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ABSTRACT

Structured pruning is one of the most popular approaches to effectively compress
the heavy deep neural networks (DNNs) into compact sub-networks while retain-
ing the original network performance. The existing methods suffer from multi-
stage procedures along with significant engineering efforts and human expertise.
The Only-Train-Once series (OTOv1-v3) has been recently proposed to resolve
the many pain points by streamlining the workflow. However, the built-in sparse
optimizers in the OTO series, i.e., the Half-Space Projected Gradient (HSPG) fam-
ily, have limitations that require hyper-parameter tuning and the implicit controls
of the sparsity exploration, consequently requires intervening by human expertise.
To further address such limitations, we propose a novel Hybrid Efficient Struc-
tured Sparse Optimizer (HESSO). HESSO could automatically and efficiently
train a DNN within a single run to produce a high-performing sub-network. Mean-
while, it is almost tuning-free and enjoys user-friendly integration for generic
training applications. To address another common issue of irreversible pruning
performance collapse observed in some DNNs, we further propose a novel Cor-
rective Redundant Identification Cycle (CRIC) to plug into HESSO for reliably
identifying indispensable structures. We numerically demonstrate the efficacy of
HESSO and its enhanced version HESSO-CRIC on a variety of applications rang-
ing from computer vision to natural language processing, including large language
model. The numerical results showcase that HESSO can achieve competitive per-
formance to varying state-of-the-art benchmarks and support most DNN archi-
tectures. Meanwhile, CRIC can effectively prevent the irreversible performance
collapse and further enhance the performance of HESSO on certain applications.

1 INTRODUCTION

Large deep neural networks (DNNs) have successfully powered a variety of applications (Ji and
Chen, 2019; Zhou et al., 2024; Zhu et al., 2023). However, their typical significant time and space
complexities make inference expensive and restrict deployment in resource-constrained environ-
ments. Consequently, how to compress the full DNN to the greatest extend while preserving the
performance becomes essential in the many industrial and academic AI deployment pipelines. There
are various model compression techniques including but not limited to pruning (Chen et al., 2021b;
2023c; Fang et al., 2023), knowledge distillation (Ko et al., 2024) and quantization (Han et al.,
2015), which have been well developed in the past decades.

Structured pruning typically serves as the foremost technique to produce an optimal sub-network
from a pre-defined full DNN by identifying and removing redundant structures (Gale et al., 2019;
Han et al., 2015; Chen et al., 2021b; 2023c; Fang et al., 2023; Wang et al., 2024; Wu et al., 2024).
Classical pruning methods focus on conducting a multi-stage procedure, requiring significant engi-
neering efforts and expertise to manually build pruning search space, identify redundant structures,
construct sub-network, and fine-tune to recover lost knowledge. To alleviate the human engineering
burden, recent works (Chen et al., 2023c;b; Fang et al., 2023) have proposed pruning dependency
graph to automate the pruning search space and sub-network construction. OTOv1-v2 (Chen et al.,
2021b; 2023c) further unify these multi-stage components together, requiring only a single train-
ing run to directly get a compact sub-network without the need of further fine-tuning. Specifically,
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Automatic Any DNN Joint Training and Structured-Pruning

Figure 1: Automatic any DNN joint training and structured pruning experience achieved by the
pruning mode of OTO along with the proposed HESSO and its enhanced HESSO-CRIC optimizer.
The procedure could be applied onto varying DNN and applications, and seamlessly integrated into
any training pipeline to directly produce a compact pruned sub-network without further fine-tuning.

they rely on (Dual) Half-Space Stochastic Gradient Descent (D)HSPG methods to train and prune
simultaneously and have introduced a rigorous theoretical version AdaHSPG+ (Dai et al., 2023).

(D)HSPG HESSO HESSO-CRIC
Efficiency ★★ ★ ★ ★ ★ ★ ☆
Tuning-Free ★ ★ ★ ★ ★ ★ ★
User-Friendliness ★ ★ ★ ★ ★ ★ ★
Performance ★ ★ ★† ★ ★ ☆ ★ ★ ★
† Under sufficient hyper-parameter tuning efforts.

Although OTOv1 and OTOv2 have significantly ad-
vanced the ease of use in DNN joint training and
structured pruning, they still face challenges related
to the complexity of the built-in (D)HSPG meth-
ods (Chen et al., 2021b; 2023c; 2020c;a). Specifi-
cally, these methods often require substantial hyper-parameter tuning for different downstream ap-
plications and DNN architectures (Dai et al., 2023; Wu et al., 2024). Furthermore, the sparsity
explorations are implicit, which requires optimization expertise, thereby diminishes the practical
convenience and usability.

Meanwhile, many modern pruning and neural architecture search methods rely on saliency scores
(such as Taylor based) to identify redundant structures. However, they often suffer from perfor-
mance degradation due to mistakenly identifying indispensable structures as redundant. This degra-
dation can sometimes be irreversible due to architectural design constraints, transparency of training
datasets, and the significant training resources required, posing practical challenges for their use.

To overcome these pain-points, we naturally ask, i.e., how to get a joint training and pruning opti-
mizer which is ease-to-use, reliable, high-performing, and applicable onto any DNNs and tasks.

In this work, we address this question by proposing HESSO: Hybrid Efficient Structured Sparse
Optimizer for automatic one-shot any DNN training and structured pruning. Compared to the HSPG
family, HESSO offers several advantages. First, HESSO significantly simplifies the hyper-parameter
setup, providing considerable practical convenience. Second, HESSO employs a progressive prun-
ing strategy to explicitly control the sparsity exploration, making it user-friendly. Third, HESSO
optionally incorporates a novel Corrective Redundancy Identification Cycle (CRIC) mechanism,
so-called HESSO-CRIC, which more accurately identifies redundant groups, thereby minimizing
the risk of irreversible performance collapse caused by pruning indispensable structures. We now
summarize our main contributions as follows.

• Efficient Hybrid Training and Pruning Optimizer. We propose an efficient and easy-to-use
optimizer, HESSO, to enable automatic joint structured pruning and training for various model
architectures and applications. HESSO progressively identifies redundant groups through flexible
saliency score estimations and utilizes a hybrid training schema to effectively transfer knowledge
from redundant groups to important ones, thereby maintaining the performance of the pruned
model. Compared to the D(HSPG) in OTO, HESSO explicitly controls sparsity exploration and
knowledge transfer, minimizes the need for hyper-parameter tuning. As a result, HESSO becomes
the first optimizer to realize convenient joint DNN training and pruning to our knowledge.

• Corrective Redundancy Identification Cycle. We propose a novel Corrective Redundancy Iden-
tification Cycle (CRIC) to significantly improve the accuracy of redundancy identification. CRIC
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addresses the approximation errors often associated with popular Taylor-based saliency scores,
thereby reducing the risk of mistakenly pruning indispensable groups. CRIC employs a voting
mechanism and measures the saliency scores of each group candidate using a multi-sampling ap-
proach towards the origin. CRIC is pluggable into HESSO or future joint optimizers to help to
ensure reliable model performance by providing a more accurate assessment of group significance.

