
ingful unlearning updates. Prior theoretical works proposed
gradient-ascent style updates (Bae et al., 2022; Sekhari et al.,
2021; Guo et al., 2020), while existing empirical methods
perform combinations of loss ascent over Dy, loss descent
over D,, and parameter noising (Neel et al., 2021; Graves
etal., 2021; Chourasia & Shah, 2023; Kurmanji et al., 2023).
We characterize these methods as loss-gradient unlearning.

Definition 2.1. Let 6* = A(D). We say M performs
loss-gradient unlearning if for any positive semi-definite
P,, P; € R%4 and zero-mean random variable £ € R,

M(A,Z,., A(D),Dy) =
0" — P.NoJ (0";D;) + P;VeJ (6";Ds) + & (2)

In theory loss-gradient unlearning is principled in the under-
parameterized case, but it fails under overparameterization.

Theorem 2.2. Let f(0*,-) interpolate D, so f(0*,x) =y
for all (xz,y) € D, and let My be any loss-gradient un-
learning method. If the sample loss L (0, x,y) is minimized
when f(0,x) =y, then for all Dy C D,

Mg (A, I, A(D),Dy) = 6" +&.

Since 6* already minimizes J (6*; D,.), the loss gradients
vanish and M| g only adds noise and fails to achieve the
desired unlearn solution.

3. Our Proposed Framework

We present a new framework to efficiently unlearn under
overparameterization. We consider losses where data inter-
polation implies minimization, so we replace loss minimiza-
tion in (1) with an interpolation constraint, yielding:

0" € argmin R(0) s.t. f(0,x) =y Y(x,y) €D, (3)
0

We aim to efficiently recover € using the feasibility of the
initial model 8* for the above problem. While the constraint
in (3) is generally hard to enforce, we use the first-order
approximation f(0,x) ~ f(0*,x)+Vf(0*,z)" (0 —6%).
Since 0* interpolates D,., this reduces the constraint in (3)
to VF(0*,x)T (6 — 6*) = 0 forall (x,y) € D,, yielding
the following problem with linear constraints.

min R(6" + A) s.t. VO ,z)"A=0 VY(z,y) <D,
4
where we define the drift variable A = 68 — 6*. This
relaxation is reasonable, but accurate for general functions
only when the drift A remains small in some norm. To keep
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the solution close to that of the original problem (3), we
add a regularization term R(A) to control the drift. The
resulting objective function is R(6* + A) := R(0* + A) +
R(A). We then propose to solve the following problem,
which notably only requires model gradients over D,..

A € argmin  R(0* + A) %)
N
st. VfO,z)TA=0 VY(x,y) <D,

The suggested unlearned model is then 68* + A. Although
(5) uses relaxed constraints, we will show that for various
model classes there exists an R such that the solution to 5)
either solves the original unlearning problem (3), or yields a
model that both interpolates D,., remaining feasible for (3),
and satisfies an upper bound on the complexity measure R.

4. Theoretical Guarantees

This section provides theoretical guarantees for using our
proposed relaxation (5) to solve the exact unlearning prob-
lem (3). Going forward, we denote Euclidean projection
onto the set S as Pg (-) and define the penalty function 6,y
which is 400 if condition a is satisfied and 0 otherwise.

4.1. Linear Model

Given a linear model 8* with 8*Tx = y for all (z,y) € D,
we achieve exact unlearning for R(0) = [|0||2 in (3).

Theorem 4.1. Let A solve (5) for f(0,x) = 0"z and
R(0) = ||0||,. Then the recovered solution 8* + A solves
the exact unlearning problem (3) for R(0) = ||0,

In the linear case, the relaxed constraints of (5) introduce
no approximation error, so R(-) = 0 suffices.

4.2. L-Layer Linear Network

We extend our analysis to the model class of L-
layer linear networks. Partition the parameters 8 =
[c;vec(Ay);...; vec(Ar_1)], with A, € Rhexhe—1 and
c € Ri-1forl = 1,...,L — 1, and define f(0,z) =
c"Ap_i---Ajx. The input dimension is m = hg, and
we work within the overparameterized regime, meaning
n < m. For brevity, define the effective predictor w(0) =
Al -~ A] e sothat f(8,x) = w(0) T z. We study two
natural choices for R in (3): (i) the norm of the effective
predictor, and (ii) the norm of all model parameters.

4.2.1. MINIMIZING PREDICTOR NORM

We first consider R(0) = |[w(0)|,. Given initial
model 6* = [c*; vec(A]); ... ; vec(A}_)] such that
w(0*)Tx = y for all (z,y) € D, we aim to solve (3) for
this choice of R. In this case f is non-linear with respect to
0, so the first-order approximation for the constraints is not
tight. However, we show that adding a suitable regularizer

R to control model drift ensures that solving the relaxed
problem gives a solution to the exact problem.
Theorem 4.2. The solution to the relaxed unlearning prob-
lem (5) with the following choice of R solves the exact
unlearning problem (3) for R(0) = ||w(0)]|,.
L—1
R(0;60%) = |W(0)|ly + Oercy + O Oga,zazy  (6)
£=2
Thus, if A~ solves the relaxed problem (5) with the above
choice of R, 8* + A solves the exact problem (3).

4.2.2. MINIMIZING PARAMETER NORM

We next analyze when R(0) = ||0||,. Here, we can con-
struct an exact unlearning solution from the unlearning so-
lution in the previous case when R(6) = ||[w(8)||,.

Theorem 4.3. Let 0 solve (3) for R(0) = ||w(6)
W(é:) is the min {o-norm linear predictor over D,.. Define
p = ||w(0:)||2 and let v, € RM for ¢ € [L—1] each satisfy
[lvell, = 1. Set

2, SO

A = p%vlw(é:)T, c= p%vL_l,
Ag:p%v[vg_l fort{=2 ..., L—1.

Then 6 = [é : Vec(/il); co vec(fiL,l)] solves the exact
unlearning problem (3) for R(6) = [|0|,.

Thus, we can apply the previous results to find a solution for
(3) when R measures the predictor norm and then update
the parameters as prescribed by Theorem 4.3.

4.3. 2-Layer Perceptron

We lastly consider a 2-layer perceptron with a non-linear
activation. We define f(6,z) = ¢ ¢(Azx), where we par-
tition @ = [c; vec(A)| forc e R", A e R"*™ ¢ : R —
R is an activation function, and we abuse notation and write
¢(Ax) to denote the element-wise application of ¢ to Ax.
We analyze the case where IR measures the number of active
neurons of the network. Formally, we denote aiT as the ith
row of A, and we set R(0) = Z?Zl 1{|c;i| ||ail|, > 0}.
Given that ¢*T¢(A*x) = y for all (x,y) € D, we chase
the minimum neuron interpolating solution to D,.:

0 € argmin R(0) s.t. ¢’ p(Ax) =y V(x,y) € D, (1)
0

While we aim to solve (7) for any retain set D,., the exact
minimal-width solution remains unknown. For D, which
has n, = |D,.| samples, prior work shows that n,. + 1 neu-
rons suffice for general activations (Rosset et al., 2007),
while for ReLU activations, some n,.-sample datasets need
at least n,, — 2 neurons (Yun et al., 2019). The following
theorem shows that applying our framework and choosing R
to restrict perturbations in A* ensures that solving (5) yields
a network feasible for (7) with at most n,. active neurons.
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Theorem 4.4. For R(0) which measures the network width,
define the surrogate objective

Then the solution to the relaxed unlearning problem (5) with
this choice of R results in a network which interpolates D,.,
achieving feasibility for the exact unlearning problem (7),
and admits at most s = dim (span{¢(A*x)} 4 y)ep,) <
n, active neurons, where n, = |D,|.

