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ABSTRACT

We study off-policy learning (OPL) of contextual bandit policies in large discrete
action spaces where existing methods – most of which rely crucially on reward-
regression models or importance-weighted policy gradients – fail due to excessive
bias or variance. To overcome these issues in OPL, we propose a novel two-
stage algorithm, called Policy Optimization via Two-Stage Policy Decomposition
(POTEC). It leverages clustering in the action space and learns two different policies
via policy- and regression-based approaches, respectively. In particular, we derive
a novel low-variance gradient estimator that enables to learn a first-stage policy for
cluster selection efficiently via a policy-based approach. To select a specific action
within the cluster sampled by the first-stage policy, POTEC uses a second-stage
policy derived from a regression-based approach within each cluster. We show
that a local correctness condition, which only requires that the regression model
preserves the relative expected reward differences of the actions within each cluster,
ensures that our policy-gradient estimator is unbiased and the second-stage policy
is optimal. We also show that POTEC provides a strict generalization of policy-
and regression-based approaches and their associated assumptions. Comprehensive
experiments demonstrate that POTEC provides substantial improvements in OPL
effectiveness particularly in large and structured action spaces.

1 INTRODUCTION

Many interactive systems (e.g., language models, recommender systems) are increasingly controlled
by automated decision-making policies that learn from historical interactions. These interactions con-
sist of the context (e.g., prompt, user profile), the action chosen by the logging policy (e.g., sentence,
recommended product), and the resulting reward (e.g., click). Using such logged interactions, a goal
is to train a new policy that improves the expected reward. This off-policy learning (OPL) task is of
great practical relevance, as it enables us to improve system effectiveness without the risky, slow, and
potentially unethical use of online exploration (Saito & Joachims, 2021; Gao et al., 2022).

A highly effective approach to OPL is policy learning by estimating the policy gradient, which has
resulted in a number of practical OPL methods for small action spaces (Swaminathan & Joachims,
2015a;b; Joachims et al., 2018; Su et al., 2019; 2020a; Metelli et al., 2021). Unfortunately, this
policy-based approach can deteriorate dramatically for large action spaces, which are prevalent in
many potential applications of OPL where there exist millions of items (e.g., recommendations of
movies, songs, products). In particular, in such large-scale environments, existing policy-based
methods, which are mostly based on importance-weighted policy gradients, can collapse due to
extremely large variance (Saito & Joachims, 2022; Cief et al., 2024; Sachdeva et al., 2024). While
regression-based approaches, which learn the expected reward function and choose the action with
the highest predicted reward, could potentially circumvent the variance issue, they are known to
suffer from high bias due to model misspecification (Farajtabar et al., 2018; Voloshin et al., 2019;
Sachdeva et al., 2020; Saito et al., 2021a) and thus do not provide a readily available solution either.

To overcome this bias and variance dilemma of OPL arising particularly in large action spaces,
we develop a novel two-stage OPL algorithm called Policy Optimization via Two-Stage Policy
Decomposition (POTEC). POTEC operates under a novel policy decomposition framework, wherein
the typical overall policy (marginal action distribution) is decomposed into first-stage and second-
stage policies via an action cluster space. The first-stage policy identifies promising action clusters
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(cluster distribution), while the second-stage policy selects the optimal action within a specific cluster
sampled from the first-stage policy (conditional action distribution). A key feature of POTEC is its
distinct learning approaches for the policy at each stage. The first-stage policy is learned using a
policy-based approach with a novel policy gradient estimator, called the POTEC gradient estimator. It
relies on importance weighting in the action cluster space to estimate the value of clusters while using
a pairwise reward model to deal with the effect of individual actions within each cluster. We show
that our gradient estimator is unbiased under local correctness (Saito et al., 2023), requiring only that
the regression model accurately preserves the relative reward differences within each action cluster.
We also show that we can leverage the regression model used in the POTEC gradient estimator to
construct a second-stage policy through a regression-based approach.

Compared to standard policy-based methods, the POTEC gradient estimator for the first-stage policy
exhibits significantly lower variance in large action spaces. This is because it applies importance
weighting to only the action cluster space, which is considerably more compact than the original
action space. Furthermore, POTEC is more resilient to estimation bias than typical regression-based
approaches, since our first-stage policy is based on an unbiased policy gradient and the second-stage
policy only needs to learn the relative value differences between actions, which is less demanding
than conventional absolute reward regression. Moreover, we show that POTEC and local correctness
provide a full spectrum of OPL approaches whose endpoints are policy- and regression-based
methods and their associated reward-modeling conditions. Experiments on synthetic and real-world
recommendation datasets demonstrate that POTEC can provide substantially more effective OPL
than conventional methods particularly when the per-action training data size is small.

Related Work. There is a recent line of work on off-policy evaluation (OPE) for large action
spaces (Saito & Joachims, 2022; Peng et al., 2023; Saito et al., 2023; Sachdeva et al., 2024; Cief
et al., 2024; Aouali et al., 2024; Taufiq et al., 2024). In particular, Saito & Joachims (2022) tackle
the problem of OPE for large action spaces and propose the marginalized IPS (MIPS) estimator that
leverages pre-defined action embeddings. Peng et al. (2023), Sachdeva et al. (2024), and Cief et al.
(2024) propose methods to learn such a structure in the action space from logged data and further
improve MIPS. Compared to these works, which focus solely on the OPE problem, we focus on the
OPL problem in large action spaces, where OPE methods cannot be directly applied.

Among these, we particularly distinguish our contributions from those of Saito et al. (2023), which
develop the OffCEM estimator to handle OPE in large action spaces. Although our algorithm is
inspired by the reward function decomposition in OffCEM, its application to our concept of policy
decomposition and the associated two-stage OPL algorithm are novel. Moreover, we address the
off-policy learning (OPL) problem and develop a corresponding algorithm, whereas Saito et al.
(2023) focus solely on the off-policy evaluation problem in their analysis and experiments. Thus, our
work is the first to formulate and propose methods specific to OPL for large discrete action spaces
and offers several unique contributions from both methodological and empirical perspectives.

There also exist several related methods aimed at improving sample efficiency in large action
spaces for reinforcement learning (RL). Chandak et al. (2019) propose a method to learn action
representations to enhance the sample efficiency of on-policy RL. However, the setting of Chandak
et al. (2019) is not on offline policy learning, and thus their proposed method is not considered as a
baseline in our paper. Additionally, the supervised representation learning procedure in their work
relies on RL-specific structures (i.e., state transitions), making it inapplicable to our contextual bandit
setup. Similarly, Gu et al. (2022) study offline RL in large action spaces and propose a method to
learn latent representations in the action space. However, their method leverages a data-distributional
metric to learn action embeddings. This metric is based on the MDP structure, and how to apply it to
the offline contextual bandit problem is not discussed, making it incomparable in our experiments.

Finally, Ban & He (2021) and Zhu et al. (2022) study online bandits in large action spaces where
active exploration is allowed, whereas we focus on the offline setup with no additional exploration.

2 OFF-POLICY LEARNING FOR CONTEXTUAL BANDITS

We formulate OPL under the general contextual bandit process, where a decision maker repeatedly
observes a context x ∈ X drawn i.i.d. from an unknown distribution p(x). Given context x, a
potentially stochastic policy π(a |x) chooses action a from a finite action space denoted as A. The

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

reward r ∈ [0, rmax] is then sampled from some unknown conditional distribution p(r |x, a). We
define the value of policy π as a measure of its effectiveness:

V (π) := Ep(x)π(a|x)p(r|x,a)[r] = Ep(x)π(a|x)[q(x, a)],

where we use q(x, a) := E[r |x, a] to denote the expected reward function given x and a.

Our goal is to learn a new policy πθ, parameterized by θ, to maximize the policy value as

θ∗ = argmax
θ∈Θ

V (πθ).

The logged data we can use for performing OPL takes the form D := {(xi, ai, ri)}ni=1, which
contains n independent observations drawn from the logging policy π0.

Below, we describe two typical approaches to OPL, namely the policy-based and regression-based
approaches, and summarize their limitations, particularly in large action spaces.

The policy-based approach learns the policy parameter via iterative gradient ascent as θt+1 ←
θt +∇θV (πθ). Since we do not know the true gradient

∇θV (πθ) = Ep(x)πθ(a|x)[q(x, a)∇θ log πθ(a |x)],

we need to estimate it from the logged data. A common way to do so is to apply importance weighting:

∇θV̂IPS(πθ;D) :=
1

n

n∑
i=1

w(xi, ai)risθ(xi, ai), (1)

where w(x, a) := πθ(a |x)/π0(a |x) is the vanilla importance weight defined with respect to the
action space A and sθ(x, a) := ∇θ log πθ(a |x) is the policy score function.

Eq. (1) is unbiased (i.e., E[∇θV̂IPS(πθ;D)] = ∇θV (πθ)) under the following condition.
Condition 2.1. (Full Support) The logging policy π0 is said to have full support if π0(a |x) >
0, ∀(x, a) ∈ X ×A.

For large action spaces, unfortunately, this requirement of full support is problematic for two reasons.
First, violating the requirement can introduce substantial bias (Sachdeva et al., 2020; Felicioni et al.,
2022). Second, fulfilling the requirement for large action spaces leads to excessive variance, since
π0(a |x) becomes extremely small (Saito & Joachims, 2022; Sachdeva et al., 2024). At first glance,
doubly-robust (DR) estimation may appear helpful for dealing with the variance issue.

∇θV̂DR(πθ;D) :=
1

n

n∑
i=1

{
w(xi, ai)(ri − q̂(xi, ai))sθ(xi, ai) + Eπθ(a|xi)[q̂(xi, a)sθ(xi, a)]

}
.

(2)

DR uses a reward function estimator q̂(x, a) while maintaining unbiasedness under Condition 2.1, and
its variance is often lower than that of Eq. (1). However, unless the rewards are close to deterministic
and the reward estimates q̂(x, a) are close to perfect, its variance can still be extremely large due to
importance weighting in the action space, which leads to inefficient OPL in large action spaces (Saito
& Joachims, 2022; Peng et al., 2023; Sachdeva et al., 2023). The issue of the IPS and DR policy
gradients can be seen by calculating their variance (for a particular parameter θ ∈ Rd) as

n tr
(
CovD

[
∇θV̂DR(πθ;D)

])
=

d∑
j=1

{
Ep(x)π0(a|x)[(w(x, a)s

(j)
θ (x, a))2σ2(x, a)]

+ Ep(x)
[
Vπ0(a|x)[w(x, a)∆q,q̂(x, a)s

(j)
θ (x, a)]

]
+ Vp(x)

[
Eπ(a|x)[q(x, a)s

(j)
θ (x, a)]

]}
, (3)

where σ2(x, a) := V[r |x, a] and ∆q,q̂(x, a) := q(x, a)− q̂(x, a). s(j)θ (x, a) is the j-th dimension of
the score function. Note that the variance of IPS can be obtained by setting q̂(x, a) = 0. The variance
reduction of DR comes from the second term where ∆q,q̂(x, a) is smaller than q(x, a) if q̂(x, a) is
accurate. However, we can also see that the variance contributed by the first term can be extremely
large, regardless of the accuracy of q̂(x, a), when the reward is noisy and the weights w(x, a) become
large, which occurs when πθ assigns large probabilities to actions that are less likely under π0.
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The regression-based approach employs an off-the-shelf supervised machine learning method, such
as neural networks, to estimate the reward function q(x, a), for example, by solving

θ = argmin
θ

∑
(x,a,r)∈D

ℓ
(
r, q̂θ(x, a)

)
,

for some loss function ℓ such as the squared loss. Then, it transforms the estimated reward function
q̂θ(x, a) into a decision-making rule πθ(a |x).This approach avoids the use of importance weighting
and is therefore relatively robust to high variance compared to the policy-based approach, even
in large action spaces (Jeunen & Goethals, 2021). However, it is widely acknowledged that this
approach may fail significantly due to bias issues resulting from the difficulty in accurately estimating
the expected reward for every action in A (Farajtabar et al., 2018; Voloshin et al., 2019).