• Numerical Experiments. We validate the efficacy of HESSO and its enhanced version HESSO-
CRIC across a variety of applications and model architectures. Specifically, we evaluate its per-
formance on high-level computer vision tasks such as image classification and object detection,
low-level vision tasks like super-resolution, as well as natural language processing tasks including
large language models. The numerical results demonstrate that HESSO performs competitively,
and in many cases, exceeds the state-of-the-art benchmarks, offering significant practical con-
venience. Additionally, CRIC effectively mitigates the issues of irreversible collapse in pruned
models, especially in challenging cases, further showcasing its utility.

2 RELATED WORKS OF AUTOMATED STRUCTURED PRUNING

In this section, we provide a brief literature review on automatic structured pruning, while additional
reviews on knowledge transfer and DNN architecture optimization can be found in Appendix A.

General Pruning Procedures. Structured pruning aims to compress DNNs by removing unnec-
essary structures while maintaining performance (Han et al., 2015; Wen et al., 2016). The general
procedure typically involves: (i) training a full model; (ii) identifying and removing redundant struc-
tures to construct a slimmer DNN based on various criteria (Lin et al., 2019; He et al., 2018a; Wen
et al., 2016; Li et al., 2020b; Zhuang et al., 2020; Chen et al., 2017; 2018; 2021a; 2020b; Gao et al.,
2020; Zhuang et al., 2020; Meng et al., 2020; Yang et al., 2019; Zhou et al., 2019; van Baalen et al.,
2020; Frankle and Carbin, 2018); and (iii) retraining the pruned model to recover any accuracy lost
during pruning. These methods often require a complex and time-consuming process, involving
multiple training iterations and significant domain knowledge to manually handle each step.

Automated Pruning Given Pre-defined Search Space. To resolve the pain-points of human in-
terventions, automated pruning is raising interests from different perspectives. Given a predefined
search space, AMC (He et al., 2018b) employs reinforcement learning agents to automatically de-
termine the optimal pruning ratio. EagleEye (Li et al., 2020a) further introduces a sub-network eval-
uation scheme based on adaptive batch normalization, which can be integrated into AMC. OFA (Cai
et al., 2019) automates the generation of sub-networks for different hardware platforms in a sin-
gle process. While these approaches yield impressive performance, their application is limited to
predefined search spaces. Moreover, AMC incurs additional training costs for its reinforcement
learning agent. OFA’s training procedure is complex and heavy to adopt all sub-networks. It also
requires knowing the optimal training procedure for the largest super-network in advance to ensure
the performance, which makes practical adoption less convenient.

Automated Pruning Over Any DNNs. On the other hand, automatically pruning arbitrary mod-
els without prior knowledge of the search space remained a significant challenge. Recent methods,
such as OTO (Chen et al., 2021b; 2023c;b) and DepGraph (Fang et al., 2023), have made progress
in automating the structured pruning process for general DNNs via dependency graph analysis.
Subsequent works like (Wang et al., 2024) and (Ren et al., 2024) automates pruning over ONNX
models. ATO (Wu et al., 2024) introduces ControlNet upon OTOv2. Among these, OTO offers a
one-shot joint training and pruning framework that can seamlessly integrate into various training
processes to produce high-performing sub-networks in a single run. While these automated ap-
proaches have significantly improved user convenience, end-users still face significant challenges
with hyper-parameter tuning and the sparse optimization expertise required to calibrate OTO’s built-
in HSPG family (Chen et al., 2020c; Dai et al., 2023). Furthermore, some DNNs contain indis-
pensable structures, the pruning of which leads to irreversible performance degradation. Identifying
these critical structures remains an open problem that is often handled manually on a case-by-case
basis, complicating practical use. In this work, we tackle these pain points to propose an efficient,
tuning-free, and user-friendly joint training and pruning optimizer HESSO along with its enhanced
version HESSO-CRIC to reliably identify indispensable structures to ensure the performance.
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Algorithm 1 HESSO: Hybrid Efficient Structured Sparsity Optimizer

1: Input. Initial variable x0, learning rate α, warm-up steps Tw, pruning periods P , period length
Tp, target group sparsity level K, and variable partition G = Gprunable⋃Gunprunable.

2: Warm up Tw steps via SGD or its variants, e.g., AdamW.
3: Initialize redundant groups GR ← ∅ and important groups GI ← G.
4: Compute sparsity level for each pruning period K̂ ∶=K/Tp.
5: for each pruning period p = 0,1,⋯, P − 1 do
6: Pickup Ĝp in GI with K̂-least saliency scores.
7: Update GR ← GR ∪ Ĝp and GI ← GI/Ĝp.
8: for t = 0,1,⋯, Tp − 1 do
9: Compute trial iterate x̂t+1 ← xt − αt∇f(xt).

10: Compute transferring penalty ratio [γt]g ← Tp−t−1

Tp−t

∥[xt]g∥

∥[x̂t+1]g∥
for each g ∈ Ĝp.

11: Update redundant group variables [xt+1]Ĝp ← [γt]Ĝp[x̂t+1]Ĝp .
12: Update important group variables [xt+1]GI ← [x̂t+1]GI .
13: end for
14: end for
15: Training important group variables till convergence.
16: Return the final iterate x∗HESSO.

g1 g2 g3

g4 g5 g6

g7 g8 g9

g10 g11 g12

Variable Groups G

Saliency

Score

g1 g5 g6

g8 g10 g11

g2 g3 g4

g7 g9 g12

GR

Identify Redundancy

GI

Hybrid Training

[xk]GR

00

[xk]GI

[xk+1]GI

−αk[∇f(xk)]GI
[xk+1]GR

−αk[∇f(xk)]GR

Knowledge

Transfer

Important Groups Redundant Groups

Figure 2: HESSO uses saliency scores to periodically identify redundant groups GR from the group
set G and marks the remaining groups as important groups GI . A knowledge transfer mechanism is
proceeded by employing hybrid training strategies onto GR and GI . In particular, the variables in
GR are progressively projected onto zeros after gradient descent. The important variables are kept
training via gradient descent to migrate the impact of redundant project onto the objective function.

3 HESSO

Given a target DNN which variables and architecture to be optimized, HESSO formulates a con-
strained structured sparsity optimization problem upon the parameter groups G as (1).

minimize
x∈Rn

f(x), s.t. Cardinality{g ∈ G∣[x]g = 0} =K, (1)

where we seek to yield group sparsity over the prunable variables with the target sparsity level as
K. The parameter groups can be pruning zero-invariant groups determined through the pruning
dependency graph analysis or other general group formats (Chen et al., 2023c;b).

During the optimization process, HESSO begins with a warm-up phase, where the variables are
trained using gradient descent or its variants. The purpose of the warm-up stage is to collect gradient
information and guide the DNN into a relatively favorable region for convergence. Following this,
HESSO performs progressive pruning by periodically identifying redundant parameter groups based
on predefined saliency scores. Throughout the progressive pruning phase, HESSO gradually forgets
the knowledge in the redundant groups while the remaining important groups continue training,
thereby facilitating the transfer and recapture of knowledge. We refer to this approach as hybrid
training, where distinct training strategies are applied to different groups. Finally, once all redundant
groups are identified and projected onto zero, the remaining important groups continue to be trained
until final convergence. The main procedure is outlined in Algorithm 1.

