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Abstract—Recovering a s-sparse signal vector x ∈ Cn from a
comparably small number of measurements y := (Ax) ∈ Cm is
the underlying challenge of compressed sensing. By now, a variety
of efficient greedy algorithms has been established and strong
recovery guarantees have been proven for random measurement
matrices A ∈ Cm×n.

However, they require a strong concentration of A∗Ax around
its mean x (in particular, the Restricted Isometry Property), which
is generally not fulfilled for heavy-tailed matrices. In order to
overcome this issue and even cover applications where only limited
knowledge about the distribution of the measurements matrix
is known, we suggest substituting A∗Ax by a median-of-means
estimator.

In the following, we present an adapted greedy algorithm,
based on median-of-means, and prove that it can recover any
s-sparse unit vector x ∈ Cn up to a l2-error ∥x− x̂∥2 < ϵ with
high probability, while only requiring a bound on the fourth
moment of the entries of A. The sample complexity is of the
order O(s log(n log( 1

ϵ
)) log( 1

ϵ
)).

I. INTRODUCTION

Motivated by various applications in signal processing and
the publications of Candès, Romberg, Tao, and Donoho [1],
[2], a variety of research in the field of compressed sensing,
targeting the recovery of a sparse signal from a small number
of measurements, has been established.

In the following, it is assumed that the measurements are
of the form

yj = a(j)∗x ←→ y = Ax,

where x ∈ Cn denotes the s-sparse signal, y ∈ Cm the
measurement vector with m≪ n, and A ∈ Cm×n a random
measurement matrix with E[A∗Ax] = x.

Besides algorithms for solving the initially proposed ba-
sis pursuit (min ∥x̂∥1 s.t. Ax̂ = y), more efficient greedy
algorithms as the Orthogonal Matching Pursuit (OMP)[3],
Compressive Sampling Matching Pursuit (CoSaMP) [4] or
Iterative hard thresholding [5] have been established. However,
those methods are based on a strong concentration of A∗Ax
around x, namely, the Restricted Isometry Property (RIP).

Requiring a strong concentration of A∗Ax is equivalent to
requiring a strong concentration of the sample mean of m

iid. random variables X(j) := ma(j)a(j)∗x around their mean
E[X(j)] = x:

A∗Ax =

m∑
j=1

a(j)a(j)∗x =:
1

m

m∑
j=1

X(j) =: X̄

For Gaussian measurement matrices (and other well-
concentrated distributions), comparably sharp tail bounds for
|X̄i − xi| exist. However, this is a major challenge for heavy-
tailed distributions or in scenarios with only limited knowledge
about the underlying distribution.

In [6], the authors point out the difficulties of an RIP-based
analysis for matrices with weak concentration and instead
established a new, l1-specific technique to obtain recovery
guarantees for the basis pursuit covering heavy-tailed matrices.
However, their theory is not applicable for greedy algorithms.
To the best of our knowledge, there are no successful recovery
guarantees for greedy algorithms for heavy-tailed matrices.

In section II, the median-of-means as a viable alternative
to the mean is introduced, and a subroutine based on this
estimator is presented. In section III, this subroutine is then
expanded to an iterative algorithm – the main contribution of
this work. The performance of this algorithm is then presented
in section IV and possible improvements are discussed.

II. MEDIAN-OF-MEANS

By definition, heavy-tailed distributions have a significantly
higher probability for outliers, which negatively affects the
sample mean and, as a consequence, prevents successful
recovery guarantees for greedy algorithms. For that reason,
we suggest replacing the inadequately concentrating sample
mean by a more robust median-of-means estimator µ̂.

