
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

HESSO: TOWARDS AUTOMATIC EFFICIENT AND USER
FRIENDLY ANY NEURAL NETWORK TRAINING AND
PRUNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Structured pruning is one of the most popular approaches to effectively compress
the heavy deep neural networks (DNNs) into compact sub-networks while retain-
ing the original network performance. The existing methods suffer from multi-
stage procedures along with significant engineering efforts and human expertise.
The Only-Train-Once series (OTOv1-v3) has been recently proposed to resolve
the many pain points by streamlining the workflow. However, the built-in sparse
optimizers in the OTO series, i.e., the Half-Space Projected Gradient (HSPG) fam-
ily, have limitations that require hyper-parameter tuning and the implicit controls
of the sparsity exploration, consequently requires intervening by human expertise.
To further address such limitations, we propose a novel Hybrid Efficient Struc-
tured Sparse Optimizer (HESSO). HESSO could automatically and efficiently
train a DNN within a single run to produce a high-performing sub-network. Mean-
while, it is almost tuning-free and enjoys user-friendly integration for generic
training applications. To address another common issue of irreversible pruning
performance collapse observed in some DNNs, we further propose a novel Cor-
rective Redundant Identification Cycle (CRIC) to plug into HESSO for reliably
identifying indispensable structures. We numerically demonstrate the efficacy of
HESSO and its enhanced version HESSO-CRIC on a variety of applications rang-
ing from computer vision to natural language processing, including large language
model. The numerical results showcase that HESSO can achieve competitive per-
formance to varying state-of-the-art benchmarks and support most DNN archi-
tectures. Meanwhile, CRIC can effectively prevent the irreversible performance
collapse and further enhance the performance of HESSO on certain applications.

1 INTRODUCTION

Large deep neural networks (DNNs) have successfully powered a variety of applications (Ji and
Chen, 2019; Zhou et al., 2024; Zhu et al., 2023). However, their typical significant time and space
complexities make inference expensive and restrict deployment in resource-constrained environ-
ments. Consequently, how to compress the full DNN to the greatest extend while preserving the
performance becomes essential in the many industrial and academic AI deployment pipelines. There
are various model compression techniques including but not limited to pruning (Chen et al., 2021b;
2023c; Fang et al., 2023), knowledge distillation (Ko et al., 2024) and quantization (Han et al.,
2015), which have been well developed in the past decades.

Structured pruning typically serves as the foremost technique to produce an optimal sub-network
from a pre-defined full DNN by identifying and removing redundant structures (Gale et al., 2019;
Han et al., 2015; Chen et al., 2021b; 2023c; Fang et al., 2023; Wang et al., 2024; Wu et al., 2024).
Classical pruning methods focus on conducting a multi-stage procedure, requiring significant engi-
neering efforts and expertise to manually build pruning search space, identify redundant structures,
construct sub-network, and fine-tune to recover lost knowledge. To alleviate the human engineering
burden, recent works (Chen et al., 2023c;b; Fang et al., 2023) have proposed pruning dependency
graph to automate the pruning search space and sub-network construction. OTOv1-v2 (Chen et al.,
2021b; 2023c) further unify these multi-stage components together, requiring only a single train-
ing run to directly get a compact sub-network without the need of further fine-tuning. Specifically,

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Conv1

b1 ∈ R
31

K̂1 ∈ R
31×28×3×3

Conv2

b2 ∈ R
31

K̂2 ∈ R
31×28×3×3

Conv3

b3 ∈ R
30

K̂3 ∈ R
30×28×3×3

Conv4

b4 ∈ R
30

K̂4 ∈ R
30×31×3×3

Conv5

b5 ∈ R
30

K̂5 ∈ R
30×31×3×3

Relu Relu

Relu

Relu

Conv1

b1 ∈ R
64

K̂1 ∈ R
64×32×3×3

Conv2

b2 ∈ R
64

K̂2 ∈ R
64×32×3×3

Conv3

b3 ∈ R
128

K̂3 ∈ R
128×32×3×3

Conv4

b4 ∈ R
128

K̂4 ∈ R
128×64×3×3

Conv5

b5 ∈ R
128

K̂5 ∈ R
128×64×3×3

Relu Relu

Relu

Relu

5.5x Smaller

from only train once import OTO

oto = OTO(model=target DNN, ...)

optimizer = oto.hesso(...)

optimizer = oto.hesso cric(...)

optimizer.step()

oto.construct subnet()

or

Select optimizer.

Train as normal.

Construct pruned subnetwork.

Automatic Any DNN Joint Training and Structured-Pruning

Figure 1: Automatic any DNN joint training and structured pruning experience achieved by the
pruning mode of OTO along with the proposed HESSO and its enhanced HESSO-CRIC optimizer.
The procedure could be applied onto varying DNN and applications, and seamlessly integrated into
any training pipeline to directly produce a compact pruned sub-network without further fine-tuning.

they rely on (Dual) Half-Space Stochastic Gradient Descent (D)HSPG methods to train and prune
simultaneously and have introduced a rigorous theoretical version AdaHSPG+ (Dai et al., 2023).

(D)HSPG HESSO HESSO-CRIC
Efficiency ★★ ★ ★ ★ ★ ★ ☆
Tuning-Free ★ ★ ★ ★ ★ ★ ★
User-Friendliness ★ ★ ★ ★ ★ ★ ★
Performance ★ ★ ★† ★ ★ ☆ ★ ★ ★
† Under sufficient hyper-parameter tuning efforts.

Although OTOv1 and OTOv2 have significantly ad-
vanced the ease of use in DNN joint training and
structured pruning, they still face challenges related
to the complexity of the built-in (D)HSPG meth-
ods (Chen et al., 2021b; 2023c; 2020c;a). Specifi-
cally, these methods often require substantial hyper-parameter tuning for different downstream ap-
plications and DNN architectures (Dai et al., 2023; Wu et al., 2024). Furthermore, the sparsity
explorations are implicit, which requires optimization expertise, thereby diminishes the practical
convenience and usability.

Meanwhile, many modern pruning and neural architecture search methods rely on saliency scores
(such as Taylor based) to identify redundant structures. However, they often suffer from perfor-
mance degradation due to mistakenly identifying indispensable structures as redundant. This degra-
dation can sometimes be irreversible due to architectural design constraints, transparency of training
datasets, and the significant training resources required, posing practical challenges for their use.

To overcome these pain-points, we naturally ask, i.e., how to get a joint training and pruning opti-
mizer which is ease-to-use, reliable, high-performing, and applicable onto any DNNs and tasks.

In this work, we address this question by proposing HESSO: Hybrid Efficient Structured Sparse
Optimizer for automatic one-shot any DNN training and structured pruning. Compared to the HSPG
family, HESSO offers several advantages. First, HESSO significantly simplifies the hyper-parameter
setup, providing considerable practical convenience. Second, HESSO employs a progressive prun-
ing strategy to explicitly control the sparsity exploration, making it user-friendly. Third, HESSO
optionally incorporates a novel Corrective Redundancy Identification Cycle (CRIC) mechanism,
so-called HESSO-CRIC, which more accurately identifies redundant groups, thereby minimizing
the risk of irreversible performance collapse caused by pruning indispensable structures. We now
summarize our main contributions as follows.

• Efficient Hybrid Training and Pruning Optimizer. We propose an efficient and easy-to-use
optimizer, HESSO, to enable automatic joint structured pruning and training for various model
architectures and applications. HESSO progressively identifies redundant groups through flexible
saliency score estimations and utilizes a hybrid training schema to effectively transfer knowledge
from redundant groups to important ones, thereby maintaining the performance of the pruned
model. Compared to the D(HSPG) in OTO, HESSO explicitly controls sparsity exploration and
knowledge transfer, minimizes the need for hyper-parameter tuning. As a result, HESSO becomes
the first optimizer to realize convenient joint DNN training and pruning to our knowledge.

• Corrective Redundancy Identification Cycle. We propose a novel Corrective Redundancy Iden-
tification Cycle (CRIC) to significantly improve the accuracy of redundancy identification. CRIC

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

addresses the approximation errors often associated with popular Taylor-based saliency scores,
thereby reducing the risk of mistakenly pruning indispensable groups. CRIC employs a voting
mechanism and measures the saliency scores of each group candidate using a multi-sampling ap-
proach towards the origin. CRIC is pluggable into HESSO or future joint optimizers to help to
ensure reliable model performance by providing a more accurate assessment of group significance.

• Numerical Experiments. We validate the efficacy of HESSO and its enhanced version HESSO-
CRIC across a variety of applications and model architectures. Specifically, we evaluate its per-
formance on high-level computer vision tasks such as image classification and object detection,
low-level vision tasks like super-resolution, as well as natural language processing tasks including
large language models. The numerical results demonstrate that HESSO performs competitively,
and in many cases, exceeds the state-of-the-art benchmarks, offering significant practical con-
venience. Additionally, CRIC effectively mitigates the issues of irreversible collapse in pruned
models, especially in challenging cases, further showcasing its utility.

2 RELATED WORKS OF AUTOMATED STRUCTURED PRUNING

In this section, we provide a brief literature review on automatic structured pruning, while additional
reviews on knowledge transfer and DNN architecture optimization can be found in Appendix A.

