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ABSTRACT

While the accuracy-fairness trade-off has been frequently observed in the litera-
ture of fair machine learning, rigorous theoretical analyses have been scarce. To
demystify this long-standing challenge, this work seeks to develop a theoretical
framework by characterizing the shape of the accuracy-fairness trade-off Pareto
frontier (FairFrontier), determined by a set of all optimal Pareto classifiers that
no other classifiers can dominate. Specifically, we first demonstrate the existence
of the trade-off in real-world scenarios and then propose four potential categories
to characterize the important properties of the accuracy-fairness Pareto frontier.
For each category, we identify the necessary conditions that lead to corresponding
trade-offs. Experimental results on synthetic data suggest insightful findings of
the proposed framework: (1) When sensitive attributes can be fully interpreted by
non-sensitive attributes, FairFrontier is mostly continuous. (2) Accuracy can suf-
fer a sharp decline when over-pursuing fairness. (3) Eliminate the trade-off via a
two-step streamlined approach. The proposed research enables an in-depth under-
standing of the accuracy-fairness trade-off, pushing current fair machine-learning
research to a new frontier.

1 INTRODUCTION
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Figure 1: Four shapes of FairFron-
tier. “Green” delineates a continuous
frontier, “Red” exhibits a sharp decline
in accuracy when over-pursuing fair-
ness, and “Grey” shows a sharp decline
in fairness when improving accuracy.
“Brown” represents a sharp decline in
both accuracy and fairness.

Fairness has become an essential consideration in algo-
rithmic decision-making, especially in life-critical appli-
cations such as healthcare and criminal justice. Unfair-
ness occurs when individuals with higher merit obtain a
worse outcome than those with lower merit (Singh et al.,
2021). Due to factors such as resource constraints and
economic costs, it is often impossible to achieve complete
fairness and we might have to embrace a certain level of
fairness compromise. Hence we establish a set of rules
to ensure relatively equitable treatment. For example, the
Four-Fifths Rule prescribes that a selection rate for any
group (classified by a sensitive attribute) that is less than
four-fifths of that for the group with the highest rate con-
stitutes evidence of disparate impact, i.e., discriminatory
effects on a protected group. Additionally, prior research
has repeatedly observed the tension between fairness and
accuracy necessitating complex methods or difficult pol-
icy choices (Zhao & Gordon, 2019; Peng et al., 2022).
A fundamental question is then: For a given data distri-
bution, what would the accuracy-fairness trade-off curve
look like?

We refer to the answer as the accuracy-fairness Pareto frontier (FairFrontier). The FairFrontier
delineates the optimal performance achievable by a classifier when unlimited data and computing
resources are available (Wang et al., 2023). For a fixed data distribution, FairFrontier represents
the performance of classifiers that are not dominated by any other classifiers. Characterizing the
shape of the FairFrontier enables us to (1) customize the strategy to balance model performance
and desired fairness, and (2) evaluate the effectiveness of existing fairness interventions for reduc-
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ing algorithmic discrimination. There have been both empirical and theoretical analyses about the
accuracy-fairness trade-off(Zafar et al., 2017; Menon & Williamson, 2018). The empirical analysis
investigates the trade-off while training a fair machine learning model given a fixed data distribu-
tion. It is challenging to control the desired level of fairness since the results highly depend on the
datasets and the model architectures. The findings might be problematic due to issues during model
training (Cotter et al., 2018), e.g., model miscalibration and sampling bias. By contrast, in theoret-
ical analysis, we can generate synthetic data given a known data distribution and construct optimal
classifiers to obtain reliable results and establish fundamental principles for the accuracy-fairness
trade-off. Therefore, in this work, a theoretical analysis paradigm is primarily used to mitigate the
trade-off (Menon & Williamson, 2018) to conduct the first in-depth examinations of the accuracy-
fairness Pareto frontier.

There are many important properties of FairFrontier such as convexity and derivatives. In this work,
we focus on one of the fundamental properties: continuity. We can categorize the frontier into four
types of continuity (Figure 1): continuity, a sharp decline in accuracy, a sharp decline in fairness,
and a sharp decline in both fairness and accuracy. This work aims to study under what conditions
will these different frontiers occur and then investigate the possibility of eliminating the accuracy-
fairness trade-off. Our major contributions are as follows:

• Characterizing FairFrontier in an Ideal Setting. We consider an idealized scenario where
sensitive attributes can be fully captured by non-sensitive attributes. We show that FairFrontier
exhibits continuity in most cases.

• Characterizing FairFrontier in a Practical Setting. We further examine the shape of the Fair-
Frontier in a more practical setting where non-sensitive attributes encode partial information in the
sensitive attributes. We prove that under certain conditions, accuracy may suffer a sharp decline
when over-pursing fairness. An upper bound is then derived.

• Beyond FairFrontier: Eliminating the Trade-off. We decompose unfairness into data and
model unfairness and investigate potential conditions to eliminate the accuracy-fairness trade-off.

2 PRELIMINARY

Notation. We consider a binary classification task with binary sensitive attributes, with three random
variables: the label Y∈{0, 1} (the predication label Ŷ ∈{0, 1}), the sensitive attribute A∈{0, 1}, and
the Non-sensitive attributes X which satisfies that X|A=a,Y=y∼ f(x|a, y). P(Ŷ | A, Y ) denotes the
probability of the prediction label Ŷ given the sensitive attribute A and label Y . Let Ta denote the
classifier for the sensitive group A = a, whereby P(Ŷ = 1 | Y,A = a) = P(Ta(x) > 0 | Y,A = a).
Similarly, P(Ŷ = 0 | Y,A = a) = P(Ta(x) < 0 | Y,A = a), and Tθ denotes the classifier for the
overall distribution.

