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Abstract

Meta reinforcement learning (RL) attempts to discover new RL algorithms auto-
matically from environment interaction. In so-called black-box approaches, the
policy and the learning algorithm are jointly represented by a single neural net-
work. These methods are very flexible, but they tend to underperform in terms
of generalisation to new, unseen environments. In this paper, we explore the role
of symmetries in meta-generalisation. We show that a recent successful meta RL
approach that meta-learns an objective for backpropagation-based learning exhibits
certain symmetries (specifically the reuse of the learning rule, and invariance to
input and output permutations) that are not present in typical black-box meta
RL systems. We hypothesise that these symmetries can play an important role
in meta-generalisation. Building off recent work in black-box supervised meta
learning [12], we develop a black-box meta RL system that exhibits these same
symmetries. We show through careful experimentation that incorporating these
symmetries can lead to algorithms with a greater ability to generalise to unseen
action & observation spaces, tasks, and environments.

1 Introduction

Recent work in meta reinforcement learning (RL) has begun to tackle the challenging problem
of automatically discovering general-purpose RL algorithms [13, 1, 17]. These methods learn to
reinforcement learn by optimizing for earned reward over the lifetimes of many agents in multiple
environments. If the discovered learning principles are sufficiently general-purpose, then the learned
algorithms should generalise to novel environments. Depending on the structure of the learned
algorithm, these methods can be partitioned into backpropagation-based methods, which learn to
use the backpropagation algorithm to reinforcement learn, and black-box-based methods, in which
a single (typically recurrent) neural network jointly specifies the agent and RL algorithm [25, 6].
While backpropagation-based methods are more prevalent due to their relative ease of implementation
and theoretical guarantees, black-box methods can be more expressive and have the potential to
avoid some of the issues with backpropagation-based optimization, such as memory requirements,
catastrophic forgetting, and differentiability.

Unfortunately, black-box methods have not yet been successful at discovering general-purpose
RL algorithms. In this work, we show that black-box methods exploit fewer symmetries than
backpropagation-based methods. We hypothesise that introducing more symmetries to black-box
meta-learners can improve their generalisation capabilities. We test this hypothesis by introducing
a number of symmetries into an existing black-box meta learning algorithm, including (1) the use
of the same learned learning rule across all nodes of the neural network (NN), (2) the flexibility to
work with any input, output, and architecture sizes, and (3) invariance to permutations of the inputs
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Figure 1: The architecture for the proposed symmetric learning agents (SymLA) that we use to
investigate black-box learning algorithm with symmetries. Weights in a neural network are replaced
with small parameter-shared RNNs. Activations in the original network correspond to messages
passed between RNNs, both in the forward −→m and backward←−m direction in the network. These
messages may contain external information such as the environment observation, previously taken
actions, and rewards from the environment.

and outputs (for dense layers). Permutation invariance implies that for any permutation of inputs
and outputs the learning algorithm produces the same policy. We refer to such agents as symmetric
learning agents (SymLA).

To introduce these symmetries, we build on variable shared meta learning (VSML) [12], which
we adapt to the RL setting. VSML arranges multiple RNNs like weights in a NN and performs
message passing between these RNNs. We then perform meta training and meta testing similar to
black-box MetaRNNs [25, 6]. We experimentally validate SymLA on bandits, classic control, and
grid worlds, comparing generalisation capabilities to MetaRNNs. SymLA improves generalisation
when varying action dimensions, permuting observations and actions, and significantly changing
tasks and environments.

2 Preliminaries: Meta Reinforcement Learning

The RL setting in this work follows the standard (PO)MDP formulation. At every time step, t =
1, 2, . . . the agent receives a new observation ot ∈ O generated from the environment state st ∈ S
and performs an action at ∈ A sampled from its (recurrent) policy πθ = p(at|o1:t, a1:t−1). The
agent receives a reward rt ∈ R ⊂ R and the environment transitions to the next state. This transition
is defined by the environment dynamics e = p(st+1, rt|st, at). The initial environment state s1 is
sampled from the initial state distribution p(s1). The goal is to find the optimal policy parameters θ∗

that maximise the expected return R = E[
∑T
t=1 γ

trt] where T is the episode length, and 0 < γ ≤ 1
is a discount factor (T =∞, γ < 1 for non-episodic MDPs).