General Pruning Procedures. Structured pruning aims to compress DNNs by removing unnec-
essary structures while maintaining performance (Han et al., 2015; Wen et al., 2016). The general
procedure typically involves: (i) training a full model; (ii) identifying and removing redundant struc-
tures to construct a slimmer DNN based on various criteria (Lin et al., 2019; He et al., 2018a; Wen
et al., 2016; Li et al., 2020b; Zhuang et al., 2020; Chen et al., 2017; 2018; 2021a; 2020b; Gao et al.,
2020; Zhuang et al., 2020; Meng et al., 2020; Yang et al., 2019; Zhou et al., 2019; van Baalen et al.,
2020; Frankle and Carbin, 2018); and (iii) retraining the pruned model to recover any accuracy lost
during pruning. These methods often require a complex and time-consuming process, involving
multiple training iterations and significant domain knowledge to manually handle each step.

Automated Pruning Given Pre-defined Search Space. To resolve the pain-points of human in-
terventions, automated pruning is raising interests from different perspectives. Given a predefined
search space, AMC (He et al., 2018b) employs reinforcement learning agents to automatically de-
termine the optimal pruning ratio. EagleEye (Li et al., 2020a) further introduces a sub-network eval-
uation scheme based on adaptive batch normalization, which can be integrated into AMC. OFA (Cai
et al., 2019) automates the generation of sub-networks for different hardware platforms in a sin-
gle process. While these approaches yield impressive performance, their application is limited to
predefined search spaces. Moreover, AMC incurs additional training costs for its reinforcement
learning agent. OFA’s training procedure is complex and heavy to adopt all sub-networks. It also
requires knowing the optimal training procedure for the largest super-network in advance to ensure
the performance, which makes practical adoption less convenient.

Automated Pruning Over Any DNNs. On the other hand, automatically pruning arbitrary mod-
els without prior knowledge of the search space remained a significant challenge. Recent methods,
such as OTO (Chen et al., 2021b; 2023c;b) and DepGraph (Fang et al., 2023), have made progress
in automating the structured pruning process for general DNNs via dependency graph analysis.
Subsequent works like (Wang et al., 2024) and (Ren et al., 2024) automates pruning over ONNX
models. ATO (Wu et al., 2024) introduces ControlNet upon OTOv2. Among these, OTO offers a
one-shot joint training and pruning framework that can seamlessly integrate into various training
processes to produce high-performing sub-networks in a single run. While these automated ap-
proaches have significantly improved user convenience, end-users still face significant challenges
with hyper-parameter tuning and the sparse optimization expertise required to calibrate OTO’s built-
in HSPG family (Chen et al., 2020c; Dai et al., 2023). Furthermore, some DNNs contain indis-
pensable structures, the pruning of which leads to irreversible performance degradation. Identifying
these critical structures remains an open problem that is often handled manually on a case-by-case
basis, complicating practical use. In this work, we tackle these pain points to propose an efficient,
tuning-free, and user-friendly joint training and pruning optimizer HESSO along with its enhanced
version HESSO-CRIC to reliably identify indispensable structures to ensure the performance.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Algorithm 1 HESSO: Hybrid Efficient Structured Sparsity Optimizer

1: Input. Initial variable x0, learning rate α, warm-up steps Tw, pruning periods P , period length
Tp, target group sparsity level K, and variable partition G = Gprunable⋃Gunprunable.

2: Warm up Tw steps via SGD or its variants, e.g., AdamW.
3: Initialize redundant groups GR ← ∅ and important groups GI ← G.
4: Compute sparsity level for each pruning period K̂ ∶=K/Tp.
5: for each pruning period p = 0,1,⋯, P − 1 do
6: Pickup Ĝp in GI with K̂-least saliency scores.
7: Update GR ← GR ∪ Ĝp and GI ← GI/Ĝp.
8: for t = 0,1,⋯, Tp − 1 do
9: Compute trial iterate x̂t+1 ← xt − αt∇f(xt).

10: Compute transferring penalty ratio [γt]g ← Tp−t−1

Tp−t

∥[xt]g∥

∥[x̂t+1]g∥
for each g ∈ Ĝp.

11: Update redundant group variables [xt+1]Ĝp ← [γt]Ĝp[x̂t+1]Ĝp .
12: Update important group variables [xt+1]GI ← [x̂t+1]GI .
13: end for
14: end for
15: Training important group variables till convergence.
16: Return the final iterate x∗HESSO.

g1 g2 g3

g4 g5 g6

g7 g8 g9

g10 g11 g12

Variable Groups G

Saliency

Score

g1 g5 g6

g8 g10 g11

g2 g3 g4

g7 g9 g12

GR

Identify Redundancy

GI

Hybrid Training

[xk]GR

00

[xk]GI

[xk+1]GI

−αk[∇f(xk)]GI
[xk+1]GR

−αk[∇f(xk)]GR

Knowledge

Transfer

Important Groups Redundant Groups

Figure 2: HESSO uses saliency scores to periodically identify redundant groups GR from the group
set G and marks the remaining groups as important groups GI . A knowledge transfer mechanism is
proceeded by employing hybrid training strategies onto GR and GI . In particular, the variables in
GR are progressively projected onto zeros after gradient descent. The important variables are kept
training via gradient descent to migrate the impact of redundant project onto the objective function.

3 HESSO

Given a target DNN which variables and architecture to be optimized, HESSO formulates a con-
strained structured sparsity optimization problem upon the parameter groups G as (1).

minimize
x∈Rn

f(x), s.t. Cardinality{g ∈ G∣[x]g = 0} =K, (1)

where we seek to yield group sparsity over the prunable variables with the target sparsity level as
K. The parameter groups can be pruning zero-invariant groups determined through the pruning
dependency graph analysis or other general group formats (Chen et al., 2023c;b).

During the optimization process, HESSO begins with a warm-up phase, where the variables are
trained using gradient descent or its variants. The purpose of the warm-up stage is to collect gradient
information and guide the DNN into a relatively favorable region for convergence. Following this,
HESSO performs progressive pruning by periodically identifying redundant parameter groups based
on predefined saliency scores. Throughout the progressive pruning phase, HESSO gradually forgets
the knowledge in the redundant groups while the remaining important groups continue training,
thereby facilitating the transfer and recapture of knowledge. We refer to this approach as hybrid
training, where distinct training strategies are applied to different groups. Finally, once all redundant
groups are identified and projected onto zero, the remaining important groups continue to be trained
until final convergence. The main procedure is outlined in Algorithm 1.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

3.1 SALIENCY SCORE

After warming up Tw steps in Algorithm 1, HESSO has typically collected reasonable information
regarding the gradient and the iterate. It then starts to identify redundant groups upon the target
group sparsity level K to partition the groups G into important group set GI and redundant group set
GR, i.e., GI ⋃GR = G and ∣GR∣ = K. HESSO achieves it by periodically measuring the importance
of each parameter group g ∈ G. To begin, we initialize the important group set as the whole group set
GI ← G, and the redundant group set as empty GR ← ∅. Given a pre-defined pruning periods P , we
identify K̂ ← K/P important groups to designate as redundant during each period. The redundant
groups are the ones with bottom-K̂ saliency scores.

GR ← GR⋃Bottom-K̂
g∈GI

SaliencyScore([x]g, [∇f(x)]g)

GI ← GI/Bottom-K̂
g∈GI

SaliencyScore([x]g, [∇f(x)]g)
(2)

The selection of the saliency score in HESSO is flexible and can be tailored to different purposes.
By default, we consider the categories presented in Appendix D.

3.2 HYBRID TRAINING IN HESSO

After identifying the redundant groups in Section 3.1, the next step is to project these groups onto
zero and transfer their knowledge to the important groups, ensuring the pruned model maintains its
performance. This is achieved through a hybrid training schema.

For the redundant groups GR, we progressively and uniformly push their parameters towards zero.
This process is detailed in line 7-8 in Algorithm 1 and decipted in Figure 2. The goal is to ensure
that the parameters in the redundant groups become zero after Tp steps. During this penalization
process, there is a risk of forgetting the knowledge contained in the redundant groups, which may
manifest as a degradation in the objective function’s value. To mitigate this, we employ a standard
optimization method, such as vanilla SGD or its variants like Adam, on the important groups GI .
This step aims to continue optimizing the objective function f and preserve the model’s performance
despite the pruning of redundant groups. By maintaining the optimization of the important groups,
the knowledge lost from the redundant groups can be transferred and compensated for, ensuring that
the pruned model remains effective.

Next, we provide brief intuitive comparisons of HESSO against two popular pruning algorithms.

Minimize tuning efforts compared to DHSPG. DHSPG in OTOv2 involves significant hyper-
parameter tuning to adjust parameters for sparsity exploration. This tuning often requires domain-
specific knowledge, as the appropriate settings can vary depending on the particular application or
dataset. This requirement can make DHSPG more complex and less accessible, particularly for
practitioners without extensive expertise in hyper-parameter and sparse optimization. Contrarily,
HESSO offers more explicit control over sparsity exploration. The pruning process in HESSO is
regulated by the pruning periods P and the period length TP , which determine the pace and extent of
the pruning procedure. This structured approach simplifies the process, making it easier to manage.