Fairness Metric. Many fairness metrics have recently been proposed (Mehrabi et al., 2022; Zhang
et al., 2023). In this paper, we adopt the Equalized Odds criterion as the definition of fairness, which
requires that the true positive rates (TPR) and the true negative rates (TNR) are equal across all
sensitive groups (Hardt et al., 2016). For binary classification tasks, we formally define the true
positive rate (TPR) and true negative rate (TNR) with respect to the group A = a as follows:

TPRA=a = P(Ŷ = 1 | Y = 1, A = a),TNRA=a = P(Ŷ = 0 | Y = 0, A = a). (1)

Hence, we quantify the unfairness FU under the Equalized Odds criterion (Hardt et al., 2016):

FU = ω1 × |TPRA=1 − TPRA=0|+ ω2 × |TNRA=1 − TNRA=0|. (2)

Where FU ∈ [0, 1], ω1 and ω2 are weights for the TPR and TNR terms, respectively. Considering
that the concept of fairness is more familiar, we denote fairness by fairness = 1 − FU , where
fairness ∈ [0, 1]. Complete fairness is obtained when fairness = 1, namely FU = 0. In this paper,
we set the weights ω1 = ω2 = 1

2 to equally balance the effects of TPR and TNR in Equation 2. It is
noted that other definitions of fairness can also be incorporated into our analysis, and we will leave
those to future work. Additionally, we denote the optimal classifier for fairness as T f

a , where

T f
a = argmin

Ta

FU (Ta). (3)
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Accuracy Metric. For a sensitive group A = a, we denote the accuracy of the chosen classifier Ta

as Acc(Ta), where

Acc(Ta) =p1 × P(Ŷ = 1, Y = 1) + p2 × P(Ŷ = 0, Y = 0)

=p1 × P(Ta(x) > 0 | y,A = a)× P(Y = 1 | A = a)

+ p2 × P(Ta(x) < 0 | y,A = a)× P(Y = 0 | A = a).

(4)

where Acc ∈ [0, 1], p1 and p2 are weights for the true positive prediction and the true negative
prediction, respectively. These parameters underline the desired true predictions. The higher the
weight, the more desirable the true prediction would be. In this paper, we set the weighs p1 = p2 =
1
2 to balance the weights of TPR and TNR in Equation 4. Besides, the optimal classifier for accuracy
is denoted as T ∗

a , where:

T ∗
a = argmax

Ta

Acc(Ta). (5)

The notation is similar for the overall distribution. Without specification, we refer to the optimal
classifier for accuracy as “the optimal classifier”.

FairFrontier. According to Valdivia et al. (2021), we define a classifier as non-dominated when
there is no other classifier that dominates it, i.e., other classifiers cannot improve one objective
without worsening the other. Formally in our problem, a classifier Tθ is said to dominate another
classifier T

′

θ if it satisfies one of the following conditions:

Condition 1: FU (Tθ) ≤ FU (T
′

θ), Acc(Tθ) > Acc(T
′

θ).

Condition 2: FU (Tθ) < FU (T
′

θ), Acc(Tθ) ≥ Acc(T
′

θ).
(6)

According to this definition, a classifier is called a Pareto optimal classifier if there is no other
classifier that dominates it, and the set of all optimal Pareto classifiers is defined as the Pareto set.
Therefore, our accuracy-fairness trade-off curve, defined as the FairFrontier, can be obtained by
measuring the performance of the classifiers of the Pareto set. We can further conclude that the
FairFrontier is monotonically non-increasing, starting from the optimal classifier for accuracy and
terminating at the classifier that achieves complete fairness (see Figure 1).

3 CHARACTERIZING FAIRFRONTIER IN AN IDEAL SETTING
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Figure 2: Continuous accuracy-
fairness trade-off curve.

There are many important properties of FairFrontier, such
as convexity, derivatives, and so on. This work focuses on
the continuity. In this section, we aim to theoretically char-
acterize the shape of the FairFrontier in an ideal setting
where sensitive attributes can be fully captured by non-
sensitive attributes. Specifically, we will prove that the
FairFrontier is mostly continuous and it is impossible that
fairness sharply decline or both accuracy and fairness (the
grey and brown curves in Figure 1) sharply decline regard-
less of whether sensitive attributes can be fully encoded
by non-sensitive attributes. Full proofs are presented in
the Appendix A.

Lemma 1 Neither the sharp decline in fairness nor the
sharp decline in both accuracy and fairness can occur, re-
gardless of whether sensitive attributes are encoded or not.

Lemma 1 can be obtained by examining the margin of the
FairFrontier since the classifier at the point discontinuity has to be the optimal classifier. This lemma
indicates that fairness can be continuously and steadily improved by sacrificing accuracy.

Lemma 2 When sensitive attributes are fully captured by the non-sensitive attributes, there is a
sharp decline in accuracy when over-pursuing fairness iff. the point discontinuity represents the
local maximum of fairness and the corresponding maximal accuracy with a highly unfavorable
prediction for one group.
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Proof Sketch: Given the definition of the point discontinuity, any change to the classifier cannot
improve fairness, suggesting that fairness has reached the local maximum. Since each point on the
trade-off curve corresponds to a classifier on the Pareto frontier, the accuracy at the point disconti-
nuity is the highest for that level of fairness.

Since it is challenging to realize the assumptions in Lemma 2, the major finding in the ideal setting
is that the FairFrontier is mostly continuous (the green curve in Figure 1), as we will show later in
the Section 6.

4 CHARACTERIZING FAIRFRONTIER IN A PRACTICAL SETTING

In reality, non-sensitive attributes are in most cases proxies of sensitive attributes and cannot fully
capture the information provided by sensitive attributes. In this section, we investigate how the
FairFrontier looks in this practical setting. Specifically, we first investigate whether the accuracy-
fairness trade-off exists and then theoretically prove that accuracy sharply declines when the model
over-pursues fairness.

