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Abstract

Reinforcement learning (RL) demonstrates superior potential over traditional flight
control methods for fixed-wing aircraft, particularly under extreme operational
conditions. However, the high demand for training samples and the lack of efficient
computation in existing simulators hinder its further application. In this paper,
we introduce NeuralPlane, the first benchmark platform for large-scale parallel
simulations of fixed-wing aircraft. NeuralPlane significantly boosts high-fidelity
simulation via GPU-accelerated Flight Dynamics Model (FDM) computation,
achieving a single-step simulation time of just 0.2 seconds at a parallel scale of
106 aircraft, far exceeding current platforms. We also provide clear code templates,
comprehensive evaluation and visualization tools, and hierarchical frameworks for
integrating RL and traditional control methods. We believe that NeuralPlane can
accelerate the development of RL-based fixed-wing flight control and serve as a new
challenging benchmark for the RL community. Our NeuralPlane is open-source
and accessible at https://github.com/xuecy22/NeuralPlane.

1 Introduction

Unmanned Aerial Vehicles (UAVs) equipped with autonomous flight control systems have found
extensive application in various tasks such as crop protection [1], pipeline inspection [2], topographic
mapping [3] and environmental monitoring [4], particularly in dangerous or inaccessible environ-
ments. Fixed-wing aircraft, in contrast to the commonly used multi-rotor drones, have demonstrated
broad utility in these missions owing to their long flight endurance and high cruising speeds [5, 6, 7].
Nonetheless, the inherent complex nonlinearity in dynamic models and strong sensitivity to atmo-
spheric disturbances make traditional control approaches inadequate for ensuring agile and stable
flight under extreme operational conditions [8, 9, 10]. As a result, addressing the challenges in
fixed-wing aircraft control necessitates the utilization of advanced techniques that can deliver rapid
responsiveness and robust stability.

Reinforcement learning (RL) has made significant progress in recent years, achieving superhuman
performance in various domains, particularly in areas characterized by complex nonlinear dynamics
such as robotic manipulation [11], autonomous driving [12] and quadrotor flight control [13]. RL
operates on the trial-and-error principle, where an agent interacts with the environment, adapts

*Equal contribution
†Corresponding author

38th Conference on Neural Information Processing Systems (NeurIPS 2024) Track on Datasets and Benchmarks.

https://github.com/xuecy22/NeuralPlane


continuously based on feedback, and optimizes decision-making to maximize cumulative rewards [14].
In the field of fixed-wing aircraft control, the potential benefits of applying RL are manifold. The
complex nonlinear dynamics can be treated as a black-box model and addressed through exploration
and exploitation. Moreover, the adaptive nature of RL enables systems to adapt their behavior to
novel environmental conditions, such as variations in air density, wind direction, and intensity.

Despite an increasing number of researchers discovering the potential of RL and conducting notable
work on fixed-wing aircraft control [15, 16, 17, 18], significant obstacles hinder its wider application in
complex control scenarios. One significant challenge is the substantial demand of training samples that
RL algorithms require, making it prohibitively expensive to gather sufficient interaction data from real
flights. The existing simulation environments for fixed-wing aircraft either lack high fidelity to bridge
the sim-to-real disparity [19], or fail to support large-scale efficient parallelization [20, 21, 22, 23],
thus limiting the scalability of RL methods for more complex tasks.

Can we build a platform that supports large-scale high-fidelity parallel simulations of fixed-wing
aircraft and is convenient for training, testing, and evaluating RL algorithms?

To answer this question, we propose a GPU-accelerated Flight Dynamics Model (FDM) for fixed-
wing aircraft dynamics, which significantly improves simulation efficiency at large-scale parallel
simulations, far surpassing currently common fixed-wing aircraft simulation platforms. Building
on this, we introduce NeuralPlane, the first benchmark platform supporting large-scale parallel
simulations for fixed-wing aircraft. This platform also features a clear system framework and
interfaces to support the training, testing, and evaluation of RL algorithms. It integrates various
task scenarios to validate the performance of RL in controlling fixed-wing aircraft across different
problem contexts. Furthermore, the simulation’s high fidelity facilitates the transfer of trained RL
algorithms to real-world scenarios. Our contributions can be outlined as follows:

1. Support large-scale parallel high-fidelity simulation of fixed-wing aircraft. We propose a
GPU-accelerated FDM that supports large-scale parallel high-fidelity simulations. Our method
achieves a single-step simulation time of 0.2 seconds at a parallel scale of 106 aircraft, surpassing
current platforms. Figure 1 shows the comparison results.

2. Provide multiple fixed-wing aircraft task scenarios and baseline algorithms. NeuralPlane
includes various basic task scenarios for fixed-wing aircraft and allows researchers to customize
tasks through provided interfaces. It integrates both traditional control methods and RL methods,
offering detailed analysis and evaluation of their performance.

3. Provide clear code templates and frameworks. We offer code templates for RL and traditional
control methods, along with interfaces for interacting with the simulation environment, enabling
researchers to easily train, test, and evaluate their algorithms.

4. Support algorithm evaluation and visualization of control results. We propose various metrics
to evaluate algorithm performance, making analysis convenient for researchers. We also support
different visualization tools for rendering flight trajectories, to intuitively assess control results.

2 Related Work

Fixed-wing Aircraft Control Traditional approaches [24, 25, 26] in fixed-wing aircraft control
heavily rely on elaborately designed gain scheduling techniques with linearized plant dynamics(e.g.
Proportional-Integral-Derivative (PID) control [26]). However, these methods have been found to be
less flexible to changes in model dynamics, such as task redistribution and wind disturbances [8, 9, 10].
On the other hand, RL has been progressively integrated into this domain, enhancing aircraft control
systems with the ability to optimize decision-making, develop robust policies, and adapt to unstable
and noisy dynamics through feedback from simulation environments. The adaptive learning facilitated
by RL in fixed-wing aircraft control can cover a range of tasks, such as attitude control [15], autopilot
management [16], control surface coordination [17], and even the autonomous response to unexpected
events without immediate human intervention [18].

RL methods in Aircraft Control Challenges Various RL algorithms have been leveraged for di-
verse flight control tasks. For instance, Proximal Policy Optimization (PPO) [27] has been employed
in attitude control to manage the complex nonlinear dynamics inherent in aircraft systems [15, 28, 17].
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Figure 1: Performance comparison between NeuralPlane and several classic platforms. Left: Rela-
tionship between the time required to simulate 10 seconds and the number of parallel simulations.
Right: Relationship between GPU memory usage for simulating 10 seconds and the number of
parallel simulations. Blue line: Results for NeuralPlane. Red line: Results for JSBSim [21]. Green
line: Results for Ardupilot [22]. Orange line: Results for XPlane [20].

Deep Deterministic Policy Gradient (DDPG) [29] has exhibited resilience to varying wind distur-
bance conditions in the context of automatic landing control for fixed-wing aircraft, especially when
provided with well-designed reward functions [30]. Soft Actor-Critic (SAC) [31] has demonstrated
superior performance over traditional controllers in both autonomous flight [32] and maneuver gen-
eration [18, 33], particularly in dealing with continuous action spaces. Beyond the field of online
model-free RL, fixed-wing aircraft control challenges are increasingly recognized as critical bench-
marks across various RL domains. Offline RL methods have been introduced to tackle challenges
like off-field landings in unprepared locations [34] and enhance data efficiency in attitude control
tasks [35]. Furthermore, tasks related to navigation [36] and path planning [37, 38] can be reconcep-
tualized as Goal-Conditioned RL (GCRL) problems, thereby boosting the capacity for generalization.
Additionally, the emerging challenges of traffic control [39, 40], collision avoidance [41, 42], and
cooperative decision-making [43] within multi-aircraft systems are establishing themselves as strin-
gent benchmarks for Multi-Agent Reinforcement Learning (MARL) [44, 45, 46, 47, 48, 49, 50, 51].
However, integrating RL into flight control has lots of challenges. Ensuring safety, achieving data
efficiency, and sim-to-real transferring are central areas that require careful attention, particularly in
complex tasks under extreme operational conditions [10].