4
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3.1 SALIENCY SCORE

After warming up Tw steps in Algorithm 1, HESSO has typically collected reasonable information
regarding the gradient and the iterate. It then starts to identify redundant groups upon the target
group sparsity level K to partition the groups G into important group set GI and redundant group set
GR, i.e., GI ⋃GR = G and ∣GR∣ = K. HESSO achieves it by periodically measuring the importance
of each parameter group g ∈ G. To begin, we initialize the important group set as the whole group set
GI ← G, and the redundant group set as empty GR ← ∅. Given a pre-defined pruning periods P , we
identify K̂ ← K/P important groups to designate as redundant during each period. The redundant
groups are the ones with bottom-K̂ saliency scores.

GR ← GR⋃Bottom-K̂
g∈GI

SaliencyScore([x]g, [∇f(x)]g)

GI ← GI/Bottom-K̂
g∈GI

SaliencyScore([x]g, [∇f(x)]g)
(2)

The selection of the saliency score in HESSO is flexible and can be tailored to different purposes.
By default, we consider the categories presented in Appendix D.

3.2 HYBRID TRAINING IN HESSO

After identifying the redundant groups in Section 3.1, the next step is to project these groups onto
zero and transfer their knowledge to the important groups, ensuring the pruned model maintains its
performance. This is achieved through a hybrid training schema.

For the redundant groups GR, we progressively and uniformly push their parameters towards zero.
This process is detailed in line 7-8 in Algorithm 1 and decipted in Figure 2. The goal is to ensure
that the parameters in the redundant groups become zero after Tp steps. During this penalization
process, there is a risk of forgetting the knowledge contained in the redundant groups, which may
manifest as a degradation in the objective function’s value. To mitigate this, we employ a standard
optimization method, such as vanilla SGD or its variants like Adam, on the important groups GI .
This step aims to continue optimizing the objective function f and preserve the model’s performance
despite the pruning of redundant groups. By maintaining the optimization of the important groups,
the knowledge lost from the redundant groups can be transferred and compensated for, ensuring that
the pruned model remains effective.

Next, we provide brief intuitive comparisons of HESSO against two popular pruning algorithms.

Minimize tuning efforts compared to DHSPG. DHSPG in OTOv2 involves significant hyper-
parameter tuning to adjust parameters for sparsity exploration. This tuning often requires domain-
specific knowledge, as the appropriate settings can vary depending on the particular application or
dataset. This requirement can make DHSPG more complex and less accessible, particularly for
practitioners without extensive expertise in hyper-parameter and sparse optimization. Contrarily,
HESSO offers more explicit control over sparsity exploration. The pruning process in HESSO is
regulated by the pruning periods P and the period length TP , which determine the pace and extent of
the pruning procedure. This structured approach simplifies the process, making it easier to manage.

Architecture-agnostic computational invariance compared to ResRep and SliceGPT.
ResRep (Ding et al., 2021b) and SliceGPT (Ashkboos et al., 2024) are proposed to preserve com-
putational invariance, i.e., making pruned and full models produce similar outputs, for CNNs and
transformers, respectively. However, they are architecture specific, requires additional efforts, such
as injecting additional layers in SliceGPT and computing reset gradients in ResRep. The knowledge
transfer in HESSO similarly seeks to maintain computational invariance but does so by preserving
objective function levels. In addition, HESSO is architecture-agnostic, efficient and user-friendly,
demonstrating both scalability and versatility compared with ResRep and SliceGPT.

As a result, HESSO is generally easier to use and more adaptable to various applications, as it
significantly reduces the need for extensive tuning and specialized knowledge. The design of hy-
brid training for knowledge transfer effectively promotes the performance of pruned model. They
make HESSO a more user-friendly and efficient option for achieving structured sparsity in models,
allowing for more straightforward and consistent application across different tasks and domains.

5
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3.3 APPROXIMATION ERRORS OF SALIENCE SCORES

Although HESSO could tackle most DNNs and applications, it may sometimes yield unsatisfactory
results when the target DNN possesses certain indispensable structures, defined as follows.
Definition 3.1 (Indispensable structure). Given a deep neural network M, a minimally removal
structure is called indispensable if removing it fromM would cause significant performance degra-
dation, which can not be recovered given user resources. In particular, we say a minimally removal
structure as ϵ-indispensable associated with an objective f if pruning the variables [x]g → 0 dete-
riorates f at least ϵ, i.e., f(x∣[x]g → 0) ≥ f(x) + ϵ for a minimization optimization problem. The
degradation ϵ can not be recovered by (i) keeping trainingM, (ii) the training cost such as GPU days
exceeding user budget, or (iii) the training receipt forM is black-box and hard to be reproduced.

The origin of indispensable structures varies. One reason may be due to architectural design issues
where certain layers in M play more critical roles than others and are very sensitive to any mod-
ifications, as exemplified by a low-level vision benchmark in Section 4.2. Another reason could
be the learning strategy. For instance, in large language models (LLMs), it has been observed that
knowledge is unevenly distributed across different layers (Chen et al., 2023a). Removing any of
these structures could result in an irreversible collapse of the DNN’s performance.

Salience score approximation errors. The existing saliency scores might fail to identify these
indispensable components accurately. As described in Appendix D, they are typically designed to
approximate the impact of projecting groups of variables to zero over the objective function. Such
approximations, for example, perhaps the most commonly used Taylor importance scores, are more
accurate when the iterate is close enough to the origin point.
Theorem 3.2 (Approximation error of Taylor importance). Suppose the gradient and second-order
derivative of f are bounded. Use first-order mL and second-order mQ Taylor approximations to
measure the function value f after pruning g ∈ G, i.e., [x]g → 0. Let s satisfy [s]G/g = [0]G/g and
[s]g = −[x]g , Then the approximation error bound ∣f(x+s)−mL(x+s)∣ and ∣f(x+s)−mQ(x+s)∣
are proportional to O(∥[x]g∥2) and O(∥[x]g∥3), respectively.

However, during realistic training and pruning, this requirement is usually not met. As stated in
Theorem 3.2, the approximation error bounds increase proportionally with ∥[x]g∥, indicating that
the further the distance from the origin, the larger the approximation error. As a result, this can lead
to the false positively pruning of indispensable structures, which in turn causes performance issues.

3.4 CORRECTIVE REDUNDANCY IDENTIFICATION CIRCLE

To address the limitations discussed in Section 3.3, we propose a novel Corrective Redundant Iden-
tification Cycle (CRIC). This method aims to more reliably identify redundant structures within the
target DNN, even when indispensable structures are present. The CRIC mechanism can be seam-
lessly integrated into HESSO, enhancing its ability to accurately discern which parts of the model
can be pruned without compromising performance.