4.1 THE EXISTENCE OF ACCURACY-FAIRNESS TRADE-OFF

5.0 2.5 0.0 2.5 5.0 7.5 10.0 12.5 15.0
x (the location of the decision boundary)

0.0

0.1

0.2

f(
x)

f(x|y1,a1)
f(x|y1,a0)
f(x|y0,a1)
f(x|y0,a0)

5.0 2.5 0.0 2.5 5.0 7.5 10.0 12.5 15.0
x (the location of the decision boundary)

0.25

0.50

0.75

1.00

va
lu

e

Fairness
Accuracy

Figure 3: The figure above visualizes the data distribu-
tions used in Example 6.1, and the figure below shows
the fairness and accuracy when the decision bound-
ary changes. Besides, the green and the black dashed
lines correspond to the optimal classifier for fairness
and accuracy separately.

While various empirical findings (Heidari
et al., 2018; Friedler et al., 2019; Za-
far et al., 2019; Peng et al., 2022) have
suggested the existence of the accuracy-
fairness trade-off, rigorous theoretical anal-
ysis of this observation has been scarce. We
aim to complement prior research by con-
sidering a simplified setting: We consider a
Bayesian optimal classifier and assume the
existence of the local maximum of fairness.
The assumption is necessary to ensure that
the optimally fair classifier is non-trivial:
the classifier will not make identical predic-
tions for all samples.

We denote the decision boundary of the
classifier as B, where it can be formulated
by B = {x|T (x) = 0}. We propose the
following theorem:

Theorem 1 If the classifier Tθ maximizes
both accuracy and fairness simultaneously,
then for any sample x on the decision
boundary B, it satisfies the following condition:

f(x | Y = 1) = f(x | Y = 0); (7)

and one of the following:

Condition 1:
TPRA=0,Tθ

= TPRA=1,Tθ
,TNRA=0,Tθ

= TNRA=1,Tθ
.

Condition 2:
|f(x | Y = 1, A = 0)− f(x | Y = 1, A = 1)| = |f(x | Y = 0, A = 0)− f(x | Y = 0, A = 1)|.

(8)

4



Under review as a conference paper at ICLR 2024

Specifically, if the distributions across different sensitive groups are balanced, i.e. p(a, y) = 1
4 ,

∀x ∈ B, and Condition 2 is met, we obtain one of the following conditions:

Condition 1:
f(x,A = 1) = f(x,A = 0) = f(x, Y = 1) = f(x, Y = 0).

Condition 2:
f(x | A = 0, Y = 0) = f(x | Y = 1, A = 0), f(x | A = 1, Y = 0) = f(x | Y = 1, A = 1).

(9)
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Figure 4: Sharp decline in accuracy when
over-pursuing fairness.

This theorem can be derived based on the defini-
tion of the optimal classifier. Given the balanced
data distributions across different sensitive groups,
Condition 1 implies a complete correlation between
labels and sensitive attributes (i.e., the correlation
coefficient is 1), resulting in a discriminative clas-
sifier. Condition 2 stipulates the identical optimal
classifiers across different groups, i.e. T ∗

A=0 =
T ∗
A=1. However, due to the often impracticabil-

ity of satisfying these conditions, Theorem 1 sug-
gests that maximizing both accuracy and fairness
cannot be achieved simultaneously, i.e., the neces-
sary accuracy-fairness trade-off in reality.

4.2 THE SHARP DECLINE IN ACCURACY

In Section 3, we identified conditions when the FairFrontier is almost continuous and prove that
under no conditions, a sharp decline in fairness alone or in both fairness and accuracy should occur.
We will further investigate the conditions that trigger a sharp decline in accuracy (i.e., the red curve
in Figure 1).

Given that the sensitive attributes are partially encoded by the non-sensitive attributes, the data dis-
tributions of the sensitive groups overlap. We therefore focus on the space enclosed by the decision
boundaries of the optimal classifiers for each sensitive group. We further assume that a classifier is
well-defined, which states that outside the enclosed space, the sign (+/−) of the predictions is the
same as that of the optimal classifier used for each group. This assumption ensures that the clas-
sifier can always yield better performance compared to those without this assumption. Formally, a
well-defined classifier can be defined as follows:

Definition 1 (A Well-defined Classifier) The classifier T (x) is well-defined if: ∀x /∈ S, TA=1(x)×
T (x) ≥ 0, TA=0(x)× T (x) ≥ 0, where S = {TA=0(x)× TA=1(x) ≤ 0}.

We then propose the following theorem:

Theorem 2 Assuming that the optimal classifier for fairness T f
θ is both non-trivial and well-defined,

and for any well-defined classifier Tθ, the relationship between (TPRA=1 − TPRA=0)(TNRA=1 −
TNRA=0) and 0 remains consistent, then the following inequality holds true for the classifier Tθ that
over-pursues fairness:

Acc(Tθ) ≤ min{Acc(T f
θ ), max{Acc(T ∗

A=0), Acc(T ∗
A=1)}}. (10)

where Acc(T ∗
A=a) represents the accuracy achieved when deploying the optimal classifier for group

A = a for both groups. Specifically, under the condition that max{Acc(T ∗
A=0), Acc(T ∗

A=1)} <

Acc(T f
θ ), the following result holds true:

Acc(Tθ) ≤ max{Acc(T ∗
A=0), Acc(T ∗

A=1)}. (11)

An expected result of Theorem 2 is that over-pursuing fairness can lead to a sharp decline in ac-
curacy. We derive this result by establishing the upper bound that is determined by the optimal
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classifier for each sensitive group. If the performance of the optimal classifier for each sensitive
group is inferior to that of the fairness-optimized classifier, a sharp accuracy decline becomes in-
evitable. In addition, as noted in Pinzón et al. (2022), fully satisfying the Equalized Odds criteria
may trivialize the classifier i.e., a trivial classifier will make constant prediction rates regardless of
the features of input samples.