Architecture-agnostic computational invariance compared to ResRep and SliceGPT.
ResRep (Ding et al., 2021b) and SliceGPT (Ashkboos et al., 2024) are proposed to preserve com-
putational invariance, i.e., making pruned and full models produce similar outputs, for CNNs and
transformers, respectively. However, they are architecture specific, requires additional efforts, such
as injecting additional layers in SliceGPT and computing reset gradients in ResRep. The knowledge
transfer in HESSO similarly seeks to maintain computational invariance but does so by preserving
objective function levels. In addition, HESSO is architecture-agnostic, efficient and user-friendly,
demonstrating both scalability and versatility compared with ResRep and SliceGPT.

As a result, HESSO is generally easier to use and more adaptable to various applications, as it
significantly reduces the need for extensive tuning and specialized knowledge. The design of hy-
brid training for knowledge transfer effectively promotes the performance of pruned model. They
make HESSO a more user-friendly and efficient option for achieving structured sparsity in models,
allowing for more straightforward and consistent application across different tasks and domains.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

3.3 APPROXIMATION ERRORS OF SALIENCE SCORES

Although HESSO could tackle most DNNs and applications, it may sometimes yield unsatisfactory
results when the target DNN possesses certain indispensable structures, defined as follows.
Definition 3.1 (Indispensable structure). Given a deep neural network M, a minimally removal
structure is called indispensable if removing it fromM would cause significant performance degra-
dation, which can not be recovered given user resources. In particular, we say a minimally removal
structure as ϵ-indispensable associated with an objective f if pruning the variables [x]g → 0 dete-
riorates f at least ϵ, i.e., f(x∣[x]g → 0) ≥ f(x) + ϵ for a minimization optimization problem. The
degradation ϵ can not be recovered by (i) keeping trainingM, (ii) the training cost such as GPU days
exceeding user budget, or (iii) the training receipt forM is black-box and hard to be reproduced.

The origin of indispensable structures varies. One reason may be due to architectural design issues
where certain layers in M play more critical roles than others and are very sensitive to any mod-
ifications, as exemplified by a low-level vision benchmark in Section 4.2. Another reason could
be the learning strategy. For instance, in large language models (LLMs), it has been observed that
knowledge is unevenly distributed across different layers (Chen et al., 2023a). Removing any of
these structures could result in an irreversible collapse of the DNN’s performance.

Salience score approximation errors. The existing saliency scores might fail to identify these
indispensable components accurately. As described in Appendix D, they are typically designed to
approximate the impact of projecting groups of variables to zero over the objective function. Such
approximations, for example, perhaps the most commonly used Taylor importance scores, are more
accurate when the iterate is close enough to the origin point.
Theorem 3.2 (Approximation error of Taylor importance). Suppose the gradient and second-order
derivative of f are bounded. Use first-order mL and second-order mQ Taylor approximations to
measure the function value f after pruning g ∈ G, i.e., [x]g → 0. Let s satisfy [s]G/g = [0]G/g and
[s]g = −[x]g , Then the approximation error bound ∣f(x+s)−mL(x+s)∣ and ∣f(x+s)−mQ(x+s)∣
are proportional to O(∥[x]g∥2) and O(∥[x]g∥3), respectively.

However, during realistic training and pruning, this requirement is usually not met. As stated in
Theorem 3.2, the approximation error bounds increase proportionally with ∥[x]g∥, indicating that
the further the distance from the origin, the larger the approximation error. As a result, this can lead
to the false positively pruning of indispensable structures, which in turn causes performance issues.

3.4 CORRECTIVE REDUNDANCY IDENTIFICATION CIRCLE

To address the limitations discussed in Section 3.3, we propose a novel Corrective Redundant Iden-
tification Cycle (CRIC). This method aims to more reliably identify redundant structures within the
target DNN, even when indispensable structures are present. The CRIC mechanism can be seam-
lessly integrated into HESSO, enhancing its ability to accurately discern which parts of the model
can be pruned without compromising performance.

To mitigate the issue of false positive redundant predictions caused by the approximation error, such
as Taylor expansion, CRIC measures the saliency score of redundant group candidates multiple
times along the projection to the origin. Unlike the greedy approach in HESSO, CRIC incorporates
a corrective cycle mechanism. This mechanism iteratively promotes groups as redundant and tracks
the outlier groups. The cycle terminates when the redundancy prediction is deemed reliable, i.e., no
outlier appearance is detected. The final output is a set of redundant groups GR with the bottom-K
overall saliency scores. This approach significantly reduces false positive redundant identifications
and addresses the failure cases of HESSO, as demonstrated numerically in Section 4.

In Algorithm 2, we utilize a violating group set V to track outlier or violating groups, which are more
redundant or deviate from the current redundant group prediction. V is initialized with the group
set having the bottom-K saliency scores (see line 3). A historical set H is also used to track groups
whose saliency scores have been fully exploited through multiple sampling along the projection to
the origin. This set is initialized as empty ∅, as shown in line 4.

When the violating set is fairly large, i.e., ∣V ∣ > T with T as a predefined terminating tolerance
which is by default as empty set, i.e., T = ∅, we progressively project these violating groups onto

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Algorithm 2 Corrective Redundant Identification Cycle (CRIC)

1: Input. Trainable variable x, learning rate α, termination tolerance T , target group sparsity K,
sample steps T , and prunable variable partition G.

2: Initialize S to store saliency scores for each g ∈ G.
3: Initialize violating group set V

V ← {g ∶ g ∈ G with bottom-K saliency scores}. (3)

4: Initialize historical setH ← V .
5: while ∣V ∣ ≤ T do
6: Initialize trial violating group set V̂ ← ∅.
7: Initialize α0 ← α, λ0 ← λ, and x0 ← x.
8: for t = 0,1,⋯, T − 1 do
9: Compute gradient of f over xt as ∇f(xt).

10: Compute trial x̃t+1 ← xt − αt∇f(xt).
11: Penalize variables in the violating set [xt+1]V ← T−t−1

T−t
[xt]V
∥[x̃t+1]V∥

.

12: Compute saliency scores of G and collect into S .
13: Update trial set V̂ if new violating groups appear.

V̂ ← V̂ ∪ {g ∶ g ∈ G with bottom-K scores}/V. (4)

14: Update penalty λt and learning rate αt.
15: end for
16: Update violating set V ← V̂/H.
17: Update historical setH ←H⋃V .
18: end while
19: Set redundant set GR upon saliency score collection S.

GR ← {g ∶ g with bottom-K scores in S} (5)

20: Return. Identified redundant group set GR and important group set GI as G/GR.

zero. By default, saliency score sampling points are uniformly distributed along the projection
process. Groups with lower importance scores that have not been visited in H are added to a newly
constructed violating set V̂ for the next corrective cycle. The corrective cycling algorithm continues
until violating instances rarely appear, i.e., ∣V ∣ ≤ T , see line 5.

Theorem 3.3 guarantees that CRIC terminates within a finite number of iterations, preventing end-
less loops and executing efficiently. We provided detailed proof for Theorem 3.3 in Appendix C.
Furthermore, Corollary 3.4 provides an upper bound on the number of cycles required by CRIC,
ensuring a practical and efficient pruning process.
Theorem 3.3 (Finite termination of CRIC). The corrective redundancy identification cycle (Algo-
rithm 2) terminates within a finite number of steps for any terminating tolerance T .
Corollary 3.4 (Upper bounds of cycle numbers). Given the terminating tolerance T , the CRIC
terminates with no more (∣G∣ −K)/max{T ,1} cycles.

Once the corrective cycles terminate, the saliency scores obtained are deemed reliable. At this point,
the redundant set GR is constructed based on these reliable saliency scores, as indicated in line 19.
This set of redundant groups is then returned for further use, such as hybrid training in HESSO
(as detailed in Algorithm 1). For simplicity, the HESSO variant that utilizes CRIC for identifying
redundant groups is referred to as HESSO-CRIC throughout the paper (as outlined in Algorithm 3).
This naming convention helps distinguish the variant from the original HESSO method, emphasizing
the integration of the corrective cycle mechanism to enhance the reliability of the pruning process.

4 NUMERICAL EXPERIMENTS

We numerically demonstrate the efficacy of HESSO across a wide range of applications, from low-
level vision tasks such as super-resolution (Zhou et al., 2024), to high-level vision tasks like image

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Algorithm 3 HESSO-CRIC

1: Input. trainable variable x0, learning rate α, warm-up steps, Tw, and hybrid training steps Th.
2: Warm-up for Tw steps via SGD or its variants.
3: Use CRIC in Algorithm 2 to get redundant and important group sets GR and GI .
4: Hybrid Training for Knowledge Transfer.
5: for t = 0,1,⋯, Th do
6: Compute trial iterate x̂t+1 ← xt − αt∇f(xt).
7: Compute transferring penalty ratio [γt]g ← T−t−1

T−t

∥[xt]g∥

∥[x̂t+1]g∥
for each g ∈ GR.

8: Update redundant group variables [xt+1]GR ← [γt]GR[x̂t+1]GR .
9: Update important group variables [xt+1]GI ← [x̂t+1]GI .

10: end for
11: Keep training variables in important groups till convergence.
12: Output. The final iterate x∗.

classification (He et al., 2016) and object detection (Shi et al., 2020), as well as natural language
processing tasks such as question answering (Rajpurkar et al., 2016) and the popular foundational
large language models (Ding et al., 2023). The architectures used in these experiments encompass
a variety of CNN benchmarks (Chen et al., 2023c) and transformers (Vaswani et al., 2017). These
experiments involve training either from scratch or using a pre-trained checkpoint (when available)
to validate the versatility of HESSO-(CRIC).

