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Abstract

Lexically constrained neural machine transla-
tion (NMT), which controls the generation of
NMT models with pre-specified constraints, is
important in many practical scenarios. Due to
the representation gap between discrete con-
straints and continuous vectors of NMT mod-
els, most existing works propose to construct
synthetic data or modify the decoding algo-
rithm to impose lexical constraints, treating
the NMT model as a black box. In this
work, we directly integrate the constraints
into NMT models through vectorizing discrete
constraints into continuous keys and values
that can be utilized by the attention modules
of NMT models. The proposed integration
method is based on the assumption that the
correspondence between the keys and values
in attention modules is naturally suitable for
modeling constraint pairs. Experimental re-
sults show that our method consistently outper-
forms several representative baselines on four
language pairs, demonstrating the necessity of
integrating vectorized lexical constraints.

1 Introduction

Controlling the lexical choice of the translation
is important in a wide range of settings, such as
interactive machine translation (Koehn, 2009), en-
tity translation (Li et al., 2018), and translation in
safety-critical domains (Wang et al., 2020). How-
ever, different from the case of statistical machine
translation (Koehn et al., 2007), it is non-trivial to
directly integrate discrete lexical constraints into
neural machine translation (NMT) models (Bah-
danau et al., 2015; Vaswani et al., 2017), whose
hidden states are all continuous vectors that are
difficult for humans to understand.

In accordance with this problem, one branch
of studies directs its attention to designing ad-
vanced decoding algorithms (Hokamp and Liu,
2017; Hasler et al., 2018; Post and Vilar, 2018)
to impose hard constraints and leave NMT models
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Figure 1: An example of the integration of vectorized
lexical constraints into attention proposed in this work.
We omit queries for simplicity. Blue and green squares
denote the continuous representation of the source sen-
tence and the constraints, respectively. The provided
constraints are "Beatles—Beatles" and "band— /& [4]".

unchanged. For instance, Hu et al. (2019) propose a
vectorized dynamic beam allocation (VDBA) algo-
rithm, which devotes part of the beam to candidates
having met some constraints. Although this kind
of method can guarantee the presence of target con-
straints in the output, they are found to potentially
result in poor translation quality (Chen et al., 2021;
Zhang et al., 2021), such as repeated translation or
source phrase omission.

Another branch of works proposes to learn
constraint-aware NMT models through data aug-
mentation. They construct synthetic data by replac-
ing source constraints with their target-language
correspondents (Song et al., 2019) or appending tar-
get constraints right after the corresponding source
phrases (Dinu et al., 2019). During inference, the
input sentence is edited in advance and then pro-
vided to the NMT model. The major drawback of
data augmentation-based methods is that they may
suffer from a low success rate of generating target
constraints in some cases, indicating that only ad-
justing the training data is sub-optimal for lexical
constrained translation (Chen et al., 2021).

To make NMT models better learn from and
cope with lexical constraints, we propose to lever-
age attention modules (Vaswani et al., 2017) in
NMT models to explicitly integrate vectorized lexi-
cal constraints. As illustrated in Figure 1, we use



vectorized source constraints as additional keys and
vectorized target constraints as additional values.
Intuitively, the additional keys are used to estimate
the relevance between the current query and the
source phrases while the additional values are used
to integrate the information of the target phrases.
In this way, each revised attention is aware of the
guidance to translate which source phrase into what
target phrase.

Experiments show that our method can signifi-
cantly improve the ability of NMT models to trans-
late with constraints, indicating that the correspon-
dence between attention keys and values is suitable
for modeling constraint pairs. Inspired by recent
progress in controlled text generation (Dathathri
et al., 2020; Pascual et al., 2021), we also intro-
duce a plug-in to the output layer that can further
improve the success rate of generating constrained
tokens. We conduct experiments on four language
pairs and find that our model can consistently out-
perform several representative baselines.