3 THE POTEC ALGORITHM

The following proposes a new OPL algorithm, named POTEC, that circumvents the challenges of
policy-based and regression-based approaches for large action spaces. As depicted in Figure 5 in the
appendix, POTEC leverages the following novel decomposition of an overall policy.

πoverallθ,ψ (a |x) =
∑
c∈C

π1st
θ (c |x)π2nd

ψ (a |x, c), (4)

where the marginal action-selection (overall) policy (πoverallθ,ψ ) is decomposed into the cluster-
selection (first-stage) policy (π1st

θ ) and conditional action-selection (second-stage) policy (π2nd
ψ ),

parametrized by θ and ψ, respectively. This policy decomposition is defined via some pre-defined
clustering structure in the action space, where ca ∈ C represents the cluster to which action a
belongs (typically |C| ≪ |A|). Action clusters are learnable, by applying clustering algorithms,
such as KMeans, in the action feature space or to the averaged estimated rewards for each action,
q̂(a) := (1/n)

∑n
i=1 q̂(xi, a), as the embedding of a, which performed effectively in our experiments.

Note that although we consider context-independent and deterministic action clusters in the main text,
our framework can be extended to more general types of action clustering (i.e., context-dependent
and stochastic). For example, we can perform context-dependent clustering (cx,a) by applying
off-the-shelf algorithm to q̂(x, a) rather than q̂(a) to maximize or minimize the intra-cluster variance
of q̂(x, a) for each x (note that we do not necessarily propose to use context-dependent clustering,
here we merely argue the generality of our formulation and algorithm).

Leveraging this decomposition, POTEC (i) trains the 1st-stage policy π1st
θ , a parameterized distri-

bution over the cluster space C, using a policy-based approach, and (ii) trains the 2nd-stage policy
π2nd
ψ , a parameterized distribution over the action space A conditional on a cluster sampled by the

1st-stage policy, using a regression-based approach. The underlying intuition is that we can apply a
policy-based approach to identify promising action clusters with low bias and variance, as the cluster
space is much smaller than the original action space. We then apply a regression-based 2nd-stage
policy to identify promising actions within each cluster, minimizing variance. The resulting overall
policy is more robust to reward modeling errors than typical regression-based approaches because we
apply the regression-based policy only within each cluster.1

When performing inference for an incoming context x, we first sample a cluster from the 1st-stage
policy as c ∼ π1st

θ (· |x). We then apply the 2nd-stage policy to choose the action in the cluster as
a ∼ π2nd

ψ (· |x, c). This procedure is equivalent to producing an action as a ∼ πoverallθ,ψ (· |x).

The following describes how to train 1st- and 2nd-stage policies to improve the overall policy.

1One might wonder why not use a regression-based policy for the first stage and a policy-based approach
for the second stage. While this idea may also seem reasonable at first, to produce an unbiased policy gradient
in the second stage using a policy-based approach, we would need to apply the typical importance weight
w(x, a), resulting in the same variance issues as typical methods. Hence, we focus on the proposed approach of
using a policy-based method in the first stage and a regression-based approach in the second stage, leading to a
substantial variance reduction when performing unbiased gradient estimation.

4
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3.1 TRAINING THE 1ST-STAGE POLICY π1st
θ

First, we develop a training procedure for the 1st-stage policy given a (pre-trained) 2nd-stage policy.
Then, the theoretical analysis of the proposed training procedure will naturally tell us how we should
construct the 2nd-stage policy (which will be described in the next subsection).

As mentioned earlier, given a (pre-trained) 2nd-stage policy π2nd
ψ , we consider training the 1st-stage

policy π1st
θ , parameterized by θ, via a policy-based approach as below.

θt+1 ← θt +∇θV (πoverallθ,ψ ) (5)

This performs gradient ascent of θ with the aim of improving the value of the overall policy πoverallθ,ψ .
The true policy gradient in Eq. (5) is given as follows (derived in Appendix D),

∇θV (πoverallθ,ψ ) = Ep(x)π1st
θ (c|x)

[
qπ

2nd
ψ (x, c)sθ(x, c)

]
, (6)

where we use qπ
2nd
ψ (x, c) := Eπ2nd

ψ (a|x,c)[q(x, a)] to denote the value of cluster c under a 2nd-stage

policy2 and sθ(x, c) := ∇θ log π1st
θ (c |x) to denote the policy score function of the 1st-stage policy.

Hence, given a 2nd-stage policy, our objective is to estimate the policy gradient in Eq. (6) to train a
1st-stage policy. We achieve this via the following POTEC gradient estimator,

∇θV̂POTEC(π
overall
θ,ψ ;D) (7)

:=
1

n

n∑
i=1

{
w(xi, cai)(ri − f̂(xi, ai))sθ(xi, cai) + Eπ1st

θ (c|xi)[f̂
π2nd
ψ (xi, c)sθ(xi, c)]

}
,

where w(x, c) := π1st
θ (c |x)/π0(c |x) is the cluster importance weight.3 Specifically, the first term

of Eq. (7) estimates the value of cluster c via cluster importance weighting and the second term deals
with the value of individual actions via the regression model f̂ . Since our policy gradient estimator
applies importance weighting with respect to only the action cluster space, it provides a substantial
reduction in variance compared to typical estimators such as IPS and DR. We will discuss how we
should optimize the regression model f̂ based on the following analysis of our gradient estimator.

First, we characterize the bias of the POTEC gradient estimator under the following full cluster
support condition (which is less restrictive than Condition 2.1).
Condition 3.1. (Full Cluster Support) The logging policy π0 has full cluster support if π0(c |x) >
0, ∀(x, c) ∈ X × C.

Note that it is easy to check if this condition is satisfied or not by following its definition. Specifically,
we first calculate the marginalized logging distribution regarding the cluster space, i.e., π0(c|x) =∑

a I{ca = c}π0(a|x), and then check if the condition π0(c|x) > 0 holds for all c and x.

In the following theorem, we denote with ∆q(x, a, b) := q(x, a) − q(x, b) the difference in the
expected rewards between the pair of actions a and b given x, which we call the relative value
difference of the actions. ∆f̂ (x, a, b) := f̂(x, a) − f̂(x, b) is an estimate of the relative value

difference between a and b based on a regression model f̂ .
Theorem 3.2. (Bias Analysis) If Condition 3.1 is true, the POTEC gradient estimator in Eq. (7) has
the following bias for some given regression model f̂(x, a),

Bias(∇θV̂POTEC(π
overall
θ,ψ ;D)) = Ep(x)π1st

0 (c|x)

[ ∑
a<b:ca=cb=c

π2nd
0 (a |x, c)π2nd

0 (b |x, c)

(
∆q(x, a, b)−∆f̂ (x, a, b)

)
(w(x, b)− w(x, a)) sθ(x, c)

]
, (8)

where a, b ∈ A.
2This implies that the optimal cluster that should be chosen by the 1st-stage policy can be different given

different 2nd-stage policies. Appendix D.1 elaborates on this via a numerical example.
3In real-world applications, we encounter both known and unknown logging policies. In the relevant literature,

it is standard to estimate the logging policy by predicting the action a from the context x on the logged data,
when the logging policy is unknown. Similarly, we can estimate the cluster distribution under the logging policy
π0(c|x) used in our method by predicting c from x on the logged data.

5
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The proof is given in Appendix D.2. Theorem 3.2 shows that the bias of the POTEC gradient estimator
is characterized by the accuracy of the regression model f̂ with respect to the relative value difference,
which is quantified by ∆q(x, a, b)−∆f̂ (x, a, b). When f̂ preserves the relative value difference of
the actions within each cluster accurately, the second factor in Eq. (8) becomes small and so does
the bias of the POTEC gradient estimator. This also suggests that, in an ideal case when the local
correctness condition (Saito et al., 2023) holds true, the POTEC gradient estimator becomes unbiased
(ED[∇θV̂POTEC(π

overall
θ,ψ ;D)] = ∇θV (πoverallθ,ψ )).

Condition 3.3. (Local Correctness) A regression model and action clustering satisfy local correctness
if ∆q(x, a, b) = ∆f̂ (x, a, b) for all x ∈ X and a, b ∈ A s.t. ca = cb.

This implies that, to directly minimize the bias of the POTEC gradient estimator, we should ideally
optimize the regression model f̂ψ : X×A → R via the following pairwise regression procedure (Saito
et al., 2023) so that we can achieve a small |∆q(x, a, b) − ∆f̂ (x, a, b)| by preserving the relative
value difference of the actions within each cluster.

min
ψ

∑
(x,a,b,ra,rb)∈Dpair

ℓ
(
ra − rb, f̂ψ(x, a)− f̂ψ(x, b)

)
, (9)

where Dpair is a dataset augmented for performing pairwise regression, which is defined as

Dpair :=
{
(x, a, b, ra, rb) |

(xa, a, ra), (xb, b, rb) ∈ D
x = xa = xb, ca = cb

}
. As suggested in Theorem 3.2, f̂ψ(x, a)

characterizes the bias of the POTEC gradient estimator. Even if Eq. (9) is infeasible due to insufficient
pairwise data, we can still perform a conventional regression for the expected absolute reward to
directly optimize the parameterized function f̂ψ(x, a) via minψ

∑
(x,a,r)∈D ℓ

(
r, f̂ψ(x, a)

)
and then

use f̂ψ in Eq. (7). Even for such a conventionally trained regression model f̂ψ, POTEC still has
advantages over existing policy gradient estimators, such as IPS and DR, due to its substantially
reduced variance as demonstrated in our experiments.