To mitigate the issue of false positive redundant predictions caused by the approximation error, such
as Taylor expansion, CRIC measures the saliency score of redundant group candidates multiple
times along the projection to the origin. Unlike the greedy approach in HESSO, CRIC incorporates
a corrective cycle mechanism. This mechanism iteratively promotes groups as redundant and tracks
the outlier groups. The cycle terminates when the redundancy prediction is deemed reliable, i.e., no
outlier appearance is detected. The final output is a set of redundant groups GR with the bottom-K
overall saliency scores. This approach significantly reduces false positive redundant identifications
and addresses the failure cases of HESSO, as demonstrated numerically in Section 4.

In Algorithm 2, we utilize a violating group set V to track outlier or violating groups, which are more
redundant or deviate from the current redundant group prediction. V is initialized with the group
set having the bottom-K saliency scores (see line 3). A historical set H is also used to track groups
whose saliency scores have been fully exploited through multiple sampling along the projection to
the origin. This set is initialized as empty ∅, as shown in line 4.

When the violating set is fairly large, i.e., ∣V ∣ > T with T as a predefined terminating tolerance
which is by default as empty set, i.e., T = ∅, we progressively project these violating groups onto

6
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Algorithm 2 Corrective Redundant Identification Cycle (CRIC)

1: Input. Trainable variable x, learning rate α, termination tolerance T , target group sparsity K,
sample steps T , and prunable variable partition G.

2: Initialize S to store saliency scores for each g ∈ G.
3: Initialize violating group set V

V ← {g ∶ g ∈ G with bottom-K saliency scores}. (3)

4: Initialize historical setH ← V .
5: while ∣V ∣ ≤ T do
6: Initialize trial violating group set V̂ ← ∅.
7: Initialize α0 ← α, λ0 ← λ, and x0 ← x.
8: for t = 0,1,⋯, T − 1 do
9: Compute gradient of f over xt as ∇f(xt).

10: Compute trial x̃t+1 ← xt − αt∇f(xt).
11: Penalize variables in the violating set [xt+1]V ← T−t−1

T−t
[xt]V
∥[x̃t+1]V∥

.

12: Compute saliency scores of G and collect into S .
13: Update trial set V̂ if new violating groups appear.

V̂ ← V̂ ∪ {g ∶ g ∈ G with bottom-K scores}/V. (4)

14: Update penalty λt and learning rate αt.
15: end for
16: Update violating set V ← V̂/H.
17: Update historical setH ←H⋃V .
18: end while
19: Set redundant set GR upon saliency score collection S.

GR ← {g ∶ g with bottom-K scores in S} (5)

20: Return. Identified redundant group set GR and important group set GI as G/GR.

zero. By default, saliency score sampling points are uniformly distributed along the projection
process. Groups with lower importance scores that have not been visited in H are added to a newly
constructed violating set V̂ for the next corrective cycle. The corrective cycling algorithm continues
until violating instances rarely appear, i.e., ∣V ∣ ≤ T , see line 5.

Theorem 3.3 guarantees that CRIC terminates within a finite number of iterations, preventing end-
less loops and executing efficiently. We provided detailed proof for Theorem 3.3 in Appendix C.
Furthermore, Corollary 3.4 provides an upper bound on the number of cycles required by CRIC,
ensuring a practical and efficient pruning process.
Theorem 3.3 (Finite termination of CRIC). The corrective redundancy identification cycle (Algo-
rithm 2) terminates within a finite number of steps for any terminating tolerance T .
Corollary 3.4 (Upper bounds of cycle numbers). Given the terminating tolerance T , the CRIC
terminates with no more (∣G∣ −K)/max{T ,1} cycles.

Once the corrective cycles terminate, the saliency scores obtained are deemed reliable. At this point,
the redundant set GR is constructed based on these reliable saliency scores, as indicated in line 19.
This set of redundant groups is then returned for further use, such as hybrid training in HESSO
(as detailed in Algorithm 1). For simplicity, the HESSO variant that utilizes CRIC for identifying
redundant groups is referred to as HESSO-CRIC throughout the paper (as outlined in Algorithm 3).
This naming convention helps distinguish the variant from the original HESSO method, emphasizing
the integration of the corrective cycle mechanism to enhance the reliability of the pruning process.

4 NUMERICAL EXPERIMENTS

We numerically demonstrate the efficacy of HESSO across a wide range of applications, from low-
level vision tasks such as super-resolution (Zhou et al., 2024), to high-level vision tasks like image
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Algorithm 3 HESSO-CRIC

1: Input. trainable variable x0, learning rate α, warm-up steps, Tw, and hybrid training steps Th.
2: Warm-up for Tw steps via SGD or its variants.
3: Use CRIC in Algorithm 2 to get redundant and important group sets GR and GI .
4: Hybrid Training for Knowledge Transfer.
5: for t = 0,1,⋯, Th do
6: Compute trial iterate x̂t+1 ← xt − αt∇f(xt).
7: Compute transferring penalty ratio [γt]g ← T−t−1

T−t

∥[xt]g∥

∥[x̂t+1]g∥
for each g ∈ GR.

8: Update redundant group variables [xt+1]GR ← [γt]GR[x̂t+1]GR .
9: Update important group variables [xt+1]GI ← [x̂t+1]GI .

10: end for
11: Keep training variables in important groups till convergence.
12: Output. The final iterate x∗.

classification (He et al., 2016) and object detection (Shi et al., 2020), as well as natural language
processing tasks such as question answering (Rajpurkar et al., 2016) and the popular foundational
large language models (Ding et al., 2023). The architectures used in these experiments encompass
a variety of CNN benchmarks (Chen et al., 2023c) and transformers (Vaswani et al., 2017). These
experiments involve training either from scratch or using a pre-trained checkpoint (when available)
to validate the versatility of HESSO-(CRIC).

4.1 RECOMMENDED EXPERIMENTAL SETUP

Table 1: Recommended hyper-parameters and training strategies for HESSO and HESSO-CRIC.

Hyper-parameter Type Recommended Setup

Optimizer variant HESSO-(CRIC) Inherit as the baseline optimizer. Currently support {SGD, Adam, AdamW}.

Group sparsity HESSO-(CRIC)
Set upon the target pruned model size. If all variables could be pruned, the pruned model size could be
approximately equal as quadratic of the density level. In addition, a randomly pruned model could be
obtained by OTO’s APIs.

First-order momentum HESSO-(CRIC) Inherit as the baseline optimizer’s first-order momentum.

Second-order momentum HESSO-(CRIC) Inherit as the baseline optimizer’s second-order momentum.

Weight-decay HESSO-(CRIC) Inherit as the baseline optimizer’s weight-decay.

Initial learning rate HESSO-(CRIC) Inherit as the baseline optimizer’s initial learning rate.

Salience Score Criteria HESSO-(CRIC) By default equally considering the scores in Section 3.1.

Start pruning step HESSO-(CRIC) Set up as 1/10 of total training steps.

Pruning steps HESSO-(CRIC) Set up as 1/10 of total training steps.

Pruning periods HESSO Empirically suggest to set as 10.

Sampling steps HESSO-CRIC Empirically suggest to set as 10.

Learning rate scheduler Training Inherit as the baseline training, yet might need adjustments in some application to ensure the model after
reaching target group sparsity is sufficiently trained under relatively large learning rate.