Aircraft Simulation Platforms The development of aircraft simulation platforms has become
a focal point within academia, primarily due to their essential role in the filed of flight control.
XPlane [20], renowned for its accurate and realistic physics modeling, has been utilized in numerous
research projects [52, 53]. However, due to its commercial closed-source nature, researchers must
procure a real-time rendering game and install a UDP-based connector, XPlaneConnect [54]. The
absence of a headless mode in XPlane, which would allow for simulations to run without graphical
rendering, positions it as a more suitable tool for testing rather than training. ArduPilot [22], an
open-source autopilot system, has been specifically designed for unmanned aerial vehicles (UAVs)
and has garnered significant favor within drone communities due to its generality across flight
modes. While originally tailored for autonomous flight, ArduPilot is mainly employed for remote
control applications in quadcopters [55, 56, 57] and requires extra adaptations to directly interface
with RL on fixed-wing control tasks. JSBSim [21] stands out as a highly flexible, open-source
flight dynamics simulation platform that supports headless mode operation and integrates with the
open-source FlightGear rendering software. While JSBSim presents itself as an entirely cost-free
option for RL researchers [16, 17, 58, 59, 60], its reliance on CPU-based Flight Dynamics Model
(FDM) computation, devoid of GPU acceleration, restricts its capacity for parallelized deployment.
QPlane [23] proposes the first toolkit which combines RL training on fixed-wing flight with multiple
flight simulators (XPlane and JSBSim). Despite inheriting the parallelization limitations from JSBSim,
QPlane incorporates a standard Gym interface for reinforcement training. This integration facilitates
flexible replacement of RL algorithms and has been effectively utilized in a variety of research
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Table 1: A summary of related work on aircraft simulation platforms. NeuralPlane is the first work
that incorporates designs from all four domains.

Platform FDM Computation Headless Mode RL Integration GPU Acceleration

XPlane [20] ✓ ✗ ✗ ✗
ArduPilot [22] ✓ ✓ ✗ ✗
JSBSim [21] ✓ ✓ ✗ ✗
QPlane [23] ✗ ✓ ✓ ✗
MaCA [19] ✗ ✓ ✓ ✗

NeuralPlane ✓ ✓ ✓ ✓

projects [61, 62]. MaCA [19] is another aircraft platform, which also integrates RL algorithms with
heterogeneous multi-agent cooperative decision-making tasks, but treats flights as mass points without
actual FDM computation. However, existing aircraft simulation platforms have only implemented
standard RL interfaces based on Gym, lacking specialized acceleration designs for large-scale parallel
simulation, a critical aspect highlighted in robotics manipulation by IsaacGym [63]. To the best of
our knowledge, we are the first to develop the fixed-wing aircraft control platform supporting efficient
large-scale parallelization with GPU acceleration for RL.

Hardware-accelerated Simulation Platforms Running physics simulations on GPUs can lead
to significant speedups, which is crucial for RL training. In recent years, hardware-accelerated
simulation platforms have greatly advanced the RL field. For example, NVIDIA’s Isaac Gym [64]
enables high-performance training for various robotics tasks directly on GPUs. In autonomous
driving, platforms like GPUDrive and Waymax offer similar benefits. GPUDrive [65], built on the
Madrona Game Engine, can generate over a million steps per second, allowing for fast and effective
RL training using the Waymo Motion dataset. Waymax [66], designed for large-scale simulation in
multi-agent scenarios, further advances autonomous driving research.

Another example is Pgx [67], a suite of board game RL environments optimized for GPU/TPU
accelerators, which simulates environments 10-100 times faster than existing Python implementations.
These developments underscore the importance of building RL training platforms that support
massively parallel simulations, as they can significantly enhance the speed and effectiveness of
RL algorithms across various domains. We believe that NeuralPlane can also advance RL in the
fixed-wing aircraft domain.

3 NeuralPlane: Design and Resources

3.1 Preliminaries

The control process of fixed-wing aircraft can be modeled as an MDP. An MDP can be defined by a
tuple ⟨S,A, P,R, γ⟩. Define the state of fixed-wing aircraft at time step t as xt, the control input as
ut, and the task objective as xtarget. Then the observed state at time step t can be expressed as st =
normalize([xt−xtarget,xt]), and the action at time step t can be expressed as at = normalize(ut),
where normailze denotes the normalizing function. The reward at time step t can be expressed
as rt = d(xt,xtarget), where d denote the distance metric function. More details are given in the
Appendix A.1.

3.2 Architecture and Workflow

The architecture and workflow of NeuralPlane are illustrated in Figure 2. The platform consists of
three main modules: the simulation environment, the baseline library, and the performance evaluator.
The simulation environment supports dynamic simulations of various fixed-wing aircraft and interacts
with control algorithms. It includes interfaces for the aircraft model, environmental parameters,
and the interaction between the environment and algorithms. The simulation environment supports
large-scale parallel simulations, ensuring high computational efficiency and meeting RL training
requirements for sample complexity. The baseline library includes traditional control methods and
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RL algorithms. The performance evaluator proposes various metrics and different visualization tools
to evaluate the performance of algorithms, making analysis convenient for researchers.

The workflow of the platform consists of three primary stages: training, testing, and evaluation.
Before training, we first select the fixed-wing aircraft model, the task scenario, and the control
algorithm. The algorithm is then trained on the platform in a fully automated process. After training,
we conduct the testing stage under the specific testing scenario and compare with baseline algorithms.
The platform automates the evaluation process and records flight data. Based on this data, the platform
calculates performance metrics to evaluate the algorithm’s control performance in the evaluation
stage. Additionally, we can replay the flight data with different visualization tools to observe the
algorithm’s control results directly, facilitating further optimization.

Figure 2: The overall architecture and workflow of NeuralPlane.

3.3 Simulation Environment

The simulation environment is the core component of NeuralPlane, distinguishing it from other
fixed-wing aircraft simulation platforms with its capability for large-scale parallel simulations. This
feature is crucial for meeting the sample complexity and data efficiency requirements of RL algorithm
training. The simulation environment consists of two main modules: the GPU-accelerated FDM and
the task Scenarios. These modules together provide a comprehensive and efficient training ground for
advanced control algorithms. For more details, see the Appendix A.1.

GPU-accelerated FDM Large-scale parallel computations in the simulation environment are
enabled by the parallel solution of fixed-wing aircraft dynamics equations. State variables, control
variables, and aerodynamic parameters are stored in tensor format, allowing GPUs to accelerate
tensor operations and improve efficiency. Traditionally, aerodynamic parameters are read from lookup
tables, a process that hinders parallel efficiency due to extensive logical decisions. To address this,
we use a multi-layer perceptron (MLP) to approximate these parameters, replacing table lookups with
MLP predictions in practical model computations.

The simulation environment includes several classical fixed-wing aircraft dynamics models, such as
the Cessna 172P and F16. It also features clear interfaces and documentation, enabling researchers to
integrate their own fixed-wing aircraft models.

Task Scenarios Task scenarios in the simulation environment are defined by task objectives and
flight conditions. Table 2 and Table 3 describe a brief introduction to several typical task scenarios
integrated into the platform. For detailed content, see the Appendix A.2.