Next, the following shows the variance of the POTEC gradient estimator, and its variance reduction
compared to typical importance weighting in the action space.
Proposition 3.4. (Variance Analysis) Under Conditions 3.1 and 3.3, for a particular parameter
θ ∈ Rd, the POTEC gradient estimator has the following variance.

n tr
(
CovD

[
∇θV̂POTEC(π

overall
θ,ψ ;D)

])
=

d∑
j=1

{
Ep(x)π0(a|x)

[
(w(x, ca)s

(j)
θ (x, ca))

2σ2(x, a)
]

+ Ep(x)
[
Vπ0(a|x)

[
w(x, ca)∆q,f̂ (x, a)s

(j)
θ (x, ca)

]]
+ Vp(x)

[
Eπ1st

θ (c|x)

[
qπ

2nd
ψ (x, c)s

(j)
θ (x, c)

]]}
,

where ∆q,f̂ (x, a) := q(x, a)− f̂(x, a) is the error of f̂(x, a) against q(x, a).

Proposition 3.5. (Variance Reduction) The difference in the variance of the cluster and vanilla
importance weights can be represented as follows.

Vp(x)π0(a|x)[w(x, a)]− Vp(x)π0(a|x)π(c|x,a)[w(x, c)] = Ep(x)π0(c|x)
[
Vπ0(a|x,c)[w(x, a)]

]
Proposition 3.4 shows that the variance of the POTEC gradient estimator depends only on w(x, c)
rather than w(x, a), implying reduced variance compared to IPS and DR. In addition, Proposition 3.5
characterizes the reduction in variance provided by cluster importance weighting of POTEC. It is
worth noting that the variance reduction is characterized by the variance of the vanilla importance
weight Ep(x)π0(c|x)

[
Vπ0(a|x,c)[w(x, a)]

]
, which suggests that cluster importance weighting provides

increasingly larger variance reduction when typical weighting has a larger variance.

3.2 TRAINING THE 2ND-STAGE POLICY π2nd
ψ

We have thus far developed a policy-based approach for learning an effective cluster selection (1st-
stage) policy via the POTEC gradient estimator. The remaining objective is to identify the optimal
actions, given a cluster selected by the 1st-stage policy. In essence, we can simply use the pairwise
regression model f̂ψ from the previous section to establish the 2nd-stage policy π2nd

ψ , because f̂ψ

6
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The POTEC Algorithm
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Figure 1: The POTEC algorithm and local correctness condition generalize policy- and regression-
based approaches and their respective conditions about the reward function (q(x, a)) estimation.

Algorithm 1 The POTEC Algorithm

Input: logged bandit data D, conventionally trained regression model q̂(x, a).
Output: 1st-stage (policy-based) policy π1st

θ and 2nd-stage (regression-based) policy π2nd
ψ

1: Perform action clustering by applying a clustering algorithm (such as KMeans) to the averaged
estimated rewards for each action, q̂(a) := (1/n)

∑n
i=1 q̂(xi, a), as the embedding of a.

2: Perform pairwise regression and obtain f̂ψ(x, a) as in Eq. (9), which works as the 2nd-stage
policy as in Eq. (10) and also as a regression model to help train the 1st-stage policy via the
POTEC gradient estimator

3: Perform policy-based learning of the 1st-stage policy based on the POTEC estimator in Eq. (7)

is already optimized towards estimating the relative value differences of actions within each action
cluster (i.e., local correctness). Specifically, we can construct a 2nd-stage policy based on f̂ψ as

π2nd
ψ (a |x, c) :=

{
1 (a = argmaxa′:ca′=c f̂ψ(x, a

′))
0 (otherwise)

(10)

which implies that the 2nd-stage policy selects the action with the highest value of the pairwise
regression function f̂ψ within the already sampled cluster c. This action selection procedure is justified
since we have learned the function f̂ψ so that it can estimate the relative value difference of the actions
given a cluster in the bias minimization step (Eq. (9)). In an ideal scenario where Condition 3.3 holds
true, our 2nd-stage policy achieves optimal action selection. In our experiments, we will demonstrate
that our overall policy πoverallθ,ψ outperforms existing approaches by a considerable margin even with
a learned 2nd-stage policy that may not perfectly satisfy the local correctness condition.

3.3 THE OVERALL POTEC ALGORITHM AND ITS INTERPRETATION

Algorithm 1 describes the overall procedure of POTEC. It first performs action clustering based on
an estimated reward function q̂. It then performs pairwise regression (if feasible) and obtains the
regression function f̂ψ, which forms the 2nd-stage policy (as in Eq. (10)). Note that if pairwise
regression is not feasible, we can instead use the conventional regressor as f̂ ← q̂. Then, we train the
1st-stage policy π1st

θ based on the POTEC gradient estimator, which is based on cluster importance
weighting and a learned regression model f̂ψ(x, a), which governs the bias of the estimator. Note
that Algorithm 1 is agnostic to the clustering procedure, and we can readily combine, e.g., context-
dependent clustering cx,a, with Algorithm 1 when desired.

It is worth mentioning that POTEC and its associated local correctness condition generalize typical
OPL approaches, i.e., policy-based and regression-based, as depicted in Figure 1. That is, when there
is only one action cluster (|C| = 1), the 2nd-stage policy of POTEC needs to choose the best action in
the entire action space, which can be seen as a reduction to the regression-based approach. Moreover,
in this case, the local correctness condition becomes relatively stringent (since all actions are grouped
into the same cluster), which is akin to the typical condition of the regression-based approach, i.e.,
globally accurate estimation of the reward function. On the other hand, when the cluster space is
equivalent to the original action space (C = A), the 1st-stage policy selects an action from the original
action space, akin to the policy-based approach. In this scenario, local correctness imposes no specific
requirements, as each action cluster contains only one unique action. This absence of requirements
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aligns with the policy-based approach, which does not necessitate specific conditions for reward
function estimation to produce an unbiased gradient. Thus, POTEC and local correctness encompass
the full spectrum of existing OPL approaches and respective reward-modeling conditions (Figure 1).
As a strict generalization, POTEC generally outperforms both approaches with a good (even if not
perfect) selection of the number of clusters, as the following section empirically demonstrates.

It is worth noting that the number of clusters and clustering algorithm are hyperparameters of POTEC,
so we can tune them via the cross-validation procedure. However, it is important to perform careful
OPE on validation data to evaluate the performance of each hyperparameter with low bias. To address
the variance issue in large action spaces during validation, we would recommend using OPE methods
from Sachdeva et al. (2024); Saito et al. (2023); Peng et al. (2023).

4 EMPIRICAL EVALUATION

We first evaluate POTEC on synthetic data with ground-truth cluster information to compare the
effectiveness of POTEC w/ and w/o true cluster information and w/ and w/o pairwise regression. We
then assess the real-world applicability of POTEC on a public recommendation dataset.

4.1 SYNTHETIC EXPERIMENT

First, we create synthetic datasets to compare the policy learning algorithms based on their ground-
truth policy values. Specifically, we first sample 5-dimensional context vectors x and action features
from the standard normal distribution. We then form ground-truth action clusters based on the action
features. We synthesize the expected reward function as q(x, a) = g(x, ca) + hca(x, a), where
g(x, c) and hc(x, a) define the values of the cluster and individual actions, respectively, as detailed in
Appendix E. We then sample an action a based on the logging policy π0, which is defined as below.

π0(a|x) :=
exp(β · (q(x, a) + ηx,a))∑

a′∈A exp(β · (q(x, a′) + ηx,a′))
, (11)

where β is set to 5 as default and the noise ηx,a is sampled from a normal distribution.

After sampling action a from the logging policy, we finally sample the reward r from a normal
distribution with mean q(x, a) and standard deviation σr = 1.0. Repeating the above procedure n
times generate logged training data of the form D = {(xi, ai, ri)}ni=1.

Baselines: We compare POTEC with the regression-based method (Reg-based), IPS-PG (Eq. (1)),
and DR-PG (Eq. (2)). We use a neural network with 3 hidden layers to parameterize the policy πθ,
q̂(x, a) for DR-PG and Reg-based, and f̂ψ for POTEC. We apply the variance reduction technique
proposed by Lopez et al. (2021) to IPS-PG and DR-PG. In the synthetic experiment, we compare
POTEC w/ true clusters that define the true reward function q(x, a) and POTEC w/ learned clusters
obtained by performing KMeans to the averaged estimated rewards for each action.4

Results: Figure 2 shows the policy values (normalized by the value of the logging policy V (π0)) of
the OPL methods on test data obtained from 30 simulations with varying seeds. Note that we employ
default experiment parameters of n = 4, 000, |A| = 500, and |C| = 30, and the shaded regions in the
plots represent 95% confidence intervals of the test policy values estimated via bootstrap.

First, in most situations, POTEC provides significant improvements in policy value over the baseline
methods. Specifically, in Figure 2 (i), we observe that POTEC performs increasingly better with
larger sample sizes, while the baseline methods remain inferior compared to POTEC. We also see that
the policy value of POTEC is particularly higher than the baseline methods when the training data
size is small, such as n ≤ 2, 000, which suggests that POTEC is efficient even with a small per-action
sample size (i.e., n/|A|), while the baseline methods require even more data for each action to be
effective. It is also interesting to compare the policy value of POTEC (w/ true clusters) and POTEC
(w/ learned clusters), where we observe that POTEC (w/ true clusters) consistently performs best,
while POTEC (w/ learned clusters) achieves competitive performance with POTEC (w/ true clusters)
and outperforms the baselines by a large margin across a range of training data sizes. This suggests

4The number of learned action clusters (i.e., the parameter K of KMeans) is set equal to |C|.
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(i) (ii) (iii)

Figure 2: Comparing the test policy value (normalized by V (π0)) of the OPL methods, with varying
(i) training data sizes, (ii) numbers of actions, and (iii) numbers of (true) clusters, on synthetic data.

(i) (ii) (iii)

Figure 3: Comparing the test policy value of POTEC w/ and w/o pairwise regression, with varying (i)
training data sizes, (ii) numbers of actions, and (iii) numbers of (true) clusters, on Synthetic Data.

the real-world applicability of POTEC, even with the feasible and simple clustering procedure based
on q̂(x, a). Next, in Figure 2 (ii), we vary the number of actions (|A|) to investigate the robustness of
the methods to increasing action spaces. We observe that POTEC performs consistently well, even
as the action space grows, as long as the underlying cluster space C does not expand. In contrast,
the performance of the baseline methods clearly deteriorates as the number of actions increases,
and they perform even worse than the logging policy when |A| ≥ 2, 000. We also see that POTEC
(w/ learned clusters) performs substantially better than the baseline methods, particularly when the
action space becomes large, even with heuristically learned action clusters in Figure 2 (ii). Finally,
Figure 2 (iii) evaluates POTEC as we increase the number of (true) clusters while keeping the number
of actions fixed. The figure shows that the advantage of POTEC is greatest when the cluster effect
can be captured by a small number of underlying clusters. However, even for data with |C| = 200
clusters, POTEC remains competitive with the baselines.5

In Figure 3, we present the results of an ablation study for (i) varying training data sizes, (ii) varying
numbers of actions, and (iii) varying numbers of (true) clusters, where we compare POTEC with
pairwise regression f̂(x, a), as described in Eq. (9), and with the standard absolute regression q̂(x, a).
We also include DR-PG, the best method among the baselines, as a reference. From the figure, it
is clear that both versions of POTEC significantly outperform the best baseline (DR-PG) in most
experimental settings, which empirically highlights the advantage of using POTEC, even with a
conventionally trained regression model q̂(x, a). However, it is also evident that performing pairwise
regression consistently improves POTEC, making it beneficial to apply when feasible.