Total training steps Training Inherit as the baseline training and adjust upon the learning rate scheduler.

Start training from scratch or pre-
training checkpoint Training Both are supported. For better performance, recommend to start from pretraining checkpoint if available.

We recommend the following hyperparameter configurations for HESSO and HESSO-CRIC across
varying applications and DNN architectures. For the target DNN to be trained and compressed,
end-users likely already have a well-established training pipeline that enables the DNN to achieve
high performance. To ensure ease of use, we suggest inheriting the hyperparameters in HESSO and
HESSO-CRIC from the baseline training schema wherever there is overlap, such as in optimization
variants and first- and second-order momentums.

This inheritance strategy should also be applied to other hyperparameters related to the training
pipeline, such as training steps and learning rate schedules, though some slight adjustments may be
needed for some applications. Specifically, adjustments may be needed due to the hybrid training
process. We recommend beginning pruning at 1/10 of the total training steps and completing pro-
gressive pruning over another 1/10 of the total training steps. Because of the hybrid training stage,
the learning rate schedule might require modification to ensure the DNN is sufficiently trained at a
reasonably high learning rate after reaching the target group sparsity level.

Additionally, HESSO and HESSO-CRIC support training either from scratch or from a pre-trained
checkpoint. For better performance and faster convergence, we recommend starting from a pre-
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trained status if such a checkpoint is available. We summarize the recommended hyperparameter
selections and training strategies in Table 1 Appendix ??. Remark that better hyperparameter setups
or training strategies may exist for specific domain tasks to achieve superior performance. For the
remainder of the manuscript, we conduct experiments according to the above recommenced criteria,
unless otherwise specified. All experiments were conducted on an A100 GPU with 80GB memory .

4.2 SUPER RESOLUTION

We first selected the popular CARN architecture (Ahn et al., 2018) for the super-resolution task
with a scaling factor of two, referred to as CARNx2. The benchmark DIV2K dataset (Agustsson
and Timofte, 2017) was used for training, while Set14 (Zeyde et al., 2010), B100 (Martin et al.,
2001), and Urban100 (Huang et al., 2015) datasets were employed for evaluation. Initially, we uti-
lized OTO’s pruning dependency analysis to identify minimally removable structures and partitioned
the trainable variables into pruning-zero-invariant groups. However, directly applying DHSPG or
HESSO led to significant performance degradation that was not reversible. This issue arose due to
the architectural design, where the penultimate convolutional layer plays a crucial role in producing
satisfactory visual results, making it a indispensable structure. Pruning this layer caused the remain-
ing filters to fail in generating reasonable visual outcomes. However, the saliency score deems them
as redundant due to significant approximation errors, a greedy identification schema fails to avoid
pruning such essential structures, resulting in irreversible performance collapse.

Table 2: Structurally pruning CARNx2.

Optimizer Exclusion of Group Sparsity FLOPS # of Params PSNR
Dispensable Structure Set14 B100 Urban100

Baseline – – 100% 100% 33.5 32.1 31.5
DHSPG Manual 50% 24.3% 24.1% 33.2 31.9 31.1
DHSPG No 50% ✗ ✗ ✗ ✗ ✗
HESSO Manual 20% 66.9% 66.8% 33.5 32.1 31.7
HESSO Manual 30% 50.8% 50.6% 32.3 32.0 31.5
HESSO Manual 40% 40.0% 39.7% 33.3 32.0 31.3
HESSO Manual 50% 30.8% 30.5% 33.2 31.9 31.1
HESSO Manual 60% 19.4% 18.0% 33.1 31.8 31.0
HESSO No 50% ✗ ✗ ✗ ✗ ✗

HESSO-CRIC Automatic 20% 66.9% 66.8% 33.5 32.1 31.8
HESSO-CRIC Automatic 30% 53.4% 53.2% 33.4 32.1 31.7
HESSO-CRIC Automatic 40% 40.4% 40.1% 33.3 32.0 31.5
HESSO-CRIC Automatic 50% 28.7% 28.4% 33.3 32.0 31.3
HESSO-CRIC Automatic 60% 18.1% 17.7% 33.2 31.9 31.1
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OTOv2 (Chen et al., 2023c) manually excluded these indispensable structures from pruning. How-
ever, this manual identification is time-consuming and requires expert knowledge. To address this,
we directly applied HESSO-CRIC to CARN and observed that it automatically identified these cru-
cial structures as important groups, leading to a successfully high-performing pruned model. As
shown in Table 2, when manually excluding indispensable structures, both DHSPG and HESSO
significantly reduced FLOPs and parameters by approximately 33% to 80%, with negligible PSNR
degradation. HESSO-CRIC achieved a better trade-off between FLOP reduction and PSNR, as
demonstrated by exhibiting the frontier curve under varying pruning ratios. Visual examples shown
in Figure 7 further cross-verify the effective performance preservation by our approaches.

4.3 IMAGE CLASSIFICATION
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Figure 3: ResNet50 on ImageNet.

We then conduct on the benchmark ResNet50 (He et al.,
2016) on ImageNet. As displayed in Figure 3, HESSO-CRIC
roughly exhibits a Pareto frontier in terms of top-1 accu-
racy and FLOPs reduction under various group sparsities from
40% to 70%. HESSO and DHSPG perform competitively
in this application. Meanwhile, all of them could produce
structurally pruned sub-networks associated with smaller size,
fewer FLOPs, and higher accuracy compared to most of the ex-
isting approaches (Huang and Wang, 2018; Zhou et al., 2019;
Ding et al., 2021a; Yang et al., 2019; You et al., 2019; Zhou
et al., 2019). These results well validate the efficacy of the
newly proposed joint pruning and training optimizer on this
popular structured pruning benchmark.
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Table 3: Structurally pruning MobileNet Search Space.
Method # of Params (M) MACs (M) Top Acc-1 (%)
OFALARGE # 75 (Cai et al., 2019) 9.14 595 80.0
MobileNetV2 (Sandler et al., 2018) 3.4 300 72.0
MobileNetV3-Large (Howard et al., 2019) 5.4 219 75.2
OFA # 75 (Cai et al., 2019) 5.81 230 76.9
HESSO 5.60 220 78.2
HESSO-CRIC 5.71 225 78.6

We further employ HESSO-(CRIC)
to structurally prune a pretrained
OFA network (Cai et al., 2019) on the
benchmark ImageNet (Deng et al.,
2009). The OFA network was pro-
duced by searching from a Mo-
bileNetV3 based super-network and could achieve 80.0% top-1 test accuracy on ImageNet. We
find that both HESSO-(CRIC) could effectively discover pruned sub-networks which similar size
and MACs while with higher performance than other OFA networks, i.e., 78.6% and 78.2% versus
76.9% testing accuracy.

4.4 LARGE LANGUAGE MODEL

Finally, we evaluated HESSO-(CRIC) on large language models (LLMs). Since both HESSO and
HESSO-CRIC utilize full gradient information, we focused on LLMs with fewer than 3 billion
parameters, such as the representative Phi-2-2.7B (Microsoft, 2023), to ensure that a single 80GB
GPU is sufficient, without requiring tensor parallelism (Ding et al., 2023). Our experimental setup
followed that of LoRAShear (Chen et al., 2023a).