2 Neural Machine Translation

Training The goal of machine translation is
to translate a source-language sentence x =
T1...Z|x Into a target-language sentence y =
Y1---Yiy|- We use P(y|x;8) to denote an NMT
model (Vaswani et al., 2017) parameterized by 6.
Modern NMT models are usually trained by maxi-
mum likelihood estimation (Bahdanau et al., 2015;
Vaswani et al., 2017), where the log-likelihood is
defined as

lyl

log P(y|x;8) = log P(yily<t,x;8), (1)
t=1

in which y ¢ is a partial translation.

Inference The inference of NMT models can be
divided into two sub-processes:

e probability estimation: the model estimates
the token-level probability distribution for
each partial hypothesis within the beam;

* candidate selection: the decoding algorithm
selects some candidates based on the proba-
bility estimated by the NMT model.

These two sub-processes are performed alterna-
tively until reaching the maximum length or gener-
ating the end-of-sentence token.

3 Approach

3.1 Vectorizing Lexical Constraints

Lets = s(l), ... ,S(N ) be the source constraints
and t = t™), ... t(V) be the target constraints.
Given a constraint pair (s(™,t("), lexically con-
strained translation requires that the system must
translate the source phrase s(™ into the target
phrase t(™). Since the inner states of NMT mod-
els are all continuous vectors rather than discrete
tokens, we need to vectorize the constraints before
integrating them into NMT models.

For the n-th constraint pair (s(™, t(™), let [s(")|
and [t(™| be the lengths of s(™ and t(™), respec-
tively. We use S,(Cn) € R to denote the vector
representation of the k-th token in s, which is
the sum of word embedding and positional embed-
ding (Vaswani et al., 2017). Therefore, the matrix
representation of s(™ is given by:
where S € R¥*Is"| is the concatenation of all
vector representations of tokens in s, Similarly,
the matrix representation of the target constraint
t™ is T(W € RIt™ | Note that the positional
embedding for each constraint is calculated inde-
pendently, which is also independent of the posi-
tional embeddings of the source sentence x and the
target sentence y.

3.2 Integrating Vectorized Constraints

We adopt Transformer (Vaswani et al., 2017) as
our NMT model, which is nowadays one of the
most popular and effective NMT models (Liu et al.,
2020). Typically, a Transformer consists of an en-
coder, a decoder, and an output layer, of which
the encoder and decoder map discrete tokens into
vectorized representations and the output layer con-
verts such representations into token-level proba-
bility distributions. We propose to utilize the at-
tention modules to integrate the constraints into
the encoder and decoder and use a plug-in mod-
ule to integrate constraints into the output layer.
We change the formal representation of our model
from P(y|x;0) to P(y|x,s, t; ) to indicate that
the model explicitly considers lexical constraints
when estimating probability.

Constraint-Related Keys and Values We pro-
pose to map source and target constraints into addi-
tional keys and values, which are called constraint-
related keys and values, in order to distinguish from
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Figure 2: Illustration of the integration of vectorized lexical constraints into both the encoder and the decoder.
Blue, red, and green squares represent vectorized representations for source tokens, target tokens, and tokens of
constraint pairs, respectively. The basic idea is to use source constraints as indicators to select the corresponding
target constraints for each query. We only plot the attention weights for one query for simplicity.

the original keys and values in vanilla attention
modules. In practice, source and target constraints
may have different lengths and they are usually not
monotonically aligned (Du et al., 2021), making it
challenging to directly convert the constraints into
keys and values. To fix this problem, We adopt a
multi-head attention (Vaswani et al., 2017) to align
the bilingual constraints. The constraint-related
keys and values for the n-th constraint pair are
given by
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where K((zn) € RIxIs™ | and V((;n) € RExIs™]
attn(Q, K, V) denotes the multi-head attention
function. Note that the resulting Kg") and V§”)
are of the same shape. V((;n) can be seen as a re-
distributed version of the representation of target
constraints. The constraint-related keys and values
of each constraint pair are calculated separately and
then concatenated together:
K. = K. KOV,

C

V.= [V, ;v

C

“)

where K. € R¥Isl and V. € R8I, |s| is the
total length of all the NV source constraints.