Table 2: Task scenarios categorized by objectives.
Name Target Difficulty

Heading altitude, yaw angle, and speed easy
Control pitch angle, yaw angle, and speed middle
Tracking coordinate position (geocentric coordinate) difficult
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Table 3: Task scenarios categorized by flight conditions.
Name Key Value Difficulty Description

HighSpeed speed middle speed exceeding Mach 1
Noisy noise scale middle noisy observations
HighAltitude altitude difficult altitude exceeding 30,000 feet
Windy airspeed difficult airspeed not equal to 0

By combining different task objectives and flight conditions, NeuralPlane supports to set up various
task scenarios. The platform also offers clear parameter setting interfaces, allowing researchers to
configure different task objectives and conditions independently.

3.4 Baseline Library

NeuralPlane integrates two types of baseline algorithms: traditional methods and RL methods. Below
is a brief introduction to these algorithms. For detailed content, see the Appendix A.3.

Traditional Methods These are based on open-source fixed-wing aircraft control algorithms from
the Ardupilot platform, using a hierarchical control approach. The upper layer includes the TECS
controller [68], which manages the aircraft’s total flight energy by adjusting throttle and pitch to
maintain desired altitude and speed, and the L1 controller [69], which manages the flight path by
adjusting roll and yaw to follow waypoints or desired path characteristics. The lower layer consists
of an attitude loop controller using a dual-loop PID algorithm to control the aircraft’s surfaces and
achieve three-axis attitude tracking.

RL Methods PPO [27] is a well-known RL algorithm that has been successfully applied in fixed-
wing aircraft control [15, 28, 17]. We use PPO for Heading and Control tasks in fixed-wing aircraft,
demonstrating high training efficiency. For the Tracking task, we use a hierarchical RL method: the
upper-level algorithm converts the target location into desired pitch, yaw, and speed, while the lower
level uses the trained PPO algorithm to control the aircraft’s surfaces.

3.5 Performance Evaluator

NeuralPlane evaluates fixed-wing aircraft control performance using maneuverability and safety
indicators. Maneuverability indicators assess control performance, while safety indicators evaluate
control safety. Below are typical indicators, with all performance metrics normalized. For more
details, see the Appendix A.4.

Maneuverability Indicators 1) G: Average G-force during flight. 2) TAS: Average True Air Speed
during flight. 3) RoC: Average Rate of Climb during flight. 4) AOA: Average Angle of Attack during
flight. 5) t: Average time to complete the task objective.

Safety Indicators 1) Altitude Safety Margin (ASM): The difference between the average flight
altitude and the minimum safe flying altitude. 2) Speed Safety Margin (SSM): The smaller value
between the absolute differences of the average flight speed from both the maximum and minimum
safe flying speeds. 3) Overload Safety Margin (OSM): The absolute difference between the average
G-force and the maximum safe G-force. 4) Angle of Attack Safety Margin (AOASM): The absolute
difference between the average angle of attack and the critical safe angle of attack. 5) Sideslip Angle
Safety Margin (AOSSM): The absolute difference between the average sideslip angle and the critical
safe sideslip angle.

4 Benchmarking Study

NeuralPlane is a valuable platform for RL research, making training, testing, and evaluation of
algorithms easy to implement. It facilitates the analysis of maneuverability, safety, and robustness in
fixed-wing aircraft control. This section presents examples demonstrating NeuralPlane’s application
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in experimental research. We also test NeuralPlane’s parallel performance, showing the importance
of large-scale parallel simulations for controlling flight in fixed-wing aircraft.

4.1 Experimental Setup

In the following experiments, unless specified otherwise, we use the F16 fixed-wing aircraft dynamics
model. The training parameters are set as follows: the maximum number of training steps (M) is
1.35× 109, the number of parallel rollouts (n) is 3000, and the number of steps per rollout (m) in one
iteration is 3000. All experiments are conducted on an NVIDIA A100 GPU with 80GB of memory.
NeuralPlane is compatible with other platforms as well. For detailed settings of the simulation
environment and algorithm parameters, see the Appendix B.1.

4.2 Platform Performance Analysis

One of the standout advantages of NeuralPlane compared to other fixed-wing aircraft simulation
platforms is its support for large-scale parallel simulations. We test the parallel capabilities of
NeuralPlane and compare it with several mainstream fixed-wing aircraft dynamics simulation plat-
forms. Figure 1 shows that when the number of parallel simulations exceeds 1000, NeuralPlane’s
computation time is significantly superior to the other platforms, clearly demonstrating NeuralPlane’s
excellent performance in parallel simulations.

Table 4: MLP fitting results for some aerodynamic parameters.

Name test set R2 test set error

Cl 0.9949± 0.0009 0.0051± 0.0006
Cm 0.9962± 0.0007 0.0042± 0.0003
Cn 0.9926± 0.0011 0.0067± 0.0013
Cx 0.9967± 0.0004 0.0030± 0.0007
Cz 0.9991± 0.0001 0.0014± 0.0003

To enable large-scale parallel simulations of fixed-wing aircraft, NeuralPlane uses MLP to fit aerody-
namic parameter data tables, accelerating the lookup computation process. The fitting accuracy of
the MLP directly affects the platform’s simulation accuracy. We test the MLP’s fitting performance
comprehensively, with results shown in Table 4. To eliminate the impact of randomness on the MLP
fitting results, we repeat the experiments with multiple random seeds and calculate the mean and
standard deviation of the R2 and error on the test set. The mean R2 values for the MLP fitting of
aerodynamic parameters are all above 0.99, with low standard deviations, demonstrating high fitting
accuracy. This confirms the platform’s high-fidelity simulation capabilities.

4.3 Training of RL Algorithms
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Figure 3: Training curves of PPO under different
settings. Left: Experimental results with varying
numbers of parallel rollouts during the training
process. Right: Experimental results with different
fixed-wing aircraft dynamics models.

We use two dynamics models, the F16 and an
unmanned fixed-wing aircraft (UAV), to train
the RL algorithms for all tasks and conditions
in the baseline library. Full experimental results
are provided in the Appendix B.2, with a sub-
set (F16 model for the Heading task) shown in
Figure 4. A comparison using a small UAV dy-
namics model for the Heading task is shown
in Figure 3. These results demonstrate that
NeuralPlane supports RL training across var-
ious aircraft models and tasks. Owing to large-
scale parallel training, the RL algorithms con-
verge quickly, with the average episode reward
steadily increasing and showing minimal fluctu-
ations. The PPO algorithm converges in about
100 iterations, taking around one day.
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Figure 4: Training curves of PPO in different task scenarios. From left to right, the task conditions
are different wind speeds, different flight altitudes, different environmental noise levels, and different
flight speeds, with the task objective being the Heading task in all cases.

We also examine the effect of parallel rollout
quantity on RL training, comparing results with n set to 32, 256, and 3000. The results, shown in
Figure 3, indicate that with a small parallel training quantity, the RL algorithms do not converge and
the average episode reward fluctuates significantly. This highlights the importance of NeuralPlane’s
support for large-scale parallel simulations.

4.4 Comparison of Different Baseline Algorithms

Figure 5: Comparison of control performance between traditional method and PPO in different task
scenarios. Green line: PPO algorithm results. Yellow line: Traditional methods results.