Table 4: HESSO-CRIC over Phi-2-2.7B.

Pruning Ratio Method BoolQ PIQA HellaSwag WinoGrande ARC-e ARC-c OBQA Average
Baseline Phi-2-2.7B 83.30 79.11 73.82 75.77 80.05 54.18 51.40 71.09
Ratio = 20% SliceGPT (Ashkboos et al., 2024) 68.56 74.16 61.22 67.56 70.20 41.04 38.80 60.22

LLM-Pruner (Ma et al., 2023) 61.28 62.79 36.79 53.12 52.23 31.06 30.00 46.75
LoraShear (Chen et al., 2023a) 62.29 68.12 45.28 58.8 61.91 32.42 34.00 51.81
LoraPrune (Zhang et al., 2023) 57.22 67.79 45.1 54.85 61.87 35.15 33.80 50.83
HESSO-CRIC 69.67 74.37 62.27 66.54 72.30 41.44 38.20 60.67

Ratio = 25% SliceGPT (Ashkboos et al., 2024) 63.70 71.49 57.72 66.46 65.86 38.99 39.80 57.71
LLM-Pruner (Ma et al., 2023) 62.26 60.55 33.86 51.07 47.81 30.63 28.80 45.00
LoraShear (Chen et al., 2023a) 62.17 64.85 41.27 55.56 56.52 30.46 31.80 48.95
LoraPrune (Zhang et al., 2023) 62.54 64.69 40.19 52.33 56.02 33.62 32.40 48.83
HESSO-CRIC 67.06 73.77 58.51 65.18 70.66 38.60 38.00 58.74

Ratio = 30% SliceGPT (Ashkboos et al., 2024) 38.17 61.04 42.05 60.38 50.80 28.07 31.2 44.53
LLM-Pruner (Ma et al., 2023) 62.11 59.36 32.27 51.54 44.07 30.03 29.8 44.17
LoraShear (Chen et al., 2023a) 62.17 63.22 39.25 57.14 51.77 28.58 30.00 47.45
LoraPrune (Zhang et al., 2023) 62.29 63.10 35.86 51.62 51.43 31.74 32.40 46.92
HESSO-CRIC 67.61 72.14 53.11 62.75 62.74 34.81 36.20 55.62

We observed that without conducting a knowledge distribution analysis and manually skipping cer-
tain layers from pruning, as LoRAShear (Chen et al., 2023a) did, HESSO often led to an irreversible
performance collapse. This is because knowledge in LLMs is unevenly distributed across layers
due to the learning strategy. The saliency scores calculated upon the pretraining weights may fail to
identify essential structures, making it difficult to differentiate between indispensable components
and those that could be pruned. As a result, pruning such critical structures severely degrades the
model’s performance, making recovery with limited resources nearly impossible.

HESSO-CRIC was able to automatically bypass these crucial structures, enabling effective and suc-
cessful pruning. We then compared with SliceGPT (Ashkboos et al., 2024), LLM-Pruner (Ma et al.,
2023), LoraShear (Chen et al., 2023a) and LoraPrune (Zhang et al., 2023) across several popular
benchmarks. Our findings indicate that HESSO-CRIC consistently outperforms them at varying
pruning ratios, with performance improvements becoming more pronounced as the pruning ratio
increases. This is because LLM-Pruner, LoRA-Prune, and LoRAShear are LoRA-based techniques.
Lora primarily focuses on fine-tuning well-trained models and is less effective in capturing knowl-
edge for underfitted models, such as pruned LLMs.

5 CONCLUSION

In this work, we introduced HESSO-(CRIC), a novel Hybrid Efficient Structured Sparse Optimizer
tailored for pruning deep neural networks while preserving performance. By combining a hybrid
training strategy with explicit, progressive pruning control, and the Corrective Redundant Identi-
fication Cycle (CRIC), HESSO-(CRIC) effectively tackles challenges such as tuning efforts, user
difficulty, and irreversible performance degradation. Our experiments across diverse domains show
that it not only competes with but often surpasses state-of-the-art methods.
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REPRODUCIBILITY STATEMENT

The theorems and experimental results could be fully reproduced. In particular, we provide the code
base to reproduce the experimental results as supplementary materials. Meanwhile, we provide the
proof for the main theorem in Appendix C.
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A MORE RELATED WORKS

Knowledge Transfer. To retain the performance of the pruned sub-network, HESSO-(CRIC) in-
corporates a knowledge transfer mechanism through a hybrid training schema. This approach differs
from prior methods, which explicitly use knowledge distillation from unpruned models to preserve
information in pruned models. Existing techniques typically require expensive computations that
involve both pruned and unpruned models, whether by processing logits (Lagunas et al., 2021)
or the hidden activations of intermediate layers (Xia et al., 2022; Ko et al., 2023). In contrast,
our approach preserves knowledge without incurring such computational costs. Another related
works, ResRep (Ding et al., 2021b) and SliceGPT (Ashkboos et al., 2024), also aim to preserve
computational invariance. The knowledge transfer in HESSO-(CRIC) similarly seeks to maintain
computational invariance but does so by focusing on preserving objective function levels. How-
ever, SliceGPT is restricted to the transformer architectures and requires manually injecting ad-
ditional layers. ResRep is restricted to CNN architectures and require conducting structurally re-
parametrization via computing resetting gradients. HESSO-(CRIC) is architecture-agnostic, effi-
cient and user-friendly, demonstrating both scalability and versatility.

Neural Architecture Optimization. Another related realm is the optimization over pre-specified
neural architecture. NAO (Luo et al., 2018) encodes the DNN architecture into a latent representa-
tion, search over the latent space, then decodes back to a revised architecture. NAT (Guo et al., 2019)
performs operator transformation upon the given DNN to produce more accurate network. These
approaches transform and improve the existing DNNs, yet not search an optimal sub-network. As
a result, their produced networks are typically not significantly compact compared to the baseline
models. Contrarily, our approach focuses on automatically and effectively discovering compact
sub-networks given pre-specified DNNs via structured pruning.

B SUPPLEMENTARY FIGURES
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(b) Pruning dependency graph.
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(c) Pruning Zero-Invariant Groups.

Figure 4: Automated trainable variable partitions for one-shot structured pruning. Given the trace
graph shown in Figure 4a, automatic pruning frameworks such as OTOv2 (Chen et al., 2023c) con-
struct a pruning dependency graph shown as Figure 4b and partition the trainable variables as prun-
ing zero-invariant groups G in Figure 4c.
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C PROOF OF THEOREM 3.3

Proof. The statement is equivalent to that the violating cycle line 5-18 in Algorithm 2 terminates
within finite number of steps. For convenience, we denote Vl as the violating set at lth cycle. The
statement then becomes that there exists an L <∞, such that VL = ∅. We now prove it as a two-step
fashion.