For computing µ̂, the m measurements have to be split into
K subsets of size J . In the next step, the sample mean X̄(k)

of every subset has to be computed.X
(1,1)

...
X(J,1)


︸ ︷︷ ︸

⇒X̄(1)

X
(1,2)

...
X(J,2)


︸ ︷︷ ︸

⇒X̄(2)

· · ·

X
(1,K)

...
X(J,K)


︸ ︷︷ ︸

⇒X̄(K)

By taking the entry-wise median (in the complex case
separately for the real and imaginary part) over all sample



means X̄(1), . . . , X̄(K), the median-of-means estimator µ̂ is
obtained. As the median is very robust against outliers, µ̂ even
exhibits an exponential concentration in K:

Lemma 1. Assume a random variable Xi has mean E[Xi] =
xi and variance V ar[Xi] ≤ σ2∥x∥22 <∞. Then, the median-
of-means estimator µ̂i, defined as

µ̂i = median{X̄(1)
i , . . . , X̄

(K)
i } with X̄

(k)
i =

1

J

J∑
j=1

X
(j,k)
i ,

fulfills

P (|µ̂i − xi| ≥ γ) ≤ 2e−K/2

if J ≥ 2e2σ2∥x∥2
2

γ2 .

Proof. The proof follows the proof idea of [7, Theorem 5]
with appropriate adaptations.

– Case I: x, y, A are real:
By assumption,

V ar[X̄i] =
1

J2

J∑
j=1

V ar[X
(j)
i ] ≤ σ2∥x∥22

J

By applying Chebyshev’s inequality, the following tail bound
is obtained

pJ := P (|X̄i − xi| ≥ γ) ≤ V ar[X̄i]

γ2
≤ σ2∥x∥22

Jγ2
.

For every k ∈ [K], one can define the Bernoulli random
variable I(k) := 1{|X̄(k)

i −x| ≥ γ} with parameter pJ . By the
definition of the median, |µ̂i − xi| ≥ γ can only be fulfilled
if either at least half of the X̄

(k)
i are larger than xi + γ or at

least half of them are smaller than xi − γ. Therefore,

P (|µ̂i − xi| ≥ γ) ≤ P (

K∑
k=1

I(k) ≥ K

2
)

Applying the multiplicative Chernoff bound, yields

P

(
K∑

k=1

I(k) ≥ (1 + λ)Kp

)
≤
(

eλ

(1 + λ)1+λ

)Kp

= e−Kp

(
e

1 + λ

)(1+λ)Kp

, λ > 0.

By assumption, J ≥ 2e2σ2∥x∥2
2

γ2 and therefore pJ ≤ 1
2e2 .

Choosing (1 + λ)Kp = K/2 concludes the proof for the
real case:

P (|µ̂i − xi| ≥ γ) ≤ e−KpJ (2epJ)
K/2 ≤ (2epJ)

K/2

≤
(
2eσ2∥x∥22

Jγ2

)K/2

≤ e−K/2.

– Case II: x, y, A are complex:
Denote by ℜ(xi) the real part and by ℑ(xi) the imaginary

part of xi. By our definition, the median over a complex set
has to be taken separately for the real part and imaginary

part of its elements. Therefore, µ̂i =: ℜ(µ̂i) + iℑ(µ̂i), where
ℜ(µ̂i) = median{ℜ(X̄(1)

i ), . . . ,ℜ(X̄(K)
i )} (resp. for ℑ(µ̂i)).

By triangle inequality and union bound,

P (|µ̂i − xi| ≥ γ)

≤ P (|ℜ(µ̂i)−ℜ(xi)|+ |ℑ(µ̂i)−ℑ(xi)| ≥ γ)

≤ P (|ℜ(µ̂i)−ℜ(xi)| ≥ γ) + P (|ℑ(µ̂i)−ℑ(xi)| ≥ γ)

≤ 2e−K/2

As P (|ℜ(X̄i − xi)| ≥ γ) ≤ P (|X̄i − xi| ≥ γ) (resp. for ℑ),
the bound for the real case above holds for both summands in
the second line separately, which concludes the proof.

Corollary 2. Assume X1, . . . , Xn are random variables with
mean E[Xi] = xi and variance V ar[Xi] ≤ σ2 < ∞ for all
i ∈ [n]. Then,

P (∥µ̂− x∥∞ ≥ γ) ≤ η

for

J ≥ 2e2σ2∥x∥22
γ2

K ≥ 2 log(
2n

η
)

Proof. The theorem follows directly from Lemma 1 by choos-
ing K such 2e−K/2 ≤ η

n and applying a union bound over all
i ∈ [n].

Algorithm 1 Approximation from random measurements via
median-of-means
Input: Measurement matrix A ∈ Cm×n and vector of measurements

y ∈ Cm with m = JK;
Output: Approximation µ̂ of the s-sparse signal x ∈ Cn fulfilling

∥µ̂− x∥∞ < γ with high probability.