4.2 REAL-WORLD EXPERIMENT ON KUAIREC

To assess the real-world applicability of POTEC, we now evaluate it on the KuaiRec dataset (Gao
et al., 2022), a publicly available recommendation dataset collected on a short video platform, where
1,411 users have viewed all 3,317 videos and provide watch ratio (play duration divided by the video
duration) as reward feedback. This full feedback nature of the dataset enables an OPL experiment
without synthesizing the reward function.

5Note that this experiment varies the ground-truth underlying cluster structure, and as a result, the policy
values of the baseline methods may not remain constant.
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(i) (ii) (iii)

Figure 4: Comparing the test policy value (normalized by V (π0)), with varying (i) training data sizes,
(ii) numbers of (learned) clusters, and (iii) ratios of deficient actions, on KuaiRec.

To perform an OPL experiment and generate logged training data, we first sample user index u from
a uniform distribution, and for each user, we sample an action a based on the logging policy π0
defined in Eq. (11). After sampling action a, we sample the reward r from a normal distribution with
mean q(xu, a) and standard deviation σr = 1.0 where the expected reward q(xu, a) is the watch ratio
recorded in the dataset. Repeating the above procedure n times generates D = {(xui , ai, ri)}ni=1.

Results: We evaluate POTEC against IPS-PG, DR-PG, and Reg-based methods under varying
training data sizes n, numbers of (learned) clusters |C|, and ratios of deficient actions |U0 := {a ∈ A |
π0(a|x) = 0}|/|A| (Sachdeva et al., 2020). For POTEC, we perform a pairwise reward regression
using Random Forest to obtain f̂(x, a). Note that, in the real-data, there is no ground-truth action
clusters, so we implement only a feasible version of POTEC with learned action clusters.

Figure 4 presents the real-world experiment results for various configurations. First, Figure 4 (i)
compares the methods across different training data sizes, showing that POTEC is the most sample-
efficient and performs significantly better than the baselines, particularly when the training dataset
is small. Second, Figure 4 (ii) compares POTEC across varying numbers of clusters |C|, a key
hyperparameter of POTEC. The figure shows that POTEC is most sample-effective with a moderate
number of clusters, such as |C| = 50 or |C| = 100. It is also noteworthy that POTEC does not
underperform the baseline or logging policies even in the worst cases, with overly small (|C| = 10)
or large (|C| = 1, 000) cluster spaces. Finally, Figure 4 (iii) compares the methods as we vary the
violations of the full support condition (Condition 2.1), where we gradually expand the set of deficient
actions U0. When the logging policy π0 becomes nearly deterministic and offers limited exploration,
|U0| grows, making OPL more challenging. Indeed, in Figure 4 (iii) we observe that the baseline
policy-based methods, particularly DR-PG, struggle as the number of deficient actions |U0| increases,
which produces greater bias in policy gradient estimation. However, POTEC continues to perform
significantly better than the baselines and logging policy, even with many deficient actions, because
the POTEC gradient estimator requires only full cluster support (Condition 3.1), which is milder than
full support and thus results in smaller bias in the gradient estimation of the 1st-stage policy.

5 CONCLUSION AND FUTURE WORK

This work introduces a novel two-stage OPL procedure called POTEC, which is particularly advanta-
geous in large action spaces. POTEC learns the first-stage cluster-selection policy via a new policy
gradient estimator that is unbiased under local correctness and has substantially lower variance. The
second-stage action-selection policy is learned through pairwise reward regression within each cluster,
offering greater robustness to estimation bias compared to traditional regression-based approaches.

Our findings suggest valuable directions for future research. For instance, even though we have
empirically demonstrated that POTEC generally outperforms existing OPL methods, we now rely on
a heuristic action clustering, which could be seen as a limitation. It would thus be valuable to explore
a more principled method, such as a context-dependent and iterative procedure to better satisfy local
correctness. Extending POTEC to offline reinforcement learning and large language models beyond
contextual bandits is also an intriguing future direction.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Shipra Agrawal and Navin Goyal. Thompson sampling for contextual bandits with linear payoffs. In
International Conference on Machine Learning, pp. 127–135. PMLR, 2013.

Imad Aouali, Victor-Emmanuel Brunel, David Rohde, and Anna Korba. Bayesian off-policy evalua-
tion and learning for large action spaces. arXiv preprint arXiv:2402.14664, 2024.

Susan Athey, Raj Chetty, Guido W Imbens, and Hyunseung Kang. The surrogate index: Combining
short-term proxies to estimate long-term treatment effects more rapidly and precisely. Technical
report, National Bureau of Economic Research, 2019.

Susan Athey, Raj Chetty, and Guido Imbens. Combining experimental and observational data to
estimate treatment effects on long term outcomes. arXiv preprint arXiv:2006.09676, 2020.

Yikun Ban and Jingrui He. Local clustering in contextual multi-armed bandits. In Proceedings of the
Web Conference 2021, pp. 2335–2346, 2021.

K. Bhatia, K. Dahiya, H. Jain, P. Kar, A. Mittal, Y. Prabhu, and M. Varma. The extreme classi-
fication repository: Multi-label datasets and code, 2016. URL http://manikvarma.org/
downloads/XC/XMLRepository.html.

Yash Chandak, Georgios Theocharous, James Kostas, Scott Jordan, and Philip Thomas. Learning ac-
tion representations for reinforcement learning. In International Conference on Machine Learning,
pp. 941–950. PMLR, 2019.

Jiafeng Chen and David M Ritzwoller. Semiparametric estimation of long-term treatment effects.
arXiv preprint arXiv:2107.14405, 2021.

Matej Cief, Jacek Golebiowski, Philipp Schmidt, Ziawasch Abedjan, and Artur Bekasov. Learning
action embeddings for off-policy evaluation. In European Conference on Information Retrieval,
pp. 108–122. Springer, 2024.

Miroslav Dudı́k, Dumitru Erhan, John Langford, and Lihong Li. Doubly robust policy evaluation and
optimization. Statistical Science, 29(4):485–511, 2014.

Mehrdad Farajtabar, Yinlam Chow, and Mohammad Ghavamzadeh. More robust doubly robust
off-policy evaluation. In Proceedings of the 35th International Conference on Machine Learning,
volume 80, pp. 1447–1456. PMLR, 2018.

Nicolo Felicioni, Maurizio Ferrari Dacrema, Marcello Restelli, and Paolo Cremonesi. Off-policy eval-
uation with deficient support using side information. Advances in Neural Information Processing
Systems, 35, 2022.

Chongming Gao, Shijun Li, Wenqiang Lei, Jiawei Chen, Biao Li, Peng Jiang, Xiangnan He, Jiaxin
Mao, and Tat-Seng Chua. Kuairec: A fully-observed dataset and insights for evaluating recom-
mender systems. In Proceedings of the 31st ACM International Conference on Information &
Knowledge Management, pp. 540–550, 2022.

Pengjie Gu, Mengchen Zhao, Chen Chen, Dong Li, Jianye Hao, and Bo An. Learning pseudometric-
based action representations for offline reinforcement learning. In International Conference on
Machine Learning, pp. 7902–7918. PMLR, 2022.

Olivier Jeunen and Bart Goethals. Pessimistic reward models for off-policy learning in recom-
mendation. In Proceedings of the 15th ACM Conference on Recommender Systems, pp. 63–74,
2021.

Nan Jiang and Lihong Li. Doubly robust off-policy value evaluation for reinforcement learning. In
Proceedings of the 33rd International Conference on Machine Learning, volume 48, pp. 652–661.
PMLR, 2016.

Thorsten Joachims, Adith Swaminathan, and Maarten de Rijke. Deep learning with logged bandit
feedback. In International Conference on Learning Representations, 2018.

11

http://manikvarma.org/downloads/XC/XMLRepository.html
http://manikvarma.org/downloads/XC/XMLRepository.html


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Nathan Kallus and Masatoshi Uehara. Double reinforcement learning for efficient off-policy evalua-
tion in markov decision processes. J. Mach. Learn. Res., 21:167–1, 2020.

Nathan Kallus, Yuta Saito, and Masatoshi Uehara. Optimal off-policy evaluation from multiple
logging policies. In Proceedings of the 38th International Conference on Machine Learning,
volume 139, pp. 5247–5256. PMLR, 2021.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Haruka Kiyohara, Yuta Saito, Tatsuya Matsuhiro, Yusuke Narita, Nobuyuki Shimizu, and Yasuo
Yamamoto. Doubly robust off-policy evaluation for ranking policies under the cascade behavior
model. In Proceedings of the 15th International Conference on Web Search and Data Mining,
2022.

Haruka Kiyohara, Masatoshi Uehara, Yusuke Narita, Nobuyuki Shimizu, Yasuo Yamamoto, and Yuta
Saito. Off-policy evaluation of ranking policies under diverse user behavior. In Proceedings of the
29th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, pp. 1154–1163, 2023.

Tor Lattimore and Csaba Szepesvári. Bandit algorithms. Cambridge University Press, 2020.

Jaron JR Lee, David Arbour, and Georgios Theocharous. Off-policy evaluation in embedded spaces.
arXiv preprint arXiv:2203.02807, 2022.

Lihong Li, Wei Chu, John Langford, and Robert E Schapire. A contextual-bandit approach to
personalized news article recommendation. In Proceedings of the 19th international conference on
World wide web, pp. 661–670, 2010.

Dawen Liang and Nikos Vlassis. Local policy improvement for recommender systems. arXiv preprint
arXiv:2212.11431, 2022.

Qiang Liu, Lihong Li, Ziyang Tang, and Dengyong Zhou. Breaking the curse of horizon: infinite-
horizon off-policy estimation. In Proceedings of the 32nd International Conference on Neural
Information Processing Systems, pp. 5361–5371, 2018.

Yao Liu, Pierre-Luc Bacon, and Emma Brunskill. Understanding the curse of horizon in off-policy
evaluation via conditional importance sampling. In International Conference on Machine Learning,
pp. 6184–6193. PMLR, 2020.

Ben London and Ted Sandler. Bayesian counterfactual risk minimization. In International Conference
on Machine Learning, pp. 4125–4133. PMLR, 2019.

Romain Lopez, Inderjit S Dhillon, and Michael I Jordan. Learning from extreme bandit feedback.
Proc. Association for the Advancement of Artificial Intelligence, 2021.

Yifei Ma, Yu-Xiang Wang, and Balakrishnan Narayanaswamy. Imitation-regularized offline learning.
In The 22nd International Conference on Artificial Intelligence and Statistics, pp. 2956–2965.
PMLR, 2019.

Alberto Maria Metelli, Alessio Russo, and Marcello Restelli. Subgaussian and differentiable impor-
tance sampling for off-policy evaluation and learning. Advances in Neural Information Processing
Systems, 34, 2021.
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Figure 5: The Two-Stage Off-Policy Learning Procedure of Our POTEC Algorithm, which first
forms action clustering ca, and then identifies a promising cluster by the 1st-stage policy π1st

θ , and
finally picks the best action in the cluster by the 2nd-stage policy π2nd

ψ .