4.1 RECOMMENDED EXPERIMENTAL SETUP

Table 1: Recommended hyper-parameters and training strategies for HESSO and HESSO-CRIC.

Hyper-parameter Type Recommended Setup

Optimizer variant HESSO-(CRIC) Inherit as the baseline optimizer. Currently support {SGD, Adam, AdamW}.

Group sparsity HESSO-(CRIC)
Set upon the target pruned model size. If all variables could be pruned, the pruned model size could be
approximately equal as quadratic of the density level. In addition, a randomly pruned model could be
obtained by OTO’s APIs.

First-order momentum HESSO-(CRIC) Inherit as the baseline optimizer’s first-order momentum.

Second-order momentum HESSO-(CRIC) Inherit as the baseline optimizer’s second-order momentum.

Weight-decay HESSO-(CRIC) Inherit as the baseline optimizer’s weight-decay.

Initial learning rate HESSO-(CRIC) Inherit as the baseline optimizer’s initial learning rate.

Salience Score Criteria HESSO-(CRIC) By default equally considering the scores in Section 3.1.

Start pruning step HESSO-(CRIC) Set up as 1/10 of total training steps.

Pruning steps HESSO-(CRIC) Set up as 1/10 of total training steps.

Pruning periods HESSO Empirically suggest to set as 10.

Sampling steps HESSO-CRIC Empirically suggest to set as 10.

Learning rate scheduler Training Inherit as the baseline training, yet might need adjustments in some application to ensure the model after
reaching target group sparsity is sufficiently trained under relatively large learning rate.

Total training steps Training Inherit as the baseline training and adjust upon the learning rate scheduler.

Start training from scratch or pre-
training checkpoint Training Both are supported. For better performance, recommend to start from pretraining checkpoint if available.

We recommend the following hyperparameter configurations for HESSO and HESSO-CRIC across
varying applications and DNN architectures. For the target DNN to be trained and compressed,
end-users likely already have a well-established training pipeline that enables the DNN to achieve
high performance. To ensure ease of use, we suggest inheriting the hyperparameters in HESSO and
HESSO-CRIC from the baseline training schema wherever there is overlap, such as in optimization
variants and first- and second-order momentums.

This inheritance strategy should also be applied to other hyperparameters related to the training
pipeline, such as training steps and learning rate schedules, though some slight adjustments may be
needed for some applications. Specifically, adjustments may be needed due to the hybrid training
process. We recommend beginning pruning at 1/10 of the total training steps and completing pro-
gressive pruning over another 1/10 of the total training steps. Because of the hybrid training stage,
the learning rate schedule might require modification to ensure the DNN is sufficiently trained at a
reasonably high learning rate after reaching the target group sparsity level.

Additionally, HESSO and HESSO-CRIC support training either from scratch or from a pre-trained
checkpoint. For better performance and faster convergence, we recommend starting from a pre-

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

trained status if such a checkpoint is available. We summarize the recommended hyperparameter
selections and training strategies in Table 1 Appendix ??. Remark that better hyperparameter setups
or training strategies may exist for specific domain tasks to achieve superior performance. For the
remainder of the manuscript, we conduct experiments according to the above recommenced criteria,
unless otherwise specified. All experiments were conducted on an A100 GPU with 80GB memory .

4.2 SUPER RESOLUTION

We first selected the popular CARN architecture (Ahn et al., 2018) for the super-resolution task
with a scaling factor of two, referred to as CARNx2. The benchmark DIV2K dataset (Agustsson
and Timofte, 2017) was used for training, while Set14 (Zeyde et al., 2010), B100 (Martin et al.,
2001), and Urban100 (Huang et al., 2015) datasets were employed for evaluation. Initially, we uti-
lized OTO’s pruning dependency analysis to identify minimally removable structures and partitioned
the trainable variables into pruning-zero-invariant groups. However, directly applying DHSPG or
HESSO led to significant performance degradation that was not reversible. This issue arose due to
the architectural design, where the penultimate convolutional layer plays a crucial role in producing
satisfactory visual results, making it a indispensable structure. Pruning this layer caused the remain-
ing filters to fail in generating reasonable visual outcomes. However, the saliency score deems them
as redundant due to significant approximation errors, a greedy identification schema fails to avoid
pruning such essential structures, resulting in irreversible performance collapse.

Table 2: Structurally pruning CARNx2.

Optimizer Exclusion of Group Sparsity FLOPS # of Params PSNR
Dispensable Structure Set14 B100 Urban100

Baseline – – 100% 100% 33.5 32.1 31.5
DHSPG Manual 50% 24.3% 24.1% 33.2 31.9 31.1
DHSPG No 50% ✗ ✗ ✗ ✗ ✗
HESSO Manual 20% 66.9% 66.8% 33.5 32.1 31.7
HESSO Manual 30% 50.8% 50.6% 32.3 32.0 31.5
HESSO Manual 40% 40.0% 39.7% 33.3 32.0 31.3
HESSO Manual 50% 30.8% 30.5% 33.2 31.9 31.1
HESSO Manual 60% 19.4% 18.0% 33.1 31.8 31.0
HESSO No 50% ✗ ✗ ✗ ✗ ✗

HESSO-CRIC Automatic 20% 66.9% 66.8% 33.5 32.1 31.8
HESSO-CRIC Automatic 30% 53.4% 53.2% 33.4 32.1 31.7
HESSO-CRIC Automatic 40% 40.4% 40.1% 33.3 32.0 31.5
HESSO-CRIC Automatic 50% 28.7% 28.4% 33.3 32.0 31.3
HESSO-CRIC Automatic 60% 18.1% 17.7% 33.2 31.9 31.1

A
v
e
ra

g
e
P
S
N
R

FLOPs Reduction (%)
30 40 80

31.9

32.4

32.2

32.1

32.0 DHSPG (2023)

32.3

50 60 70

32.5

HESSO-CRIC (2024)

HESSO (2024)

90

OTOv2 (Chen et al., 2023c) manually excluded these indispensable structures from pruning. How-
ever, this manual identification is time-consuming and requires expert knowledge. To address this,
we directly applied HESSO-CRIC to CARN and observed that it automatically identified these cru-
cial structures as important groups, leading to a successfully high-performing pruned model. As
shown in Table 2, when manually excluding indispensable structures, both DHSPG and HESSO
significantly reduced FLOPs and parameters by approximately 33% to 80%, with negligible PSNR
degradation. HESSO-CRIC achieved a better trade-off between FLOP reduction and PSNR, as
demonstrated by exhibiting the frontier curve under varying pruning ratios. Visual examples shown
in Figure 7 further cross-verify the effective performance preservation by our approaches.

4.3 IMAGE CLASSIFICATION

T
o
p
-1

A
cc

u
ra

cy
(%

)

FLOPs Reduction (%)
30 50 70 90

70

78

76

74

72

GNN-RL (2022)

RP (2022)

HSPG (2021)

ResRep (2021)

SCP (2020)

Hinge (2020)

Group-HS (2019)

GBN-60 (2019)

RRBP (2019)

RBP (2019)

SFP (2018)

DDS-26 (2018)

ThinNet (2017)

CP (2017)

DHSPG (2023)

HESSO (2024)

HESSO-CRIC (2024)

Figure 3: ResNet50 on ImageNet.

We then conduct on the benchmark ResNet50 (He et al.,
2016) on ImageNet. As displayed in Figure 3, HESSO-CRIC
roughly exhibits a Pareto frontier in terms of top-1 accu-
racy and FLOPs reduction under various group sparsities from
40% to 70%. HESSO and DHSPG perform competitively
in this application. Meanwhile, all of them could produce
structurally pruned sub-networks associated with smaller size,
fewer FLOPs, and higher accuracy compared to most of the ex-
isting approaches (Huang and Wang, 2018; Zhou et al., 2019;
Ding et al., 2021a; Yang et al., 2019; You et al., 2019; Zhou
et al., 2019). These results well validate the efficacy of the
newly proposed joint pruning and training optimizer on this
popular structured pruning benchmark.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Table 3: Structurally pruning MobileNet Search Space.
Method # of Params (M) MACs (M) Top Acc-1 (%)
OFALARGE # 75 (Cai et al., 2019) 9.14 595 80.0
MobileNetV2 (Sandler et al., 2018) 3.4 300 72.0
MobileNetV3-Large (Howard et al., 2019) 5.4 219 75.2
OFA # 75 (Cai et al., 2019) 5.81 230 76.9
HESSO 5.60 220 78.2
HESSO-CRIC 5.71 225 78.6

We further employ HESSO-(CRIC)
to structurally prune a pretrained
OFA network (Cai et al., 2019) on the
benchmark ImageNet (Deng et al.,
2009). The OFA network was pro-
duced by searching from a Mo-
bileNetV3 based super-network and could achieve 80.0% top-1 test accuracy on ImageNet. We
find that both HESSO-(CRIC) could effectively discover pruned sub-networks which similar size
and MACs while with higher performance than other OFA networks, i.e., 78.6% and 78.2% versus
76.9% testing accuracy.

4.4 LARGE LANGUAGE MODEL

Finally, we evaluated HESSO-(CRIC) on large language models (LLMs). Since both HESSO and
HESSO-CRIC utilize full gradient information, we focused on LLMs with fewer than 3 billion
parameters, such as the representative Phi-2-2.7B (Microsoft, 2023), to ensure that a single 80GB
GPU is sufficient, without requiring tensor parallelism (Ding et al., 2023). Our experimental setup
followed that of LoRAShear (Chen et al., 2023a).