For general activation functions, we recover a network
that interpolates D, with at most s active neurons, where
s is the dimension of the span of the representations
{¢p(A*x)}(2,)ep, Since s can never exceed n, = |D;|,
we guarantee a worst-case interpolation width of at most n.,
thereby improving the general bound of n,. + 1 implied by
(Rosset et al., 2007) for minimum width interpolation.

5. From Theory to Practice

We translate our framework into a practical algorithm
MinNorm-OG. We alternate between solving the relaxed
problem (5) for R(6) = [|0]|> and R(A) = \; || A7, and
descending the loss on D,. to remain feasible for the exact
unlearning problem (3). We only enforce the orthogonality
constraint in (5) over a subsample of size nye of each batch.
We solve this version of (5) by projecting € onto the span
of the model gradients over the subsample via a QR decom-
position. This has complexity O(dngm), equivalent to the
O(dnp) cost of gradient descent when 1y < /7, Where
np = |B| is the batch size. See Appendix E for pseudocode.

5.1. Experiments

We test our algorithm against the following methods. GD
(Neel et al., 2021) runs gradient descent on 7 (0 ; D,),
while NGD (Chourasia & Shah, 2023) adds gradient noise
to the GD steps. GA (Graves et al., 2021) runs gradient
ascent on J (0 ; D). NegGrad+ (NGP) (Kurmanji et al.,
2023) minimizes a weighted combination of the GD and
GA objectives. SCRUB (Kurmanji et al., 2023) optimizes
three objectives: minimizing 7 (€ ; D,.), minimizing KL
divergence of model outputs on D,. relative to the original
model, and maximizing KL divergence on D;. Negative
Preference Optimization (NPO) (Zhang et al., 2024) runs a
form of gradient ascent over J (6 ; D) inspired by prefer-
ence optimization. We lastly include ridge regression, which
approximates our unlearning objective (3) for R(0) = ||6/|,

by minimizing 7 (8; D,.) + A, ||0]2 for X, > 0.

We use MNIST and CIFAR-10 (LeCun et al., 2010;
Krizhevsky, 2009), generating red, green, and gray versions
of each image. Models are trained to predict both content
(digit or object) and color. The retain set D, includes all
content classes in gray only, while the forget set D includes
all colors. The ground truth unlearned model performs well

on gray inputs and always assigns probability 1 to gray over
all input colors. Retain quality is measured by accuracy
on gray test images; forget quality by mean squared error
of the predicted gray probability to the ideal value of 1 on
colored inputs. Figure 1 shows the Pareto frontier across
methods, with each point representing the median of 5 tri-
als for a hyperparameter setting. The shading represents
half the interquartile range. The optimal point (1,0) indi-
cates perfect retain accuracy and zero forget error, and GT
denotes the ground truth unlearned model. MinNorm-OG
performs best in both tasks, though all methods struggle
to preserve accuracy on CIFAR-10, a harder task than to
MNIST. Descent-based methods (GD, NGD, Ridge) remain
near the initial model (upper right), which is already near-
optimal on D,. and provides weak gradients for unlearning.

Forget Quality (Lower 1)

02 04 06 08 10
Retain Quality (Higher 1)

Forget Quality (Loy

00

0.1 02 03 04 0.

5 06 [ 03
Retain Quality (Higher 1)

Figure 1. Pareto frontiers for each method across hyperparameter
settings on MNIST (top) and CIFAR-10 (bottom). The x-axis
shows accuracy on gray test images (higher is better), and the
y-axis shows mean squared error between predicted probability of
gray on all inputs and the target of 1 (lower is better). MinNorm-
OG (ours) strictly dominates the other methods.

6. Conclusion

We proposed an unlearning framework for overparameter-
ized models that selects the simplest model consistent with
the retained data. We provided guarantees for recovering
the minimum-complexity solution via a tractable relaxation,
and showed that a practical implementation outperforms
baselines. Future work includes extending the analysis to
more complex models and experimenting at larger scales.
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Impact Statement

This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.
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A. General Notation

Vectors and matrices are in bold, with vectors lowercase and matrices uppercase. For sets A, B, A LI B denotes disjoint
union. 24 is the power set. For a proposition a, 1{a} is 1 if true and 0 otherwise; d{a} i +o0 if true and 0 otherwise.
For x € R and A C R?, P4 () is the Euclidean projection onto A. For Z € R™*", vec(Z) € R™" is the columnwise
vectorization. im(Z), ker(Z), and row(Z) denote the image, kernel, and rowspace. || Z||  is the Frobenius norm, || Z||, is
the nuclear norm, and || Z||, is the spectral norm. For Y € R™*", (Z,Y’) is the Frobenius inner product and Z © Y is the
element-wise product. tr{-} is the trace. For € R% and y € R%, [z;y] € R**% stacks z and y. |||, is the £, norm.
[n] ={1,...,n}. Forz € R, (z); = max{x,0} is the ReLU. Let 0 and 1 denote the vectors with each entry equal to 0
and 1 respectively. Further, for z € R? and ¢ € R, let 1, denote the vector which is 1 in each entry of = which is not
equal to c and O otherwise.

B. Minimum Norm Solutions to Linear Regression

Here we prove various properties of minimum norm solutions to linear regression problems which we later use for our
unlearning results. Following the notation in Section 2, we consider the full n-sample dataset D = {(x;, y;)}7_; with
sample inputs &; € R™ and outputs y; € R. We consider training a linear model f(6,z) = 6 x parameterized by
6 € R™. We work within the overparameterized setting, so we assume m > n. Define the span of the input vectors
S = span{z | (z,y) € D}, and assume dim(S) = n so the regression problem is realizable. Consider solving the
following problem for finding the linear regression solution with minimum ¢2 norm:

0" = argmin ||0]|, s.t. f(0,x) =y V(x,y) €D
0

Let X € R™*™ be the wide matrix whose ith row is equal to :I:;r , and let y € R™ be the vector whose ith element is y;.
Then, we can write an equivalent problem in matrix form.

1
0" = argmin 5 10]13 s.t.y = X6 )
]

We can then characterize the solution to the above problem relative to the constraint set.
Lemma B.1. 0* is the unique vector in row (X ) which is feasible for (9)

Proof. The objective (9) is a convex objective with linear constraints which is bounded from below by 0 and has a non-empty
feasible set. Thus, the KKT conditions are necessary and sufficient for optimality. We now derive the solution A* € R" to
the dual problem.
1 2 . 1 2 T
min o 05 st y=X60 = min max > 05+ A" (y— X80)
1 2 T
maxmin o [|8]l; + A" (y )
1 Ty 2 T T T
=max o [ XA +AT (= XXTA) st 6=XTA
1 Ty 2 T T
=max— | XA, + ATy st 6=XTA

— XXX\ =yand0* = X" \* (10)

Thus the primal solution 8* must be of the form X " A* € row(X). To show uniqueness, consider 85,05 € row(X) that
are both feasible for (9). Then,

y=X0;=X0; = X (07 —0)=0 = 0 — 0} € ker(X).

But, since row(X) is a subspace, 07, 05 € row(X) implies 87 — 85 € row(X). Further, row(X) = ker(X)=. Thus,
07 — 03 € ker(X) Nker(X)" = {0} = 67 =06
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Using the same analysis, we can characterize the entire feasible set in terms of 6*.
Lemma B.2. The feasible setto (9) {0 | y = X0} = 0* + ker(X).

Proof. Let @’ satisfy y = X 6'. Then, X (0’ — 0*) = 05060’ — 0 € ker(X).
To show the converse, take any z € ker(X). Then X (0* + z) = X0* + Xz = X0* = y. O

Using this characterization of 8* and the feasible set, we can cleanly understand how to achieve minimum norm solutions
over just a subset of the constraints given a feasible point. This is central to our unlearning setup in later sections.