A MORE RELATED WORK

Off-Policy Evaluation: Off-policy evaluation of counterfactual policies has recently garnered
significant interest in both contextual bandits (Dudı́k et al., 2014; Farajtabar et al., 2018; Kallus et al.,
2021; Kiyohara et al., 2022; 2023; Metelli et al., 2021; Saito & Joachims, 2021; Su et al., 2020a;
2019; Wang et al., 2017) and reinforcement learning (RL) (Jiang & Li, 2016; Kallus & Uehara, 2020;
Liu et al., 2018; 2020; Thomas & Brunskill, 2016; Xie et al., 2019). The literature encompasses three
main approaches. The first approach, named Direct Method (DM), is defined as:

V̂DM(π;D, q̂) := 1

n

n∑
i=1

Eπ(a|xi)[q̂(xi, a)] =
1

n

n∑
i=1

∑
a∈A

π(a |xi)q̂(xi, a),

where q̂(x, a) estimates q(x, a) based on logged bandit data. This approach exhibits lower variance
than IPS and has been utilized to address violations of full support (Sachdeva et al., 2020), where
IPS can be severely biased. However, DM is often vulnerable to reward function misspecification.
This issue is problematic, as the extent of misspecification cannot be easily detected and evaluated
for real-world data due to non-linearity or partial observability of the environment (Farajtabar et al.,
2018; Sachdeva et al., 2020; Voloshin et al., 2019). The second approach is IPS, which estimates the
value of π by re-weighting the observed rewards as

V̂IPS(π;D) :=
1

n

n∑
i=1

π(ai |xi)
π0(ai |xi)

ri =
1

n

n∑
i=1

w(xi, ai)ri,

where w(x, a) := π(a |x)/π0(a |x) is called the (vanilla) importance weight. Under some identifica-
tion assumptions such as no interference, full support, and no unobserved confounders, IPS provides
unbiased and consistent estimation of the value of new policies. However, this approach has a critical
drawback: it can suffer from high bias and variance in the presence of numerous actions. First, high
bias can occur when the logging policy fails to provide full support (Condition 2.1), which is likely
in larger action spaces (Sachdeva et al., 2020; Saito & Joachims, 2022). Furthermore, its variance
can be particularly excessive for large action spaces, as the importance weights are prone to taking
extremely large values. It is possible to apply weight clipping Su et al. (2020a; 2019); Swaminathan
& Joachims (2015b) and self-normalization (Swaminathan & Joachims, 2015c) to somewhat alleviate
the variance issue, however, they introduce additional bias in return. DR, which is given as follows,
is a third approach that can be considered a hybrid of the previous two approaches, achieving lower
bias than DM and lower variance than IPS (Dudı́k et al., 2014; Farajtabar et al., 2018).

V̂DR(π;D, q̂) :=
1

n

n∑
i=1

{
w(xi, ai)(ri − q̂(xi, ai)) + Eπ(a|xi)[q̂(xi, a)]

}
Several recent studies have extended DR to further improve its finite sample accuracy (Su et al.,
2020a; Wang et al., 2017; Metelli et al., 2021) or its robustness to model misspecification (Farajtabar
et al., 2018; Kallus et al., 2021). Although there is a number of extensions of DR in both bandits (as
described above) and RL (Jiang & Li, 2016; Kallus & Uehara, 2020; Thomas & Brunskill, 2016),
these variants of DR still face the critical variance issue in large action spaces due to the same reasons
as IPS Saito & Joachims (2022); Saito et al. (2023).
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To address the fundamental issues of typical OPE estimators for large action spaces, (Saito &
Joachims, 2022) proposed a new framework and estimator called Marginalized IPS (MIPS). This
approach leverages auxiliary information about the actions, called action embeddings or action
features, which are available in many potential applications of OPE such as recommender systems,
and provide useful structure in the action space. More specifically, MIPS is defined as:

V̂MIPS(π;D) :=
1

n

n∑
i=1

π(ei |xi)
π0(ei |xi)

ri =
1

n

n∑
i=1

w(xi, ei)ri,

where the logged dataset D = {(xi, ai, ei, ri)}ni=1 now contains action embeddings for each data
point6 and w(x, e) := π(e | x)

π0(e | x) =
∑
a p(e | x,a)π(a | x)∑
a p(e | x,a)π0(a | x) is the marginal importance weight. This

weight is defined with respect to the marginal distributions of the action embeddings induced by the
target and logging policies. This enhanced weighting scheme results in significantly lower variance
compared to IPS and DR in larger action spaces, while maintaining unbiasedness under the no direct
effect assumption. This assumption necessitates that the given action embeddings be informative
enough to mediate every causal effect of the actions on the rewards (i.e., a ⊥ r |x, e). A similar
condition regarding the causal structure has been utilized to address the deficient support problem in
OPE (Felicioni et al., 2022; Lee et al., 2022; Peng et al., 2023; Sachdeva et al., 2023) and to conduct
causal inference of long-term outcomes through short-term proxies (Athey et al., 2020; 2019; Chen
& Ritzwoller, 2021). However, MIPS may still exhibit high variance, similarly to IPS, when the
provided action embeddings are high-dimensional and fine-grained. Additionally, it may generate
substantial bias if the no direct effect condition is violated and action embeddings fail to explain
much of the causal effects of the actions. This bias issue is particularly expected when performing
action feature selection on high-dimensional action embeddings to reduce variance Su et al. (2020b);
Udagawa et al. (2023).

To circumvent the bias-variance dilemma of MIPS, (Saito et al., 2023) proposed a more general
formulation and a refined estimator. Specifically, instead of relying on the often demanding no
direct effect condition, (Saito et al., 2023) introduced the conjunct effect model (CEM) of the reward
function. The CEM is a useful decomposition of the expected reward function into what is called
the cluster effect and residual effect. Building on the CEM, we can employ model-free estimation
utilizing cluster importance weights to estimate the cluster effect without bias, and apply model-based
estimation using the pairwise regression procedure to estimate the residual effect with low variance as

V̂OffCEM(π;D) := 1

n

n∑
i=1

{
w(xi, cai)(ri − f̂(xi, ai)) + Eπ(a|xi)[f̂(xi, a)]

}
,

where w(x, c) := π(c | x)
π0(c | x) =

∑
a∈A I{ca=c}π(a | x)∑
a∈A I{ca=c}π0(a | x) is referred to as the cluster importance weight.

The first term of OffCEM estimates the cluster effect through cluster importance weighting, while
the second term addresses the residual effect using the regression model f̂ , which is ideally learned
via a two-step procedure similar to POTEC. As a result, the OffCEM estimator is likely to achieve
significantly lower variance than IPS, DR, and MIPS in scenarios with many actions or high-
dimensional action embeddings, while often reducing the bias of MIPS since OffCEM does not
ignore the residual effect. Our OPL algorithm is inspired by this CEM formulation, and suggests
training two distinct policies via policy-based (model-free) and regression-based (model-based)
approaches, respectively.

Off-Policy Learning: The contextual bandit framework has become a popular and practical ap-
proach for online learning and decision-making under uncertainty (Lattimore & Szepesvári, 2020),
with many efficient algorithms proposed for exploring the (potentially large or even infinite) action
spaces Agrawal & Goyal (2013); Li et al. (2010). However, a pressing need exists for an offline
procedure that optimizes decision-making without requiring risky and time-consuming active ex-
ploration. As a result, there has been significant recent interest in developing efficient off-policy
learning methods in the contextual bandit setting Sachdeva et al. (2020); Saito & Joachims (2021).
Fortunately, many real-world interactive systems can often leverage logged interaction data to learn
an improved policy fully offline, which allows us to safely enhance the performance of the current

6(x, a, e, r) ∼ p(x)π0(a |x)p(e |x, a)p(r |x, a, e) where p(e |x, a) is an action embedding distribution.
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system Joachims et al. (2018); London & Sandler (2019); Sachdeva et al. (2020); Saito & Joachims
(2021); Swaminathan & Joachims (2015a;b).

As already described in Section 2, there are two main families of approaches in OPL: regression-based
and policy-based methods. The regression-based approach relies on a reduction to supervised learning,
where a regression estimate is trained to predict the rewards from the logged data Jeunen & Goethals
(2021); Sachdeva et al. (2020). To derive a policy, the action with the highest predicted reward is
chosen deterministically, or a distribution can be formed based on the estimated rewards as well. A
drawback of this straightforward approach is the bias that arises from the misspecification of the re-
gression model. On the other hand, the policy-based approach aims to update the parameterized policy
πθ by performing gradient ascent iterations of the form: θt+1 ← θt +∇θV (πθ) at each step t during
policy learning. Since the true policy gradient ∇θV (πθ)(= Ep(x)πθ(a|x)[q(x, a)∇θ log πθ(a |x)]) is
unknown, it must be estimated from the logged data using OPE techniques, such as IPS (Eq. (1))
and DR (Eq. (2)). However, these estimators necessitate the assumption that the logging policy has
full support for every policy in the policy space. This assumption is frequently violated in large
action spaces, leading to significant bias in gradient estimation. Moreover, existing policy gradient
estimators heavily rely on the vanilla importance weight with respect to the original (potentially
large) action space, resulting in critical variance issues and insufficient off-policy learning for large
action spaces. One possible approach to address the variance issue in OPE is to apply conservative
or imitation regularization Jeunen & Goethals (2021); Liang & Vlassis (2022); Ma et al. (2019);
Swaminathan & Joachims (2015b), which penalize policies that diverge from the logging policy.
However, in large action spaces, these regularization techniques often yield a policy that is too close
to the logging policy. To tackle the challenges associated with OPE in large action spaces, (Lopez
et al., 2021) recently proposed the following selective IPS (sIPS) estimator to estimate the policy
gradient.

∇θV̂sIPS(πθ;D) :=
1

n

n∑
i=1

πθ(ai |xi, ai ∈ Φ(xi))

π0(ai |xi)
ri∇θ log πθ(ai |xi), (12)

where Φ(x) := {a ∈ A | q(x, a) > 0} is the set of relevant actions called the action selector. The
idea is to reduce the variance in importance weighting by focusing only on relevant actions assuming
that there are many irrelevant actions that have (almost) zero expected rewards in real applications.
However, we argue that the variance reduction effect of sIPS is often limited, as it still relies on the
logging policy in the denominator. Furthermore, a reliable method for identifying the action selector
has not yet been provided.