1 function MOM(y;A; J ;K)
2 Split A in matrices A(k) ∈ CJ×n and y in corresponding

vectors y(k) ∈ CJ ∀k ∈ [K].
3 for k = 1 to K do
4 Compute X̄(k) = m

J
A(k)∗y(k)

5 return median{X̄(1), . . . , X̄(K)}

Theorem 3. Let x ∈ Cn be a signal, A ∈ Cm×n a random
measurement matrix with centered iid. entries with moments

E[|a(j)i |
2] =

1

m
and E[|a(j)i |

4] ≤ σ2

m2
<∞,

and y := (Ax) ∈ Cm the corresponding measurement vector.
Then, the output µ̂ of Algorithm 1 with J and K as in Corollary
2 and m ≥ JK fulfills

∥µ̂− x∥∞ < γ

with probability 1− η.

Proof. This follows directly from Corollary 2 as

E[X
(j)
i ] = mE[e∗i a

(j)a(j)∗x]

= mE[|a(j)i |
2]xi︸ ︷︷ ︸

=xi

+mE[a
(j)
i ]︸ ︷︷ ︸

=0

E[
∑

l ̸=i ā
(j)
l xl] = xi



and

V ar[X
(j)
i ] = E[|X(j)

i |
2]− |E[X

(j)
i ]|2

= m2E[|a(j)i |
4]|xi|2︸ ︷︷ ︸

≤σ2|xi|2

+mE[|a(j)i |
2]︸ ︷︷ ︸

=1

mE[|
∑

l ̸=i ā
(j)
l xl|2]︸ ︷︷ ︸

=m
∑

l ̸=i E[|ā(j)
l |2]|xl|2

−|xi|2

≤ (σ2 − 1)|xi|2 +
∑

l ̸=i |xl|2 ≤ σ2∥x∥22

The last inequality holds as E[|a(j)i |4] ≥ E[|a(j)i |2]2 (Jensen’s
inequality) ⇒ σ2 ≥ 1 which explains the last inequality.

Remark 4. Even if the original measurement matrix does not
fulfill E[|a(j)i |2] = 1

m , matrix and measurements can be scaled
to fulfill the corresponding requirement of Theorem 3 as long
as the fourth moment is bounded and the second moment is
known.

III. ITERATIVE MEDIAN-OF-MEANS ALGORITHM

As proven in Theorem 3, the approximation µ̂(x) obtained
by Algorithm 1 fulfills ∥µ̂(x)−x∥∞ < γ with high probability.
While the l∞-bound can be used to identify large entries of x,
the naive l2-bound exhibits an undesirable scaling in n:

∥µ̂(x)− x∥2 =

√√√√ n∑
i=1

|µ̂i(x)− xi|2

≤
√
n∥µ̂(x)− x∥∞ ≤

√
nγ

The scaling in n can be reduced to a scaling in s by applying
an entry-wise hard-thresholding operator

hγ(µ̂)i := hγ(µ̂i) :=

{
µ̂i for |µ̂i| ≥ γ

0 for |µ̂i| < γ
∀i ∈ [n].

Figure 1. Visualization of the
possible deviation of |µ̂| from
|x| for a precision of γ. The
black dots symbolize the entries
of x, while the entries of µ̂(x)
lie within the open intervals.

In Figure 1, the possible in-
tervals of the deviations of µ̂(x)
from x are visualized. As ∥µ̂(x)−
x∥∞ < γ, xi = 0 implies
hγ(µ̂i(x)) = 0, and, further,

supp(hγ(µ̂(x))) ⊆ supp(x). (1)

No effect can be seen for |xi| >
2γ which implies |µ̂i(x)| > γ, and
therefore, hγ(µ̂i(x)) = µ̂i(x).

While the last two proper-
ties are beneficial, applying the
thresholding operator can increase
the l∞-error for |xi| ∈ [γ, 2γ)
with |µ̂i(x)| < γ, and therefore,
hγ(µ̂i(x)) = 0 which doubles the
l∞ bound |hγ(µ̂i(x))− xi| < 2γ.