Lemma B.3. Consider any subset D, C D, and define 0 as the linear regression solution over just D, with minimum
norm:
0; = argmin||0||, s.t. f(0,x) =y V(x,y) € D, (11)
0

Let S, = span{x | (x,y) € D,}. Then 8 = Pg,_ (6*).

Proof. 0* already satisfies the feasibility constraint over the whole dataset D, so it must be be feasible for (11). Applying
Lemmas B.1 and B.2 to the minimum norm problem over just D, (11), we must have that 8% € S, and 8* = 0 + z for
some z € Sﬁ-. Then,

Ps, (0%) = Ps, (07 + z) = Ps, (07) = 6.

C. Loss Minimization Does not Protect Against Data Leakage

The following example concretely demonstrates how certain minimizers of the retain set loss do not align with the intended
goals of unlearning.

Recall the unlearning problem for linear regression discussed in Section 4.1. In this case, we use the linear model
f(0,z) = 7 x parameterized by & € R™. Further suppose the original dataset D = {(x;, y;)}"_, has n samples with
x; € R™, y, € R. Denote the subspace S = span{z | (x,y) € D}, and assume dim(.S) = n so the problem is realizable.
We work in the overparameterized setting where m > n and the objective function is defined as the mean squared error
denoted by

1 T \2
JO:D)=— > (n—0Tm)
(zi,y:)€D
Consider when the learning algorithm .4 runs gradient descent on the loss, initialized at 0. Due to the overparameterization,
J has an infinite number of minimizers which each achieve 0 loss. However, A is biased towards a specific minimizer
which is the unique minimizer to the loss on the span of the input samples, denoted as the subspace S.

Proposition C.1. Let A*(D) be a learning algorithm which runs k steps of gradient descent on J (0 ; D) initialized at 0,
and define S = span{z | (z,y) € D}. Ifklim A¥(D) converges to some 0, then
—00

{6"} = SNnargmin J (6 ;D)

Proof. We write the loss function 7 (6 ; D) in vector form 7 (6 ;D) = L ||y — X9||3, where the ith entry of y € R" is
y; and the ith row of X € R"*™ is . Note that the gradient of the loss for any value of € is contained the subspace S,
as VoJ (6;D) = 2X T (X6 — y) and im(X ) = S. Further, the initial iterate of A* is 0 € S. Since subspaces are
closed under addition, every iterate of gradient descent on 7 (6 ; D) starting from O must be contained in S. Thus if A (D)
converges, it must converge to a zero of the gradient of the loss, and this point must also be in S. Since the loss is convex,
this point must be a loss minimizer. O

In this case, the original training solution 8* which results from simply performing gradient descent interpolates all of D and
lies on S, the span of the input samples in D. Then, given an unlearning request to forget any subset Dy from D, 8™ itself is
a minimizer to the loss on the resulting retain set D,, = D \ D ¢. However, since 8* € S reveals information about all the
input samples in D, it necessarily leaks information about the samples in D. Thus, even though 8™ is a valid minimizer of
J (0 ;D,), it is not an acceptable unlearning solution.
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D. Proofs
D.1. Proof of Theorem 2.2

We assume f(6*,-) interpolates all of D, so f(0*,x) = y for all (x,y) € D, and that the sample-wise loss £ (0, x,y)
is minimized when f (0, x) = y. Thus, * must minimize each of the sample-wise losses £ (0, x,y) for all (x,y) € D.
Therefore, Vo L (0*,x,y) = 0 for all (x,y) € D.

Since J (0*;D,) = ﬁz(mm@rc(e,z,y) and J (6*;Df) = ﬁ Z(m,y)eDf L(0,x,y), we must have that
VoJ (0*;D;) =VeJ (6*;Df) =0.

Then, if Mg is any loss-gradient unlearning method, the update rule must be of the form
M (A, Z.,A(D),Ds) = 0" — P.NoJ (0";D;) + PsNVoJ (6";Dy) + &,

where P, and P; are positive semi-definite matrices and £ is a zero-mean random variable. Applying the fact that
VoJ (0*;D,) = VoJ (6*;Ds) = 0 to the update of M, g gives the desired result:

Mg (A, IT,A('D),'Df) =0* + £

D.2. Proof of Theorem 4.1

Recall we have a feasible vector 8* such that 8* "« = y for all (z,y) € D, and we want to recover 8}, the minimum ¢
norm solution over just a subset D,. C D:

0; = argmin 0], stO'xz=y Y(x,y) €D, (12)
0

Consider solving the relaxed unlearning problem (5) for R(8) = ||0]],:

A =argmin[|0" + A, st. A Lz V(z,y) € D,
A

Define S, = span{x | (z,y) € D, } and write the equivalent problem:

~ 1
A = argmin - [|0* + A3
Acst 2

By first order optimality, 8* + A € S, so we must have that
A =—Ps. (6%)
Thus the updated unlearned vector is
0 +A=06"—Ps. (0) =Ps, (67).
Then, Pg, (6*) = 0} by Lemma B.3.

D.3. Proof of Theorem 4.2

Before proving the theorem, we first show an intermediate result.

Lemma D.1. Consider the linear network model class with parameters 0 partitioned as @ = [c;vec(A1);...; vec(Ar_1)]
and f(8,x) = ¢ Ap_y --- Ayx. Denote the retain set input subspace by S, = span{z | (z,y) € D,} and partition the
perturbation as A = [A.; vec(Aa,); ... ; vec(Aa, )| in the same manner as 6. Set

A * * || 2 * * * *

Ag =—[AsT - ailie,” AT AL e Py (w(o7)! (13)

and all other components of A to zero. Then A is orthogonal to the gradient of mapping f(0, x) evaluated at @ = 0* for
each input x in the retain set and hence feasible for the relaxed problem (5). Moreover, 8* + A solves the exact unlearning
problem (3) for R(0) = ||w(0)||,.
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D.3.1. PROOF OF LEMMA D.1

Recall that in this case we are interested in minimizing R(0) = ||w(8)|,, where w(0) = A] --- A] ¢ returns the
effective linear predictor parameterized by 6.

We first show that A is feasible for the relaxed problem (5). Firstly, A is zero in all entries except those corresponding to
the perturbation of Ay, so we only need to ensure that A 4, is orthogonal to V 4, f(8*, ) for each (x,y) € D,. Recall we
denote the retain set input space as S, = span{ | (z,y) € D, }, and A 4, is defined as

A * * ®||—2 * * * *
Aa, =— HAzT : "AL—EIC 2 AzT ) "AL—EIC 7DSTL (w(o ))T

Further, the gradients are computed as

Va, f(0",x)=A;" - AT cra T
Then for any (x,y) € D,,
~ ~ T
B Va0 2) = {(Ba) Vars(0" )}
~ T
— tr {VAlf(G*,a:) (AAl) }

:_HA;T...AzT_lc*H
=0,

-2 * * * % % « N
, r{A;T AT " Py (w(07) ' TAT - AL}

where the last step follows from the fact that the inner term wT’PSTL (w(0*)) = 0since « € D, implies z € S, by
definition.

We now show that 8* + A achieves the optimal unlearning solution 8*. By construction of A, the only entries of 8* that
are perturbed are those which correspond to A;. Thus, we compute the effective linear predictor after the perturbation:

w0 +A) =w(0")+ A} AT - AT

(6*) — HAET . -'AZLC*HQ_Q Ps. (w(O@) e TA; |- A5 AT AL e
07— | 45T - A7 e, P (w(67) (A5T - AT ) AT AT e
(6") = P (w(6")

Ps, (w(6"))

w

w
w

Since the linear predictor w(6*) already interpolated D, Ps, (w(68*)) must be the minimum norm linear predictor over D,
by Lemma B.3. Thus, the effective predictor of the perturbed parameters w(6* + A) solves the exact unlearning problem
(3) when R(0) = ||w(0)]|,, so 8* + A achieves the optimal unlearning solution.