To address the limitations of existing approaches, we utilize the CEM from Saito et al. (2023) and
proposed the POTEC algorithm, which is the first OPL framework to unify regression-based and
policy-based approaches. This algorithm trains two separate policies using regression-based and
policy-based approaches, respectively.7 In particular, our POTEC algorithm is expected to outperform
typical policy- and regression-based approaches in large action spaces. First, we utilize cluster
importance weighting when training the 1st-stage policy and a regression-based approach when
training the 2nd-stage policy, which should yield significantly lower variance compared to existing
policy-based methods that apply importance weighting over the original action space. Furthermore,
our algorithm is likely to be more robust to reward function misspecification than the regression-based
approach, as it relies on a provably unbiased policy gradient in the 1st-stage and aims to estimate
only the relative value difference in the 2nd-stage. This is arguably a simpler task compared to the
absolute value regression of the conventional regression-based approach.

Note that in the context of reinforcement learning (RL), there are some related ideas and methods
to improve sample-efficiency in large action spaces. For example, Chandak et al. (2019) propose a
method to learn action representation to improve sample-efficiency of on-policy RL. However, the
focus of Chandak et al. (2019) is not offline policy learning, and thus its proposed method is not
considered as a baseline in our paper. In addition, the supervised representation learning procedure
of this paper uses the structure specific to RL (i.e., state transition), so it cannot be applied to our
contextual bandit setup. In addition, Gu et al. (2022) study offline RL in large action spaces and
propose a method to learn latent representation in the action space. However, the proposed method

7Note that DR in Eq. (2) should be classified as a policy-based approach since its aim is to accurately estimate
the true policy gradient, even though it employs a regression-based reward function estimator for variance
reduction from IPS.
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of Gu et al. (2022) leverages the data-distributional metric to learn action embeddings to deal with
large action spaces in offline RL, but the metric is based on the MDP structure, and how to apply the
method to the offline contextual bandit problem was not discussed and it is non-trivial.

Table 1: Examples of locally correct regression models

a a0 a1 a2 a3

ϕ(x0, a) 0 1
q(x0, a) 4 1 3 2
f̂1(x0, a) 3 0 1 0

∆(x0, a, b) 3 1

a a0 a1 a2 a3

ϕ(x0, a) 0 1
q(x0, a) 4 1 3 2
f̂2(x0, a) 50 47 -30 -31

∆(x0, a, b) 3 1

a a0 a1 a2 a3

ϕ(x0, a) 0 1
q(x0, a) 4 1 3 2
f̂3(x0, a) 4 1 3 2

∆(x0, a, b) 3 1

B EXAMPLES: LOCALLY CORRECT REGRESSION MODELS

This section provides some examples of regression model f̂ that satisfies Condition 3.3 (local correct-
ness). Suppose that there is only a single context X = {x0} and four actions A = {a0, a1, a2, a3}.
The expected reward function q(x, a) and clustering function ϕ(x, a) are given as follows.

q(x0, a0) = 4, q(x0, a1) = 1, q(x0, a2) = 3, q(x0, a3) = 2,

ϕ(x0, a0) = 0, ϕ(x0, a1) = 0, ϕ(x0, a2) = 1, ϕ(x0, a3) = 1.

Then, Table 1 provides three locally correct regression models (f̂1 to f̂3). More specifically, these
example models succeed in preserving the relative value difference of the actions within each
action cluster (c = 0 for a0, a1 and c = 1 for a2, a3). In fact, we can see that ∆q(x0, a0, a1) =
∆f̂1

(x0, a0, a1) = ∆f̂2
(x0, a0, a1) = ∆f̂3

(x0, a0, a1) = 3 and ∆q(x0, a2, a3) = ∆f̂1
(x0, a2, a3) =

∆f̂2
(x0, a2, a3) = ∆f̂3

(x0, a2, a3) = 1 where ϕ(x0, a0) = ϕ(x0, a1) and ϕ(x0, a2) = ϕ(x0, a3).

C GENERALIZATION OF OUR FRAMEWORK AND POTEC ALGORITHM

In this section, we describe the generalization of our framework and algorithm to the situation under
the presence of some predefined action representation ϕ : X ×A → E ⊆ Rd, which is often available
in practice and can be used to better parameterize the policy. Under the presence of such action
representations, we can first generalize the CEM as follows.

q(x, a) = g(x, c(x,Φ(x, a)))︸ ︷︷ ︸
cluster effect

+h(x,Φ(x, a))︸ ︷︷ ︸
residual effect

, (13)

where c : X × E → C provides a discretization in the action representation space E . Note also that
the residual effect depends on the representation of the action Φ(x, a) rather than the atomic actions
a as in a simpler version presented in the main text.

Leveraging this general version of the CEM in Eq. (13), we can generalize our POTEC gradient
estimator in Eq. (7) in the following two ways.

Implementation Option 1: This option trains a parameterized distribution over the action repre-
sentation space E as the 1st-stage policy via the following version of the POTEC gradient estimator.

∇θV̂POTEC(π
overall
θ,ψ ;D) := 1

n

n∑
i=1

{
w(xi, ci)(ri − f̂(xi,Φ(xi, ai)))∇θ log πθ(Φ(xi, ai) |xi)

+ Ee∼π1st
θ

[f̂π
2nd
ψ (xi, c)∇θ log πθ(e |xi)]

}
, (14)

where ci = c(xi,Φ(xi, ai)), f̂
π2nd
ψ (x, c) := Eπ2nd

ψ
[f̂(x, a)] and

w(x, c) :=
π1st
θ (c |x)
π1st
0 (c |x)

=

∫
e:c(x,e)=c

π1st
θ (e |x)∫

e:c(x,e)=c
π1st
0 (e |x)

.
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This general version of the POTEC gradient estimator is unbiased under local correctness (i.e,
∆q(x, a, b) = ∆f̂ (x, a, b), ∀x, a, b such that c(x,Φ(x, a)) = c(x,Φ(x, b))). Since the 1st-stage
policy is learned in the action representation space, it can naturally exploit the smoothness in E .

If we follow this implementation, in the inference time, for an incoming context x, we first sample a
point in the action representation space E from the 1st-stage policy as e ∼ π1st

θ (· |x), which implies
a promising region in E . Note that, in general, e ∈ E will not match with any already observed action
representation {Φ(xi, ai)}ni=1. Then, the second-stage π2nd

ψ , which is constructed from the pairwise
regression model ĥψ : X × E → R, identifies the best action within the promising region as

a = argmax
a′:c(x,Φ(x,a′))=c(x,e)

ĥψ(x,Φ(x, a
′)),

where {a′ ∈ A | c(x,Φ(x, a′)) = c(x, e)} is the set of actions whose representation lies in the
promising region induced by e ∼ π1st

θ (· |x).

Implementation Option 2: This option first learns a parameterized distribution over the action
space A as the 1st-stage policy using Φ(x, a) as its input via the following version of the POTEC
gradient estimator.

∇θV̂POTEC(π
overall
θ,ψ ;D) := 1

n

n∑
i=1

{
w(xi, ci)(ri − f̂(xi,Φ(xi, ai)))∇θ log πθ(ai |xi; Φ(xi, ai))

+ Ea∼π1st
θ

[f̂π
2nd
ψ (xi, c)∇θ log πθ(a |xi; Φ(xi, a))]

}
,

(15)

where ci = c(xi,Φ(xi, ai)), f̂
π2nd
ψ (x, c) := Eπ2nd

ψ
[f̂(x, a)] and

w(x, c) :=
π1st
θ (c |x)
π1st
0 (c |x)

=

∑
a:c(x,Φ(x,a))=c π

1st
θ (a |x; Φ(x, a))∑

a:c(x,Φ(x,a))=c π
1st
0 (a |x; Φ(x, a))

.

This version is also unbiased under local correctness (i.e, ∆q(x, a, b) = ∆f̂ (x, a, b), ∀x, a, b such that
c(x,Φ(x, a)) = c(x,Φ(x, b))). The 1st-stage policy also simply leverages the action representation
as its input.8

If we follow this implementation, in the inference time, for an incoming context x, we first sample
a point in the action space A from the 1st-stage policy as a ∼ π1st

θ (· |x; Φ(x, a)), which merely
implies a promising region in E . Then, the second-stage π2nd

ψ , which is constructed from the pairwise
regression model ĥψ : X × E → R, identifies the best action within the promising region as

a = argmax
a′:c(x,Φ(x,a′))=c(x,Φ(x,a))

ĥψ(x,Φ(x, a
′)),

where {a′ ∈ A | c(x,Φ(x, a′)) = c(x,Φ(x, a))} is the set of actions whose representation lies in the
promising region induced by a ∼ π1st

θ (· |x; Φ(x, a)).
The empirical comparison of the above two options highly depends on each application. For
example, Implementation Option 1 may perform better when the action representation space E is
low-dimensional while it may suffer when E is high-dimensional. Therefore, under the presence
of some action representation Φ(x, a), we would encourage the practitioners to identify the best
implementations for their particular application in a data-driven fashion, for example, by performing
a careful cross-validation.

8For example, we can define a parameterized policy as

πθ(a |x; Φ(x, a)) =
exp(fθ(x,Φ(x, a)))∑

a′∈A exp(fθ(x,Φ(x, a′)))

where fθ : X × E → R is some parameterized function having action representation Φ(x, a) as its input.
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C.1 THE ONE-STAGE VARIANT OF POTEC

It is worth noting that there exists a one-stage variant of POTEC, as opposed to the two-stage variant,
which is our primary proposal. More specifically, the one-stage variant directly trains a parameterized
overall policy in the action space, πθ(a |x), via the POTEC gradient estimator as follows:

∇θV̂POTEC1(πθ;D) :=
1

n

n∑
i=1

{
w(xi, cai)(ri − f̂(xi, ai))sθ(xi, ai) + Eπθ(a|xi)[f̂(xi, a)sθ(xi, a)]

}
,

where sθ(x, a) := ∇θ log πθ(a |x). Although the one-stage variant is categorized as a policy-based
approach, as it trains the overall policy directly via policy gradient, it still achieves significant variance
reduction compared to IPS-PG and DR-PG and remains unbiased under local correctness. However,
the one-stage variant could be considered a suboptimal utilization of the local correctness condition
since, given a locally correct regression model, we should be able to optimally choose the action
within a cluster as in Eq. (10) and thus do not need to learn the overall policy solely through policy
gradient. Nevertheless, the one-stage variant may be valuable in practice, as it do not need to maintain
and execute multiple policies. We provide an empirical comparison of the one-stage and two-stage
variants of POTEC in Appendix E.