Combined, this leads to the following l2-bound

∥hγ(µ̂(x))− x∥2 =

√ ∑
i∈supp(hγ(µ̂(x)))

|hγ(µ̂i(x))− xi|2

≤
√
s∥hγ(µ̂(x))− x∥∞ ≤

√
s2γ (2)

Due to the strong scaling of m ∈ O( 1
γ2 ) in γ, a small l2-

norm can only be achieved by a large increase of the number
of measurements.

Instead, an iterative procedure will be defined which allows
for an increasing precision while keeping J constant. For
simplicity, assume that x has unit norm (i.e., ∥x∥2 = 1). Setting
x(1) = hγ(µ̂(x)), in the second iteration not x but x − x(1)

has to be recovered. By Eq. 1, the sparsity is still bounded by
s, while, by Eq. 2, the l2-norm is bounded by

√
s2γ.

So, in order to obtain an approximation µ̂(x− x(1)) with a
precision of αγ (for an α ∈ (0, 1)) while keeping J constant,
the following inequality has to be fulfilled:

J ≥

=1︷︸︸︷
∥x∥22
γ2

!
≥

s(2γ)2≥︷ ︸︸ ︷
∥x− x(1)∥22

(αγ)2
⇒ γ ≤ α

1

2
√
s

Therefore, set γ := α 1
2
√
s

(the choice of α will be discussed
in Remark 6).

A last issue has to be addressed: Theorem 3 assumes a
fixed x which is independent of A. µ̂(x), and consequently,
x− x(1) do not fulfill the independence on A. Therefore, A
and y have to be partitioned into L blocks, where L denotes
the number of iterations. Due to this, the current approximation
and the next block will always be independent. Defining x(l) =
x(l−1)+hαl−1γ(µ̂(x−x(l−1))) recursively, leads to the iterative
Algorithm 2 and the main result, Theorem 5.

Algorithm 2 Approximation from random measurements via
iterative median-of-means
Input: Measurement matrix A ∈ Cm×n and vector of measurements

y ∈ Cm with m = JKL; α ∈ (0, 1).
Output: Approximation x̂ of the s-sparse signal x ∈ Cn fulfilling

∥x− x̂∥2 ≤ αL∥x∥2.

1 function ITERATIVE-MOM(y;A;N ;K;L;α)
2 Split A in matrices A(k,l) ∈ CJ×n and y in corresponding

vectors y(k,l) ∈ CJ ∀k ∈ [K], l ∈ [L].
3 Set x(0) = 0
4 for l = 1 to L do
5 for k = 1 to K do
6 Compute X̄(k) = m

J
A(k,l)∗(y(k,l) −A(k,l)x(l−1))

7 µ̂ = median{X̄(1), . . . , X̄(K)}
8 x(l) = x(l−1) + h

αl ∥x∥2
2
√

s

(µ̂)

9 return x(L)

Theorem 5. Let x ∈ Cn be a s-sparse signal with unit norm,
A ∈ Cm×n a random measurement matrix with centered iid.
entries with moments

E[|a(j)i |
2] =

1

m
and E[|a(j)i |

4] ≤ σ2

m2
<∞,

and y := (Ax) ∈ Cm the corresponding measurement vector.
Then, the output x̂ of Algorithm 2 fulfills

∥x̂− x∥2 < ϵ



with probability 1− η if m ≥ JKL and

J ≥ s
8e2σ2

α2
K ≥ 2 log(n

2L

η
) L ≥ log(ϵ)

log(α)
α ∈ (0, 1)

Proof. By induction,

supp(x− x(l)) ⊆ · · · ⊆ supp(x− x(1)) ⊆ supp(x)

∥x− x(l)∥2 ≤
√
s2(αl−1γ) = αl.

The choice of L guarantees αL ≤ ϵ, while the slight adaptation
of K is the result of a union bound over all L iterations. The
proof follows now directly from Theorem 3 as x − x(l−1)

is independent of A(l) and y(l) for all l ∈ [L], due to the
partitioning of A and y.

Remark 6. As mentioned before, a decrease of γ strongly
increases J , and consequently, the number of measurements.
As γ := α 1

2
√
s
, α can not be chosen too small. On the other

hand, an α close to 1 increases L, the number of iterations.
Minimizing over the product JL, α = 1√

e
is obtained.