Based on the Heading task, we compare the control performance of the traditional method and
the PPO algorithm under different conditions (Normal, HighSpeed, HighAltitude, Windy, Noisy).
Performance is evaluated using the proposed maneuverability and safety metrics. The results, shown
in Figure 5, indicate that the PPO algorithm significantly outperforms the traditional method in
maneuverability metrics under all conditions, especially in key indicators such as G, t, and RoC. In
terms of safety metrics, the traditional method slightly outperforms the PPO algorithm. However, in
any task scenario, the PPO algorithm’s success rate in controlling the aircraft to reach the target is
above 95 %, indicating that the safety of using the PPO algorithm to control fixed-wing aircraft is
entirely acceptable. These experiments demonstrate the superiority of RL algorithms in controlling
flights of fixed-wing aircraft.

4.5 Testing and Evaluation of Algorithms

NeuralPlane enables performance evaluation of algorithms for flights of fixed-wing aircraft using
various metrics, and it also allows for the visualization and replay of flight data. This feature helps
researchers intuitively assess algorithm performance. We design three visualization methods to aid in
performance analysis: 1) using FlightGear for visual rendering of flight scenes; 2) using Tacview
for visual analysis of flight trajectories and situations; and 3) plotting flight trajectories to directly
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(a) FlightGear (b) Tacview (c) Track Chart

Figure 6: Visualization of fixed-wing aircraft flight trajectories.

analyze aircraft maneuverability. We demonstrate the visualization of trajectory of the PPO algorithm
completing the Tracking task, as shown in Figure 6. Additional visualized flight trajectories are
available in the Appendix B.2. This data replay mechanism in NeuralPlane aids researchers in
algorithm design and debugging, enhancing the platform’s usability.

4.6 Analysis of Algorithm Robustness
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Figure 7: Robustness test results of the
PPO algorithm.

NeuralPlane includes methods for evaluating the robust-
ness of algorithms. By testing algorithms under envi-
ronmental noise disturbances and varying noise levels,
researchers can compare control performance across dif-
ferent scenarios. This allows for analysis of the algorithms’
robustness and disturbance rejection capabilities. The ro-
bustness metric is defined as the maximum noise level at
which the algorithm can still control the aircraft safely,
allowing for evaluation and comparison of different al-
gorithms. The robustness analysis results, shown in Fig-
ure 7, indicate that when the noise scale increases to 0.01,
the PPO algorithm can still complete the task, although
the task completion time slightly increases. The results
demonstrate that the PPO algorithm possesses a certain
level of disturbance rejection capability.

5 Conclusion and Future Work

In this paper, we introduce NeuralPlane, the first benchmark platform for large-scale parallel sim-
ulations of fixed-wing aircraft, designed to advance the development of RL algorithms for flight
control. Our platform addresses key challenges in existing simulation environments by offering
GPU-accelerated FDM, achieving a single-step simulation time of just 0.2 seconds at a parallel scale
of 106, significantly outperforming current platforms.

Our experimental results demonstrate NeuralPlane’s superior performance in large-scale parallel
simulations, highlighting its efficiency and capability to train RL algorithms rapidly and effectively.
Comparative analysis of PPO and traditional methods across various task scenarios reveals the
superior maneuverability and acceptable safety performance of RL algorithms.

While our NeuralPlane presents a significant advancement, it also has several limitations that we aim
to address. Currently, it supports a limited number of fixed-wing aircraft models and task scenarios.
We plan to expand these to provide a richer set of tasks and functionalities for RL applications in
fixed-wing aircraft control. Additionally, the platform does not yet support multi-aircraft scenarios.
We intend to extend NeuralPlane to include these, facilitating multi-agent RL research. Finally, we
aim to improve the platform’s user-friendliness by designing clearer interfaces and workflows.
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[18] Adrian P Pope, Jaime S Ide, Daria Mićović, Henry Diaz, Jason C Twedt, Kevin Alcedo, Thayne T Walker,
David Rosenbluth, Lee Ritholtz, and Daniel Javorsek. Hierarchical reinforcement learning for air combat
at darpa’s alphadogfight trials. IEEE Transactions on Artificial Intelligence, 2022.

[19] Fang Gao, Si Chen, Mingqiang Li, and Bincheng Huang. Maca: a multi-agent reinforcement learning
platform for collective intelligence. In 2019 IEEE 10th International Conference on Software Engineering
and Service Science (ICSESS), pages 108–111. IEEE, 2019.

[20] Laminar Research. Xplane. https://www.x-plane.com, 2024. Accessed: October 31, 2024.

[21] Jon Berndt. Jsbsim: An open source flight dynamics model in c++. In AIAA Modeling and Simulation
Technologies Conference and Exhibit, page 4923, 2004.

[22] Ardupilot. https://ardupilot.org, 2024. Accessed: October 31, 2024.

[23] David J Richter and Ricardo A Calix. Qplane: An open-source reinforcement learning toolkit for au-
tonomous fixed wing aircraft simulation. In Proceedings of the 12th ACM Multimedia Systems Conference,
pages 261–266, 2021.

[24] Robert F Stengel. Flight dynamics. Princeton university press, 2005.

[25] Ashish Tewari. Advanced control of aircraft, spacecraft and rockets. John Wiley & Sons, 2011.

[26] Randal W Beard and Timothy W McLain. Small unmanned aircraft: Theory and practice. Princeton
university press, 2012.

[27] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

[28] Yan Zhen, Mingrui Hao, and Wendi Sun. Deep reinforcement learning attitude control of fixed-wing uavs.
In 2020 3rd International Conference on Unmanned Systems (ICUS), pages 239–244. IEEE, 2020.

[29] Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval Tassa, David
Silver, and Daan Wierstra. Continuous control with deep reinforcement learning. arXiv preprint
arXiv:1509.02971, 2015.

[30] Chi Tang and Ying-Chih Lai. Deep reinforcement learning automatic landing control of fixed-wing aircraft
using deep deterministic policy gradient. In 2020 international conference on unmanned aircraft systems
(ICUAS), pages 1–9. IEEE, 2020.

[31] Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy maximum
entropy deep reinforcement learning with a stochastic actor. In International conference on machine
learning, pages 1861–1870. PMLR, 2018.

[32] Jongkwan Choi, Hyeon Min Kim, Ha Jun Hwang, Yong-Duk Kim, and Chang Ouk Kim. Modular
reinforcement learning for autonomous uav flight control. Drones, 7(7):418, 2023.

[33] Jung Ho Bae, Hoseong Jung, Seogbong Kim, Sungho Kim, and Yong-Duk Kim. Deep reinforcement
learning-based air-to-air combat maneuver generation in a realistic environment. IEEE Access, 11:26427–
26440, 2023.

[34] Alexander Quessy, Thomas Richardson, and Sebastian East. Automating fixed wing forced landings with
offline reinforcement learning. In D. Moormann, editor, 14th annual International Micro Air Vehicle
Conference and Competition, pages 216–223, Aachen, Germany, Sep 2023. Paper no. IMAV2023-27.

[35] Eivind Bøhn, Erlend M Coates, Dirk Reinhardt, and Tor Arne Johansen. Data-efficient deep reinforcement
learning for attitude control of fixed-wing uavs: Field experiments. IEEE Transactions on Neural Networks
and Learning Systems, 35(3):3168–3180, 2023.

[36] Chenchen Fu, Xueyong Xu, Yuntao Zhang, Yan Lyu, Yu Xia, Zining Zhou, and Weiwei Wu. Memory-
enhanced deep reinforcement learning for uav navigation in 3d environment. Neural Computing and
Applications, 34(17):14599–14607, 2022.

[37] Gyeong Taek Lee and Kangjin Kim. A controllable agent by subgoals in path planning using goal-
conditioned reinforcement learning. IEEE Access, 11:33812–33825, 2023.

[38] GyeongTaek Lee, KangJin Kim, and Jaeyeon Jang. Real-time path planning of controllable uav by subgoals
using goal-conditioned reinforcement learning. Applied Soft Computing, 146:110660, 2023.