D OMITTED PROOFS

D.1 DERIVATION OF EQ. (6)

∇θV
(
πoverallθ,ψ

)
= Ep(x)

[∑
a∈A

q(x, a)∇θπoverallθ,ψ (a |x)

]

= Ep(x)

[∑
a∈A

q(x, a)
∑
c∈C
∇θπ1st

θ (c |x)π2nd
ψ (a |x, c)

]

= Ep(x)

[∑
c∈C
∇θπ1st

θ (c |x)
∑
a∈A

q(x, a)π2nd
ψ (a |x, c)

]

= Ep(x)

[∑
c∈C

π1st
θ (c |x)∇θ log π1st

θ (c |x)qπ
2nd
ψ (x, c)

]
= Ep(x)π1st

θ (c | x)

[
qπ

2nd
ψ (x, c)sθ(x, c)

]
where we use qπ

2nd
ψ (x, c) := Eπ2nd

ψ (a|x,c)[q(x, a)] and sθ(x, c) := ∇θ log π1st
θ (c |x). The above

policy gradient suggests increasing the choice probability of a cluster that is promising under the
given 2nd-stage policy π2nd

ψ where the effectiveness of a cluster under the 2nd-stage policy is

quantified by qπ
2nd
ψ (x, c). This implies that the optimal cluster can be different given different

2nd-stage policies. A toy example in Table 2 shows that the value of a cluster can indeed be very
different given different 2nd-stage policies. More specifically, the left table shows the case with the
optimal 2nd-stage policy that can identify the best action within each cluster. Then, we can see that
the optimal cluster is c = 1, since the maximum expected reward in the actions of this cluster is larger.
In contrast, the right table shows the case with uniform 2nd-stage policy. Under such a 2nd-stage
policy, the optimal cluster then becomes c = 0, since the average expected reward of the actions in
c = 0 is larger than that of c = 1.

Below we prove the theorems presented in the main text based on the following general version of
the POTEC gradient estimator.

∇θV̂POTEC(π
overall
θ,ψ ;D) := 1

n

n∑
i=1

{
w(xi, ci)(ri − f̂(xi, ai))sθ(xi, ca) + Eπ1st

θ
[f̂π

2nd
ψ (xi, c)sθ(xi, ci)]

}
where ci ∼ p(· |xi, ai) is a stochastic and context-dependent clustering. The POTEC gradient
estimator defined in Eq. (7) can be considered a special case with a deterministic and context-
independent clustering function c : A → C.
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Table 2: Dependence of the cluster value on the 2nd-stage policy (qπ
2nd
ψ (x, c))

a a0 a1 a2 a3

c(x0, a) 0 1
q(x0, a) 4 2 5 0

π2nd
ψ (a|x, c) 1 0 1 0

qπ
2nd
ψ (x, c) 4 5

a a0 a1 a2 a3

c(x0, a) 0 1
q(x0, a) 4 2 5 0

π2nd
ψ (a|x, c) 0.5 0.5 0.5 0.5

qπ
2nd
ψ (x, c) 3 2.5

Note that we use w(x, c) = Eπ(a|x,c)[w(x, a)] and w(x, a) = π(a | x)
π0(a | x) =

π(a,c | x)
π0(a,c | x) in the following.

D.2 PROOF OF THEOREM 3.2 AND COROLLARY ??

Proof. To derive the bias of the POTEC gradient estimator, we calculate the difference between its
expectation and the true policy gradient given in Eq. (6) below.

Bias(∇θV̂POTEC(π
overall
θ,ψ ;D))

= Ep(x)π0(a|x)p(c|x,a)p(r|x,a)[w(x, c)(r − f̂(x, a))sθ(x, c)] + Ep(x)π1st
θ (c|x)[f̂

π2nd
ψ (x, c)sθ(x, c)]

− Ep(x)π1st
θ (c|x)

[
qπ

2nd
ψ (x, c)sθ(x, c)

]
= Ep(x)

[∑
a∈A

π0(a |x)∆q,f̂ (x, a)
∑
c∈C

p(c |x, a)w(x, c)sθ(x, c)

]
+ Ep(x)

[∑
c∈C

π1st
θ (c |x)f̂π

2nd
ψ (x, c)sθ(x, c)

]

− Ep(x)

[∑
c∈C

π1st
θ (c |x)qπ

2nd
ψ (x, c)sθ(x, c)

]

= Ep(x)

[∑
a∈A

π0(a |x)∆q,f̂ (x, a)
∑
c∈C

π1st
0 (c |x)π2nd

0 (a |x, c)
π0(a |x)

w(x, c)sθ(x, c)

]

+ Ep(x)

[∑
c∈C

π1st
0 (c |x)π

1st
θ (c |x)
π1st
0 (c |x)

f̂π
2nd
ψ (x, c)sθ(x, c)

]
− Ep(x)

[∑
c∈C

π1st
0 (c |x)π

1st
θ (c |x)
π1st
0 (c |x)

qπ
2nd
ψ (x, c)sθ(x, c)

]

= Ep(x)π1st
0 (c|x)

[
w(x, c)sθ(x, c)

∑
a∈A

π2nd
0 (a |x, c)∆q,f̂ (x, a)

]
+ Ep(x)π1st

0 (c|x)

[
w(x, c)sθ(x, c)f̂

π2nd
ψ (x, c)

]
− Ep(x)π1st

0 (c | x)

[
w(x, c)sθ(x, c)q

π2nd
ψ (x, c)

]
= Ep(x)π1st

0 (c|x)

[
w(x, c)sθ(x, c)

∑
a∈A

π2nd
0 (a |x, c)∆q,f̂ (x, a)

]

− Ep(x)π1st
0 (c|x)

[
sθ(x, c)

∑
a∈A

π1st
θ (c |x)
π1st
0 (c |x)

π2nd
ψ (a |x, c)
π2nd
0 (a |x, c)

π2nd
0 (a |x, c)∆q,f̂ (x, a)

]

= Ep(x)π1st
0 (c|x)

[
sθ(x, c)

∑
a∈A

w(x, a)π2nd
0 (a |x, c)

∑
b∈A

π2nd
0 (b |x, c)∆q,f̂ (x, b)

]

− Ep(x)π1st
0 (c|x)

[
sθ(x, c)

∑
a∈A

w(x, a)π2nd
0 (a |x, c)∆q,f̂ (x, a)

]

= Ep(x)π1st
0 (c|x)

[
sθ(x, c)

∑
a∈A

w(x, a)π2nd
0 (a |x, c)

((∑
b∈A

π2nd
0 (b |x, c)∆q,f̂ (x, b)

)
−∆q,f̂ (x, a)

)]
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where ∆q,f̂ (x, a) := q(x, a) − f̂(x, a). By applying Lemma B.1 of (Saito & Joachims, 2022) to
the last line (setting f(a) = w(, a), g(a) = π2nd

0 (a | , ), h(a) = ∆(, a)), we obtain the following
expression of the bias.

Ep(x)π1st
0 (c|x)

[
sθ(x, c)

∑
a<b

π2nd
0 (a |x, c)π2nd

0 (b |x, c)
(
∆q,f̂ (x, a)−∆q,f̂ (x, b)

)
(w(x, b)− w(x, a))

]
In particular, in the simpler case of deterministic and context-independent clustering as in the main
text, we can simplify the expression of the bias as below.

Ep(x)π1st
0 (c|x)

[ ∑
a<b:ca=cb=c

π2nd
0 (a |x, c)π2nd

0 (b |x, c)
(
∆q,f̂ (x, a)−∆q,f̂ (x, b)

)
(w(x, b)− w(x, a)) sθ(x, c)

]

= Ep(x)π1st
0 (c|x)

[ ∑
a<b:ca=cb=c

π2nd
0 (a |x, c)π2nd

0 (b |x, c)
(
∆q(x, a, b)−∆f̂ (x, a, b)

)
(w(x, b)− w(x, a)) sθ(x, c)

]

where, we used π2nd
0 (a |x, c) = π0(a | x)I{ca=c}

π1st
0 (c | x) and ∆q,f̂ (x, a) − ∆q,f̂ (x, b) ⇒ ∆q(x, a, b) −

∆f̂ (x, a, b).

D.3 PROOF OF PROPOSITION 3.4

Proof. We apply the law of total variance several times to obtain the variance of the j-th element of
the POTEC gradient estimator for a particular parameter θ ∈ Rd in the following.

Vp(x)π0(a|x)p(c|x,a)p(r|x,a)

[
w(x, c)(r − f̂(x, a))s(j)θ (x, c) + Eπ1st

θ (c′|x)[f̂
π2nd
ψ (x, c′)s

(j)
θ (x, c′)]

]
= Ep(x)π0(a|x)p(c|x,a)

[
Vp(r|x,a)

[
w(x, c)(r − f̂(x, a))s(j)θ (x, c) + Eπ1st

θ (c′|x)[f̂
π2nd
ψ (x, c′)s

(j)
θ (x, c′)]

]]
+ Vp(x)π0(a|x)p(c|x,a)

[
Ep(r|x,a)

[
w(x, c)(r − f̂(x, a))s(j)θ (x, c) + Eπ1st

θ (c′|x)[f̂
π2nd
ψ (x, c′)s

(j)
θ (x, c′)]

]]
= Ep(x)π0(a|x)p(c|x,a)

[
(w(x, c)s

(j)
θ (x, c))2σ2(x, a)

]
+ Vp(x)π0(a|x)p(c|x,a)

[
w(x, c)∆q,f̂ (x, a)s

(j)
θ (x, c) + Eπ1st

θ (c′|x)[f̂
π2nd
ψ (x, c′)s

(j)
θ (x, c′)]

]
= Ep(x)π0(a|x)p(c|x,a)

[
(w(x, c)s

(j)
θ (x, c))2σ2(x, a)

]
+ Ep(x)π0(a|x)

[
Vp(c|x,a)

[
w(x, c)∆q,f̂ (x, a)s

(j)
θ (x, c) + Eπ1st

θ (c′|x)[f̂
π2nd
ψ (x, c′)s

(j)
θ (x, c′)]

]]
+ Vp(x)π0(a|x)

[
Ep(c|x,a)

[
w(x, c)∆q,f̂ (x, a)s

(j)
θ (x, c) + Eπ1st

θ (c′|x)[f̂
π2nd
ψ (x, c′)s

(j)
θ (x, c′)]

]]
= Ep(x)π0(a|x)p(c|x,a)

[
(w(x, c)s

(j)
θ (x, c))2σ2(x, a)

]
+ Ep(x)π0(a|x)

[
Vp(c|x,a)

[
w(x, c)∆q,f̂ (x, a)s

(j)
θ (x, c)]

]]
+ Vp(x)π0(a|x)

[
Ep(c|x,a)

[
w(x, c)∆q,f̂ (x, a)s

(j)
θ (x, c)

]
+ Eπ1st

θ (c′|x)[f̂
π2nd
ψ (x, c)s

(j)
θ (x, c′)]

]
= Ep(x)π0(a|x)p(c|x,a)

[
(w(x, c)s

(j)
θ (x, c))2σ2(x, a)

]
+ Ep(x)π0(a|x)

[
Vp(c|x,a)

[
w(x, c)∆q,f̂ (x, a)s

(j)
θ (x, c)]

]]
+ Ep(x)

[
Vπ0(a|x)

[
Ep(c|x,a)

[
w(x, c)∆q,f̂ (x, a)s

(j)
θ (x, c)

]
+ Eπ1st

θ (c′|x)[f̂
π2nd
ψ (x, c′)s

(j)
θ (x, c′)]

]]
+ Vp(x)

[
Eπ0(a|x)

[
Ep(c|x,a)

[
w(x, c)∆q,f̂ (x, a)s

(j)
θ (x, c)

]
+ Eπ1st

θ (c′|x)[f̂
π2nd
ψ (x, c′)s

(j)
θ (x, c′)]

]]
= Ep(x)π0(a|x)p(c|x,a)

[
(w(x, c)s

(j)
θ (x, c))2σ2(x, a)

]
+ Ep(x)π0(a|x)

[
Vp(c|x,a)

[
w(x, c)∆q,f̂ (x, a)s

(j)
θ (x, c)]

]]
+ Ep(x)

[
Vπ0(a|x)

[
Ep(c|x,a)

[
w(x, c)∆q,f̂ (x, a)s

(j)
θ (x, c)

]]]
+ Vp(x)

[
Eπ1st

θ (c|x)

[
qπ

2nd
ψ (x, c)s

(j)
θ (x, c)

]]
,

where we rely on local correctness in the last line to use

Eπ0(a|x)

[
Ep(c|x,a)

[
w(x, c)∆q,f̂ (x, a)s

(j)
θ (x, c)

]
+ Eπ1st

θ (c′|x)[f̂
π2nd
ψ (x, c′)s

(j)
θ (x, c′)]

]
= Eπ1st

θ (c|x)

[
qπ

2nd
ψ (x, c)s

(j)
θ (x, c)

]
.
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Table 3: Hyperparameter search spaces used in the experiments. λ is the hyperparameter for weight
decay. η is the learning rate. B is the batch size.