IV. NUMERICAL ANALYSIS

In the following, the numerical performance of Algorithm 2
will be analyzed.

The entries of A are chosen to be iid. student-t distributed
with 5 degrees of freedom and, then, scaled to fulfill the
requirements of Theorem 2, which leads to σ2 = 9.

For a dimension of n = 2000 and sparsity s = 10, the
required number of measurements in Theorem 2 appeared
to be too large. Instead, we chose J = 160 and K = 7. The
parameter α is set to 1√

e
as suggested by Remark 6. The sparse

vector x is chosen to have unit norm with s linearly increasing
entries (from approx. 0.05 to 0.5) on random positions.

Then, Algorithm 2 has been performed 10 times for different
matrices A and the worst result for every step has been plotted
in Figure 2. Despite the significantly lower values for J and
K, the l2-error ∥x(l) − x∥2 of the iterates of our algorithm
(blue) stayed always well below the theoretical bound αl (red).

Figure 2. Comparison between ∥x(l) − x∥2 and its theoretical bound αl for
x(l) obtained by Algorithm 2.
(max. l2-error of every iteration for 10 different matrices A)

In Figure 3, the performance of two modifications of
Algorithm 2 can be seen. For a good comparison, each of the
three methods is applied to the same A and y. As explained in
the last chapter, A and y have to be partitioned to guarantee
the necessary independence between underlying signal and
measurement matrix. If only one of those samples is used
for every iteration, the algorithm appears way more unstable
and often fails (orange), which indicates that the required
independence is not only a proof aritfact. Nevertheless, without
partitioning, a larger number of measurements could be used
for every iteration - a trade-off which remains subject of further
research.

Figure 3. Comparison between the l2-error of the iterates of Algorithm 2
and two modifications of the algorithm. For the orange results, A(l) is fixed
for all iterations. For the green line, in every iteration, the median over 20
median-of-means estimates for different permutations of the measurements is
taken.
(max. l2-error of every iteration for 10 different matrices A)

The second modification targets an underlying weakness of
the median-of-means estimator. Different to mean or median,
the median-of-means of a data set potentially changes when
changing the order of the samples. If all outliers end up in only
few of the K subsets, the median-of-means will most likely not
be affected by them. If they are distributed over all K subsets
and affect all means, the median-of-means should be affected as
well. To compensate for this, the median-of-means is not only
computed for one single ordering of the measurements. Instead,
the median-of-means has to be computed again for multiple
different permutations of the measurements. The ’improved’
estimate is then obtained by taking the median over those
median-of-means. While even further improvements can be
expected for a larger number of permutations, we restricted
ourselves to only 20 random permutations for performance
reasons.

As indicated by the graph, this leads to a significant increase
in performance in the first iteration. The perf ormance of further
steps might be restricted by the slow decrease of the threshold
(i.e., x might already be recovered with high precision, but
smaller values of the support of x are still set to 0 by the
high threshold). During our work on this modification, there
appeared two preprints of Stanislav Minsker [8], [9] showing



a significantly improved constant in the tail bound compared
to the standard median-of-means. While this does not affect
the scaling of the required number of measurements with
the dimension n or sparsity s, those results can significantly
improve the applicability and runtime of our algorithm for real
world scenarios.

Using this modification to expand our theory to uniform
guarantees is the topics of ongoing research.

V. CONCLUSION

The greedy algorithm presented in this work, reliably
approximates a s-sparse vector from random measurements
while requiring a comparably small number of measurements.
The big advantage of the presented method – besides the
efficient implementation – is the lack of strong concentration
requirements on the measurement matrix. As long as the fourth
moment can be bounded, our algorithm will provably work for
any centered measurement matrix A.

Furthermore, an additional performance increase of a
modified median-of-means estimator has been demonstrated
empirically in the last chapter.

As listed in the introduction, there is a variety of greedy
algorithms for recovering sparse signals which are based on the
concentration of A∗Ax. We are convinced that the algorithm
presented here is only one example where replacing the sample
mean by the median-of-means is beneficial and suggest further
research for different, more involved recovery algorithms.
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