The meta reinforcement learning setting is concerned with discovering novel agents that learn
throughout their multi-episode lifetime (L ≥ T ) by making use of rewards rt to update their behavior.
This can be formulated as maximizing Ee∼p(e)[E[

∑L
t=1 γ

trt]] where p(e) is a distribution of meta-
training environments. The objective itself is similar to a multi-task setting. In this work, we discuss
how the structure of the agent influences the degree to which it learns and generalises in novel tasks
and environments. We seek to discover general-purpose learning algorithms that generalise outside
the meta-training distribution.

We can think of an agent that learns throughout its lifetime as a history-dependent map at, ht =
f(ht−1, ot, rt−1, at−1) that produces an action at and new agent state ht given its previous state ht−1,
an observation ot, environment reward rt−1, and previous action at−1. In the case of backpropagation-
based learning, f is decomposed into: (1) a stationary policy π(s)

θ that maps the current state into an
action, at = π

(s)
θ (ot); and (2) a backpropagation-based update rule that optimizes a given objective

J by propagating the error signal backwards and updating the policy in fixed intervals (e.g. after
each episode). In its simplest form, for any dense layer k ∈ {1, . . . ,K} of a NN policy with size
A(k) ×B(k), inputs x(k), outputs x(k+1), and weights w(k) ⊂ θ, the backpropagation update rule is
given by

x
(k+1)
b =

∑
a

x(k)a w
(k)
ab︸ ︷︷ ︸

forward pass

(1) δ(k−1)
a =

∑
b

δ
(k)
b w

(k)
ab︸ ︷︷ ︸

backward pass

(2) ∆w
(k)
ab = −α ∂J

∂w
(k)
ab

= −αx(k)a δ
(k)
b︸ ︷︷ ︸

update

(3)

where a ∈ {1, . . . , A(k)}, b ∈ {1, . . . , B(k)}, α is the learning rate, δ are error terms, and the
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agent state h corresponds to parameters θ. The initial error is given by the gradient at the NN
outputs, δ(k) = ∂J

∂x(K+1) . Transformations such as non-linearities are omitted here. Works in meta-
reinforcement learning that take this approach parameterise the objective Jφ and meta-learn its
parameters [13, 17].

In contrast, black-box meta RL [6, 25] meta-learns f directly in the form of a single non-stationary
policy πθ with memory. Parameters of f represent the learning algorithm (no explicit Jφ) while the
state h represents the policy. In the simplest form of an RNN representation of f , given a current
hidden state h and inputs o, r, a (concatenated [·]), updates to the policy take the form

ab, hb ← fθ(h, o, r, a)b = σ(
∑
a

[h, o, r, a]avab), (4)

with parameters θ = v and activation function σ, omitting the bias term. We refer to this as the
MetaRNN. The inputs must include, beyond the observation o, the previous reward r and action a, so
that the meta-learner can learn to associate past actions with rewards [21, 25]. Further, black-box
systems do not reset the state h between episode boundaries, so that the learning algorithm can
accumulate knowledge through the agent’s lifetime. For additional related work, refer to Appendix A.

3 Symmetries in Meta RL

In this section, we demonstrate how the learning dynamics in backpropagation-based systems
(Equation 3) differ from the learning dynamics in black-box systems (Equation 4), and how this
affects the generalisation of black-box methods to novel environments.

Symmetries in backpropagation-based Meta RL We first identify three symmetries that
backpropagation-based systems exhibit and discuss how they affect the generalisability of the learned
learning algorithms.

1. Symmetric learning rule. In Equation 3, each parameterwab is updated by the same update
rule based on information from the forward and backward pass. Meta-learning an objective
Jφ affects the updates of each parameter symmetrically through backpropagation.

2. Flexible input, output, and architecture sizes. Because the same rule is applied every-
where, the learning algorithm can be applied to arbitrarily sized neural networks, including
variations in input and output sizes. This involves varying A and B and the number of layers,
affecting how often the learning rule is applied and how many parameters are being learned.