The existence of the sharp decline in accuracy indicates that the FairFrontier may be non-convex,
which is contradictory to a basic assumption in prior fair ML research that the loss function is con-
vex. The proposed research can provide insights into the current evaluation paradigm and encourage
the development of new benchmarking methods. Inferior model performance may arise from inade-
quate optimization which fails to attain the trade-off curve, or excessive optimization which leads the
learning process to surpass local maximum fairness. The proposed accuracy upper bound will en-
able us to gauge whether fairness pursuit is inadequate or excessive and to evaluate the effectiveness
of the performance trade-off.

5 BEYOND FAIRFRONTIER: ELIMINATING THE TRADE-OFF

Despite the dominant view of the tension between fairness and accuracy, a number of recent studies
(Dutta et al., 2020; Langenberg et al., 2023) have shown that fairness and accuracy may benefit
each other. In this section, we explore the possibility of going beyond FairFrontier and looking into
possible conditions to achieve both complete fairness and maximal accuracy.

5.1 DECOMPOSING THE UNFAIRNESS

To start, we decompose unfairness into data unfairness and model unfairness (Dutta et al., 2020). We
define data unfairness, stemming from inherent data disparities, as FDU , and model unfairness orig-
inating from the design of the model architecture, as FMU . They are formulated as follows (Dutta
et al., 2020):

FDU =
1

2
× |TPR∗

A=0 − TPR∗
A=1|+

1

2
× |TNR∗

A=0 − TNR∗
A=1|,

FMU =
1

2
× |((TPRA=0,Tθ

− TPR∗
A=0)− (TPRA=1,Tθ

− TPR∗
A=1))|

+
1

2
× |((TNRA=0,Tθ

− TNR∗
A=0)− (TNRA=1,Tθ

− TNR∗
A=1))|.

(12)

where Tθ represents the choice of the classifier.

Theorem 3 The inequality FU ≤ FDU + FMU holds true. Furthermore, if classifier Tθ is well-
defined and satisfies one of these conditions where S = {TA=0(x)× TA=1(x) ≤ 0}:

Condition 1: ∀x ∈ S, T ∗
A=0(x) ≥ 0,TPR∗

A=0 < TPR∗
A=1,TNR∗

A=0 > TNR∗
A=1.

Condition 2: ∀x ∈ S, T ∗
A=0(x) ≤ 0,TPR∗

A=0 > TPR∗
A=1,TNR∗

A=0 < TNR∗
A=1.

(13)

then the equality FU = FDU + FMU holds with FMU > 0.

Proof Sketch: When one of these two conditions is satisfied, the expressions for both FDU and FMU

maintain consistent sign conventions(+/−) within their absolute value terms.

We also empirically prove Theorem 3. We conduct experiments on a synthetic dataset, whose gen-
eration process is outlined in Section 6.3. X follows the Normal distribution, and the data across
different groups is imbalanced. As shown in Figure 5, data unfairness (the grey curve) remains
constant, in line with our definition 12 as it is independent of the design of the model architecture.
Conversely, model unfairness (the green curve) fluctuates along with total unfairness (the red curve),
signifying the dominance of this source of unfairness. It is worth noting that model unfairness may
still exhibit the same variations in amplitude with total unfairness when the classifier resides outside
the space S defined in Definition 1, where S = {TA=0(x) × TA=1(x) ≤ 0}. This observation
further underscores the effectiveness of our decomposition approach.

5.2 ELIMINATING THE ACCURACY-FAIRNESS TRADE-OFF
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Figure 5: Unfairness decomposition
where ∆unfairness = Unfairness −
model unfairness.

Theorem 3 suggests a potential solution to achieve com-
plete fairness through a systematic debiasing approach
that can address distinct sources of bias sequentially,
rather than using a debiasing technique that focuses ei-
ther on data or model unfairness. A similar approach
has been advocated in prior research, e.g., Cheng et al.
(2022). We first establish the following proposition and
then propose a two-step streamlined approach to elimi-
nate the accuracy-fairness trade-off.

Proposition 1 Given FDU = 0, then the classifier for
both complete fairness and maximal accuracy exists
iff. the decision boundaries are identical across dif-
ferent sensitive groups, which is equivalent to ∀x ∈
S, I(T ∗

A=0(x)) = I(T ∗
A=1(x)).

Proposition 1 states that, given that there is no data un-
fairness, we can achieve complete fairness when the de-
cision boundaries across different groups are identical. Along with Theorem 3 and Proposition 1,
we propose the following solution to eliminate the accuracy-fairness trade-off:

• Step 1 Tackle data unfairness. Since data unfairness often stems from data imbalances, it can be
rectified through data augmentation or sampling to achieve balanced data. For example, we can
collect more data samples or features through active learning.

• Step 2 Address model unfairness. Following Proposition 1, model unfairness can be addressed by
transforming the data distribution to align decision boundaries across different groups.

Note that this proposition does not indicate that complete fairness is impossible under all circum-
stances with disparate decision boundaries, rather, it suggests that it is highly challenging to achieve
complete fairness in these situations.

6 NUMERICAL EXAMPLES
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Figure 6: The figure above visualizes the data distribu-
tions in Example 3, where the optimal classifiers across
different sensitive groups are not identical. The figure
below shows the fairness and accuracy when the de-
cision boundary changes. Besides, the green and the
black dashed lines correspond to the optimal classifier
for fairness and accuracy, respectively.

In this section, we provide a series of re-
sults based on synthetic data to show the
validity and feasibility of the proposed re-
search. For simplicity, we posit the fol-
lowing assumption: Both the positive and
negative prediction spaces are simply con-
nected, i.e., any two samples with either
positive labels or negative labels can be
connected by a path. This assumption
is reasonable because decision boundaries
can be recognized as real-world standards,
such as the criteria for conviction. Discon-
nected positive spaces imply disparate cri-
teria for different people, suggesting po-
tential discrimination.