Table 4: HESSO-CRIC over Phi-2-2.7B.

Pruning Ratio Method BoolQ PIQA HellaSwag WinoGrande ARC-e ARC-c OBQA Average
Baseline Phi-2-2.7B 83.30 79.11 73.82 75.77 80.05 54.18 51.40 71.09
Ratio = 20% SliceGPT (Ashkboos et al., 2024) 68.56 74.16 61.22 67.56 70.20 41.04 38.80 60.22

LLM-Pruner (Ma et al., 2023) 61.28 62.79 36.79 53.12 52.23 31.06 30.00 46.75
LoraShear (Chen et al., 2023a) 62.29 68.12 45.28 58.8 61.91 32.42 34.00 51.81
LoraPrune (Zhang et al., 2023) 57.22 67.79 45.1 54.85 61.87 35.15 33.80 50.83
HESSO-CRIC 69.67 74.37 62.27 66.54 72.30 41.44 38.20 60.67

Ratio = 25% SliceGPT (Ashkboos et al., 2024) 63.70 71.49 57.72 66.46 65.86 38.99 39.80 57.71
LLM-Pruner (Ma et al., 2023) 62.26 60.55 33.86 51.07 47.81 30.63 28.80 45.00
LoraShear (Chen et al., 2023a) 62.17 64.85 41.27 55.56 56.52 30.46 31.80 48.95
LoraPrune (Zhang et al., 2023) 62.54 64.69 40.19 52.33 56.02 33.62 32.40 48.83
HESSO-CRIC 67.06 73.77 58.51 65.18 70.66 38.60 38.00 58.74

Ratio = 30% SliceGPT (Ashkboos et al., 2024) 38.17 61.04 42.05 60.38 50.80 28.07 31.2 44.53
LLM-Pruner (Ma et al., 2023) 62.11 59.36 32.27 51.54 44.07 30.03 29.8 44.17
LoraShear (Chen et al., 2023a) 62.17 63.22 39.25 57.14 51.77 28.58 30.00 47.45
LoraPrune (Zhang et al., 2023) 62.29 63.10 35.86 51.62 51.43 31.74 32.40 46.92
HESSO-CRIC 67.61 72.14 53.11 62.75 62.74 34.81 36.20 55.62

We observed that without conducting a knowledge distribution analysis and manually skipping cer-
tain layers from pruning, as LoRAShear (Chen et al., 2023a) did, HESSO often led to an irreversible
performance collapse. This is because knowledge in LLMs is unevenly distributed across layers
due to the learning strategy. The saliency scores calculated upon the pretraining weights may fail to
identify essential structures, making it difficult to differentiate between indispensable components
and those that could be pruned. As a result, pruning such critical structures severely degrades the
model’s performance, making recovery with limited resources nearly impossible.

HESSO-CRIC was able to automatically bypass these crucial structures, enabling effective and suc-
cessful pruning. We then compared with SliceGPT (Ashkboos et al., 2024), LLM-Pruner (Ma et al.,
2023), LoraShear (Chen et al., 2023a) and LoraPrune (Zhang et al., 2023) across several popular
benchmarks. Our findings indicate that HESSO-CRIC consistently outperforms them at varying
pruning ratios, with performance improvements becoming more pronounced as the pruning ratio
increases. This is because LLM-Pruner, LoRA-Prune, and LoRAShear are LoRA-based techniques.
Lora primarily focuses on fine-tuning well-trained models and is less effective in capturing knowl-
edge for underfitted models, such as pruned LLMs.

5 CONCLUSION

In this work, we introduced HESSO-(CRIC), a novel Hybrid Efficient Structured Sparse Optimizer
tailored for pruning deep neural networks while preserving performance. By combining a hybrid
training strategy with explicit, progressive pruning control, and the Corrective Redundant Identi-
fication Cycle (CRIC), HESSO-(CRIC) effectively tackles challenges such as tuning efforts, user
difficulty, and irreversible performance degradation. Our experiments across diverse domains show
that it not only competes with but often surpasses state-of-the-art methods.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REPRODUCIBILITY STATEMENT

The theorems and experimental results could be fully reproduced. In particular, we provide the code
base to reproduce the experimental results as supplementary materials. Meanwhile, we provide the
proof for the main theorem in Appendix C.

REFERENCES

E. Agustsson and R. Timofte. Ntire 2017 challenge on single image super-resolution: Dataset
and study. In Proceedings of the IEEE conference on computer vision and pattern recognition
workshops, 2017.

N. Ahn, B. Kang, and K.-A. Sohn. Fast, accurate, and lightweight super-resolution with cascading
residual network. In Proceedings of the European conference on computer vision (ECCV), pages
252–268, 2018.

S. Ashkboos, M. L. Croci, M. G. d. Nascimento, T. Hoefler, and J. Hensman. Slicegpt: Compress
large language models by deleting rows and columns. arXiv preprint arXiv:2401.15024, 2024.

H. Cai, C. Gan, T. Wang, Z. Zhang, and S. Han. Once-for-all: Train one network and specialize it
for efficient deployment. arXiv preprint arXiv:1908.09791, 2019.

T. Chen, F. E. Curtis, and D. P. Robinson. A reduced-space algorithm for minimizing /ell 1-
regularized convex functions. SIAM Journal on Optimization, 27(3):1583–1610, 2017.

T. Chen, F. E. Curtis, and D. P. Robinson. Farsa for ℓ1-regularized convex optimization: local
convergence and numerical experience. Optimization Methods and Software, 2018.

T. Chen, T. Ding, B. Ji, G. Wang, Y. Shi, S. Yi, X. Tu, and Z. Zhu. Orthant based proximal stochastic
gradient method for ell 1-regularized optimization. arXiv preprint arXiv:2004.03639, 2020a.

T. Chen, B. Ji, Y. Shi, T. Ding, B. Fang, S. Yi, and X. Tu. Neural network compression via sparse
optimization. arXiv preprint arXiv:2011.04868, 2020b.

T. Chen, G. Wang, T. Ding, B. Ji, S. Yi, and Z. Zhu. A half-space stochastic projected gradient
method for group-sparsity regularization. arXiv preprint arXiv:2009.12078, 2020c.

T. Chen, T. Ding, B. Ji, G. Wang, Y. Shi, J. Tian, S. Yi, X. Tu, and Z. Zhu. Orthant based prox-
imal stochastic gradient method for 1 1-regularized optimization. In Machine Learning and
Knowledge Discovery in Databases: European Conference, ECML PKDD 2020, Ghent, Belgium,
September 14–18, 2020, Proceedings, Part III, pages 57–73. Springer, 2021a.

T. Chen, B. Ji, T. Ding, B. Fang, G. Wang, Z. Zhu, L. Liang, Y. Shi, S. Yi, and X. Tu. Only train once:
A one-shot neural network training and pruning framework. In Advances in Neural Information
Processing Systems, 2021b.

T. Chen, T. Ding, B. Yadav, I. Zharkov, and L. Liang. Lorashear: Efficient large language model
structured pruning and knowledge recovery. arXiv preprint arXiv:2310.18356, 2023a.

T. Chen, T. Ding, Z. Zhu, Z. Chen, H. Wu, I. Zharkov, and L. Liang. Otov3: Automatic architecture-
agnostic neural network training and compression from structured pruning to erasing operators.
arXiv preprint arXiv:2312.09411, 2023b.

T. Chen, L. Liang, D. Tianyu, Z. Zhu, and I. Zharkov. Otov2: Automatic, generic, user-friendly. In
International Conference on Learning Representations, 2023c.

Y. Dai, T. Chen, G. Wang, and D. P. Robinson. An adaptive half-space projection method for stochas-
tic optimization problems with group sparse regularization. Transactions on machine learning
research, 2023.

T. Deleu and Y. Bengio. Structured sparsity inducing adaptive optimizers for deep learning. arXiv
preprint arXiv:2102.03869, 2021.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. Imagenet: A large-scale hierarchical
image database. In 2009 IEEE conference on computer vision and pattern recognition, pages
248–255. Ieee, 2009.

T. Ding, T. Chen, H. Zhu, J. Jiang, Y. Zhong, J. Zhou, G. Wang, Z. Zhu, I. Zharkov, and L. Liang.
The efficiency spectrum of large language models: An algorithmic survey. arXiv preprint
arXiv:2312.00678, 2023.

X. Ding, T. Hao, J. Tan, J. Liu, J. Han, Y. Guo, and G. Ding. Lossless cnn channel pruning via
decoupling remembering and forgetting. Proceedings of the IEEE International Conference on
Computer Vision, 2021a.

X. Ding, T. Hao, J. Tan, J. Liu, J. Han, Y. Guo, and G. Ding. Resrep: Lossless cnn pruning via de-
coupling remembering and forgetting. In Proceedings of the IEEE/CVF international conference
on computer vision, pages 4510–4520, 2021b.

L. Enderich, F. Timm, and W. Burgard. Holistic filter pruning for efficient deep neural networks.
In Proceedings of the IEEE/CVF winter conference on applications of computer vision, pages
2596–2605, 2021.

G. Fang, X. Ma, M. Song, M. B. Mi, and X. Wang. Depgraph: Towards any structural pruning.
In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pages
16091–16101, 2023.