D.3.2. PROOF OF THE THEOREM

Let A be the Eerturbation which satisfies the conditions in Lemma D.1. Then, A is feasible for the relaxed problem (5), and
further 8* 4+ A solves the exact unlearning problem (3).

Now, let A* minimize the relaxed problem (5) for this R defined in (6). Then because R ensures that all elements of A*
which do not correspond to A are zero, we must have that for any (x,y) € D,

wO + A ) z=c"TA}_| - A} (AT + A%z
=y+cTA | AAL T
=y+ (A%, Ve f(0",x))
=Y,
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where the last equality follows from the feasibility of A* to (5). Thus, 8* + A* interpolates D,., so 8* + A* is feasible for
the exact unlearning problem (3). We now show this point is also optimal for (3).

Since 8* + A solves the exact unlearning problem (3) and 8* + A* is another feasible point, we must have that
R(0* + A) < R(8* + A¥).

Further, both A and A* are feasible for (5) and A* is defined as the solution to (5), so we must have that
R(0* + A*) < R(6* + A).

But, since both A and A* are non-zero only in the entries corresponding to A1, applying R and R yields the same value:

R(O*+A)=R(0*+A) and R(0* +A*) = R(6* + A¥)

Thus, R(6* + A*) = R(0* + A), so 0* + A* achieves the optimal objective value of (3). Since we established feasibility
and optimality, 8* + A* must solve (3).

D.4. Proof of Theorem 4.3

Denote the minimum ¢5 norm solution w(é,’f) to y = X'w as just w). for brevity. Using w., we construct a solution to the
exact unlearning problem (3) for R(6) = ||6|,, which we restate below:

argmin [|0], s.t. w(@) 'z =y V(z,y) € D,
0

Expanding 8 = [c; vec(A1); ... ; vec(AL_1)] into the sub-parameters, squaring the objective, and organizing (x,y) €
D, into input data matrix X, € RIP~1*4 and output vector g, € RIP~! gives an equivalent problem:

L-1
. 2 2

argmin ||c||5 + Z |Acllp sty = X, Al ...A]_jc (14)

c,Ay,...,AL 1 —1
Letc*, A},..., A} | beasolution to (14). Then, A% T ... A3 c* interpolates D,,s0 A" ... A%T ¢* = w’ + z where

w) € row(X,) and z € ker(X,) by Lemma B.2.
Let Py = Ww:w;kT be the projection matrix onto span(wy ). Then replacing A} with A} Py, - maintains feasibility
ril2

since Py. A7" ... A3T ¢* = Py: (W} 4 z) = w; which is feasible by definition. Further, A} P, achieves smaller
objective function value since

2
= ALl

A} AG|

2 |
The second equality follows from the cyclic property of trace and the fact that Py is both symmetric and idempotent, and
the inequality is a generalized Holder’s inequality for matrices.

Thus, replacing A] with the rank-1 matrix Aj P, must preserve optimality of any solution that contains A7. Write
A; Py = \jvyw; ! forsome Ay € R, vy € R™ with [Jvq ||, = 1.

We can apply an analogous argument with the matrix P,, , which projects its input onto span(v; ), to show that any solution
that contains A% must remain optimal with A% replaced by the rank-1 matrix A% P, . Continuing this argument for each
A, 0=3,...,L —1as well as for c* shows that we can search for solution over a much smaller space. Specifically, for
some )\, € R and v € R, we can decompose c* and each A} as

Al = Alvlw:—r A) = )\EW'U;A for {=2,...,L—1 ¢’ = Apvr_1

10
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Then, (14) reduces to

L-1
win [ Azvs a3+ Mo+ 3 oo I
i,UL =2

S.t. (/\1W:’UI)()\2’01’U;) s (/\L_l’UL_Q’U—Lr_l)()\L’UL_ﬁ = W: and H’U@HQ =1

L
= min IWil3 A3+ D A7 st Apdge A =1 (15)
‘ =2

We perform a change of variables setting v; = A\? and enforcing ; > 0.

L
min Wil +D e stompeyn =1 (16)
‘ =2

Define v = (71, ..., L), objective function g(v) = ||w} ||§ 7+ ZLQ e, and constraint h(y) = y172 - - -y —1 = 0. By
the AM-GM inequality, we have that for any feasible ~y

1
*12 L «12/L
9v) = L (Iwi 37 -a) " = lwil",

where the last equality follows from the constraint h(+) = 0. Define feasible point 4* such that

2(1—-L) 2 2
Y= {Uwrlly B Wil Wl )

Then g(v*) = ||w} H;/L achieves the lower bound, so it must solve (16). Thus, the optimal values A, ..., A} to (15) result
from taking square roots of «y;. Then, the following values for the network parameters must be optimal for (14):

(1-L) 1

1
Al =|lwill, ' owi T AD = willy vew Ly for £=2,. L1 " = |w]l) vroa

D.5. Proof of Theorem 4.4

We prove the theorem using the following lemma. See the end of the section for a proof.

Lemma D.2. For c € R" and subspace G C R" such that diim(G) = s, there exists A, € G;- such that ||c + Aclly < s
where the {y-“norm” || - ||, counts the number of non-zero elements.

Because R does not allow any perturbation of A*, any solution to (8) must only perturb 8* in the entries corresponding
to c*. Let s = dim(span{¢(A*x)} (s ,)ep, ). Note that by definition we have that s < |D,|. Apply the lemma to c*
and span{¢(A*x)} z . )ep, so that there exists A, € span ({qZ)(A*ac)}(:,Ly)epT)L such that ||c* + A.|lo < s. Define
A= [AC ; 0].

Then the network defined by 0* + A has at most s active neurons since any zero element of ¢* + A cannot contribute
an active neuron. Further, {$(A* )} (2. y)ep, = {Vef (0", )}z yep,. so the perturbation A is feasible for the relaxed
problem (5). But, f is linear in ¢, so this perturbation must preserve function value on D,., since the constraints of the

relaxed problem are tight when just perturbing ¢*. Thus, the resulting network defined by * 4+ A both interpolates D, and
has at most s = dim(span{¢(A*x)}(z,y)ep, ) active neurons.

Proof of Lemma D.2:
Let the columns of some P € R"*("~%) form a basis for G+ so that im(P) = G. Consider the reduced column echelon

form of P denoted rcef(P) = P. By definition, im(P) = im(P) = G*, so rank(P) = h — s and thus each of the i — s

11
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Algorithm 1 MinNorm-OG

1: Input: 0%, loss £(0), retained subset D.. C D,, step size 1, regularization constant \; > 0, subsample size Npert
2: Initialize 6 < 0*

3: for t = 1 t0 Nepochs do

4:  for each batch B from D,. do

5: if \; < oo then

6: Set gi = Vo f(0,x;) forx; € B,i=1,..., npert

7: Solve: A = argmina || + A||3 + \¢||Al3,s.t. A L g; forall
8: Update 6 <— 0 + A

9: end if
10: Loss descent: 0 < 0 —1n,VoL(0;5)
11:  end for
12: end for
13: return @

columns of P has a leading one. Let p; be the ¢th column of P and let 7i denote the index of the leading one in p; for all
ieh—sg].