3. Invariance to input and output permutations. Given a permutation of inputs and outputs
in a layer, defined by the bijections ρ : N→ N and ρ′ : N→ N, the learning rule is applied
as x(k+1)

ρ′(b) =
∑
a x

(k)
ρ(a)w

(k)
ab , δ(k−1)

ρ(a) =
∑
b δ

(k)
ρ′(b)w

(k)
ab , and ∆w

(k)
ab = −αx(k)

ρ(a)δ
(k)
ρ′(b). Let

w′ be a weight matrix with w′(k)
ρ(a)ρ′(b) = w

(k)
a,b , then we can equivalently write x(k+1)

ρ′(b) =∑
a x

(k)
ρ(a)w

′(k)
ρ(a)ρ′(b), δ

(k−1)
ρ(a) =

∑
b δ

(k)
ρ′(b)w

′(k)
ρ(a)ρ′(b), and ∆w

′(k)
ρ(a)ρ′(b) = −αx(k)

ρ(a)δ
(k)
ρ′(b). If all

elements of w′(k) are initialized i.i.d., we can interchangeably use w in place of w′ in the
above updates. By doing so, we recover the original learning rule equations for any a, b.
Thus, the learning algorithm is invariant to input and output permutations.

While backpropagation has inherent symmetries, these symmetries would be violated if the objective
function Jφ would be asymmetric. Formally, when permuting the NN outputs y = x(K+1) such
that y′b = yρ′(b), Jφ should satisfy that the gradient under the permutation is also a permutation
∂Jφ(y′)
∂y′b

=
[
∂Jφ(y)
∂y

]
ρ′(b)

where the environment accepts the action permuted by ρ′ in the case of

Jφ(y′). This is the case for policy gradients, for instance, if the action selection π(a|s) is permuted
according to ρ′. When meta-learning objective functions, prior work carefully designed the objective
function Jφ to be symmetric. In MetaGenRL [13], taken actions were processed element-wise with
the policy outputs and sum-reduced by the loss function. In LPG [17], taken actions and policy
outputs were not directly fed to Jφ, but instead only the log probability of the action distribution was
used.
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Insufficient Symmetries in Black-box Meta RL Black-box meta learning methods are appealing
as they require few hard-coded biases and are flexible enough to represent a wide range of possible
learning algorithms. We hypothesize that this comes at the cost of the tendency to overfit to the given
meta training environment(s) resulting in overly specialized learning algorithms.

Learning dynamics in backpropagation-based systems (Equation 3) differ significantly from learning
dynamics in black-box systems (Equation 4). In particular, meta-learning Jφ is significantly more
constrained, since Jφ can only indirectly affect each policy parameter w(k)

ab through the same learning
rule from Equation 3. In contrast, in black-box systems (Equation 4), each policy state hb is directly
controlled by unique meta-parameters (vector v·b), thereby encouraging the black-box meta-learner
to construct specific update rules for each element of the policy state. This results in sensitivity to
permutations in inputs, outputs, and a general tendency to construct non-learning, biased solutions,
over learning solutions. Furthermore, input and output spaces must retain the same size as those are
directly dependent on the number of RNN parameters.

4 Adding Symmetries to Black-box Meta RL

A solution to the illustrated over-fitting problem with black-box methods is the introduction of
symmetries into the parameterisation of the policy. This can be achieved by generalising the
forward pass (Equation 1), backward pass (Equation 2), and element-wise update (Equation 3)
to parameterized versions. We further subsume the loss computation into these parameterized update
rules. Together, they form a single recurrent policy with additional symmetries. Prior work on
variable shared meta learning (VSML) [12] used similar principles to meta-learn supervised learning
algorithms. In the following, we extend their approach to deal with the RL setting.

Variable Shared Meta Learning VSML describes neural architectures for meta learning with
parameter sharing. This can be motivated by meta learning how to update weights [4, 22] where
the update rule is shared across the network. Instead of designing a meta network that defines the
weight updates explicitly, we arrange small parameter-shared RNNs (LSTMs) like weights in a NN
and perform message passing between those.