11

https://www.x-plane.com
https://ardupilot.org


[39] Supriyo Ghosh, Sean Laguna, Shiau Hong Lim, Laura Wynter, and Hasan Poonawala. A deep ensemble
multi-agent reinforcement learning approach for air traffic control. arXiv preprint arXiv:2004.01387, 2020.

[40] Marc Brittain and Peng Wei. Autonomous air traffic controller: A deep multi-agent reinforcement learning
approach. arXiv preprint arXiv:1905.01303, 2019.

[41] Francesco d’Apolito. Reinforcement learning training environment for fixed wing uav collision avoidance.
IFAC-PapersOnLine, 55(39):281–285, 2022.

[42] Weiwei Zhao, Hairong Chu, Xikui Miao, Lihong Guo, Honghai Shen, Chenhao Zhu, Feng Zhang, and
Dongxin Liang. Research on the multiagent joint proximal policy optimization algorithm controlling
cooperative fixed-wing uav obstacle avoidance. Sensors, 20(16):4546, 2020.

[43] ZHOU Yaoming, YANG Fan, Chaoyue ZHANG, LI Shida, and WANG Yongchao. Cooperative decision-
making algorithm with efficient convergence for ucav formation in beyond-visual-range air combat based
on multi-agent reinforcement learning. Chinese Journal of Aeronautics, 2024.

[44] Peter Sunehag, Guy Lever, Audrunas Gruslys, Wojciech Marian Czarnecki, Vinicius Zambaldi, Max
Jaderberg, Marc Lanctot, Nicolas Sonnerat, Joel Z Leibo, Karl Tuyls, et al. Value-decomposition networks
for cooperative multi-agent learning. arXiv preprint arXiv:1706.05296, 2017.

[45] Tabish Rashid, Mikayel Samvelyan, Christian Schroeder De Witt, Gregory Farquhar, Jakob Foerster, and
Shimon Whiteson. Monotonic value function factorisation for deep multi-agent reinforcement learning.
The Journal of Machine Learning Research, 21(1):7234–7284, 2020.

[46] Jianhao Wang, Zhizhou Ren, Terry Liu, Yang Yu, and Chongjie Zhang. Qplex: Duplex dueling multi-agent
q-learning. arXiv preprint arXiv:2008.01062, 2020.

[47] Yuhua Jiang, Qihan Liu, Xiaoteng Ma, Chenghao Li, Yiqin Yang, Jun Yang, Bin Liang, and Qianchuan
Zhao. Learning diverse risk preferences in population-based self-play. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 38, pages 12910–12918, 2024.

[48] Chao Yu, Akash Velu, Eugene Vinitsky, Jiaxuan Gao, Yu Wang, Alexandre Bayen, and Yi Wu. The
surprising effectiveness of ppo in cooperative multi-agent games. Advances in Neural Information
Processing Systems, 35:24611–24624, 2022.

[49] Bei Peng, Tabish Rashid, Christian Schroeder de Witt, Pierre-Alexandre Kamienny, Philip Torr, Wendelin
Böhmer, and Shimon Whiteson. Facmac: Factored multi-agent centralised policy gradients. Advances in
Neural Information Processing Systems, 34:12208–12221, 2021.

[50] Heechang Ryu, Hayong Shin, and Jinkyoo Park. Multi-agent actor-critic with hierarchical graph attention
network. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 34, pages 7236–7243,
2020.

[51] Qihan Liu, Jianing Ye, Xiaoteng Ma, Jun Yang, Bin Liang, and Chongjie Zhang. Efficient multi-agent
reinforcement learning by planning. arXiv preprint arXiv:2405.11778, 2024.

[52] Richard Garcia and Laura Barnes. Multi-uav simulator utilizing x-plane. In Selected papers from the 2nd
International Symposium on UAVs, Reno, Nevada, USA June 8–10, 2009, pages 393–406. Springer, 2010.

[53] Lucio R Ribeiro and Neusa Maria F Oliveira. Uav autopilot controllers test platform using matlab/simulink
and x-plane. In 2010 IEEE Frontiers in Education Conference (FIE), pages S2H–1. IEEE, 2010.

[54] NASA. Xplaneconnect. https://github.com/nasa/XPlaneConnect, 2024. Accessed: October 31,
2024.

[55] He Bin and Amahah Justice. The design of an unmanned aerial vehicle based on the ardupilot. Indian
Journal of Science and Technology, pages 12–15, 2009.

[56] Sabur Baidya, Zoheb Shaikh, and Marco Levorato. Flynetsim: An open source synchronized uav network
simulator based on ns-3 and ardupilot. In Proceedings of the 21st ACM International Conference on
Modeling, Analysis and Simulation of Wireless and Mobile Systems, pages 37–45, 2018.

[57] Azza Allouch, Omar Cheikhrouhou, Anis Koubâa, Mohamed Khalgui, and Tarek Abbes. Mavsec: Securing
the mavlink protocol for ardupilot/px4 unmanned aerial systems. In 2019 15th International Wireless
Communications & Mobile Computing Conference (IWCMC), pages 621–628. IEEE, 2019.

[58] Tomáš Vogeltanz and Roman Jašek. Jsbsim library for flight dynamics modelling of a mini-uav. In AIP
Conference Proceedings, volume 1648. AIP Publishing, 2015.

12

https://github.com/nasa/XPlaneConnect


[59] Joshua P Kim. Evaluation of unmanned aircraft flying qualities using jsbsim. 2016.

[60] Shanelle G Clarke and Inseok Hwang. Deep reinforcement learning control for aerobatic maneuvering of
agile fixed-wing aircraft. In AIAA Scitech 2020 Forum, page 0136, 2020.

[61] David J Richter, Lance Natonski, Xiaxin Shen, and Ricardo A Calix. Attitude control for fixed-wing
aircraft using q-learning. In International Conference on Intelligent Human Computer Interaction, pages
647–658. Springer, 2021.

[62] David J Richter and Ricardo A Calix. Using double deep q-learning to learn attitude control of fixed-wing
aircraft. In 2022 16th International Conference on Signal-Image Technology & Internet-Based Systems
(SITIS), pages 646–651. IEEE, 2022.

[63] Viktor Makoviychuk, Lukasz Wawrzyniak, Yunrong Guo, Michelle Lu, Kier Storey, Miles Macklin, David
Hoeller, Nikita Rudin, Arthur Allshire, Ankur Handa, et al. Isaac gym: High performance gpu-based
physics simulation for robot learning. arXiv preprint arXiv:2108.10470, 2021.

[64] Viktor Makoviychuk, Lukasz Wawrzyniak, Yunrong Guo, Michelle Lu, Kier Storey, Miles Macklin, David
Hoeller, Nikita Rudin, Arthur Allshire, Ankur Handa, and Gavriel State. Isaac gym: High performance
gpu-based physics simulation for robot learning, 2021.

[65] Saman Kazemkhani, Aarav Pandya, Daphne Cornelisse, Brennan Shacklett, and Eugene Vinitsky. Gpudrive:
Data-driven, multi-agent driving simulation at 1 million fps. arXiv preprint arXiv:2408.01584, 2024.

[66] Cole Gulino, Justin Fu, Wenjie Luo, George Tucker, Eli Bronstein, Yiren Lu, Jean Harb, Xinlei Pan, Yan
Wang, Xiangyu Chen, et al. Waymax: An accelerated, data-driven simulator for large-scale autonomous
driving research. Advances in Neural Information Processing Systems, 36, 2024.