Let (p;)y, denote the kth element of p;. By definition of the reduced column echelon form, we have that (p;); = 0 for all
k < j;. Define

h—s
i=1
for coefficients y; € R defined as
i—1
Vi =— (C* + Zﬁk)
k=1 Ji
Since each p; is only non-zero in the indices j; to h, we must have that (c¢* + A.);, = 0 for all i € [h — 3], so
le + Ay < s.

E. MinNorm-OG Algorithm

We first present the pseudocode for our algorithm MinNorm-OG as Algorithm 1.

Step 7 of Algorithm 1 solves a version of the relaxed unlearning problem (5) for the specific choice R(G +A) =
e + A||§ + A HAHg We next derive its closed form solution and show how it can be obtained using a projection.

Define the span of the model gradients over the subsampled batch as the subspace G, = span{Vg f(0,x;) | x; € B,i =

1,... ,npm} and consider any A > 0. We then solve the following problem:

A:argmin||9+A||§+>\||A||§ st. A € Gr. (17)
A

This is a strongly convex problem over a linear constraint, so its solution A is the unique point which satisfies the following
condition for first order optimality:

(1+NA+0¢c6,.

Note that this is satisfied by the projection
1

A= *mPgTL (9),

which must then be the unique solution to (17).

12
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F. Experiments

We first standardize the notation for each algorithm. Throughout our experiments, we sweep over hyperparameters and
report the best results for each algorithm, and we sweep related hyperparameters for each algorithm through the same set of
values. For example, every algorithm has a learning rate which is selected from searching over the same set of values. We
first define the hyperparameter names we use along with the algorithms they apply to.

Table 1. Hyperparameter definitions and their associated methods.

Symbol Methods Description

T All Number of epochs

n All Learning rate

AGA NGP, Scrub Loss ascent coefficient

Areg NPO, Scrub, MinNorm-OG, Ridge Regularization coefficient

o NGD Gradient noise standard deviation

Top Scrub, MinNorm-OG Number of final descent epochs on retain set
Veeg MinNorm-OG, Ridge Regularization coefficient decay rate

Tproj MinNorm-OG Projection period

Nopert MinNorm-OG Subsample size to compute gradient space

F.1. Implementations

We now define the exact implementation of each method. Consider a batch of retain samples B, and forget samples By,
along with loss function 7. For each method, we use the AdamW optimizer with learning rate n on different effective loss
functions. We express the loss functions below.

F.1.1. GD

jGD(e aB7) - \7 (0 7Br)
F.1.2. GA

TJoa(0;8y) = —T (0 ;By)
F.1.3. NGD

Inap(058,) = T (0:8B,) + 0" &,
where & ~ N(0,021I) is a zero-mean Gaussian random vector.

F.1.4. NGP

Inee(058:) =T (0;8,) — AaaJ (0 By)

F.1.5. NPO

Recall that 8* denotes the initial trained model parameters. Then, the NPO loss is

1 2 7o (ys | @5)
Iweo (600 3 By, Aca) = B > oo log (1 + M) :
(wsyp)eB; A A

13
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where g (y | ) denotes the model’s predicted probability of class y for input « ; for parameter vector 8. Note that this
is equivalent to setting the parameter (3 in the original NPO paper (Zhang et al., 2024) to Ar,.

F.1.6. SCRUB

The Scrub loss decomposes into different terms depending on the epoch. Let g (y | ) denote the model’s predicted
distribution over classes y for input @ for parameter vector 8, and define KL(- || ) as the Kullback-Leiber divergence. Recall
6* denotes the initial trained model parameters, and denote the current epoch ¢ € {0,...,7 — 1}. Then the Scrub loss
Tserun (0 3 Br, Bf, Areg, Aga, t) is defined as:

chrub(e i B, Bf7 )\rega AGA, t) =

JO0:B)+15 Y KL(me-(y| )| mely | @) iftevenort>T —Top
(ryr)EB,
—y Y. KL(me(y|zg)llma(y | zy)) otherwise
(xs,y5)EBy

F.1.7. MINNORM-OG

For each batch B,., we always perform a loss descent step:

jMinNorm—OG(e ;Br) =J (9 §BT)

Following the AdamW update for this loss, we then (depending on the eg)och) perform the model update corresponding to
solving the relaxed unlearning problem (5) for R(60 + A) = |0 + A||; + A ||AH§, where ) is a saved parameter of the
algorithm. We use the parameters Tp;; and Tgp to determine which epochs to perform the unlearning update. For the Tgp
last epochs, we only perform the descent step and skip the unlearning update, similar to Scrub. In the first T" — Tip epochs,
we perform the unlearning update every Tp,; epochs.

1
Nz
X\ < 2+L _ 1 ysing the decay factor Yreg € [0, 1]. For our algorithm we only use values of A, such that A\; < 1. The

ey

update for \ leads to solutions to the relaxed unlearning problem which result in more conservative perturbations.

We initialize A = — 1, and each time we perform the unlearning update, we grow the value of A through the update

To interpret these values, first recall that we solve the relaxed unlearning problem over a subsample of each batch B. C B,
where [B]| = npen. For convenience, define the gradient subspace G, = span{Ve f(0, )} (x,y)c5.- As we showed in

Appendix E, for any value of ), the optimal perturbation is then A = 71_%\7%@ (0). Thus, the initial value A = )% -1
r reg
leads to the perturbation A = —\gPg, 1 (0). Further, the coefficient update A = % — 1 leads to a more conservative

unlearning perturbation A = *’Yregﬁfpg;i (@), as it is down-weighted by 7ree. Thus, Ay, is the initial strength of the
perturbation, normalized to the range [0, 1], and ., represents a multiplicative decay of this strength through each update to
A

We formally write the unlearning update at epoch ¢ as follows, where 6 is the current parameter vector, 0., is the updated
vector, and mod denotes the modulo operation.

if t mod Tpyoj # Oort > T — Tgp
enew = 90
else

A = argmin |0, + AII§ +A ||A||§
Acglt

Bnewzao"‘A
A+l

Vreg

1

A

Gradients for Classification. We make a special note of how we compute the gradient subspace G.. for classification
tasks. At the parameter value 6, the model prediction is f(0y,x) = argmax zg, (y | ) where z¢(y | x) denotes the

14



Machine Unlearning under Overparameterization

model’s unnormalized logits over the classes y for input a for parameter vector . This is not a continuous function of 6,
so we cannot compute its gradient directly. However, following prior works (Farajtabar et al., 2020), we use the gradient
Vo (z6,(y | ©));, where j = f(6o, ) is the model’s predicted class for input . In other words, we take the gradient of
the the unnormalized logits at the index of the maximum value, where we do not treat the index as a function of 6.

F.1.8. RIDGE

We again store a regularization weighting A which we initialize to A = \,. We define the ridge loss as
jRidge(g ;BT’) +A ”0“3 .

After updating the parameter vector using this loss on each batch, we update X as

A Yreg A

Recall e is always set within the range [0, 1], so the update to A approximates the limit as A goes to 0 as we iterate through
the epochs. This attempts to recover the minimum norm, or ridgeless, training loss minimizer.

F.2. Multi-Class Label Erasure

We first go over the experimental setup presented in the main body in further detail. We refer to this experiment as
Multi-Class Label Erasure, as it tests whether each unlearning algorithm can effectively forget about the non-gray colors.
We use the MNIST and CIFAR-10 (LeCun et al., 2010; Krizhevsky, 2009) datasets, creating red, green, and gray copies of
each image in the training sets. We construct the retain set as the entire gray copy, and the forget set as a random subset
of the red and green copies. Specifically, we construct the forget set as a random sample of 5 percent of the red samples
combined with a random sample of the same size of the green samples. We then train a model to predict both the image
content class (digit for MNIST, object for CIFAR) as well as the color on the combined data to serve as the initial model for
unlearning. For MNIST, we use a CNN with two convolutional layers, one fully connected layer, and then a separate fully
connected prediction head for the color and content class. We train for 100 epochs using an initial learning rate of 10~3
and a batch size of 3000 along with the AdamW optimizer. For CIFAR-10, we use a modified ResNet-18 (He et al., 2016)
architecture also with separate prediction heads for the two class types. In this case, we train for 120 epochs using stochastic
gradient descent (SGD) with momentum and weight decay. We set the learning rate to 0.02, momentum to 0.9, and weight
decay to 5 x 10, and we use a batch size of 256. We also apply a learning rate scheduler which applies a multiplicative
decay of 0.1 every 50 epochs. For each dataset, the ground truth models are trained on the gray images alone using the same
training parameters.