At first, we show that the violating set at lth loop Vl is disjoint to those at all previous loops {Vi}i=l−1i=0 .
This is true since the Vl is constructed excluding elements in the l − 1th historical setHl

Vl ← V̂l−1 /Hl−1, (6)
and Hl−1 is the union of previous violating set Hl−1 = ⋃i=l−1

i=0 Vi. Therefore, Vl is disjoint to all
violating sets {Vi}i=l−1i=0 .

Secondly, we prove on contraction. Suppose there exists no an L < ∞, such that VL = ∅. Since Vl
is disjoint with {Vi}i=l−1i=0 , it implies that Vl must include previously unseen and new element from
G. Consequently, the historical set Hl = ⋃i=l

i=0 Vi will have infinite number of elements as l tends to
∞, i.e.,

lim
l→∞
∣Hl∣ =∞. (7)

However, equation 7 contradicts that the historical set Hl is a subset of group partition set G, and
the cardinality of G is finite. Therefore, we conclude the corrective redundancy identification cycle
always terminates within a finite number of steps.

D SALIENCE SCORE

Magnitude. The importance of a parameter group can be determined by its magnitude. We
further normalized against all the current important instances, mapping the score into the range
[0,1]. Heuristically, a group of variables with lower magnitude—implying they are closer to
zero—typically contributes less to the model output. Therefore, such groups are often considered
less important and more likely to be pruned.

scoremag([x]g)← ∥[x]g∥2 , scoremag([x]g)← scoremag([x]g)/ ∑
g∈GI

scoremag([x]g). (8)

Average Magnitude. While considering the overall magnitude can be useful, it may introduce bias
by disproportionately favoring groups with more parameters, marking them as more important. To
address this potential bias, the average magnitude is also considered. This metric measures the
average parameter magnitude within each group, providing a normalized assessment that accounts
for the number of parameters in each group. Consequently, the algorithm can more fairly compare
groups of different sizes and prevent the overrepresentation of larger groups.

scoreavg-mag([x]g)← ∥[x]g∥2 /∣
√
∣g∣∣, scoreavg-mag([x]g)← scoreavg-mag([x]g)/ ∑

g∈GI

scoreavg-mag([x]g).
(9)

Cosine Similarity. Another criterion for determining group importance is the cosine similarity
between the projection direction of parameter group and the negative gradient direction of the ob-
jective function. It can be calculated as the cosine similarity between −[x]g and the negative gra-
dient −[∇f(x)]g , followed by a normalization to map onto a common scale. This metric evaluates
whether projecting a group of parameters onto zero (i.e., moving towards the origin along the neg-
ative parameter direction) aligns with a descent direction for the objective function. A descent
direction is expected to decrease the objective function value, suggesting that pruning group of pa-
rameters onto zero may not significantly regress model’s performance. As a result, such groups are
more likely to be marked as redundant.

scorecosine([x]g, [∇f(x)]g)← [x]⊺g[∇f(x)]g/(∥[x]g∥ ∥[∇f(x)]g∥),
scorecosine([x]g, [∇f(x)]g)← scorecosine([x]g)/ ∑

g∈GI

scorecosine([x]g). (10)
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Taylor Importance. To further quantitatively approximate the effect of projecting the parameter
group [x]g onto zero on the objective function, we can employ the Taylor expansion. Taylor expan-
sion could estimate the impact of small changes in the parameters on the function value, allowing
us to consider varying orders of Taylor importance. In particular, the first-order Taylor expansion
provides a linear approximation of the objective function around the current parameter point. The
impact of setting [x]g → 0 can be estimated by the dot product of the gradient and the change in
parameters. It helps identify groups whose removal likely decrease objective function.

scoreTaylor-1st([x]g, [∇f(x)]g)← ∣f(x) − f(x∣[x]g → 0)∣ ≈ ∣[x]⊺g[∇f(x)]g ∣,
scoreTaylor-1st([x]g, [∇f(x)]g)← scoreTaylor-1st([x]g, [∇f(x)]g)/ ∑

g∈GI

scoreTaylor-1st([x]g, [∇f(x)]g).
(11)

The second order Taylor importance is based on the second-order Taylor expansion. It includes the
Hessian matrix, capturing the curvature of the objective function. This approximation considers not
only the gradient but also the second derivative, providing a more accurate estimate of the impact of
setting [x]g → 0.

scoreTaylor-2nd([x]g, [∇f(x)]g)← ∣f(x) − f(x∣[x]g → 0)∣ ≈ [x]⊺g[∇f(x)]g +
1

2
[x]⊺g[∇2f(x)]g[x]g,

scoreTaylor-2nd([x]g, [∇f(x)]g)← scoreTaylor-2nd([x]g, [∇f(x)]g)/ ∑
g∈GI

scoreTaylor-2nd([x]g, [∇f(x)]g).
(12)

E COMPUTATIONAL COST ANALYSIS

In this section, we present the time and space complexities of HESSO-(CRIC).

Table 5: Notations.

Symbol Definition Remark
N # of trainable variables with gradient
G The set of parameter groups The common setup could be pruning/erasing zero-invariant groups.
∣G∣ The size of G Typically negligible compared to N , see the below table.
T # of training steps
Tht # of hybrid training steps Set as Tht = T /10 in our generic recipe.
P # of pruning periods Set as P = 10 in our generic recipe.
S # of sampling steps in CRIC Set as S = 10 in our generic recipe.
C # of cycles in CRIC Empirically terminates within 10 cycles.

Table 6: Magnitude Comparison Between N and ∥G∥.

Model N ∣G∣ Ratio ∣G∣/N
CARNx2 9.6 × 105 1.7 × 103 1.8 × 10−3
ResNet50 2.6 × 107 1.2 × 104 4.6 × 10−4
Yolov5-Large 7.2 × 106 9.5 × 103 1.3 × 10−3
Bert-Base 1.1 × 108 3.8 × 104 3.5 × 10−4
Phi2-2.7B 2.7 × 109 4.1 × 105 1.5 × 10−4

Table 7: Space and Time Complexity Comparison.

Optimizer Variant Space Complexity (Peak) Time Complexity Space Complexity Projected onto Phi2 Time Complexity Projected onto Phi2
SGD Standard O(2N) O(NT ) O(2N) O(NT )
HESSO SGD O(2N + ∥G∥) O(NT + ∥G∥P ) O(2.00015N) O(NT + 1.5 × 10−3N)
HESSO-CRIC SGD O(2N + ∥G∥S) O(NT + ∥G∥P + ∥G∥SC) O(2.0015N) O(NT + 1.515 × 10−1N)
Adam/AdamW Standard O(3N) O(2NT ) – –
HESSO Adam/AdamW O(3N + ∥G∥) O(2NT + ∥G∥P ) O(3.00015N) O(2NT + 1.5 × 10−3N)
HESSO-CRIC Adam/AdamW O(3N + ∥G∥S) O(2NT + ∥G∥P + ∥G∥SC) O(3.0015N) O(2NT + 1.515 × 10−1N)
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HESSO-(CRIC) requires additional time and space complexities while the additions are negligible.
In our numerous realistic applications besides the presented academic benchmarks, HESSO-(CRIC)
are quite efficient, typically as efficient as standard training via vanilla optimizers.