J. Frankle and M. Carbin. The lottery ticket hypothesis: Finding sparse, trainable neural networks.
arXiv preprint arXiv:1803.03635, 2018.

T. Gale, E. Elsen, and S. Hooker. The state of sparsity in deep neural networks. arXiv preprint
arXiv:1902.09574, 2019.

S.-H. Gao, Y.-Q. Tan, M.-M. Cheng, C. Lu, Y. Chen, and S. Yan. Highly efficient salient object
detection with 100k parameters. In European Conference on Computer Vision, pages 702–721.
Springer, 2020.

Y. Guo, Y. Zheng, M. Tan, Q. Chen, J. Chen, P. Zhao, and J. Huang. Nat: Neural architecture
transformer for accurate and compact architectures. Advances in Neural Information Processing
Systems, 32, 2019.

S. Han, H. Mao, and W. J. Dally. Deep compression: Compressing deep neural networks with
pruning, trained quantization and huffman coding. arXiv preprint arXiv:1510.00149, 2015.

K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. In Proceedings
of the IEEE conference on computer vision and pattern recognition, 2016.

Y. He, G. Kang, X. Dong, Y. Fu, and Y. Yang. Soft filter pruning for accelerating deep convolutional
neural networks. arXiv preprint arXiv:1808.06866, 2018a.

Y. He, J. Lin, Z. Liu, H. Wang, L.-J. Li, and S. Han. Amc: Automl for model compression and
acceleration on mobile devices. In Proceedings of the European conference on computer vision
(ECCV), pages 784–800, 2018b.

A. Howard, M. Sandler, G. Chu, L.-C. Chen, B. Chen, M. Tan, W. Wang, Y. Zhu, R. Pang, V. Vasude-
van, et al. Searching for mobilenetv3. In Proceedings of the IEEE/CVF international conference
on computer vision, pages 1314–1324, 2019.

J.-B. Huang, A. Singh, and N. Ahuja. Single image super-resolution from transformed self-
exemplars. In Proceedings of the IEEE conference on computer vision and pattern recognition,
2015.

Z. Huang and N. Wang. Data-driven sparse structure selection for deep neural networks. In Pro-
ceedings of the European conference on computer vision (ECCV), pages 304–320, 2018.

J. Jeon, J. Kim, J.-K. Kang, S. Moon, and Y. Kim. Target capacity filter pruning method for op-
timized inference time based on yolov5 in embedded systems. IEEE Access, 10:70840–70849,
2022.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

B. Ji and T. Chen. Generative adversarial network for handwritten text. arXiv preprint
arXiv:1907.11845, 2019.

G. Jocher, A. Chaurasia, A. Stoken, J. Borovec, Y. Kwon, K. Michael, J. Fang, C. Wong, Z. Yifu,
D. Montes, et al. ultralytics/yolov5: v6. 2-yolov5 classification models, apple m1, reproducibility,
clearml and deci. ai integrations. Zenodo, 2022.

J. Ko, S. Park, Y. Kim, S. Ahn, D.-S. Chang, E. Ahn, and S.-Y. Yun. NASH: A simple unified
framework of structured pruning for accelerating encoder-decoder language models. In Findings
of the Association for Computational Linguistics: EMNLP 2023, pages 6076–6093, 2023.

J. Ko, S. Kim, T. Chen, and S.-Y. Yun. Distillm: Towards streamlined distillation for large language
models. arXiv preprint arXiv:2402.03898, 2024.

F. Lagunas, E. Charlaix, V. Sanh, and A. Rush. Block pruning for faster transformers. In Proceedings
of the 2021 Conference on Empirical Methods in Natural Language Processing, pages 10619–
10629, 2021.

B. Li, B. Wu, J. Su, and G. Wang. Eagleeye: Fast sub-net evaluation for efficient neural network
pruning. In Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August
23–28, 2020, Proceedings, Part II 16, pages 639–654. Springer, 2020a.

Y. Li, S. Gu, C. Mayer, L. V. Gool, and R. Timofte. Group sparsity: The hinge between filter pruning
and decomposition for network compression. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 8018–8027, 2020b.

S. Lin, R. Ji, Y. Li, C. Deng, and X. Li. Toward compact convnets via structure-sparsity regularized
filter pruning. IEEE transactions on neural networks and learning systems, 31(2):574–588, 2019.

T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan, P. Dollár, and C. L. Zitnick.
Microsoft coco: Common objects in context. In Computer Vision–ECCV 2014: 13th European
Conference, Zurich, Switzerland, September 6-12, 2014, Proceedings, Part V 13, pages 740–755.
Springer, 2014.

R. Luo, F. Tian, T. Qin, E. Chen, and T.-Y. Liu. Neural architecture optimization. Advances in
neural information processing systems, 31, 2018.

X. Ma, G. Fang, and X. Wang. Llm-pruner: On the structural pruning of large language models.
Advances in neural information processing systems, 36:21702–21720, 2023.

D. Martin, C. Fowlkes, D. Tal, and J. Malik. A database of human segmented natural images
and its application to evaluating segmentation algorithms and measuring ecological statistics. In
Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001, volume 2,
pages 416–423. IEEE, 2001.

F. Meng, H. Cheng, K. Li, H. Luo, X. Guo, G. Lu, and X. Sun. Pruning filter in filter. arXiv preprint
arXiv:2009.14410, 2020.

Microsoft. Phi-2: The surprising power of small language models. 2023. URL https:
//huggingface.co/microsoft/phi-2.

P. Rajpurkar, J. Zhang, K. Lopyrev, and P. Liang. Squad: 100,000+ questions for machine compre-
hension of text. arXiv preprint arXiv:1606.05250, 2016.

J. Redmon, S. Divvala, R. Girshick, and A. Farhadi. You only look once: Unified, real-time object
detection. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pages 779–788, 2016.

D. Ren, W. Li, T. Ding, L. Wang, Q. Fan, J. Huo, H. Pan, and Y. Gao. Onnxpruner: Onnx-based
general model pruning adapter. arXiv preprint arXiv:2404.08016, 2024.

M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C. Chen. Mobilenetv2: Inverted residuals
and linear bottlenecks. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pages 4510–4520, 2018.

13

https://huggingface.co/microsoft/phi-2
https://huggingface.co/microsoft/phi-2

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Y. Shi, A. Orazaev, T. Chen, and S. YI. Object detection and segmentation for inking applications,
Sept. 24 2020. US Patent App. 16/360,006.

M. van Baalen, C. Louizos, M. Nagel, R. A. Amjad, Y. Wang, T. Blankevoort, and M. Welling.
Bayesian bits: Unifying quantization and pruning. arXiv preprint arXiv:2005.07093, 2020.

A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser, and I. Polo-
sukhin. Attention is all you need. In Advances in neural information processing systems, pages
5998–6008, 2017.

X. Wang, J. Rachwan, S. GUnnemann, and B. Charpentier. Structurally prune anything: Any archi-
tecture, any framework, any time. arXiv preprint arXiv:2403.18955, 2024.

W. Wen, C. Wu, Y. Wang, Y. Chen, and H. Li. Learning structured sparsity in deep neural networks.
arXiv preprint arXiv:1608.03665, 2016.

X. Wu, S. Gao, Z. Zhang, Z. Li, R. Bao, Y. Zhang, X. Wang, and H. Huang. Auto-train-once: Con-
troller network guided automatic network pruning from scratch. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pages 16163–16173, 2024.

M. Xia, Z. Zhong, and D. Chen. Structured pruning learns compact and accurate models. In Pro-
ceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1:
Long Papers), pages 1513–1528, 2022.

H. Yang, W. Wen, and H. Li. Deephoyer: Learning sparser neural network with differentiable scale-
invariant sparsity measures. arXiv preprint arXiv:1908.09979, 2019.

Z. You, K. Yan, J. Ye, M. Ma, and P. Wang. Gate decorator: Global filter pruning method for
accelerating deep convolutional neural networks. arXiv preprint arXiv:1909.08174, 2019.

R. Zeyde, M. Elad, and M. Protter. On single image scale-up using sparse-representations. In
International conference on curves and surfaces. Springer, 2010.

M. Zhang, H. Chen, C. Shen, Z. Yang, L. Ou, X. Yu, and B. Zhuang. Loraprune: Pruning meets
low-rank parameter-efficient fine-tuning. arXiv preprint arXiv:2305.18403, 2023.

J. Zhou, T. Ding, T. Chen, J. Jiang, I. Zharkov, Z. Zhu, and L. Liang. Dream: Diffusion rectification
and estimation-adaptive models. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 8342–8351, 2024.

Y. Zhou, Y. Zhang, Y. Wang, and Q. Tian. Accelerate cnn via recursive bayesian pruning. In
Proceedings of the IEEE International Conference on Computer Vision, pages 3306–3315, 2019.

H. Zhu, T. Ding, T. Chen, I. Zharkov, R. Nevatia, and L. Liang. Caesarnerf: Calibrated semantic
representation for few-shot generalizable neural rendering. arXiv preprint arXiv:2311.15510,
2023.