In VSML, each weight wab with w ∈ RA×B in a NN is replaced by a small RNN with parameters θ
and hidden state hab ∈ RN . We restrict ourselves to dense NN layers here, where w corresponds
to the weights of that layer with input size A and output size B. This can be adapted to other
architectures such as CNNs if necessary. All these RNNs share the same parameters θ, defining both
what information propagates in the neural network, as well as how states are updated to implement
learning. Each RNN with state hab receives the analogue to the previous activation, here called
the vectorized forward message −→ma ∈ R

−→
M , and the backward message←−mb ∈ R

←−
M for information

flowing backwards in the network (asynchronously). The backward message may contain information
relevant to credit assignment, but is not constrained to this. The RNN update equation (compare
Equation 3 and 4) is then given by

h
(k)
ab ← fRNN(h

(k)
ab ,
−→m(k)
a ,←−m(k)

b ) (5)

for layer k where k ∈ {1, . . . ,K} and a ∈ {1, . . . , A(k)}, b ∈ {1, . . . , B(k)}. Similarly, new forward
messages are created by transforming the RNN states using a function f−→m : RN → R

−→
M (compare

Equation 1) such that
−→m(k+1)
b =

∑
a

f−→m(h
(k)
ab ) (6)

defines the new forward message for layer k + 1 with b ∈ {1, . . . , B(k) = A(k+1)}. The backward
message is given by f←−m : RN → R

←−
M (compare Equation 2) such that
←−m(k−1)
a =

∑
b

f←−m(h
(k)
ab ) (7)

and a ∈ {1, . . . , A(k) = B(k−1)}. For simplicity, we use θ below to denote all of the VSML
parameters, including those of the RNN and forward and backward message functions.

In the following, we derive a black-box meta reinforcement learner based on VSML (visualized in
Figure 1).

4



Inner loop 
Updates RNN states hab

Outer loop 
Updates RNN parameters θ

h(t) h(t + 1)
θ(i)

ot, rt−1 ot+1, rt

at at+1

θ(i) θ(i)

θ(i) θ(i + 1)

Figure 2: In SymLA, the inner loop re-
currently updates all RNN states hab(t)
for agent steps t ∈ {1, . . . , L} start-
ing with randomly initialized states hab.
Based on feedback rt, RNN states can
be used as memory for learning. The
learning algorithm encoded in the RNN
parameters θ is updated in the outer loop
by meta-training using ES.

RL Agent Inputs and Outputs At each time step in
the environment, the agent’s inputs consist of the previ-
ously taken action at−1, current observation ot and previ-
ous reward rt−1. We feed rt−1 as an additional input to
each RNN, the observation ot ∈ RA(1)

to the first layer
(−→m(1)
·1 := ot), and the action at−1 ∈ {0, 1}B

(K)

(one-
hot encoded) to the last layer (←−m(K)

·1 := at−1). The
index 1 refers to the first dimension of the

−→
M or

←−
M -

dimensional message. We interpret the agent’s output
message y = −→m(K+1)

·1 as the unnormalized logits of a
categorical distribution over actions. While we focus on
discrete actions only in our present experiments, this can
be adapted for probabilistic or deterministic continuous
control.

Architecture Recurrence and Reward Signal Instead
of using multiple layers (K > 1), in this paper we use
a single layer (K = 1). In Equation 5, RNNs in the same layer can not coordinate directly as
their messages are only passed to the next and previous layer. To give that single layer sufficient
expressivity for the RL setting, we make it ‘recurrent’ by processing the layer’s own messages
−→m(k+1)
b and←−m(k−1)

a . The network thus has two levels of recurrence: (1) Each RNN that corresponds
to a weight of a standard NN and (2) messages that are generated according to Equation 6 and 7 and
fed back into the same layer. Furthermore, each RNN receives the current reward signal rt−1 as input.
The update equation is given by

h
(k)
ab ← fRNN(h

(k)
ab ,
−→m(k)
a ,←−m(k)

b , rt−1︸ ︷︷ ︸
environment inputs

,−→m(k+1)
b ,←−m(k−1)

a︸ ︷︷ ︸
from previous step

) (8)

where a ∈ {1, . . . , A(k)}, b ∈ {1, . . . , B(k)}. As we only use a single layer, k = 1, we apply the
update multiple times (multiple micro ticks) for each step in the environment. This can also be viewed
as multiple layers with shared parameters, where parameters correspond to states h. For pseudo code,
see Algorithm 1 in the appendix.

Symmetries in SymLA By incorporating the above changes to inputs, outputs, and architecture, we
arrive at a black-box meta RL method with symmetries, here represented by our proposed symmetric
learning agents (SymLA). By construction, SymLA exhibits the same symmetries as those described
in Section 3, despite not using the backpropagation algorithm.