Integration into the Encoder The encoder of
Transformer is a stack of I identical layers, each
layer contains a self-attention module to learn
context-aware representations. For the i-th layer,
the self-attention module can be represented as

enc enc enc

attn (H“‘—l), H{-D, H(H)) )

where Hg;l) € Rl is the output of the (i — 1)-
th layer, and Hg%)c is initialized as the sum of word
embedding and positional embedding (Vaswani
et al., 2017). For different layers, Hggl) may lay
in various manifolds, containing different levels
of information (Voita et al., 2019). Therefore, we
should adapt the constraint-related keys and val-
ues for each layer before the integration. We use a
two-layer adaptation network to do this:

K') = [adapt(K,); H( D), ©)
VU, o = [adapt(V.); HE V],

where adapt(-) denotes the adaptation network,
which consists of two linear transformations with
shape d x d and a ReLU activation in between.
The adaptation networks across all layers are in-
K@ ¢ rdx(s/+x))

dependent of each other. K, .
and ngenc € R4 (sl+XD) are the constraint-aware
keys and values for the i-th encoder layer, respec-
tively. The vanilla self-attention module illustrated

in Eq. (5) is revised into the following form:

enc  ““cdenc’ ' cdenc

attn (H@'*l) KO v ) %

Integration into the Decoder The integration
into the decoder is similar to that into the en-
coder, the major difference is that we use the cross-
attention module to model constraints for the de-
coder. Figure 2c plots an example of the integration
into the decoder, of which the formal description is
detailed in Appendix A due to limited space.

Integration into the Output Layer In vanilla
Transformer, an output layer is employed to convert
the output of the last decoder layer into token-level
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Figure 3: Tllustration of the integration into the output
layer. Please refer to Eq (8), (9), and (10) for the defi-
nition of Pyodel, Pplug, and g, respectively.

probabilities. Let h; € R%*! be the decoder output
at the ¢-th time step, the output probability of the
Transformer model is defined as

Pmodel(y|Y<ta X, s, t; 0) = softmax (h:W) ,

®)
where W € R%*V| is the output embedding ma-
trix and |V| is the vocabulary size. Inspired by the
plug-and-play method (Pascual et al., 2021) in the
field of controlled text generation (Dathathri et al.,
2020; Pascual et al., 2021), we introduce an addi-
tional probability distribution over the vocabulary
to better generate constrained tokens:

Pplug(y’y<ta X, s, t7 0)
0 yéet

B max <0,cos <Wy, ht)) yet
[wy| " [l
)

where w,, € R ¥ is the word embedding of token
y and t is the sequence of all the target-side con-
strained tokens. We also use a gating sub-layer to
control the strength of the additional probability:

9(y, hy)
— sigmoid (tan ([wy Wi;h/ Wa| ) W) |
(10)

where W; € R4 W, ¢ R4 and W3 €
R24%1 are three trainable linear transformations.
The final output probability is given by

P(Z/’Y<ta X, S, tv 0)
= (1 —g(y, ht)) Podel (Y|y<t, X, s,t;0)
+ 9(y, he) Porg (yly <¢, %, 8, £ 6).
(11)

3.3 Training and Inference

Training The proposed constraint-aware NMT
model should not only generate pre-specified con-
straints but also maintain or improve the translation
quality compared with vanilla NMT models. We
thus propose to distinguish between constraint to-
kens and constraint-unrelated tokens during train-
ing. Formally, the training objective is given by

L(y|x,s,t;0)

= Z logP(yt|y<t7x7sat;a)
yrEynt

+ B Z 10gP(yt|Y<t)Xasat;0))
Y€y \t

(12)

where o and 3 are hyperparameters to balance the
learning of translation and constraint generation.