6.1 EXAMPLE 1. CONTINUOUS
FAIRFRONTIER IN AN IDEAL SETTING

Setting: For the sensitive attribute A = 1,
we set X | A = 1, Y = 1 ∼ N(10, 2) and
X | A = 1, Y = 0 ∼ N(3, 2). Similarly,
for the sensitive attribute A = 0 we set
X | A = 0, Y = 1 ∼ N(6, 2) and X | A = 0, Y = 0 ∼ N(−1, 2). In addition, we have
P(A = 1, Y = 1) = 1

2 , P(A = 1, Y = 0) = 1
4 , P(A = 0, Y = 1) = 1

8 and P(A = 0, Y = 0) = 1
8 .
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As depicted in Figure 2, we treat sensitive groups separately and obtain the FairFrontier. As fairness
increases, the accuracy gradually declines at first. Beyond some extent of fairness, accuracy steeply
declines yet maintains continuity. We believe this is due to the separate optimization of classifiers
across different groups, which allows more flexibility to balance between complete fairness and
maximal accuracy.

6.2 EXAMPLE 2. SHARP DECLINE IN ACCURACY

Under the same setting in Example 1, we demonstrate that over-pursuing fairness may contribute to a
sharp decline in accuracy. As shown in Figure 4, fairness improves with little sacrifice of accuracy at
first, but then the accuracy sharply declines by more than 0.2. After that, the trade-off curve exhibits
an approximately linear decrement as fairness continues to rise. Besides, when a sharp decline in
accuracy occurs, the classifier harms both sensitive groups, consistent with the empirical analysis in
Hu & Chen (2020).

6.3 EXAMPLE 3. UNFAIRNESS DECOMPOSITION
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Figure 7: The figure visualizes the data distributions
in Example 3, where the optimal classifiers across dif-
ferent sensitive groups are identical. The figure below
shows the fairness and accuracy of different decision
boundaries. The green and black dashed lines corre-
spond to the optimal classifier for fairness and accu-
racy, respectively.

Setting: For the sensitive attribute A = 1,
we set X | A = 1, Y = 1 ∼ N(10, 3) and
X | A = 1, Y = 0 ∼ N(2, 3). Similarly,
for the sensitive attribute A = 0 we set
X | A = 0, Y = 1 ∼ N(7, 3) and X |
A = 0, Y = 0 ∼ N(−1, 3). In addition,
we have P(A = 1, Y = 1) = 1

2 , P(A =

1, Y = 0) = 1
4 , P(A = 0, Y = 1) = 1

8

and P(A = 0, Y = 0) = 1
8 .

As shown in Figure 5, we compute that
FDU = 0.017, and FU = FMU + FDU .
It is noted that in this example, unfair-
ness is predominant by model unfairness,
and FMU approximates FU when the de-
cision boundary approaches the prediction
space boundary. It is likely that both TPR
and TNR come to parity across differ-
ent groups when those two boundaries get
close. Therefore, there exists a reversal in
the sign of the terms within the absolute
values in FMU .

6.4 EXAMPLE 4. ELIMINATE THE ACCURACY-FAIRNESS TRADE-OFF

Setting: We denote the triangular distribution with lower limit a, upper limit b and mode c as the
Triang(a, b, c). For sensitive attribute A = 1, let X | A = 1, Y = 1 ∼ Triang(4, 12, 8) and
X | A = 1, Y = 0 ∼ Triang(0, 8, 4). For the sensitive attribute A = 0 we set X | A = 0, Y =
1 ∼ Triang(3, 7, 5) and X | A = 0, Y = 0 ∼ Triang(5, 9, 7). Therefore, we can compute that
the optimal classifiers for both groups are identical. Similarly, we set X | A = 1, Y = 1 ∼
Triang(6, 14, 10), X | A = 1, Y = 0 ∼ Triang(2, 10, 6), X | A = 0, Y = 1 ∼ Triang(3, 7, 5) and
X | A = 0, Y = 0 ∼ Triang(5, 9, 7) for non-identical optimal classifiers for both sensitive groups.
Besides, we choose P(A = 1, Y = 1) = P(A = 1, Y = 0) = P(A = 0, Y = 1) = P(A = 0, Y =
0) = 1

4 for balanced datasets (Seen in Figures 6-7).

In this example, we successfully observe that when both TPR and TNR are equal across different
groups, we can obtain both complete fairness and maximal accuracy iff. the optimal classifiers
are identical(Shown in Figure 7). However, if the optimal classifiers across different groups are
disparate, complete fairness may still hold (shown in Figure 6) while maximal accuracy becomes
unattainable, with potentially poor prediction performance.
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7 RELATED WORK

Research into the trade-off between fairness and accuracy has recently gained prominence, despite
the substantial work in the field of fair machine learning (FairML)(Shui et al., 2022; Zhang et al.,
2022b; Deng et al., 2022; Kang et al., 2022; Qi et al., 2022; Zhang et al., 2022a; Jiang et al., 2021;
Liu et al., 2022; Zuo et al., 2022). Existing examinations of this trade-off can be classified into two
main categories: data-centered approaches and distribution-centered approaches.

Data-centered Approaches. Progress in the field has witnessed substantial developments in data-
centered approaches, with a strong emphasis on leveraging observational data. Kamiran & Calders
(2011) first examined the nuanced interplay between accuracy and fairness, crafting an optimal
classifier contingent upon the proportion of instances. Meanwhile, Chen et al. (2018) quantified
unfairness via a comprehensive bias-variance decomposition, and Pinzón et al. (2022) delved into
the geometric analysis of this trade-off with discrete data sources. However, these works fall short
in characterizing the FairFrontier, and the specific shape of the FairFrontier remains unexplored.

Distribution-centered Approaches. These studies frequently assume that data distributions across
different sensitive groups are known and accessible (Zhao & Gordon, 2019; Menon & Williamson,
2018; Blum & Stangl, 2019; Wang et al., 2023). Menon & Williamson (2018) derived the decision
boundary by intuitively using the true positive rate of the selected classifier on sensitive attributes
to measure unfairness. Blum & Stangl (2019) explored how fairness constraints on the training set
can affect generalization performance when test set distributions differ. On the other hand, Dutta
et al. (2020) assumed separate classifiers for different groups and derived the Chernoff bound to
characterize the trade-off. However, these studies frequently focused more on the existence of the
accuracy-fairness trade-off rather than the shape of the FairFrontier.