F MORE EXPERIMENTAL RESULTS

F.1 ABLATION STUDIES OF CRIC ON SALIENCY SCORES

The default format of CRIC primarily targets the most commonly used saliency scores that are
sensitive to approximation errors caused by distances to the origin. For saliency scores with such
higher sensitivities, CRIC’s multiple sampling strategy—gathering information along the direction
toward the origin—and its voting mechanism over historical statistics can effectively mitigate these
identification issues.

To validate this, we have included a new ablation study for CRIC to demonstrate its improvements
across varying saliency scores. As shown in the results, for commonly used saliency scores, CRIC
effectively improves performance. However, magnitude and average magnitude benefits less from
CRIC due to the persistence of large approximation errors, even as the groups of iterates move closer
to the origin.

Table 8: Ablation Studies of CRIC on Zero-Shot Pruning Phi2.

Magnitude Avg Magnitude Cosine Similarity 1st Taylor 2nd Taylor
No CRIC CRIC No CRIC CRIC No CRIC CRIC No CRIC CRIC No CRIC CRIC

Perplexity↓ 629.1 489.4 713.5 644.6 525.5 53.4 438.3 28.6 378.2 37.1

Furthermore, for saliency scores whose approximation errors are not dependent on the distance to
the origin, the philosophy of CRIC can still be applied with proper adaptations. In such cases, it is
critical to analyze the root causes of the approximation errors for the given saliency scores. Based
on these root causes, CRIC’s multiple sampling strategy can be adjusted to collect more targeted
signals, thereby reducing identification errors in these scenarios.

F.2 COMPARATIVE ANALYSIS OF HYPER-PARAMETER TUNING EFFORTS

The key advantage of HESSO-(CRIC) over HSPGs in the OTO series lies in its white-box opti-
mization design. Unlike HSPGs, which are black-box optimizers requiring extensive task-specific
hyper-parameter tuning for optimal performance, HESSO-(CRIC) significantly reduces this sensi-
tivity by design. To highlight this difference, we present a comparative analysis of the total number
of training recipes required for three shared applications:

Table 9: Sparse optimization related hyper-parameter recipe comparisons.

HESSO-(CRIC) DHSPG
Super-Resolution CARNx2 General Recipe as described in Table 5 of manuscript. Recipe #1: λ = 10−2, λamplify = 20, ϵ = 0.0, etc.
Image-Classification ResNet General Recipe as described in Table 5 of manuscript. Recipe #2: λ = 10−3, λamplify = 2, ϵ = 0.95, etc.
Question-Answering Bert General Recipe as described in Table 5 of manuscript. Recipe #3: λ = 10−3, λamplify = 2, ϵ = 0.0, etc.
Total # of training recipes 1 3

As shown in the table, HESSO-(CRIC) achieves competitive or superior performance using a single
general-purpose recipe, whereas DHSPG requires distinct task-specific hyper-parameter settings for
each application.

Additionally, this comparison focuses only on hyper-parameters specific to sparse optimizers.
Black-box optimizers like HSPGs inherently manage sparsity exploration processes, which demand
further tuning of broader training parameters, such as learning rate schedules and the number of
epochs. In contrast, the white-box design of HESSO-(CRIC) avoids such complexities, offering a
more user-friendly, efficient, and practical solution.

F.3 QUESTION AND ANSWERING
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Figure 5: Bert on SQuAD.

Later, we compare HESSO-(CRIC) with DHSPG, HSPG, and
a representative proximal method ProxSSI (Deleu and Bengio,
2021) for pruning a transformer model Bert (Vaswani et al.,
2017), evaluated on the SQuAD question-answering bench-
mark (Rajpurkar et al., 2016). It is important to note that prox-
imal methods have been standard algorithms for solving sparse
optimization problems for decades. However, they are not ef-
fective at exploring sparsity while maintaining model perfor-
mance in deep learning applications (Dai et al., 2023).

As shown in Figure 5, HESSO, HESSO-CRIC, and DHSPG
perform competitively on this task in terms of parameter reduc-
tion while maintaining F1 scores. However, DHSPG achieves
these results after extensive hyper-parameter tuning, which
is not convenient. HSPG penalizes all variables toward zero
which severely restricts the optimization search space, leading
to suboptimal performance. ProxSSI additionally lacks suffi-
cient sparsity exploration capacity, being not comparable.

F.4 OBJECT DETECTION

Table 10: Structurally pruning Yolov5l on COCO.

Method # of Params mAP0.5 mAP0.5∶0.95

Baseline 100% 66.31% 47.71%
HFP (Enderich et al., 2021) 50% 63.5% 43.4%
TCFP (Jeon et al., 2022) 50% 61.8% 42.7%
HESSO (30% group sparsity) 49% 63.1% 44.4%
HESSO-CRIC (30% group sparsity) 49% 63.1% 44.5%

Next, we tested HESSO on the popular YOLO (Redmon et al., 2016) object detection model using
the COCO benchmark dataset (Lin et al., 2014). Table 10 presents the structural pruning results
for YOLOv5l (Jocher et al., 2022). Note that we selected YOLOv5l to facilitate comparisons with
other existing benchmarks. We applied HESSO and HESSO-CRIC with a target group sparsity of
30%, resulting in a sub-network containing 49% of the original parameters. This allows for direct
comparison with benchmarks that retain 50% of the model’s parameters. The results show that a sin-
gle run of HESSO and HESSO-CRIC achieved significantly higher Mean Average Precision (mAP)
compared to other pruning approaches, which often require more complex, multi-stage procedures.
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(a) Pretrained YOLOv5l. (b) Group Sparsity = 30%.

(c) Pretrained YOLOv5l. (d) Group Sparsity = 30%.

Figure 6: Visual examples of pruned YOLOv5l.

(a) Low resoluted image. (b) Group Sparsity = 20%. (c) Group sparsity = 30%.

(d) High resoluted image. (e) Group Sparsity = 50%. (f) Group Sparsity = 60%.

Figure 7: Visual examples of pruned CARNx2 produced HESSO-CRIC on Urban100.
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Table 11: Structurally pruning Bert on SQuAD.

Method Group Sparsity # of Params F1-score
Baseline 100% 88.3%

ProxSSI (Deleu and Bengio, 2021) – 83.4%† 82.0%
HSPG (Chen et al., 2021b) – 91.0% 84.1%
HSPG (Chen et al., 2021b) – 66.7% 82.0%

DHSPG 10% 93.3% 87.7%
DHSPG 30% 80.1% 87.3%
DHSPG 50% 68.3% 86.2%
DHSPG 70% 55.0% 83.8%
HESSO 10% 94.78% 87.20%
HESSO 30% 84.33% 86.72%
HESSO 50% 73.88% 86.46%
HESSO 70% 63.34% 85.50%
HESSO 90% 53.0% 84.25%

HESSO-CRIC 10% 94.78% 87.48%
HESSO-CRIC 30% 84.32% 87.10%
HESSO-CRIC 50% 73.88% 86.50%
HESSO-CRIC 70% 63.44% 85.96%
HESSO-CRIC 90% 53.0% 84.10%

† Approximate value based on (Deleu and Bengio, 2021).
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