We can divide the parameter set of the whole
model into two subsets: @ = 6, U 8., where 0,
is a set of original vanilla model parameters and
0. is a set of newly-introduced parameters that are
used to vectorize and integrate lexical constraints.'
Since 6. is significantly smaller than 6,,, it requires
much less training iterations. Therefore, we adopt
the strategy of two-stage training (Tu et al., 2018;
Zhang et al., 2018) for model optimization. Specif-
ically, we optimize 0, using the standard NMT
training objective (Bahdanau et al., 2015; Vaswani
et al., 2017) at the first stage and then learn the
whole model @ at the second stage. The second
stage is significantly shorter than the first stage, we
will give more details in Section 4.1.

Inference As discussed in Section 2, the infer-
ence process is composed of two sub-processes:
probability estimation and candidate selection. In
this work, we aim to improve the probability esti-
mation sub-process and our method is orthogonal
to constrained decoding algorithms (Hokamp and
Liu, 2017; Post and Vilar, 2018; Hu et al., 2019),
which instead focus on candidate selection. There-
fore, we can employ not only beam search but also
constrained decoding algorithms at inference time.
We use VDBA (Hu et al., 2019) as the default
constrained decoding algorithm, which supports
batched inputs and is significantly faster than most
other counterparts (Hokamp and Liu, 2017; Post
and Vilar, 2018; Hasler et al., 2018).

10, includes parameters of the attention presented in
Eq (3), the adaptation networks described in Eq (6) and (14),
and the gating sub-layer illustrated in Eq (10).



4 [Experiments

4.1 Setup

Training Data In this work, we conduct ex-
periments on Chinese<English (Zh<En) and
German<English (De<En) translation tasks. For
Zh<En, the training set contains 1.25M sentence
pairs from LDC?. For De<En, the training set is
from the WMT 2014 German<>-English translation
task, which consists of 4.47M sentence pairs. We
apply BPE (Sennrich et al., 2016b) with 32K joint
merge operations for both Zh<En and De<En.

Evaluation Data Following Chen et al. (2021),
we evaluate our approach on the test sets with
human-annotated alignments. For Zh<En, we use
the alignment datasets from Liu et al. (2005)?, in
which the validation and test sets both contain 450
sentence pairs. For De<En, we use the alignment
dataset from (Zenkel et al., 2020)* as the test set,
which consists of 508 sentence pairs. Since there is
no human-annotated alignment validation sets for
De<En, we use fast-align’ to annotate the
newstest 2013 as the validation set for De<En.

Lexical Constraints In real-world applications,
lexical constraints are usually provided by human
translators. We follow Chen et al. (2021) to simu-
late the practical scenario by sampling constraints
from the phrase pairs that are extracted from par-
allel data using alignments. The script for phrase
pair extraction is publicly available.® For the val-
idation and test sets of Zh<En and the test set of
De<En, we use human-annotated alignments to
extract phrase pairs. For the training corpora in
both Zh<En and De<En, we use fast-align
to firstly learn an alignment model and then use
the model to automatically annotate the alignments.
The validation set of De<En is also annotated by
the alignment model learned on the correspond-
ing training corpus. We use the same strategy as
Chen et al. (2021) to sample constraints from the
extracted phrase pairs. More concretely, the num-
ber of constraints in each sentence is up to 3. The

>The total training set for Zh<En is composed
of LDC2002E18, LDC2003E07, LDC2003E14, part of
LDC2004T07, LDC2004T08 and LDC2005T06.

*http://nlp.csai.tsinghua.edu.cn/~1ly/
systems/TsinghuaAligner/TsinghuaAligner.
html

*https://github.com/1ilt/
alignment-scripts

Shttps://github.com/clab/fast_align

®https://github.com/ghchenl8/cdalign/
blob/main/scripts/extract_phrase.py

length of each constrained phrase is uniformly sam-
pled among 1 and 3. For each sentence pair, all the
constraint pairs are shuffled and then supplied to
the model in an unordered manner.