Recent works focusing on the trade-off often have distinct emphases tailored to specific scenarios.
For instance, Zietlow et al. (2022) investigated the accuracy-fairness trade-off in computer vision,
while Zhao (2021) studied it in fair regression. Besides, some works have explored the trade-off un-
der scenarios involving distribution shift and optimization with privacy concerns(Wick et al., 2019;
Pham et al., 2023; Lowy, 2023; Gultchin et al., 2022).

This work distinguishes itself from prior research by introducing rigorous theoretical analyses to
delineate the FairFrontier and explore four potential curves that illustrate the trade-off between fair-
ness and accuracy. For each category within the FairFrontier, we aim to delve into the underlying
mechanisms and pinpoint the necessary conditions that give rise to these specific trade-offs. To
achieve this goal, our approach centers on examining the positions of decision boundaries rather
than focusing on classifiers, as previous studies have done. By characterizing the key properties of
the FairFrontier, we gain a deeper understanding of the accuracy-fairness trade-off and ultimately
aspire to eliminate this trade-off, thereby constructing an effective and fair ML system.

8 CONCLUSIONS AND FUTURE WORK

Since fairness has become an essential consideration in algorithmic decision-making, it is critical
to discern the shape of the accuracy-fairness trade-off curve(FairFrontier). In this paper, we first
investigated the ideal scenario where information in sensitive attributes can be fully captured by non-
sensitive features and concluded that in most cases, the FairFrontier is continuous. We then further
examined the shape of the FairFrontier in a more practical setting where non-sensitive attributes
encode partial information in the sensitive attributes. We provided an upper bound to show that
under certain conditions, accuracy may suffer a sharp decline when over-pursing fairness. Moreover,
we went beyond the FairFrontier and decomposed the unfairness into data unfairness and model
unfairness. A two-step streamlined approach was therefore proposed to eliminate the trade-off.
Lastly, we provided several numerical examples to demonstrate our theoretical findings.

Looking forward, our proposed theoretical approach provides multiple avenues for future research.
In this work, we assume the data distributions are known beforehand for analytical convenience,
which is often impractical. Hence it is imperative to quantify unfairness decomposed through real-
world datasets. In addition, the sharp decline in accuracy urges us to focus on the effectiveness of
sacrificing performance for fairness and to carefully scrutinize the trade-off between our objectives
and the well-being of the public.
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A APPENDIX

In this section, we first obtain the Bayes optimal classifier for accuracy and fairness for binary clas-
sification. Then we prove the Lemmas, Theorems and the Proposition stated in the main manuscript.

A.1 OPTIMAL CLASSIFIER FOR ACCURACY AND FAIRNESS

A.1.1 OPTIMAL CLASSIFIER FOR ACCURACY

Following Menon & Williamson (2018) and Wang et al. (2023), we can write the Markov chain as
(A, Y ) → X → Ŷ . Then the following equation is obtained given the Bayes optimal classifier for
accuracy:

Acc(Tθ) =P(Ŷ = 1, Y = 1) + P(Ŷ = 0, Y = 0)

=
∑
a

Ex∼f(x|Y=1,A=a)I(Tθ(x))× P(Y = 1, A = a)

+
∑
a

Ex∼f(x|Y=0,A=a)(1− I(Tθ(x)))× P(Y = 0, A = a)

=
∑
a

Ex∼f(x)(
1

f(x)
× (f(x|Y = 1, A = a)×P(Y = 1, A = a)

− f(x|Y = 0, A = a)× P(Y = 0, A = a))× I(Tθ)) + P(Y = 0).

(14)

Hence, the optimal classifier for accuracy T ∗
θ can be obtained by:

I(T ∗
θ ) =

{
1,

∑
a f(x, Y = 1, A = a) ≥

∑
a f(x, Y = 0, A = a),

0.
∑

a f(x, Y = 1, A = a) <
∑

a f(x, Y = 0, A = a) .
(15)

A.1.2 OPTIMAL CLASSIFIER FOR FAIRNESS

Similar to the previous analysis, we can derive the optimal fairness-aware classifier with arbi-
trary weights w. Upon implementing the optimal classifier denoted as T f

θ for classification, and
considering the outcomes for each sensitive group A = a, where TPRA=1 > TPRA=0 and
TNRA=1 > TNRA=0, we deduce the following:

FU =ω1 × (TPRA=1 − TPRA=0) + ω2 × (TNRA=1 − TNRA=0)

=ω1 × (Ex∼f(x|Y=1,A=1)I(Tθ(x))− Ex∼f(x|Y=1,A=0)I(Tθ(x)))

+ ω2 × (Ex∼f(x|Y=1,A=1)(1− I(Tθ(x))))− Ex∼f(x|Y=1,A=0)(1− I(Tθ(x)))

=Ex∼f(x)(λ1 − λ2)× I(Tθ)).

(16)

where
λ1 = ω1 × (f(x|Y = 1, A = 1)−f(x|Y = 1, A = 0)),

λ2 = ω2 × (f(x|Y = 0, A = 1)−f(x|Y = 0, A = 0)).
(17)

Hence, the optimal classifier for accuracy T ∗
f can be achieved by:

I(T f
θ ) =

{
1, λ1 ≥ λ2,

0. λ1 < λ2.
(18)

Alternatively, if TPRA=1 > TPRA=0 and TNRA=1 < TNRA=0, we obtain that:

I(T f
θ ) =

{
1, λ1 ≥ −λ2,

0. λ1 < −λ2.
(19)

A.2 PROOFS

A.2.1 PROOF OF LEMMA 1

proof. The proof for the case of the sharp decline in both fairness and accuracy (the brown curve
in Figure 8) is analogous to the case of the sharp decline in fairness(the grey curve in Figure 8).
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Therefore, we only prove that the sharp decline in fairness cannot occur, regardless of whether
sensitive attributes are encoded or not.