1. Symmetric learning rule. The learning rule as defined by Equation 8 is replicated across
a ∈ {1, . . . , A} and b ∈ {1, . . . , B} with the same parameter θ.

2. Flexible input, output, and architecture sizes. Changes in A, B, and K correspond to
input, output, and architecture size. This does not affect the number of meta-parameters and
therefore these quantities can also be varied at meta-test time.

3. Invariance to input and output permutations. When permuting mes-
sages using bijections ρ and ρ′, the state update becomes h

(k)
ab ←

fRNN(h
(k)
ab ,
−→m(k)
ρ(a),
←−m(k)
ρ′(b), rt−1,

−→m(k+1)
ρ′(b) ,

←−m(k−1)
ρ(a) ), and the message transformations

are −→m(k+1)
ρ′(b) =

∑
a f−→m(h

(k)
ab ) and ←−m(k−1)

ρ(a) =
∑
b f←−m(h

(k)
ab ). Similar to backpropagation,

when RNN states hab are initialized i.i.d., we can use hρ(a),ρ′(b) in place of hab to recover
the original Equations 6, 7, 8.

Learning / Inner Loop Learning corresponds to updating RNN states hab (see Figure 2). This is
the same as the MetaRNN [25, 6] but with a more structured neural model. For fixed RNN parameters
θ which encode the learning algorithm, we randomly initialize all states hab. Next, the agent steps
through the environment, updating hab in each step. If the environment is episodic with T steps, the
agent is run for a lifetime of L ≥ T steps with environment resets in-between, carrying the agent
state hab over.
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Meta Learning / Outer Loop Each outer loop step unrolls the inner loop for L environment steps
to update θ. The SymLA objective is to maximize the agent’s lifetime sum of rewards, i.e.

∑L
t=1 rt(θ).

We optimize this objective using evolutionary strategies [26, 18] by following the gradient

∇θEφ∼N (φ|θ,Σ)[Ee∼p(e)[
L∑
t=1

r
(e)
t (φ)]]. (9)

with some fixed diagonal covariance matrix Σ and environments e ∼ p(e). We chose evolution
strategies due to its ability to optimize over long inner-loop horizons without memory constraints that
occur due to backpropagation-based meta optimization. Furthermore, it was shown that meta-loss
landscapes are difficult to navigate and the search distribution helps in smoothing those [14].

5 Experiments
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Figure 3: We compare SymLA to a standard
MetaRNN on a set of bandit benchmarks from
Wang et al. [25]. We train (y-axis) and test (x-axis)
on two-armed bandits of varying difficulties. We
report expected cumulative regret across 3 meta-
training and 100 meta-testing runs with 100 arm-
pulls (smaller is better). We observe that SymLA
tends to perform comparably to the MetaRNN.

Equipped with a symmetric black-box learner,
we now investigate how its learning properties
differ from a standard MetaRNN. Firstly, we
learn to learn on bandits from Wang et al. [25]
where the meta-training environments are sim-
ilar to the meta-test environments. Secondly,
we demonstrate generalisation to unseen action
spaces, applying the learned algorithm to ban-
dits with varying numbers of arms at meta-test
time—something that MetaRNNs are not capa-
ble of. Thirdly, we demonstrate how symme-
tries improve generalisation to unseen observa-
tion spaces by creating permutations of observa-
tions and actions in classic control benchmarks.
Fourthly, we show how permutation invariance
leads to generalisation to unseen tasks by learn-
ing about states and their associated rewards at meta-test time. Finally, we demonstrate how symme-
tries result in better learning algorithms for unseen environments, generalising from a grid world to
CartPole. Hyper-parameters are in Appendix C.
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Figure 4: We meta-train and meta-test
SymLA on varying numbers of indepen-
dent arms to measure generalisation on
unseen configurations. We do this by
adding or removing RNNs to accommo-
date the varying output units. We re-
port expected cumulative regret across
3 meta-training and 100 meta-testing
runs with 100 arm-pulls (smaller is bet-
ter). Particularly relevant are the out-of-
distribution scenarios (off-diagonal).