We then apply each of the unlearning algorithms over different constraints on the number of unlearning epochs and the
amount of available retain data. We define prein € [0, 1] as the proportion of D, available during unlearning. For each of
the 5 trials, we train a new initial model and sample Pyetin proportion of D,. to serve as the available retain data. During each
unlearning epoch, the algorithms iterate over batches from the forget set. For every forget set batch, a corresponding batch
of the same size is sampled from the available retained data. The epoch ends once all forget set batches have been processed,
regardless of whether there are unused retain set samples remaining. Any unused retain batches are not discarded—they will
be sampled in subsequent epochs. Once all available retain set batches have been used at least once, the sampling process
begins again from the start of the available retain set samples.

The ground truth unlearned model is only trained on gray samples, so it achieves strong accuracy on gray-colored inputs and
always predicts the input image to be gray, no matter the input image color. We thus evaluate retain quality by accuracy
on gray-colored test samples, and forget quality by the mean squared error between the predicted gray probability and the
ideal value of 1 across all colored inputs. For each method, we sweep hyperparameters and plot the Pareto frontier for each
method, where the optimal point is at (1, 0) which indicates perfect retain accuracy and zero gray prediction error. Each
point in the frontier for a given method represents the median results over 5 trials of a single hyperparameter combination,
with the shaded uncertainty shown as half the interquartile range in each direction. We label the performance of the ground
truth unlearned model as GT.

We plot the Pareto frontiers and report the hyperparameters used to obtain the optimal curves in the figures and tables
below. We do not necessarily sweep over every combination of the reported settings for every algorithm, as we selected

15



Machine Unlearning under Overparameterization

some hyperparameter choices to fill out different areas of the frontier when needed. For example, we often had to set larger
learning rates for Scrub to trace a full curve from the upper right to the bottom left. Without doing so, the Scrub results did
not reach the bottom half of the plot as the unlearned models remained too close to the initial trained model. Similarly, for
some of the CIFAR-10 experiments our algorithm MinNorm-OG needed smaller learning rates and small values of Ay, than

usual to sweep through full range through the top right corner, as this area represents models which remain close to the
original trained model.

We observe that MinNorm-OG performs the best across all settings. We see that the CIFAR-10 experiments are much
more challenging than those on MNIST, as the retain set accuracy degrades much sharper on CIFAR-10 for all unlearning

methods. Further, for a small number of allowed unlearning epochs, the performance of MinNorm-OG relative to the other
methods can be substantial.

All training and parameter searches were performed on a cluster of NVIDIA GH200 GPUs. For example, sweeping through
150 parameter combinations for Scrub using 8 GPUs at once takes around 15 minutes for 5 unlearning epochs on MNIST.

Table 2. Hyperparameter values tested for the results in Figure 2 running the Multi-Label Class Erasure experiment on MNIST with
Pretain = .05and T = 5.

Hyperparameter Sweep Values

) {107%,3 x 107%,5 x 1074,107%,5 x 1073}
A {1073,1072,107*,1.0,2.0}
Areg {0.1,0.3,0.5,1.0,3.0}
o {0.1,0.5,1.0}
Top {0,1,2,3,4}
Yreg {0.3,0.6,0.9}
TProj {17 2}
Tlpert {20,40}
0.8
@D
cA
0.7 NGD
- s
i g 4
Y%  MinNorm-OG
30 GT
? ” ‘ll'
£ 04
?:’o.:;
0.2
0.1 )
GT
0.0 4 4 R 3 J ok

0.2 0.4 0.6 0.8 1.0
Retain Quality (Higher 1)

Figure 2. Pareto frontiers for each method across hyperparameter settings in the Multi-Class Label Erasure task on MNIST with
Pretain = .05 and T" = 5. This is an enlarged version of the top subfigure in Figure 1.
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Table 3. Hyperparameter values tested for the results in Figure 3 running the Multi-Label Class Erasure experiment on MNIST with

Pretain = .Oland T = 5.

Hyperparameter Sweep Values
) {107%,3 x 107%,5 x 1074,1073,5 x 107%}
AGA {1073,1072,107 %, 1.0}
Areg {0.1,0.3,0.5,1.0, 3.0}
o {0.5,1.0}
Top {0,1,2,3,4}
Vreg {0.3,0.6,0.9}
Tij {17 2}
Tlpert {20, 40}
0.8
GD
GA
0.7 NGD
\Po e o
0.64 Serub
Ridge *
% MinNorm-OG
?0.5 ar
5 y/ x
= 0.4
Tg
g 0.3
0.2
0.1
GT
004 ¥ - * o Yo Yo Yok
O‘.Z 0.‘4 O‘.G 0.‘8 1‘.0

Retain Quality (Higher 1)

Figure 3. Pareto frontiers for each method across hyperparameter settings in the Multi-Class Label Erasure task on MNIST with

Pretain = .01 and T' = 5.

Table 4. Hyperparameter values tested for the results in Figure 4 running the Multi-Label Class Erasure experiment on MNIST with

Pretain = -05and T = 2.

Hyperparameter Sweep Values

n
Aca
Areg
o
Tep
reg
Throj
Tpert

{107%,3 x 107*,5 x 107*,1073}
{1073,1072,107*, 1.0}
{0.1,0.3,0.5,1.0,3.0}

{0.1,0.5}

{0,1}

{0.3,0.6,0.9}

{1,2}

{20, 40}
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Figure 4. Pareto frontiers for each method across hyperparameter settings in the Multi-Class Label Erasure task on MNIST with
Dretain = -05and T' = 2.

Table 5. Hyperparameter values tested for the results in Figure 5 running the Multi-Label Class Erasure experiment on MNIST with

Dretain = .Oland T = 8.

Figure 5. Pareto frontiers for each method across hyperparameter settings in the Multi-Class Label Erasure task on MNIST with

Pretain = .Oland T = 8.
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Table 6. Hyperparameter values tested for the results in Figure 6 running the Multi-Label Class Erasure experiment on CIFAR-10 with
Dretain = .00l and T = 5.

Hyperparameter Sweep Values

n {1077,107%,5 x 107°,107*,5 x 107*,107%}
AGA {1073,1072,107%, 1.0}
Areg {0.0,0.01,0.05,0.1,0.3,0.5,1.0, 3.0}
o {0.1}
Tep {0,1,2,4}
Vreg {03,06,097 10}
Tproj {1,2,3,4}
TMpert {20}
0.8
GD
GA
0.7 NGD
NGP
NPO
0.6 Serub
Ridge
*  MinNorm-OG
?0.5 ar
z 0.4
o34 v
E &
0.2
0.1
0.01 M *

T T T T T T T T
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
Retain Quality (Higher 1)

Figure 6. Pareto frontiers for each method across hyperparameter settings in the Multi-Class Label Erasure task on CIFAR-10 with
Pretain = -001 and T" = 5. This is an enlarged version of the bottom subfigure in Figure 1.

Table 7. Hyperparameter values tested for the results in Figure 7 running the Multi-Label Class Erasure experiment on CIFAR-10 with
Dretain = -001 and T" = 10.