Model Configuration We use the base set-
ting (Vaswani et al., 2017) for our model. Specif-
ically, the hidden size d is 512 and the depths of
both the encoder and the decoder are 6. Each multi-
head attention module has 8 individual attention
heads. Since our method introduces additional pa-
rameters, we use a larger model with an 8-layer
encoder and an 8-layer decoder to assimilate the
parameter count for the baselines. For Zh<En, we
optimize 0, for 50K iterations at the first stage and
then optimize @ for 10K iterations at the second
stage. For a fair comparison, we train the base-
lines for 60K iterations in total. For De<En, we
optimize 6, for 90K iterations then optimize 8 for
10K iterations. The baselines are trained for 100K
iterations. See Appendix B for more details.

Baselines We compare our approach with three
representative baselines:

* VDBA (Hu et al., 2019): dynamically devot-
ing part of the beam for constraint-related hy-
potheses at inference time;

* Replace (Song et al., 2019): directly replacing
source constraints in the training data with
their corresponding target constraints. The
model is also improved with pointer network;

* CDAlign (Chen et al., 2021): explicitly using
an alignment model to decide the position to
insert target constraints during inference.

Evaluation Metrics We evaluate the involved
methods using the following two metrics:

e BLEU: we use sacreBLEU’ (Post, 2018) to
report the BLEU score;

* Copying Success Rate (CSR): We follow Chen
et al. (2021) to use the percentage of con-
straints that are successfully generated in the
translation as the CSR, which is calculated at
word level after removing the BPE separator.

We use compare-mt (Neubig et al., 2019) for
significance testing, with bootstrap = 1000 and
prob_thresh = 0.05.

7Signature for Zh—En, De—En, and En—De: nrefs:1
| case:mixed | effino | tok:13a | smooth:exp | version:2.0.0.
Signature for En—Zh: nrefs:1 | case:mixed | eff:no | tok:zh |
smooth:exp | version:2.0.0.
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https://github.com/ghchen18/cdalign/blob/main/scripts/extract_phrase.py

Method Para. BLEU CSR (%)

/—E E—7Z D—E E-—D Avg Z—FE E—Z D—E E—D Avg
Vanilla 82M  36.1 643 33.1 2577 398 325 285 16.3 11.9 223
VDBA 82M 378 663 36.1 285 422 994 989 100.0 100.0 99.6
Replace 82M 380 67.0 358 29.1 425 932 887 913 90.1 90.8
CDAlign 82M 375 665 369 293 426 904 923 967 96.0 93.9
Ours 8IM 389 683 374 300 437 994 989 100.0 100.0 99.6

Table 1: Results on lexically constrained test sets. "Z—E" denotes Zh—En, "D—E" denotes De—En.

"Para."

denotes the number of model parameters. The best BLEU in each column is highlighted in bold, and "%" indicates

no significant difference with the method achieving the best BLEU. The best CSR in each column is italicized.

4.2 Main Results

Table 1 shows the results of lexically constrained
translation on test sets of all four translation tasks.
All the investigated methods can effectively im-
prove the CSR over the vanilla Transformer. The
CSR of VDBA on Zh<En is not 100.0% for the
reason that some target constraints contain out-of-
vocabulary tokens. Replace (Song et al., 2019)
achieves better BLEU scores on three translation
directions (i.e., Zh<En and En—De) than VDBA,
but its CSR is much lower. CDAlign (Chen et al.,
2021) performs better than Replace on average re-
garding both BLEU and CSR. Our method consis-
tently outperforms all the three baselines across
the four translation directions in terms of BLEU,
demonstrating the necessity of integrating vector-
ized constraints into NMT models. Decoding with
VDBA, we also achieve the highest CSR. To dis-
entangle the effect of integrating vectorized con-
straints and VDBA, we report the result of our
model using beam search in Table 2. Decoding
with beam search, our model can also achieve a bet-
ter BLEU score than the baselines and the CSR is
higher than both Replace and CDAlign on average.