T. Zhuang, Z. Zhang, Y. Huang, X. Zeng, K. Shuang, and X. Li. Neuron-level structured pruning
using polarization regularizer. Advances in Neural Information Processing Systems, 33, 2020.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

A MORE RELATED WORKS

Knowledge Transfer. To retain the performance of the pruned sub-network, HESSO-(CRIC) in-
corporates a knowledge transfer mechanism through a hybrid training schema. This approach differs
from prior methods, which explicitly use knowledge distillation from unpruned models to preserve
information in pruned models. Existing techniques typically require expensive computations that
involve both pruned and unpruned models, whether by processing logits (Lagunas et al., 2021)
or the hidden activations of intermediate layers (Xia et al., 2022; Ko et al., 2023). In contrast,
our approach preserves knowledge without incurring such computational costs. Another related
works, ResRep (Ding et al., 2021b) and SliceGPT (Ashkboos et al., 2024), also aim to preserve
computational invariance. The knowledge transfer in HESSO-(CRIC) similarly seeks to maintain
computational invariance but does so by focusing on preserving objective function levels. How-
ever, SliceGPT is restricted to the transformer architectures and requires manually injecting ad-
ditional layers. ResRep is restricted to CNN architectures and require conducting structurally re-
parametrization via computing resetting gradients. HESSO-(CRIC) is architecture-agnostic, effi-
cient and user-friendly, demonstrating both scalability and versatility.

Neural Architecture Optimization. Another related realm is the optimization over pre-specified
neural architecture. NAO (Luo et al., 2018) encodes the DNN architecture into a latent representa-
tion, search over the latent space, then decodes back to a revised architecture. NAT (Guo et al., 2019)
performs operator transformation upon the given DNN to produce more accurate network. These
approaches transform and improve the existing DNNs, yet not search an optimal sub-network. As
a result, their produced networks are typically not significantly compact compared to the baseline
models. Contrarily, our approach focuses on automatically and effectively discovering compact
sub-networks given pre-specified DNNs via structured pruning.

B SUPPLEMENTARY FIGURES

Conv1 BN1Input

Conv2 BN2

Conv3 BN3

Conv5 BN5

MaxPool

Conv4 BN4AvgPool

Concat Conv6 Conv7 BN7

Conv8 BN8

Linear1AvgPool Output

(a) Trace graph of target DNN.

Conv1Input

Conv2 BN2

Conv3 BN3

Conv5 BN5

MaxPool

Conv4 BN4AvgPool

Concat BN6 Conv7

Conv8

Linear1AvgPool OutputLinear2

Conv6

(b) Pruning dependency graph.
K̂2 γ2 β2K̂1

GC

PZIG = {GPZIG = {Gprune = GPZIG

⋃
GC

PZIG } }

γ2

6
β2

6
K̂4 γ4 β4 γ4

6
β4

6
K̂3 b3 γ3 β3 γ3

6
β3

6
K̂5 γ5 β5 K̂6 K̂7 K̂8 W1 W2

(c) Pruning Zero-Invariant Groups.

Figure 4: Automated trainable variable partitions for one-shot structured pruning. Given the trace
graph shown in Figure 4a, automatic pruning frameworks such as OTOv2 (Chen et al., 2023c) con-
struct a pruning dependency graph shown as Figure 4b and partition the trainable variables as prun-
ing zero-invariant groups G in Figure 4c.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

C PROOF OF THEOREM 3.3

Proof. The statement is equivalent to that the violating cycle line 5-18 in Algorithm 2 terminates
within finite number of steps. For convenience, we denote Vl as the violating set at lth cycle. The
statement then becomes that there exists an L <∞, such that VL = ∅. We now prove it as a two-step
fashion.

At first, we show that the violating set at lth loop Vl is disjoint to those at all previous loops {Vi}i=l−1i=0 .
This is true since the Vl is constructed excluding elements in the l − 1th historical setHl

Vl ← V̂l−1 /Hl−1, (6)
and Hl−1 is the union of previous violating set Hl−1 = ⋃i=l−1

i=0 Vi. Therefore, Vl is disjoint to all
violating sets {Vi}i=l−1i=0 .

Secondly, we prove on contraction. Suppose there exists no an L < ∞, such that VL = ∅. Since Vl
is disjoint with {Vi}i=l−1i=0 , it implies that Vl must include previously unseen and new element from
G. Consequently, the historical set Hl = ⋃i=l

i=0 Vi will have infinite number of elements as l tends to
∞, i.e.,

lim
l→∞
∣Hl∣ =∞. (7)

However, equation 7 contradicts that the historical set Hl is a subset of group partition set G, and
the cardinality of G is finite. Therefore, we conclude the corrective redundancy identification cycle
always terminates within a finite number of steps.

D SALIENCE SCORE

Magnitude. The importance of a parameter group can be determined by its magnitude. We
further normalized against all the current important instances, mapping the score into the range
[0,1]. Heuristically, a group of variables with lower magnitude—implying they are closer to
zero—typically contributes less to the model output. Therefore, such groups are often considered
less important and more likely to be pruned.

scoremag([x]g)← ∥[x]g∥2 , scoremag([x]g)← scoremag([x]g)/ ∑
g∈GI

scoremag([x]g). (8)

Average Magnitude. While considering the overall magnitude can be useful, it may introduce bias
by disproportionately favoring groups with more parameters, marking them as more important. To
address this potential bias, the average magnitude is also considered. This metric measures the
average parameter magnitude within each group, providing a normalized assessment that accounts
for the number of parameters in each group. Consequently, the algorithm can more fairly compare
groups of different sizes and prevent the overrepresentation of larger groups.

scoreavg-mag([x]g)← ∥[x]g∥2 /∣
√
∣g∣∣, scoreavg-mag([x]g)← scoreavg-mag([x]g)/ ∑

g∈GI

scoreavg-mag([x]g).
(9)

Cosine Similarity. Another criterion for determining group importance is the cosine similarity
between the projection direction of parameter group and the negative gradient direction of the ob-
jective function. It can be calculated as the cosine similarity between −[x]g and the negative gra-
dient −[∇f(x)]g , followed by a normalization to map onto a common scale. This metric evaluates
whether projecting a group of parameters onto zero (i.e., moving towards the origin along the neg-
ative parameter direction) aligns with a descent direction for the objective function. A descent
direction is expected to decrease the objective function value, suggesting that pruning group of pa-
rameters onto zero may not significantly regress model’s performance. As a result, such groups are
more likely to be marked as redundant.

scorecosine([x]g, [∇f(x)]g)← [x]⊺g[∇f(x)]g/(∥[x]g∥ ∥[∇f(x)]g∥),
scorecosine([x]g, [∇f(x)]g)← scorecosine([x]g)/ ∑

g∈GI

scorecosine([x]g). (10)

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Taylor Importance. To further quantitatively approximate the effect of projecting the parameter
group [x]g onto zero on the objective function, we can employ the Taylor expansion. Taylor expan-
sion could estimate the impact of small changes in the parameters on the function value, allowing
us to consider varying orders of Taylor importance. In particular, the first-order Taylor expansion
provides a linear approximation of the objective function around the current parameter point. The
impact of setting [x]g → 0 can be estimated by the dot product of the gradient and the change in
parameters. It helps identify groups whose removal likely decrease objective function.

scoreTaylor-1st([x]g, [∇f(x)]g)← ∣f(x) − f(x∣[x]g → 0)∣ ≈ ∣[x]⊺g[∇f(x)]g ∣,
scoreTaylor-1st([x]g, [∇f(x)]g)← scoreTaylor-1st([x]g, [∇f(x)]g)/ ∑

g∈GI

scoreTaylor-1st([x]g, [∇f(x)]g).
(11)

The second order Taylor importance is based on the second-order Taylor expansion. It includes the
Hessian matrix, capturing the curvature of the objective function. This approximation considers not
only the gradient but also the second derivative, providing a more accurate estimate of the impact of
setting [x]g → 0.

scoreTaylor-2nd([x]g, [∇f(x)]g)← ∣f(x) − f(x∣[x]g → 0)∣ ≈ [x]⊺g[∇f(x)]g +
1

2
[x]⊺g[∇2f(x)]g[x]g,

scoreTaylor-2nd([x]g, [∇f(x)]g)← scoreTaylor-2nd([x]g, [∇f(x)]g)/ ∑
g∈GI

scoreTaylor-2nd([x]g, [∇f(x)]g).
(12)

E COMPUTATIONAL COST ANALYSIS

In this section, we present the time and space complexities of HESSO-(CRIC).

Table 5: Notations.

Symbol Definition Remark
N # of trainable variables with gradient
G The set of parameter groups The common setup could be pruning/erasing zero-invariant groups.
∣G∣ The size of G Typically negligible compared to N , see the below table.
T # of training steps
Tht # of hybrid training steps Set as Tht = T /10 in our generic recipe.
P # of pruning periods Set as P = 10 in our generic recipe.
S # of sampling steps in CRIC Set as S = 10 in our generic recipe.
C # of cycles in CRIC Empirically terminates within 10 cycles.

Table 6: Magnitude Comparison Between N and ∥G∥.

Model N ∣G∣ Ratio ∣G∣/N
CARNx2 9.6 × 105 1.7 × 103 1.8 × 10−3
ResNet50 2.6 × 107 1.2 × 104 4.6 × 10−4
Yolov5-Large 7.2 × 106 9.5 × 103 1.3 × 10−3
Bert-Base 1.1 × 108 3.8 × 104 3.5 × 10−4
Phi2-2.7B 2.7 × 109 4.1 × 105 1.5 × 10−4

Table 7: Space and Time Complexity Comparison.