Hyperparameter Sweep Values

n {1077,107%,5 x 107%,107*,5 x 107*,107%}
A {1073,1072,107 %, 1.0}

Areg {0.0,0.01,0.05,0.1,0.3,0.5,1.0, 3.0}

o {0.1}

Teop {1,2,3,4}

Veeg {0.3,0.6,0.9,1.0}

TPFOj {13 27374}

npen {20}
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Figure 7. Pareto frontiers for each method across hyperparameter settings in the Multi-Class Label Erasure task on CIFAR-10 with

Pretain = -001 and T" = 10.

Table 8. Hyperparameter values tested for the results in Figure 8 running the Multi-Label Class Erasure experiment on CIFAR-10 with

Preain = .01 and T' = 5.

Hyperparameter Sweep Values

n
Aca
>\reg
o
T6p
Vreg
TProj

Npert

{1077,107%,5 x 107°,107*,5 x 107*,107%}
{1073,1072,107%,1.0}
{0.0,0.01,0.05,0.1,0.3,0.5,1.0, 3.0}

{0.1}

{1,2,3,4}

{0.3,0.6,0.9,1.0}

{1,2,3,4}

{20}
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Figure 8. Pareto frontiers for each method across hyperparameter settings in the Multi-Class Label Erasure task on CIFAR-10 with

Pretain = 0O0land T = 5.
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Table 9. Hyperparameter values tested for the results in Figure 9 running the Multi-Label Class Erasure experiment on CIFAR-10 with
Pretain = .0land T = 10.

Hyperparameter Sweep Values

n {1077,107%,5 x 107%,107*,5 x 107*,107%}
Aa {107%,1072,107*, 1.0}

Areg {0.0,0.01,0.05,0.1,0.3,0.5,1.0, 3.0}

o {0.1,0.5}

Top {1,2,3,4}

Veeg {0.3,0.6,0.9,1.0}

TProj {132a374}

npm {20}
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Figure 9. Pareto frontiers for each method across hyperparameter settings in the Multi-Class Label Erasure task on CIFAR-10 with
Pretain = .01 and T" = 10.

F.3. Data Poisoning

We include another experiment which tests how well each unlearning algorithm can forget about poisoned samples which

degrade model performance on the underlying population trend represented by the retain set samples, which we construct as
a simple sine wave.

We train a 3-layer multilayer perceptron with a hidden dimension of 300 using the sigmoid linear unit (SiLU) activation
function. For each seed, we randomly sample 50 retain set points (2, y,) € D, with y,. = sin(x,.) and 5 forget set points
(xr,yr) € Dy with yy = 1.5, over the input domain X = [—15, 15] C R. We initially train the poisoned model on all the
samples using the AdamW optimizer with a learning rate of 10~3 over 100,000 epochs.

Given these poisoned models, we apply each of the unlearning algorithms over a sweep of hyperparameters and
evaluate the output 6 of each unlearning method by measuring the deviation from the retain set trend, given by
Sup,cx | f(6, ) — sin(zx)|. We fix the number of epochs for each algorithm and allow full data access, so each method
has access to all of D,. during unlearning. We repeat the entire process over 20 trials. For the number of unlearning
epochs T' € {10, 100,1000}, we report the best performance of each algorithm in Table 10 along with the associated
hyperparameters in Table 11. We select the parameters for each method by finding the best performing parameters from the
possible values in Table 12 using the first 5 trials. We then evaluate over the full 20 trials to obtain our results. We also
include visualizations of the recovered models from each unlearning method in Figures 10, 11, and 12. WE observe that the
methods which primarily perform loss descent (GD, NGD, Ridge) do not effectively move away from the initial poisoned
model, as the initial solution is nearly optimal over all data subsets. Further, methods which combine loss ascent (GA, NGP)
deviate from the population trend as the loss ascent objective provides a coarse unlearning signal that interferes with fitting
the retained samples. All experiments were run on either a single NVIDIA A40 GPU or a single NVIDIA GH200 GPU.

21



Machine Unlearning under Overparameterization

Table 10. Data Poisoning experiment results, measured as the sup-norm distance between the retain set trend y = sin(x) and the outputs
of the unlearning algorithms (smaller is better). We report medians over 20 trials, along with the range of the central 10 values

Epochs | GA GD NGD NGP MinNorm-OG Ridge
10 3.56 (2.34,6.52)  3.38(2.62,7.48) 3.63(2.71,7.56) 3.70(2.28,7.37) 1.89(1.10,6.02) 3.38 (2.62,7.48)

100 27.7(20.6,36.2) 1.85(1.51,2.76) 2.54(1.56,6.09) 1.81(1.41,2.93) 1.07(0.62,1.32) 1.67(1.37,3.31)
1000 1700 (1200, 2600)  1.58 (1.04,2.43)  1.35(.93,3.47) 2.29(1.54,5.07) 0.84(0.64,1.24) 1.29(0.87,2.12)

Table 11. Hyperparameter settings for each entry in Table 10. Blank entries indicate that the hyperparameter is not applicable to the
corresponding method.

Epochs | Method | = AGA  Areg o Top  Yreg  TpProj  Mpent
GA le-4
GD le-4
10 NGD le-2 5
NGP le-4 1.0
MinNorm-OG le-3 3 0 3 1 50
Ridge le-4 1.0 3
GA le-4
GD le-2
NGD le-2 1.0
100 NGP le2  le3
MinNorm-OG le-3 0.1 50 0.9 1 50
Ridge le-2 3.0 0.6
GA le-4
GD le-2
NGD le-2 0.1
1000 NGP le2  le3
MinNorm-OG le-2 0.3 0 0.3 200 50
Ridge le-2 3.0 1.0

Table 12. Hyperparameter values tested in the experiments corresponding to Table 10. We denote the total number of epochs 7.

Hyperparameter Sweep Values

n {107*,107%,1072}
Aca {1073,1072,107%,1.0}
Areg {0.1,0.3,0.5,1.0,3.0}
o {0.1,0.5,1.0}

Top {0,7/10,7/2}

Vreg {03,06,09,10}

Throj {1,T/10,T/5}

Tlpert {50}
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-1s ~1o

(a) MinNorm-OG (ours)

10 10 b
(d) Ridge (e) NGP f) GA
Original Model = Unlearned Model == sin(x) ® Retain Points X  Forget Points

Figure 10. Example unlearned model fits when given 10 unlearning epochs for the Data Poisoning experiment, where the forget points
distort the retain set trend y = sin(x).

-1s ~1o -5 [ 5 10 15 -15 -1o -5 0 5 10 15 -1s ~1o s 0 5 10 15
x x x

(d) Ridge (e) NGP () GA

Original Model = Unlearned Model == sin(x) ® Retain Points X  Forget Points

Figure 11. Example unlearned model fits when given 100 unlearning epochs for the Data Poisoning experiment, where the forget points
distort the retain set trend y = sin(x).
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Figure 12. Example unlearned model fits when given 1000 unlearning epochs for the Data Poisoning experiment, where the forget points
distort the retain set trend y = sin(x).

F.4. Representation Collapse

We lastly include an experiment which tests if each unlearning method can effectively forget complex data representations
which would only be learned through training on the full dataset.

We use a subset of MNIST where the retain set contains the images with digit 0 colored green and the images with digit 1
colored red. We then construct the forget set by randomly sampling 10% of the 0 and 1 digits and coloring them oppositely
to the retain set coloring, so the forget set 0’s are colored red and the forget set 1’s are colored green. We train the initial
model over 250 epochs with a learning rate of 10~2 and the AdamW optimizer. For MNIST, we use the same convolutional
neural network architecture as in the Multi-Class Label Erasure experiment, except with a single prediction head, and we
use a batch size of 3000. For CIFAR-10, we similarly use a modified ResNet-18 architecture along with a batch size of 2048.
We also train ground truth unlearned models using the same settings, except we only train for 100 epochs instead of 250.