Learning to Learn on Similar Environments We first
compare SymLA and the MetaRNN on the two-armed (de-
pendent) bandit experiments from Wang et al. [25] where
there is no large variation in the meta-test environments.
These consist of five different settings of varying difficulty
that we use for meta-training and meta-testing (see Ap-
pendix B). There are no observations (no context), only
two arms, and a meta-training distribution where each arm
has the same marginal distribution of payouts. Thus, we
expect the symmetries from SymLA to have no signifi-
cant effect on performance . We meta-train for an agent
lifetime of L = 100 arm-pulls and report the expected
cumulative regret at meta-test time in Figure 3. We meta-
train on each of the five settings, and meta-test across all
settings. The performance of the MetaRNN reproduces
the average performance of Wang et al. [25], here trained
with ES instead of A2C. When using symmetries (as in
SymLA), we recover a similar performance compared to
the MetaRNN.

Generalisation to Unseen Action Spaces In contrast to the MetaRNN, in SymLA we can vary
the number of arms at meta-test time. The architecture of SymLA allows to change the network
size arbitrarily by replicating existing RNNs, thus adding or removing arms at meta-test time while
retaining the same meta-parameters from meta-training. In Figure 4 we train on different numbers
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of arms and test on seen and unseen configurations. All arms are independently drawn from the
uniform distribution pi ∼ U [0, 1]. We observe that SymLA works well within-distribution (diagonal)
and generalises to unseen numbers of arms (off-diagonal). We also observe that for two arms a
more specialized solution can be discovered, impeding generalisation when only training on this
configuration.

Generalisation to Unseen Observation Spaces In the next experiments we want to specifically
analyze the permutation invariance created by our architecture. In the previous bandit environments,
actions occurred in all permutations in the training distribution. In contrast, RL environments usually
have some structure to their observations and actions. For example in CartPole the first observation is
usually the pole angle and the first action describes moving to the left. Human-engineered learning
algorithms are usually invariant to permutations and thus generalise to new problems with different
structure. The same should apply for our black-box agent with symmetries.

We demonstrate this property in the classic control tasks CartPole, Acrobot, and MountainCar. We
meta-train on each environment respectively with the original observation and action order. We
then meta-test on either (1) the same configuration or (2) across a permuted version. The results
are visualized in Figure 5. Due to the built-in symmetries, the performance does not degrade in the
shuffled setting. Instead, our method quickly learns about the ordering of the relevant observations
and actions at meta-test time. In comparison, the MetaRNN baseline fails on the permuted setting
where it was not trained on, indicating over-specialization. Thus, symmetries help to generalise to
observation permutations that were not encountered during meta training.
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Figure 5: SymLA’s architecture is inherently permutation invariant. When meta-training on standard
CartPole, Acrobot, and MountainCar, the performance of the MetaRNN and SymLA are comparable.
We then meta-test on a setting where both the observations and actions are shuffled. In this setting
SymLA still performs well as it has meta-learned to identify observations and actions at meta-test
time. In contrast, the MetaRNN fails to do so. Standard deviations are over 3 meta-training and 100
meta-testing runs.
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● Meta-Training on this configuration
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øþ
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with Swapped Rewards

Figure 6: We extend the permutation invariant property to concepts - varying the rewards associated
with different object types (+1 and -1) in a grid world environment (left). SymLA is forced to learn
about the rewards of object types at meta-test time (starting at near zero reward and increasing the
reward intake over time). When switching the rewards and running the same learner, the MetaRNN
collects the wrong rewards, whereas SymLA still infers the correct relationships. Standard deviations
are over 3 meta-training and 100 meta-testing runs.