Optimizer Variant Space Complexity (Peak) Time Complexity Space Complexity Projected onto Phi2 Time Complexity Projected onto Phi2
SGD Standard O(2N) O(NT) O(2N) O(NT)
HESSO SGD O(2N + ∥G∥) O(NT + ∥G∥P) O(2.00015N) O(NT + 1.5 × 10−3N)
HESSO-CRIC SGD O(2N + ∥G∥S) O(NT + ∥G∥P + ∥G∥SC) O(2.0015N) O(NT + 1.515 × 10−1N)
Adam/AdamW Standard O(3N) O(2NT) – –
HESSO Adam/AdamW O(3N + ∥G∥) O(2NT + ∥G∥P) O(3.00015N) O(2NT + 1.5 × 10−3N)
HESSO-CRIC Adam/AdamW O(3N + ∥G∥S) O(2NT + ∥G∥P + ∥G∥SC) O(3.0015N) O(2NT + 1.515 × 10−1N)

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

HESSO-(CRIC) requires additional time and space complexities while the additions are negligible.
In our numerous realistic applications besides the presented academic benchmarks, HESSO-(CRIC)
are quite efficient, typically as efficient as standard training via vanilla optimizers.

F MORE EXPERIMENTAL RESULTS

F.1 ABLATION STUDIES OF CRIC ON SALIENCY SCORES

The default format of CRIC primarily targets the most commonly used saliency scores that are
sensitive to approximation errors caused by distances to the origin. For saliency scores with such
higher sensitivities, CRIC’s multiple sampling strategy—gathering information along the direction
toward the origin—and its voting mechanism over historical statistics can effectively mitigate these
identification issues.

To validate this, we have included a new ablation study for CRIC to demonstrate its improvements
across varying saliency scores. As shown in the results, for commonly used saliency scores, CRIC
effectively improves performance. However, magnitude and average magnitude benefits less from
CRIC due to the persistence of large approximation errors, even as the groups of iterates move closer
to the origin.

Table 8: Ablation Studies of CRIC on Zero-Shot Pruning Phi2.

Magnitude Avg Magnitude Cosine Similarity 1st Taylor 2nd Taylor
No CRIC CRIC No CRIC CRIC No CRIC CRIC No CRIC CRIC No CRIC CRIC

Perplexity↓ 629.1 489.4 713.5 644.6 525.5 53.4 438.3 28.6 378.2 37.1

Furthermore, for saliency scores whose approximation errors are not dependent on the distance to
the origin, the philosophy of CRIC can still be applied with proper adaptations. In such cases, it is
critical to analyze the root causes of the approximation errors for the given saliency scores. Based
on these root causes, CRIC’s multiple sampling strategy can be adjusted to collect more targeted
signals, thereby reducing identification errors in these scenarios.

F.2 COMPARATIVE ANALYSIS OF HYPER-PARAMETER TUNING EFFORTS

The key advantage of HESSO-(CRIC) over HSPGs in the OTO series lies in its white-box opti-
mization design. Unlike HSPGs, which are black-box optimizers requiring extensive task-specific
hyper-parameter tuning for optimal performance, HESSO-(CRIC) significantly reduces this sensi-
tivity by design. To highlight this difference, we present a comparative analysis of the total number
of training recipes required for three shared applications:

Table 9: Sparse optimization related hyper-parameter recipe comparisons.

HESSO-(CRIC) DHSPG
Super-Resolution CARNx2 General Recipe as described in Table 5 of manuscript. Recipe #1: λ = 10−2, λamplify = 20, ϵ = 0.0, etc.
Image-Classification ResNet General Recipe as described in Table 5 of manuscript. Recipe #2: λ = 10−3, λamplify = 2, ϵ = 0.95, etc.
Question-Answering Bert General Recipe as described in Table 5 of manuscript. Recipe #3: λ = 10−3, λamplify = 2, ϵ = 0.0, etc.
Total # of training recipes 1 3

As shown in the table, HESSO-(CRIC) achieves competitive or superior performance using a single
general-purpose recipe, whereas DHSPG requires distinct task-specific hyper-parameter settings for
each application.

Additionally, this comparison focuses only on hyper-parameters specific to sparse optimizers.
Black-box optimizers like HSPGs inherently manage sparsity exploration processes, which demand
further tuning of broader training parameters, such as learning rate schedules and the number of
epochs. In contrast, the white-box design of HESSO-(CRIC) avoids such complexities, offering a
more user-friendly, efficient, and practical solution.

F.3 QUESTION AND ANSWERING

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

F
1
-S

co
re

(%
)

Params Reduction (%)
0 10 50

82

87

85

84

83

DHSPG (2023)

86

20 30 40

HSPG (2021)

ProxSSI (2021)

88

HESSO-CRIC (2024)

HESSO (2024)

Figure 5: Bert on SQuAD.

Later, we compare HESSO-(CRIC) with DHSPG, HSPG, and
a representative proximal method ProxSSI (Deleu and Bengio,
2021) for pruning a transformer model Bert (Vaswani et al.,
2017), evaluated on the SQuAD question-answering bench-
mark (Rajpurkar et al., 2016). It is important to note that prox-
imal methods have been standard algorithms for solving sparse
optimization problems for decades. However, they are not ef-
fective at exploring sparsity while maintaining model perfor-
mance in deep learning applications (Dai et al., 2023).

As shown in Figure 5, HESSO, HESSO-CRIC, and DHSPG
perform competitively on this task in terms of parameter reduc-
tion while maintaining F1 scores. However, DHSPG achieves
these results after extensive hyper-parameter tuning, which
is not convenient. HSPG penalizes all variables toward zero
which severely restricts the optimization search space, leading
to suboptimal performance. ProxSSI additionally lacks suffi-
cient sparsity exploration capacity, being not comparable.

F.4 OBJECT DETECTION

Table 10: Structurally pruning Yolov5l on COCO.

Method # of Params mAP0.5 mAP0.5∶0.95

Baseline 100% 66.31% 47.71%
HFP (Enderich et al., 2021) 50% 63.5% 43.4%
TCFP (Jeon et al., 2022) 50% 61.8% 42.7%
HESSO (30% group sparsity) 49% 63.1% 44.4%
HESSO-CRIC (30% group sparsity) 49% 63.1% 44.5%

Next, we tested HESSO on the popular YOLO (Redmon et al., 2016) object detection model using
the COCO benchmark dataset (Lin et al., 2014). Table 10 presents the structural pruning results
for YOLOv5l (Jocher et al., 2022). Note that we selected YOLOv5l to facilitate comparisons with
other existing benchmarks. We applied HESSO and HESSO-CRIC with a target group sparsity of
30%, resulting in a sub-network containing 49% of the original parameters. This allows for direct
comparison with benchmarks that retain 50% of the model’s parameters. The results show that a sin-
gle run of HESSO and HESSO-CRIC achieved significantly higher Mean Average Precision (mAP)
compared to other pruning approaches, which often require more complex, multi-stage procedures.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

(a) Pretrained YOLOv5l. (b) Group Sparsity = 30%.

(c) Pretrained YOLOv5l. (d) Group Sparsity = 30%.

Figure 6: Visual examples of pruned YOLOv5l.

(a) Low resoluted image. (b) Group Sparsity = 20%. (c) Group sparsity = 30%.

(d) High resoluted image. (e) Group Sparsity = 50%. (f) Group Sparsity = 60%.

Figure 7: Visual examples of pruned CARNx2 produced HESSO-CRIC on Urban100.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

Table 11: Structurally pruning Bert on SQuAD.

Method Group Sparsity # of Params F1-score
Baseline 100% 88.3%

ProxSSI (Deleu and Bengio, 2021) – 83.4%† 82.0%
HSPG (Chen et al., 2021b) – 91.0% 84.1%
HSPG (Chen et al., 2021b) – 66.7% 82.0%

DHSPG 10% 93.3% 87.7%
DHSPG 30% 80.1% 87.3%
DHSPG 50% 68.3% 86.2%
DHSPG 70% 55.0% 83.8%
HESSO 10% 94.78% 87.20%
HESSO 30% 84.33% 86.72%
HESSO 50% 73.88% 86.46%
HESSO 70% 63.34% 85.50%
HESSO 90% 53.0% 84.25%

HESSO-CRIC 10% 94.78% 87.48%
HESSO-CRIC 30% 84.32% 87.10%
HESSO-CRIC 50% 73.88% 86.50%
HESSO-CRIC 70% 63.44% 85.96%
HESSO-CRIC 90% 53.0% 84.10%

† Approximate value based on (Deleu and Bengio, 2021).

F
1
-S
co

re
(%

)

Params Reduction (%)
0 10 50

82

87

85

84

83

DHSPG (2023)

86

20 30 40

HSPG (2021)

ProxSSI (2021)

88

HESSO-CRIC (2024)

HESSO (2024)

21

	Introduction
	Related Works of Automated Structured Pruning
	HESSO
	Saliency Score
	Hybrid Training in HESSO
	Approximation Errors of Salience Scores
	Corrective Redundancy Identification Circle

	Numerical Experiments
	Recommended Experimental Setup
	Super Resolution
	Image Classification
	Large Language Model

	Conclusion
	More Related Works
	Supplementary Figures
	Proof of Theorem 3.3
	Salience Score
	blue Computational Cost Analysis
	More Experimental Results
	Ablation Studies of CRIC on Saliency Scores
	blue Comparative analysis of hyper-parameter tuning efforts
	Question and Answering
	Object Detection