The ground truth unlearned model predicts from color alone, as color perfectly determines the label in D, and is easier to
learn than digit shape. In contrast, models trained on the full dataset D = D,. LI Dy must rely on shape, since color is no
longer predictive. For evaluation, we relabel training images by color and assess unlearning via color-label accuracy, testing
if the unlearning methods can collapse the original model into just a color classifier.

We apply each unlearning algorithm for a set number of unlearning epochs 7" as well as a fixed proportion of the retain
set which is accessible, which we denote prein € [0, 1]. Just as in the Multi-Class Label Erasure experiment, during each
unlearning epoch the algorithms iterate over batches from the forget set and sample a corresponding batch of the same size
from the available retained data. The epoch ends once all forget set batches have been processed, regardless of whether there
are unused retain set samples remaining. Any unused retain batches are not discarded—they will be sampled in subsequent
epochs. Once all available retain set batches have been used at least once, the sampling process begins again from the start
of the available retain set samples.

We search over hyperparameters and report the best results for each algorithm in each setting in Table 13. We write Retain
% to denote 100 X preain. We observed that the results can exhibit a bimodal distribution across trials, as each method must
transition from an initial model that classifies digits perfectly to one that achieves the same retain set accuracy using only
color. When this transition fails, the model often reverts to digit-based predictions, leading to high variance in the results. To
reflect this behavior robustly, Table 13 reports median color accuracy over 5 trials, along with the range of the central 3
values. We note that MinNorm-OG consistently performs best. For each setting of the number of epochs and the Retain %,
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Table 13. Unlearning performance across constraints on the number of epochs and percentage of accessible retain set samples for the
Representation Collapse experiment. Evaluation is measured as accuracy on duplicate training images labeled by color only (higher is
better). We report medians over 5 trials, along with the range of the central 3 values.

0.76 (0.73,0.79)  0.50 (0.50, 0.50)  0.50 (0.50, 0.50)  1.00 (1.00, 1.00) 0.50 (0.50,0.50) 1.00 (1.00, 1.00) 1.00 (1.00, 1.00) 0.75 (0.73, 0.82)
5 0.73(0.52,0.73)  0.50 (0.50,0.58) 0.50 (0.50,0.50) 0.91 (0.82,0.92) 0.52(0.50,0.57) 0.76 (0.73,0.83) 1.00 (0.85,1.00) 0.73 (0.52,0.73)

Retain % Epochs | GD GA NGD NGP NPO Scrub MinNorm-OG Ridge
5 0.60 (0.52,0.70)  0.50 (0.50,0.50)  0.50 (0.50, 0.50) 0.90 (0.77,0.97) 0.50 (0.50,0.50)  0.80 (0.74,0.85) 1.00 (1.00, 1.00)  0.73 (0.53, 0.73)
1 8 0.72 (0.53,0.74)  0.50 (0.50,0.50)  0.50 (0.50, 0.50) 1.00 (0.99, 1.00)  0.50 (0.50,0.50) 0.96 (0.79,0.97) 1.00 (1.00, 1.00)  0.73 (0.66, 0.73)

0.72 (0.65,0.74)  0.50 (0.50, 0.50)  0.50 (0.50, 0.50)  1.00 (1.00, 1.00)  0.50 (0.50, 0.50)  1.00 (0.99, 1.00)  1.00 (1.00, 1.00) 0.77 (0.70, 0.81)
0.73 (0.69, 0.80)  0.50 (0.50, 0.50)  0.50 (0.50, 0.50) 1.00 (1.00, 1.00) 0.50 (0.50, 0.50) 1.00 (1.00, 1.00) 1.00 (1.00, 1.00) 0.92 (0.81, 0.92)

we show the hyperparameters we considered in Tables 14,15,16,17,18,and 19 before reporting the best performance out of
each combination for each algorithm.

All training was performed on a cluster of NVIDIA GH200 GPUs. For example, sweeping through all hyperparameter
combinations listed in Table 14 for each algorithm completed in about 10 minutes using 8 nodes.

Table 14. Hyperparameter values considered for the Representation Collapse Experiment with 7' = 5 and preain = 0.01.

Hyperparameter Values

n {1072, 8 x 1073, 3 x 107%}
A {1073, 1072, 0.1, 1.0}

Areg {0.1, 0.3, 0.5, 1.0, 3.0}

o {0.1, 0.5, 1.0}

Tep {1, 2}

Vreg {0.3, 0.5, 0.9, 1.0}

TProj {15 2}

npen {50}

Table 15. Hyperparameter values considered for the Representation Collapse Experiment with 7" = 5 and pretain = 0.1.

Hyperparameter  Values

n {9x 1073, 7x 1073, 3 x 1073}
A {1073, 1072, 0.1, 1.0}

Areg {0.1, 0.3, 0.6, 1.0, 3.0}

o {0.1, 0.5, 1.0}

Top {1, 2}

Veeg {0.3, 0.5, 0.9, 1.0}

Toroj {1, 2}

Tpert {50}
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Table 16. Hyperparameter values considered for the Representation Collapse Experiment with 7' = 8 and preain = 0.01.

Hyperparameter Values

n {8 x 1073, 3x107%, 8 x 107}
Aca {1073, 1072, 0.1, 1.0}

Areg {0.1, 0.3, 0.6, 1.0, 3.0}

o {0.1, 0.5, 1.0}

T6p {4, 6}

Vreg {0.3, 0.5, 0.9, 1.0}

TProj {15 2}

npen {50}

Table 17. Hyperparameter values considered for the Representation Collapse Experiment with 7" = 8 and pretain = 0.1.

Hyperparameter Values

n {8 x 1073, 3x 1073, 8 x 10™*}
A {1073, 1072, 0.1, 1.0}

Areg {0.1, 0.3, 0.6, 1.0, 3.0}

o {0.1, 0.5, 1.0}

Teop {4, 6}

Yreg {0.3, 0.5, 0.9, 1.0}

TProj {17 2}

Thpert {50}

Table 18. Hyperparameter values considered for the Representation Collapse Experiment with 7" = 10 and pretin = 0.01.

Hyperparameter  Values

n {8 x 1073, 3x 1073, 8 x 107*}
Aa {1073, 1072, 0.1, 1.0}

Areg {0.1, 0.3, 0.6, 1.0, 3.0}

o {0.1, 0.5, 1.0}

Teop {4, 7}

Vreg {0.3, 0.5, 0.9, 1.0}

TPT“.i {15 2}

npen {50}

Table 19. Hyperparameter values considered for the Representation Collapse Experiment with 7" = 10 and pretain = 1.

Hyperparameter Values

n {8 x 1073, 3x 1073, 8 x 107*}
AGA {1073, 1072, 0.1, 1.0}

Areg {0.1, 0.3, 0.6, 1.0, 3.0}

o {0.1, 0.5, 1.0}

Top {4, 7}

Vreg {0.3, 0.5, 0.9, 1.0}

TProj {17 2}

npen {50}

F.5. Asset Information

We use the MNIST (LeCun et al., 2010) and CIFAR-10 (Krizhevsky, 2009) datasets in our experiments. CIFAR-10 is
publicly available but does not specify an explicit license. MNIST is also publicly available and is typically distributed
under the Creative Commons Attribution-ShareAlike 3.0 License. Additionally, we use the ResNet-18 (He et al., 2016)
architecture and pretrained weights from PyTorch’s torchvision library, which are licensed under the BSD 3-Clause
License.
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