Figure 8: Four shapes of FairFrontier.
“Green” delineates a continuous frontier,
“Red” exhibits a sharp decline in accu-
racy when over-pursuing fairness, and
“Grey” shows a sharp decline in fairness
when improving accuracy. “Brown” rep-
resents a sharp decline in both accuracy
and fairness.

As is depicted in Figure 9, Let point M represent the
location on the trade-off curve where accuracy is max-
imized. Additionally, point B denotes the point dis-
continuity where the curve is left-continuous but right-
discontinuous, and point A represents the point dis-
continuity where the curve is right-continuous but left-
discontinuous.

Now we prove that the accuracy at point A must be the
maximum accuracy. If not, there must exist S ⊆ Ω,
∀x ∈ S, TA(x) × TM (x) < 0. Consequently, we can
formulate the classifier T ′

a as follows:

T ′
A(x) =

{
TA(x), x ∈ Ω− S,

TM (x). x ∈ S.
(20)

where Ω represents the probability space. Therefore
Acc (T ′

A) > Acc (TA) This result conflicts with which
the trade-off curve at the point discontinuity is left-
discontinuous. Therefore, a sharp decline in fairness
cannot occur, regardless of whether sensitive attributes
are encoded or not.

The lemma can also be derived from the properties of envelope curves: According to the character-
istics of envelope curves, it is known that the Pareto Frontier is formed by the envelope of a cluster
of possible accuracy-fairness curves. If the envelope curve exhibits a discontinuity at point A, then
any accuracy-fairness curve passing through point A within the cluster will also be discontinuous.

A.2.2 PROOF OF LEMMA 2

Full Description. If the sharp decline in accuracy occurs (the red curve in Figure 8), iff. the
right-discontinuous point satisfies:

(1) Condition 1:Given that classifier TA operating on different sensitive groups, we have:
(TPRA=1 − TPRA=0) (TNRA=1 − TNRA=0) ≥ 0.

(2) Condition 2:Acc (TA) =maxAcc (Tθ) , s.t. FU (Tθ) = FU (TA) .

(3) Condition 3:
if TPRA=1 ≥ TPRA=0, TPRA=1 ≥ TPRA=0,

then

Ŷ =

{
I(f(x|y=1, a=1) ≤ f(x|y=0, a=1)), A = 1,

I(f(x|y=1, a=0) ≥ f(x|y=0, a=0)), A = 0.

else if TPRA=1 ≤ TPRA=0, TPRA=1 ≤ TPRA=0,

then

Ŷ =

{
I(f(x|y=1, a=1) ≥ f(x|y=0, a=1)), A = 1,

I(f(x|y=1, a=0) ≤ f(x|y=0, a=0)), A = 0.

(21)

where I is the characteristic function which states that if x ≥ 0 is true, I(x) = 1; else, I(x) = 0.

proof. We initially establish the necessity of the conditions and subsequently prove their sufficiency.

As is depicted in Figure 10, Let point MA represent the location on the trade-off curve where ac-
curacy is maximized. Additionally, point B denotes the point discontinuity where the curve is
right-continuous but left-discontinuous, and the curve is left-continuous but right-discontinuous.

Step 1: Proof for Condition 1

For condition 1, we hypothesize that it is not satisfied. We denote Ta as the classifier operating
on the data distribution of group A = a at the point discontinuity. Without loss of generality, we
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assume that: TPRA=1 > TPRA=0,TNRA=1 < TNRA=0, then we have {TA,A=1(x) < 0} ≠
Ω, {TA,A=0(x) > 0} ̸= Ω where Ω represents the probability space. Otherwise, 0 = TPRA=1 >
TPRA=0 ≥ 0, 0 = TNRA=0 ≥ TNRA=1 ≥ 0, which cannot hold. Consequently, there exists
S ⊆ Ω, ∀x ∈ S, TA(x)× TM (x) < 0 and we can formulate the classifier T ′

a as follows:

T ′
A(x) =

{
TA(x), x ∈ Ω− S,

−TA(x). x ∈ S.
(22)
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Figure 9: The grey curve represents
the sharp decline in fairness when over-
pursuing accuracy and the brown curve
delineates the sharp decline in both ac-
curacy and fairness.

where Ω represents the probability space. Therefore
FU (TA) > FU (T

′
A), which is right-continuous on the

FairFrontier.

Step 2: Proof for Condition 2. This condition must be
satisfied; otherwise, point A would not lie on FairFron-
tier.

Step 3: Proof for Condition 3. This condition can be
obtained through a similar analysis to A.1.2.

Step 4: Proof for Sufficiency. Condition 2 indicates
that the point discontinuity lies on the trade-off curve.
According to Step 3, we conclude that fairness at the
point discontinuity attains the local maximum, where
FU (T

f
θ ) = FU (TA). Considering that the accuracy at

the point discontinuity is typically unique, we obtain
that TA = T f

θ . Then point discontinuity represents the
point discontinuity where the curve is left-continuous
but right-discontinuous. Now we can say that there exists a sharp decline in accuracy.

Notes. In most cases, Condition 1 and Condition 3 cannot be simultaneously satisfied. For instance,
let’s define group A = 0 as the unprivileged group, whose true positive prediction rate(TPR) and
true negative prediction rate(TNR) are both lower than group A = 1. If both conditions are met,
it means that the performance of the perfect prediction for the unprivileged group would be worse
than that of the adversely worst prediction for the privileged group, which is seldom achieved.

A.2.3 PROOF OF THEOREM 1

proof. If Tθ is the optimal classifier for both accuracy and fairness, the boundary condition for
maximum accuracy is achieved. If complete fairness is attainable, then we obtain that FU = 0
which corresponds to Condition 1. Besides, given that the boundary condition for maximum fairness
is achieved, we obtain Condition 2 through the result in A.1.2. Therefore, the general conditions are
satisfied if the classifier Tθ maximizes both accuracy and fairness simultaneously.