Datasets Methods λ η B |Φ(x)| in Eq.(12)

Synthetic
IPS-PG {10−2, 10−4, 10−6} {10−3, 5× 10−4, 10−4} {64, 128, 256} {0.1|A|, 0.5|A|, |A|}
DR-PG {10−2, 10−4, 10−6} {10−3, 5× 10−4, 10−4} {64, 128, 256} {0.1|A|, , 0.5|A|, |A|}
POCEM 10−4 5× 10−4 128 -

Real-World
IPS-PG [10−4, 10−2] [10−4, 10−2] 1, 024 |A|
DR-PG [10−4, 10−2] [10−4, 10−2] 1, 024 |A|
POCEM 10−4 10−3 1, 024 -

In particular, in the case of deterministic and context-independent clustering, the variance can be
simplified as follows.

Vp(x)π0(a|x)p(r|x,a)

[
w(x, ca)(r − f̂(x, a))s(j)θ (x, ca) + Eπ1st

θ (c′|x)[f̂
π2nd
ψ (x, c)s

(j)
θ (x, c′)]

]
= Ep(x)π0(a|x)

[
(w(x, ca)s

(j)
θ (x, ca))

2σ2(x, a)
]

+ Ep(x)
[
Vπ0(a|x)

[
w(x, ca)∆q,f̂ (x, a)s

(j)
θ (x, ca)

]]
+ Vp(x)

[
Eπ1st

θ (c|x)

[
qπ

2nd
ψ (x, c)s

(j)
θ (x, c)

]]
.

D.4 PROOF OF PROPOSITION 3.5

Proof. Since Ep(x)π0(a|x)p(c|x,a)[w(x, c)] = Ep(x)π0(a|x)p(c|x,a)[w(x, a)] = 1, the difference in the
variance of the cluster and vanilla importance weights is attributed to the difference in their second
moment, which is calculated below.

Vp(x)π0(a|x)p(c|x,a)[w(x, a)]− Vp(x)π0(a|x)p(c|x,a)[w(x, c)]

= Ep(x)π0(a|x)p(c|x,a)[w
2(x, a)]− Ep(x)π0(a|x)p(c|x,a)[w

2(x, c)]

= Ep(x)π0(a|x)p(c|x,a)

[
w2(x, a)−

(
Eπ0(a|x,c)[w(x, a)]

)2]
∵ w(x, c) = Eπ0(a|x,c)[w(x, a)]

= Ep(x)

[∑
a∈A

π0(a|x)
∑
c∈C

p(c|x, a)
(
w2(x, a)−

(
Eπ0(a|x,c)[w(x, a)]

)2)]

= Ep(x)

[∑
a∈A

π0(a|x)
∑
c∈C

π0(c|x)π0(a|x, c)
π0(a|x)

(
w2(x, a)−

(
Eπ0(a|x,c)[w(x, a)]

)2)]
∵ p(c|x, a) = π0(c|x)π0(a|x, c)

π0(a|x)

= Ep(x)π0(c|x)

[
Eπ0(a|x,c)[w

2(x, a)]−
(
Eπ0(a|x,c)[w(x, a)]

)2]
= Ep(x)π0(c|x)

[
Vπ0(a|x,c)[w(x, a)]

]

E ADDITIONAL EXPERIMENT SETUPS AND RESULTS

E.1 SYNTHETIC EXPERIMENT

Detailed Setup. This section describes how we define the synthetic reward function and perform
hyperparameter tuning in detail. Recall that, in the synthetic experiment, we synthesized the expected
reward function as

q(x, a) = g(x, ca) + hca(x, a), (16)
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Table 4: Dataset Statistics

Dataset ntrain ntest |A|

EUR-Lex 4K 15,449 3,865 3,956
Wiki10-31K 14,146 6,616 30,938

where we use the following functions as g (cluster effect) and h (residual effect), respectively.

g(x, ca) = gbase(x, ca) + u1I{(
3∑
d=1

xd) < 1.5}

+ u2I{(
8∑
d=3

xd) < −0.5}+ u3I{(
3∑
d=2

xd) > 3.0}+ u4I{(
10∑
d=5

xd) < 1.0},

hca(x, a) = x⊤Mcaone hota + θ⊤x,cax+ θ⊤a,caone hota,

where xd is the d-th dimension of the context vector x. We use
obp.dataset.polynomial reward function from OpenBanditPipeline9 as gbase(·, ·) and u1, . . . , u4
are sampled from a uniform distribution with range [−3, 3]. Mca , θx,ca , and θa,ca are parameter
matrices or vectors sampled from a uniform distribution with range [−1, 1] separately for each given
action cluster ca.

Based on the above reward function q(x, a), we synthesized the logging policy π0 as

π0(a |x) =
exp(β · q(x, a) + ηx,a)∑

a′∈A exp(β · q(x, a′) + ηx,a)
, (17)

where β is a parameter that controls the optimality of the logging policy. β is set to 5 as default and
the noise ηx,a is sampled from a normal distribution.

To summarize, we first sample a context and define the expected reward q(x, a) as in Eq. (16). We
then sample discrete action a from π0 based on Eq. (17) where action a is associated with a cluster ca.
The reward is then sampled from a normal distribution with mean q(x, a). Iterating this procedure n
times generates logged data D with n independent copies of (x, a, ca, r).

We tuned the weight decay hyperparameter, learning rate, batch size, and the number of irrelevant
actions for variance reduction for the baseline methods (i.e., IPS-PG and DR-PG) using the test policy
value, while we use a fixed set of hyperparameters for POTEC as shown in Table 3, giving an unfair
advantage to the baselines. For all methods, we used Adam (Kingma & Ba, 2014) as the optimizer
and used neural networks with 3 hidden layers to parameterize the policy.

E.2 EXPERIMENT ON EXTREME CLASSIFICATION DATA

In addition to synthetic and real-world recommendation data, we performed OPL experiments on two
extreme classification datasets provided by Bhatia et al. (2016).

Setup. Following previous studies (Dudı́k et al., 2014; Saito et al., 2021b; Su et al., 2020a; Wang
et al., 2017), we transform the extreme classification datasets to contextual bandit feedback data with
many actions. In a classification dataset {(xi, ai)}ni=1, we have some feature vector xi ∈ X and
ground-truth label ai ∈ A, which will be considered an action.

We consider stochastic continuous rewards where we define the expected reward function as follows.

q(x, a) =

{
1− ηa if a is a positive label
ηa otherwise (18)

ηa is a noise parameter sampled separately for each action a from a uniform distribution with range
[0, 0.1]. After defining the expected reward function, we sample the reward from a normal distribution
as r ∼ N (q(x, a), σ2) with standard deviation σ = 0.05 for each data.

9https://github.com/st-tech/zr-obp
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Figure 6: Comparing the test policy value of the OPL methods (normalized by V (π0)) on the Eurlex-
4K dataset with weak and strong logging policies, respectively.

Figure 7: Comparing the test policy value of the OPL methods (normalized by V (π0)) on the Wiki10-
31K dataset with weak and strong logging policies, respectively.

Note: The results are averaged over 5 different sets of synthetic logged data replicated with different
random seeds. The shaded regions in the plots represent the 95% confidence intervals of the policy
value estimated with bootstrap.

We define the logging policy π0 by applying softmax to an estimated reward function q̃(x, a) as

π0(a |x) =
exp(β · q̃(x, a))∑

a′∈A exp(β · q̃(x, a′))
, (19)

where we use β = 10 for both datasets. We obtain q̃(x, a) by learning a matrix factorization model
where we use the test data recorded in the original datasets for obtaining a logging policy while we
use the training data for performing OPL to make them independent.

Results. We evaluate POTEC against IPS-PG, DR-PG, and Reg-based under varying numbers of
clusters to evaluate POTEC’s robustness to the choice of this key hyper-parameter. We optimize the
hyperparameters of POTEC and the baselines based on the ground-truth policy value in the validation
set, and the effectiveness of the OPL methods is evaluated on the test set. For POTEC, we evaluate
it with two types of clustering methods to investigate its robustness to the ways the clustering is
performed. The first method is through learning an action embedding via Lipschitz regularization
(Lip) recently proposed for improving OPE in large action spaces (Peng et al., 2023). The second
method is to apply Agglomerative clustering (AC) implemented in scikit-learn (Pedregosa et al.,
2011) to the full-information labels, which provides an even more accurate clustering by leveraging
the true reward correlation. Note that we perform a conventional reward regression rather than the
two-step regression for POTEC due to insufficient pairwise data in these specific datasets.

Figures 6 and 7 report the test policy value (normalized by V (π0)) of the OPL methods with varying
numbers of clusters on Eurlex-4K and Wiki10-31K, using two types of logging policies. For these
experiments, we trained a “weak logging” policy with (two times) fewer samples than the “strong
logging” policy. We optimized the hyperparameters of POTEC and the baselines based on the
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ground-truth policy value in the validation set, and the effectiveness of the OPL methods is evaluated
on the test set. It should be noted that the baseline methods do not depend on action clusters, which
results in flat lines in the figures.

The figures demonstrate that POTEC, with both clustering methods (Lipschitz regularization; Lip and
Agglomerative clustering; AC), typically outperforms all baseline methods across a range of numbers
of clusters, indicating its potential for real-world applications even with action clustering learned
only from observable logged data (i.e., POTEC w/ Lip). We can also see that POTEC with a more
accurate clustering (i.e., POTEC w/ AC) slightly outperforms POTEC w/ Lip, implying an even better
potential of POTEC with a more refined clustering procedure. The regression-based method performs
competitively with POTEC only for a strong logging policy on the Wiki10-31K dataset, but we can
see, in all other scenarios, POTEC typically performs the best. We also compared the one-stage and
two-stage variants of POTEC on the real-world datasets, but we did not find a significant difference
between them for both types of clustering.
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