[67] Sotetsu Koyamada, Shinri Okano, Soichiro Nishimori, Yu Murata, Keigo Habara, Haruka Kita, and Shin
Ishii. Pgx: Hardware-accelerated parallel game simulators for reinforcement learning. Advances in Neural
Information Processing Systems, 36, 2024.

[68] Antonius A Lambregts. Tecs generalized airplane control system design–an update. In Advances in
Aerospace Guidance, Navigation and Control: Selected Papers of the Second CEAS Specialist Conference
on Guidance, Navigation and Control, pages 503–534. Springer, 2013.

[69] Tyler Leman, Enric Xargay, Geir Dullerud, Naira Hovakimyan, and Thomas Wendel. L1 adaptive control
augmentation system for the x-48b aircraft. In AIAA guidance, navigation, and control conference, page
5619, 2009.

[70] US Standard Atmosphere. United states committee on extension to the standard atmosphere. National
Oceanic and Atmospheric Administration, Washington, DC (NOAA-S/T 76-15672): Supt. of Docs., US Gov
Print Office (Stock No. 003-017-00323-0), 1976.

[71] Qihan Liu, Yuhua Jiang, and Xiaoteng Ma. Light aircraft game: A lightweight, scalable, gym-wrapped
aircraft competitive environment with baseline reinforcement learning algorithms. https://github.
com/liuqh16/CloseAirCombat, 2022.

13

https://github.com/liuqh16/CloseAirCombat
https://github.com/liuqh16/CloseAirCombat


Checklist

1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s

contributions and scope? [Yes]
(b) Did you describe the limitations of your work? [Yes]
(c) Did you discuss any potential negative societal impacts of your work? [Yes]
(d) Have you read the ethics review guidelines and ensured that your paper conforms to

them? [Yes]
2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [N/A]
(b) Did you include complete proofs of all theoretical results? [N/A]

3. If you ran experiments (e.g. for benchmarks)...
(a) Did you include the code, data, and instructions needed to reproduce the main experi-

mental results (either in the supplemental material or as a URL)? [Yes] See supplemen-
tal material.

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes]

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [Yes]

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [Yes]

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [Yes]
(b) Did you mention the license of the assets? [Yes]
(c) Did you include any new assets either in the supplemental material or as a URL? [Yes]
(d) Did you discuss whether and how consent was obtained from people whose data you’re

using/curating? [Yes]
(e) Did you discuss whether the data you are using/curating contains personally identifiable

information or offensive content? [Yes]
5. If you used crowdsourcing or conducted research with human subjects...

(a) Did you include the full text of instructions given to participants and screenshots, if
applicable? [N/A]

(b) Did you describe any potential participant risks, with links to Institutional Review
Board (IRB) approvals, if applicable? [N/A]

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [N/A]

14



A Details of Platform

A.1 Flight Dynamics Model

The 6-DoF atmospheric dynamics of a rigid aircraft are described by a set of standard nonlinear
ordinary differential equations, which are not detailed here for brevity; interested readers are referred
to [9] [16]. This model differentiates between a ground-based inertial frame and an aircraft-based
reference frame. The ground-based frame FE = {OE ;xE , yE , zE} is inertial, ignoring Earth’s
rotational effects, which is a valid assumption for low-altitude flight. The frame’s origin is fixed at
point OE on the ground, with xE pointing north, yE east, and zE downwards. This is also known as
the NED (North-East-Down) frame. The aircraft body-fixed frame FB = {G;xB , yB , zB} originates
at the aircraft’s center of gravity G. Here, xB aligns with the fuselage pointing forward, yB points
rightward, and zB downward.

The motion equations are derived from Newton’s second law for an air vehicle, resulting in six core
scalar equations (conservation of linear and angular momentum in FB), flight path equations (for
tracking the aircraft’s center-of-gravity relative to FE), and rigid-body kinematic equations (defining
the aircraft’s attitude quaternion to describe the body axes orientation relative to the inertial ground
frame).

(a) Aerodynamic angles, aerodynamic (or stability)
frame

(b) Thrust vector, thrust magnitude T , thrust line
angle µT

Figure 8: Fixed-Wing aircraft flight dynamics model

The conservation of linear momentum equations (CLMEs) for a rigid aircraft with constant mass can
be expressed by the following three fundamental scalar equations 1:

u̇ = rv − qw +
1

m

(
Wx + F (A)

x + F (T )
x

)
(1a)

v̇ = −ru+ pw +
1

m

(
Wy + F (A)

y + F (T )
y

)
(1b)

ẇ = qu− pv +
1

m

(
Wz + F (A)

z + F (T )
z

)
(1c)

where W represents the aircraft’s weight, F (A) denotes the aerodynamic forces, and F (T ) stands for
the thrust forces. These forces are decomposed into body frame components FB for simplicity in
deriving Eqs. 1a, 1b, 1c.

The weight force, always aligned with the inertial zE axis, is mg and its components in the body
frame are given by:

{
Wx

Wy

Wz

}
= [TBE ]

{
0
0
mg

}
=

 2(qzqx − q0qy)
2(qyqz + q0qx)

q20 − q2x − q2y + q2z

mg (2)

The matrix [TBE ] describes the direction cosines for the instantaneous attitude of frame FB relative
to frame FE . Its entries are functions of the aircraft’s attitude quaternion components (q0, qx, qy, qz)
3:
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[TBE ] =

q20 + q2x − q2y − q2z 2(qxqy + q0qz) 2(qxqz − q0qy)
2(qxqy − q0qz) q20 − q2x + q2y − q2z 2(qyqz + q0qx)
2(qxqz + q0qy) 2(qyqz − q0qx) q20 − q2x − q2y + q2z

 (3)

The aerodynamic force F (A) acting on the aircraft, projected onto frame FB , is given by 4:


F

(A)
x

F
(A)
y

F
(A)
z

 = [TBW ]

{−D
−C
−L

}
(4)


F

(A)
x

F
(A)
y

F
(A)
z

 =

[−D cosα cosβ + L sinα+ C cosα sinβ
−C cosβ −D sinβ

−D sinα cosβ − L cosα+ C sinα sinβ

]
(5)

The aerodynamic drag D, cross force C, and lift L account for the effects of external airflow. The
coordinate transformation matrix [TBW ] from the standard wind frame FW = {G;xW , yW , zW } to
FB is given by:

[TBW ] =

[
cosα 0 − sinα
0 1 0

sinα 0 cosα

][
cosβ − sinβ 0
sinβ cosβ 0
0 0 1

]
(6)

Equations 1a, 1b, 1c are expressed in closed form since the aerodynamic angles (α, β) and force
components (D,C,L) are functions of the aircraft’s state variables and external conditions. According
to Figure 8a, the state variables (u, v, w), which are components of the aircraft’s velocity vector V in
FB , are related to (α, β) as follows:

u = V cosβ cosα (7a)
v = V sinβ (7b)

w = V cosβ sinα (7c)

where

V =
√
u2 + v2 + w2 (8)

The instantaneous angles of attack and sideslip are given by:

α = tan−1 w

u
, β = sin−1 v√

u2 + v2 + w2
(9)

The aerodynamic forces are described using their aerodynamic coefficients in the following standard
formulas:

D =
1

2
ρV 2SCD, C =

1

2
ρV 2SCC , L =

1

2
ρV 2SCL (10)

where the air density ρ depends on the flight altitude h = −zE,G and other atmospheric properties
like the sound speed a [70]. S represents a reference area, while the coefficients (CD, CC , CL) vary
with the aircraft’s state and external inputs.
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Finally, as shown in Figure 8b, the thrust force F (T ) of magnitude T is expressed in the body-frame
components as follows:


F

(T )
x

F
(T )
y

F
(T )
z

 = δTTmax(h,M)

{
cosµT

0
sinµT

}
(11)

where µT is a constant angle between the thrust line and the reference axis xB in the aircraft’s
symmetry plane. The thrust T = δTTmax(h,M), where δT is the throttle setting (an external input),
and Tmax(h,M) is the maximum thrust available, dependent on altitude and Mach number M = V/a.