Given that the distributions across different groups are balanced, i.e. P(a, y) = 1
4 , for any sample x

on the decision boundary B, we have:∑
a

f(x | Y = 1, A = a)× P(Y = 1, A = a)

=
∑
a

f(x | Y = 1, A = a)× 1

4

=
∑
a

f(x | Y = 0, A = 0)× P(Y = 0, A = a)

=
∑
a

f(x | Y = 0, A = 0)× 1

4

(23)

Therefore, we can readily derive the corresponding conditions by incorporating Condition 2 with
the previously obtained result.

A.2.4 PROOF OF THEOREM 2

proof. We prove this result in three steps:
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Step 1: Classifiers that share the same extent of fairness characteristics cannot traverse the enclosed
space S. The proof can be seen below:

There exists S ⊆ Ω, ∀x ∈ S, TA(x)×TM (x) < 0 and we can formulate the classifier T ′
a as follows:

T ′
A(x) =

{
TA(x), x ∈ Ω− S,

−TA(x). x ∈ S.
(24)

where Ω represents the probability space. Therefore FU (TA) < FU (T
′
A) and and Acc(TA) <

Acc(T ′
A). Hence, there always exists a classifier T ′

θ with little adjustment that dominates T f
θ .

Step 2: Classifiers with the same extent of fairness cannot reside within the space S. Given that the
optimal classifier for fairness T f

θ , obtained through A.1.2, is well-defined. Besides, for any well-
defined classifier Tθ, it must reside within the space S where S = {TA=0(x) × TA=1(x) ≤ 0}.
Hence, the classifier with the same extent of fairness cannot reside within the space S.
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Figure 10: The red curve represents the
sharp decline in accuracy when over-
pursuing fairness.

Step 3: The classifier with the same extent of fairness
can only exist outside the space S, but its accuracy must
be inferior to that of the optimal classifier for each sen-
sitive group. Because the classifier outside the space
S always yields worse performance compared to well-
defined classifiers, including the optimal classifiers for
both sensitive groups. Consequently, the original in-
equality remains valid, as does the derived one.

A.2.5 PROOF OF THEOREM 3

proof. We begin by proving the inequality, and sub-
sequently, we establish the equality by leveraging the
well-defined classifier. It stipulates that beyond the re-
gion enclosed by the decision boundaries of the opti-
mal classifiers for distinct sensitive groups, denoted as
S = TA=0(x)× TA=1(x) ≤ 0, the sign (+/−) of the
predictions aligns with the optimal classifier employed
for each respective group.

FU =
1

2
× |TPRA=0,Tθ

−TPRA=1,Tθ
|+ 1

2
× |TNRA=0,Tθ

−TNRA=1,Tθ
|

=
1

2
× |(TPRA=0,Tθ

−TPR∗
A=0)−(TPRA=1,Tθ

−TPR∗
A=1)+(TPR∗

A=0 − TPR∗
A=1)|

+
1

2
×|(TNRA=0,Tθ

−TNR∗
A=0)−(TNRA=1,Tθ

−TNR∗
A=1) +(TNR∗

A=0 − TNR∗
A=1)|

≤FMU + FDU .

(25)

where the last inequality can be obtained by applying the absolute value inequality.

In addition, since Tθ is well-defined, we can relax the absolute value. Specifically, if T ∗
A=0(x) > 0

when x ∈ S, then:

TPR∗
A=0 − TPRA=0,Tθ

>0, TPR∗
A=1 − TPRA=1,Tθ

<0,

TNR∗
A=0 − TNRA=0,Tθ

<0, TNR∗
A=0 − TNRA=0,Tθ

>0.
(26)

else if T ∗
A=0(x) < 0 when x ∈ S, then:

TPR∗
A=0 − TPRA=0,Tθ

<0, TPR∗
A=1 − TPRA=1,Tθ

>0,

TNR∗
A=0 − TNRA=0,Tθ

>0, TNR∗
A=0 − TNRA=0,Tθ

<0.
(27)

We can obtain that FMU > 0. Besides, when one of the conditions of this theorem is satisfied, both
FDU and FMU will have the same sign within the absolute value, regardless of whether it is for TPR
or TNR. Hence, we can conclude that: FU = FDU + FMU .
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A.2.6 PROOF OF PROPOSITION1

proof. We initially establish the sufficiency of the conditions and subsequently prove their necessity.

Sufficiency: Given ∀ ∈ S, I(T ∗
A=0(x)) = I(T ∗

A=1(x)), we let Tθ = T ∗
A=0 = T ∗

A=1. It can be easily
proved that the classifier is well-defined and the enclosed space S = ∅ where S = {TA=0(x) ×
TA=1(x) ≤ 0}. Therefore, FMU = 0. Given FDU = 0, we can obtain that FU = 0. Since this
chosen classifier is optimal for each group, we have:

Acc(Tθ) =AccA=0(Tθ)× P(A = 0)+AccA=1(Tθ)× P(A = 1)

=AccA=0(T
∗
A=0)× P(A = 0)+AccA=1(T

∗
A=1)× P(A = 1).

(28)

where Acca(Tθ) is denoted as the accuracy of the group A = a obtained by the classifier Tθ. In
light of Theorem 4 in (Lipton et al., 2018), we can obtain that the maximum accuracy is achieved
under the optimal classifier for both sensitive groups.

Necessity: Once maximum accuracy has been attained, the classifier becomes the optimal classifier,
where Tθ = T ∗

θ , thus affirming the chosen classifier’s well-defined nature. Therefore, the equation
FU = FMU + FDU = 0 holds true and we can obtain that FMU = 0. According to Theorem 1,
when S ̸= ∅ which means that the optimal classifier for different groups is not identical, we can
obtain the inequality FMU > 0, which is inconsistent with our previous result. We then conclude
that the optimal classifier for different groups must be identical.
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