Generalisation to Unseen Tasks The permutation invariance has further reaching consequences.
It extends to learning about tasks at meta-test time. This enables generalisation to unseen tasks. We
construct a grid world environment (see Figure 6) with two object types: A trap and a heart. The
agent and the two objects (one of each type) are randomly positioned every episode. Collecting the
heart gives a reward of +1, whereas the trap gives -1. All other rewards are zero. The agent observes
its own position and the position of both objects. The observation is constructed as an image with
binary channels for the position and each object type.
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When meta-training on this environment, at meta-test time we observe in Figure 6 that the MetaRNN
learns to directly collect hearts in each episode throughout its lifetime. This is due to having overfitted
to the association of hearts with positive rewards. In comparison, SymLA starts with near-zero
rewards and learns through interactions which actions need to be taken when receiving particular
observations to collect the heart instead of the trap. With sufficient environment interactions L we
would expect SymLA to eventually (after sufficient learning) match the average reward per time of
the MetaRNN in the non-shuffled grid world. Next, we swap the rewards of the trap and heart, i.e.
the trap now gives a positive reward, whereas the heart gives a negative reward. This is equivalent
to swapping the input channels corresponding to the heart and trap. We observe that SymLA still
generalises, learning at meta-test time about observations and their associated rewards. In contrast,
the MetaRNN now collects the wrong item, receiving negative rewards. These results show that
black-box meta RL with symmetries discovers a more general update rule that is less specific to the
training tasks than typical MetaRNNs.
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Figure 7: Generalisation capabilities of SymLA from GridWorld to
CartPole. We meta-train the learning algorithm on GridWorld. We
then meta-test on GridWorld and CartPole and report standard error of
the mean and mean rewards (100 seeds) relative to a random policy -
this highlights the learning process. While SymLA generalises from
GridWorld to CartPole, the MetaRNN does not.

Generalisation to Unseen
Environments We have
demonstrated how permu-
tation invariance can lead
to increased generalisation.
But can SymLA also
generalise between entirely
different environments?
We show-case how meta-
training on a grid world
environment allows gener-
alisation to CartPole. To
simplify credit-assignment,
we use a dense-reward grid
world where the reward is
proportional to the change in distance toward a target position. Both the target position, as well as the
agent position are randomized. The agent observes its own position, all obstacles, and the target
position as a binary image with multiple channels. In the CartPole environment the agent is rewarded
for being as upright and centered as possible [24]. Further, during meta-training, we randomly
project observations linearly for each lifetime. This is necessary as in the grid world environment all
observations are binary whereas the CartPole environment has continuously varying observations.
This mismatch would inhibit generalisation. In Figure 7 we demonstrate that meta-training with
SymLA only on the GridWorld environment allows reusing the same meta-learned learning algorithm
to the CartPole environment. In contrast, the MetaRNN does not exhibit such generalisation. Thus,
learning algorithms with symmetries can to some extent generalise between significantly different
environments.

6 Conclusion

In this work, we identified symmetries that exist in backpropagation-based methods for meta RL
but are missing from black-box methods. We hypothesized that these symmetries lead to better
generalisation of the resulting learning algorithms. To test this, we extended a black-box meta
learning method [12] that exhibits these same symmetries to the meta RL setting. This resulted in
SymLA, a flexible black-box meta RL algorithm that is less prone to over-fitting. We demonstrated
generalisation to varying numbers of arms in bandit experiments (unseen action spaces), permuted
observations and actions with no degradation in performance (unseen observation spaces), and
observed the tendency of the meta-learned RL algorithm to learn about states and their associated
rewards at meta-test time (unseen tasks). Finally, we showed that the discovered learning behavior
also transfers between grid world and (unseen) classic control environments.
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Table 1: A comparison between fixed reinforcement learning algorithms (REINFORCE),
backpropagation-based meta RL (MAML, MetaGenRL, LPG), black-box (MetaRNN), and our
black-box method with symmetries (SymLA). π(s)

θ denotes a stationary policy that is updated at fixed
intervals by backpropagation.

REINFORCE MetaGenRL / LPG MAML MetaRNN SymLA (ours)

Meta variables / φ Initial θ0 θ θ

Learned variables θ θ θ RNN state h RNN states h(k)
ab

Learning algorithm fixed loss func L
+ Backprop

learned loss func Lφ
+ Backprop

fixed loss func L
+ Backprop πθ πθ

Policy π
(s)
θ π

(s)
θ π

(s)
θ πθ πθ

Black-box 7 7 7 3 3
Symmetries in learning algorithm 3 3 3 7 3

A Related Work

Learning to reinforcement learn can be implemented with varying degrees of inductive biases.

Black-Box Meta RL Black-box meta RL can be implemented by policies that receive the reward
signal as input [21] and use memory to learn, such as recurrence in RNNs [10, 25, 6]. These
approaches do not feature the symmetries discussed in this paper which leads to a tendency of
overfitting.