The conservation of angular momentum equations (CAMEs) for a rigid aircraft with constant mass
are given by [9]:

ṗ = (C1r + C2p)q + C3L+ C4N (12a)

q̇ = C5pr − C6(p
2 − r2) + C7M (12b)

ṙ = (C8p− C2r)q + C4L+ C9N (12c)

where

C1 =
1

Γ
[(Iyy − Izz)Izz − I2xz], (13a)

C2 =
1

Γ
[(Ixx − Iyy + Izz)Ixz], (13b)

C3 =
Izz
Γ

, C4 =
Ixz
Γ

, C5 =
Izz − Ixx

Iyy
, (13c)

C6 =
Ixz
Iyy

, C7 =
1

Iyy
, (13d)

C8 =
1

Γ
[(Ixx − Iyy)Ixx + I2xz], C9 =

Ixx
Γ

(13e)

and Γ = IxxIzz − I2xz are constants derived from the aircraft’s inertia matrix relative to the axes of
FB .

The systems of equations 1, 12 for CLMEs and CAMEs projected onto the moving frame FB must
be supplemented with additional equations to fully describe the aircraft dynamics and evolve its
state over time. One such set of equations is the flight path equations (FPEs), which describe the
aircraft’s trajectory relative to the Earth-based inertial frame. These equations yield the instantaneous
position {xE,G(t), yE,G(t), zE,G(t)} of the aircraft’s center of gravity G in FE . The 2D version
{xE,G(t), yE,G(t)} of the FPEs defines the ground track relative to the aircraft’s flight path.

The flight path equations (FPEs) are derived by transforming the vector V from frame FB to frame
FE :

{
ẋE,G

ẏE,G

żE,G

}
= [TEB ]

{
u
v
w

}
(14)

with [TEB ] = [TBE ]
T as defined in equation 3. The matrix form of the FPEs is:

{
ẋE,G

ẏE,G

żE,G

}
=

q20 + q2x − q2y − q2z 2(qxqy + q0qz) 2(qxqz − q0qy)
2(qxqy − q0qz) q20 − q2x + q2y − q2z 2(qyqz + q0qx)
2(qxqz + q0qy) 2(qyqz − q0qx) q20 − q2x − q2y + q2z

{
u
v
w

}
(15)
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The inputs for the FPEs are the aircraft’s attitude quaternion components along with the components
(u, v, w), which are derived from the combined CLMEs and CAMEs system.

The rigid-body kinematic equations (KEs) using the aircraft’s attitude quaternion components [9] are
expressed in matrix form as:


q̇0
q̇x
q̇y
q̇z

 =
1

2

0 −p −q −r
p 0 r −q
q −r 0 p
r q −p 0



q0
qx
qy
qz

 (16)

The inputs to these KEs are the angular velocity components (p, q, r) in FB , and solving these
equations provides the kinematic state variables (q0, qx, qy, qz).

The system comprising (CLMEs)-(CAMEs)-(FPEs)-(KEs), i.e., 1, 12, 15, and 16, represents
a complete set of 13 coupled nonlinear differential equations that describe the 6-DoF rigid-body
dynamics of atmospheric flight. These equations are in closed form once the aerodynamic and
propulsive external forces and moments are fully modeled as functions of the 13 state variables:

x = [u, v, w, p, q, r, xE,G, yE,G, zE,G, q0, qx, qy, qz]
T (17)

This state vector x, along with various external inputs grouped into an input vector, commonly
referred to as u, fully characterizes the system.

The F-16 public domain model utilized in this study includes a sophisticated and high-fidelity flight
control system (FCS). The FCS, which incorporates state feedback from the aircraft dynamics block,
consists of the following channels: (i) Roll command δa (affecting right aileron deflection angle δa
and antisymmetric left aileron deflection), (ii) Pitch command δe (controlling elevon deflection angle
δe), (iii) Yaw command δr (manipulating rudder deflection angle δr), (iv) Throttle lever command δT
(adjusting throttle setting δT and enabling jet engine afterburner).

A.2 Task Scenarios

The task scenarios can be categorized by objectives into Heading, Control, and Tracking. (1) Heading:
The objective is to control the fixed-wing aircraft to reach a predetermined altitude, yaw angle, and
speed within a specified time. This task serves as the foundation for multi-aircraft collaboration and
pursuit tasks. (2) Control: The objective is to control the fixed-wing aircraft to reach a predetermined
pitch angle, yaw angle, and speed within a specified time. This task serves as the fundamental
control basis for fixed-wing aircraft trajectory tracking. (3) Tracking: The objective is to control
the fixed-wing aircraft to reach a predetermined coordinate position (in the geocentric coordinate
system) within a specified time. This work designs a hierarchical control algorithm for this task.
The lower-level controller is capable of completing the Control task, while the upper-level planner
algorithm aims to achieve the overall task objective. This task forms the basis for performing aerobatic
maneuvers with fixed-wing aircraft.

The task scenarios can also be categorized by flight conditions into HighSpeed, HighAltitude, Windy,
and Noisy. (1) HighSpeed: Control of high-maneuverability flight of fixed-wing aircraft under
high-speed conditions (speed exceeding Mach 1). (2) HighAltitude: Control of high-maneuverability
flight of fixed-wing aircraft under high-altitude conditions (altitude exceeding 30,000 feet). (3) Windy:
Control of high-maneuverability flight of fixed-wing aircraft under windy conditions. (4) Noisy:
Control of high-maneuverability flight of fixed-wing aircraft when there is noise in the observation
measurements.

We design different environment rewards for different task objectives. For the Heading and Tracking
tasks, the environment reward is the negative Euclidean norm (L2 norm) error between the current
state and the target state. For the Control task, the environment reward is the negative optimal rotation
angle from the current attitude to the target attitude. We also designed various termination conditions
and terminal rewards for different tasks, as shown in Table 5.
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Table 5: Termination conditions and terminal rewards for different tasks.
Name Key Value Description Terminal reward

ExtremeState AOA, AOS AOA and AOS exceeding limit ranges. -200
HighSpeed TAS speed exceeding Mach 3. -200
LowAltitude altitude altitude falling below 2500 feet. -200
LowSpeed TAS speed falling below Mach 0.01. -200
overload G G exceeding 10. -200
UnreachTarget xt − xtarget the target is not reached. -200
ResetTarget xt − xtarget the target is successfully reached. 200

Figure 9: The control system structure for traditional methods.

A.3 Baseline Libraries

Traditional Methods These are based on open-source fixed-wing aircraft control algorithms from
the Ardupilot platform, using a hierarchical control approach. The upper layer includes the TECS
controller [68], which manages the aircraft’s total flight energy by adjusting throttle and pitch to
maintain desired altitude and speed, and the L1 controller [69], which manages the flight path by
adjusting roll and yaw to follow waypoints or desired path characteristics. The lower layer consists
of an attitude loop controller using a dual-loop PID algorithm to control the aircraft’s surfaces and
achieve three-axis attitude tracking. The control system structure for traditional methods is shown in
Figure 9.

Figure 10: The structure for hierarchical RL method.

RL Methods We use PPO for Heading and Control tasks in fixed-wing aircraft. For the Tracking
task, we use a hierarchical RL method: the upper-level algorithm converts the target location into
desired pitch, yaw, and speed, while the lower level uses the trained PPO algorithm to control the
aircraft’s surfaces. The structure for hierarchical RL method is shown in Figure 10.

The PPO algorithm’s parameter settings are as follows: the learning rate is set to 3 × 10−4, the
number of PPO epochs is 16, the clipping parameter is 0.2, the maximum gradient norm is 2, and the
entropy coefficient is 1× 10−3. Additionally, the hidden layer sizes for the neural networks are set to
"128 128", and the recurrent hidden layer size is 128 with a single recurrent layer.
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A.4 Evaluation Metrics

We provide two types of performance evaluation metrics to assess the algorithm’s performance of
fixed-wing aircraft control: maneuverability indicators and safety indicators. The complete set of
evaluation metrics is shown in Table 6.

Table 6: Performance metrics to assess the algorithm’s performance of fixed-wing aircraft control.
Type Name Description

Maneuverability Indicators

G Average G-force during flight.
TAS Average True Air Speed during flight.
RoC Average Rate of Climb during flight.
AOA Average Angle of Attack during flight.
AOS Average Angle of Sideslip during flight.
t Average time to complete the task objective.
P Average roll rate around the body-fixed x-axis.
Q Average pitch rate around the body-fixed y-axis.
R Average yaw rate around the body-fixed z-axis.

Safety Indicators

ASM Altitude Safety Margin.
SSM Speed Safety Margin.
OSM Overload Safety Margin.
AOASM Angle of Attack Safety Margin.
AOSSM Angle of Sideslip Safety Margin.
FSM Smoothness of the aircraft’s flight state.

A.5 Code Structure

Figure 11: The overall code framework and workflow of NeuralPlane.

The overall code framework and workflow of the platform are illustrated in Figure 11. We also
provide a complete algorithmic process for training, testing, and evaluating RL algorithms on the
platform. Once the appropriate parameters are selected, the platform can automatically execute the
algorithm training, testing, and evaluation processes.

The pseudo-code for the Trainer is detailed in Algorithm 1. With a user-designed learnable agent A,
a user-specified FDM M , and a user-specified task scenario T , the NeuralPlane first initializes the
environment by determining task scenario and FDM. MetaBox then iteratively trains on each instance
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Algorithm 1 NeuralPlaneTrainer

Require: User-designed learnable agent A, user-specified FDM M , user-specified task scenario T
Ensure: Trained Agent A, training records

1: Initialize environment with FDM and task scenario Env = Env_Initialize(M,T );
2: while max learning steps Not reached do
3: A.train_episode(Env);
4: Record training data;
5: Plot training figures;
6: end while
7: Summarize and visualize the training records in Logger and return the trained agent;

Algorithm 2 TrainingEpisode

Require: User-designed learnable agent A, Constructed environment Env
Ensure: Training records

1: state = Env.reset();
2: while termination condition Not achieved do
3: action = A.get_action(state);
4: next_state, reward, done, info = Env.step(action);
5: Store transition ⟨state, action, reward, done, next_state⟩;
6: Update agent A;
7: Record training data and plot figures;
8: state = next_state;
9: end while

10: Summarize training records and return;

until the maximum learning steps are reached. For each instance, agent A calls the train_episode()
function to interact with Env and perform the training. All training logs are managed by the Logger.

Next, we focus on the train_episode() function. In Algorithm 2, we present a straightforward
example of implementing RL training algorithms within train_episode(). Starting from Env
initialization, in each step, agent A provides Env with actions based on the current state, receives the
next state, reward, and other information, and updates the policy accordingly. Within the env.step()
interface, actions are translated into configurations applied to the aircraft. Rewards and subsequent
states are calculated, with logging information summarized concurrently.

For the Tester and Evaluator shown in Algorithm 3, the environment is first initialized to evalu-
ate each algorithm in the set (including several baseline agents and the user’s trained agent). The
rollout_episode() interface is similar to train_episode(), but it does not include the pol-
icy update procedures. Finally, NeuralPlane evaluates the algorithm’s performance and provides
visualization of fixed-wing aircraft flight trajectories based on the flight data generated from testing.

Algorithm 3 NeuralPlaneTester and NeuralPlaneEvaluator

Require: User-specified algorithm set B including baselines and user’s trained agent, user-specified
FDM M , User-specified task scenario T

Ensure: Testing results
1: Initialize environment with FDM and task scenario Env = Env_Initialize(M,T );
2: for each algorithm alg ∈ B do
3: alg.rollout_episode(Env);
4: Record testing data;
5: Plot testing figures;
6: end for
7: Summarize testing results and call Evaluator for standardized metrics and visualization;
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B Details of Experiments

B.1 Experimental Parameters

Before researchers can use NeuralPlane to complete the full workflow of algorithm training, testing,
evaluation, and replay, two preliminary steps must be completed: 1) Determine the fixed-wing aircraft
dynamics model to be used, the task objectives that the algorithm will control the aircraft to achieve,
and the operational conditions. This step is used to initialize the basic parameters of NeuralPlane’s
core simulation environment. 2) Determine the maximum number of training steps (M), the number
of parallel rollouts during training (n), and the number of steps per rollout in one iteration (m).
After setting these parameters, the platform can automatically execute the complete process. The
experimental parameter settings for different task scenarios are shown in Table 7.

Table 7: The experimental parameter settings for different task scenarios
Name n m M env scenario model

Heading 3000 3000 1.35× 109 Control heading F16
Control 3000 3000 2.25× 109 Control control F16
Tracking 10000 100 3× 108 Planning tracking F16

B.2 Additional Experimental Results

We conducte multiple experiments across all task scenarios, thoroughly demonstrating NeuralPlane’s
superiority in supporting RL algorithm training and showcasing the powerful capabilities of RL
algorithms in fixed-wing aircraft control. Some experimental results are shown in Figure 12, 13,
14, with all results available at https://github.com/xuecy22/NeuralPlane. The results also
indicate that in some high-difficulty scenarios, the control effectiveness of RL algorithms needs
improvement, highlighting the platform’s value and potential for RL research.

We also test the RL algorithms across all task scenarios and perform a visual evaluation of their
performance. Some visualization results are shown in Figure 15, with all experimental results
available at https://github.com/xuecy22/NeuralPlane.
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Figure 12: Training curves of PPO in different task scenarios. From left to right, the task conditions
are different wind speeds, different flight altitudes, different environmental noise levels, and different
flight speeds, with the task objective being the Heading task in all cases.

C Used Assets

Table 8 lists the resources and assets used in NeuralPlane along with their respective licenses. We
strictly adhere to these licenses during the development of NeuralPlane.
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Figure 13: Training curves of PPO in different task scenarios. From left to right, the task conditions
are different wind speeds, different flight altitudes, different environmental noise levels, and different
flight speeds, with the task objective being the Control task in all cases.
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Figure 14: Training curves of PPO in different task scenarios. From left to right, the task conditions
are different wind speeds, different flight altitudes, different environmental noise levels, and different
flight speeds, with the task objective being the Tracking task in all cases.

Table 8: Used assets and their licenses
Type Asset Codebase License

Baseline PPO [27] CloseAirCombat [71] LGPL-3.0 license

Platform to Compare
Ardupilot [22] Ardupilot [22] LGPL-3.0 license
JSBSim [21] JSBSim [21] LGPL-2.1 license
QPlane [23] QPlane [23] -
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(a) FlightGear (b) Tacview (c) Track chart

Figure 15: Visualization of fixed-wing aircraft flight trajectories. Top: The results of the Heading
task. Middle: The results of the Control task. Bottom: The results of the Tracking task.
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