Learned Learning Rules & Fast Weights In the supervised and reinforcement learning contexts,
learned learning rules [4] or fast weights [20, 22, 15, 19, 16] describe (meta-)learned mechanisms
(slow weights) that update fast weights to implement learning. This often involves outer-products and
can be generalised to black-box meta learning with parameter sharing [12]. None of these approaches
feature all of the symmetries we discuss above to meta learn RL algorithms.

Backpropagation-based Meta RL Alternatives to black-box meta RL include learning a weight
initialization and adapting it with a human-engineered RL algorithm [7], warping computed gradi-
ents [8], meta-learning hyper-parameters [23, 28] or meta-learning objective functions corresponding
to the learning algorithm [11, 13, 29, 17, 3].

Neural Network Symmetries Symmetries in neural networks have mainly been investigated to
reflect the structure of the input data. This includes applications of convolutions [9], deep sets [30],
graph neural networks [27], and geometric deep learning [5]. While many meta learning algorithms
exhibit symmetries [4], in particular backpropagation-based meta learning [2, 7, 8, 13], the effects of
these symmetries have not been discussed in detail. In this work, we provide such a discussion and
experimental investigation in the context of meta RL.

Algorithm 1 SymLA meta training
Require: Distribution over RL environment(s) p(e)
θ ← initialize LSTM parameters
while meta loss has not converged do . Outer loop in parallel over envs e ∼ p(e) and samples
φ ∼ N(φ|θ,Σ)
{hab} ← initialize LSTM states ∀a, b
o1 ∼ p(o1) . Initialize environment e
for t ∈ {1, . . . , L} do . Inner loop over lifetime in environment e

hab ← fLSTM(hab, ot,a, at−1,b, rt−1,
−→mb,
←−ma) ∀a, b . Equation 8−→mb ←

∑
a f−→m(hab) ∀b . Create forward messages

←−ma ←
∑
b f←−m(hab) ∀a . Create backward messages

y ← −→m·1 . Read out action
at ∼ p(at; y) . Sample action from distribution parameterized by y
Send action at to environment e, observe ot+1 and rt

θ ← θ + α∇θEφ∼N(φ|θ,Σ)[Ee∼p(e)[
∑L
t=1 r

(e)
t (φ)]] . Update θ using evolution strategies

(Equation 9)
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B Bandits from Wang et al. [25]

In our experiments, we use bandits of varying difficulty from Wang et al. [25]. Let p1 be the
probability of the first arm for a payout of r = 1, r = 0 otherwise, and p2 the payout for the second
arm. Then, we define the

• uniform independent bandit with p1 ∼ U [0, 1] and p2 ∼ U [0, 1],
• uniform dependent bandit with p1 ∼ U [0, 1] and p2 = 1− p1,
• easy dependent bandit with p1 ∼ U{0.1, 0.9} and p2 = 1− p1,
• medium dependent bandit with p1 ∼ U{0.25, 0.75} and p2 = 1− p1,
• hard dependent bandit with p1 ∼ U{0.4, 0.6} and p2 = 1− p1.

C Hyper-parameters

C.1 SymLA Architecture

We use a single recurrent layer, K = 1, with a message size of
←−
M = 8 and

−→
M = 8. To produce

the next state hab according to Equation 8, we use parameter-shared LSTMs with a hidden size of
N = 16 (N = 64 for bandits to match Wang et al. [25]) and run the recurrent cell for 2 micro ticks.

C.2 Meta Learning / Outer Loop

We estimate gradients ∇θ using evolutionary strategies [18] with 10 evaluations per population
sample to estimate the fitness value (100 evaluations for bandits). Then, we apply those using Adam
with a learning rate of α = 0.01, β1 = 0.9, and β2 = 0.999 (α = 0.2 for bandits). We use a fixed
noise standard deviation of σ = 0.035 (σ = 0.2 for bandits) and a population size of 512. Our
inner loop has a length of L = 500 (L = 100 for bandits), concatenating multiple episodes. We
meta-optimize for 4, 000 outer steps for bandit experiments, and 20, 000 otherwise.

C.3 Generalisation to Unseen Environments

We apply a random linear transformation (Glorot normal) to environment observations, mapping
those to a 16-dimensional vector.
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