Metric Z/—E E—Z D—E E—D Avg.
BLEU 393 68.6 372 30.1 438
CSR (%) 948 941 97.1 945 095.1

Table 2: Performance on lexically constrained test sets
of the proposed model decoding with beam search.

4.3 Ablation Study

We investigate the effect of different components
through an ablation study, the results are shown
in Table 3. We find that only integrating lexical
constraints into attention can significantly improve

Integration DA BLEU CSR (%)
Attention  QOutput
7 N 425 92.6
y v B 408 64.6
v v 42.8 95.1
v % 42.4 98.6
o v vV 412 98.6
v v 42.5 98.6

Table 3: Effect of different components. The results are
reported on the Zh—En validation set. "Attention": the
constraint integration of attention modules. "Output":
the integration into the output layer. "DA": decoding
algorithm. "B": beam search. "V": VDBA.

the CSR over the vanilla model (92.6% vs. 30.4%),
which is consistent with our motivation that the cor-
respondence between keys and values is naturally
suitable for modeling the relation between source
and target constraints. Plugging target constraints
into the output layer can further improve the per-
formance, but the output plug-in itself can only
generate 64.6% of constraints. When decoding
with VDBA, combining both the two types of inte-
gration achieves the best BLEU score, indicating
that every component is important for the model to
translate with constraints.

4.4 Code-Switched Translation

Task Description and Data Preparation An in-
teresting application of lexically constrained ma-
chine translation is code-switched translation, of
which the output contains terms across different
languages. Figure 1 shows an example of code-
switched translation, where the output Chinese sen-
tence should include the English token "Beatles".
Code-switched machine translation is important in



many scenarios, such as entity translation (Li et al.,
2018) and the translation of sentences containing
product prices or web URLs (Chen et al., 2021). In
this work, we evaluate the performance of several
approaches on code-switched machine translation.
The parallel data and extracted constraint pairs for
each language pair are the same as those used in the
lexically constrained translation task. To construct
the training and evaluation data for code-switched
translation, we randomly replace 50% of the target
constraints with their corresponding source con-
straints. The target sentence is also switched if it
contains switched target constraints.

Method BLEU
/—~E E—7Z D—E E—D
Vanilla 356 609 326 24.9
VDBA 364 619 355 27.8
Replace 37.1 637 347 27.6
CDAlign 36.2 640 354 28.0
Ours 38.3* 654* 36.1 28.6*
w/o VDBA 38.6 65.6 358 29.0

(a) BLEU score on code-switched test sets.

Method CSR (%)
/—~E E—7Z D—E E—D
Vanilla 150 183 10.2 9.3
VDBA 994 985 100.0 100.0
Replace 46.7 473 472 463
CDAlign 88.7 898 954 91.1
Ours 994 985 100.0 100.0
w/o VDBA 959 935 95.6 93.7

(b) CSR on code-switched test sets.

Table 4: Results on the code-switched translation task.

Results Table 4 gives the results on the code-
switched translation task. The CSR of Re-
place (Song et al., 2019) is lower than 50% across
all the four translation directions, indicating that
simply replacing the training data can not handle
the code-switched translation. A potential reason
is that it is difficult for the NMT model to decide
whether to translate or copy some source phrases in
the input sentence. Surprisingly, VDBA, CDAlign,
and our method all perform well in this scenario,
and our method outperforms the two baselines.
These results suggest the capability of our method
to cope with flexible types of lexical constraints.

5 Discussion

Method Batch Size (# Sent.)
1 128
Vanilla 1.0x 43.2x
VDBA 0.5x 2.1x
Replace 0.9x 40.5x
CDAlign 0.7x n/a
Ours 0.5x 2.3x%x

w/o VDBA  0.9x 39.2x

Table 5: Inference speed with different batch sizes.

Inference Speed We report the inference speed
of each involved approach in Table 5. The speed
of Replace is close to that of the vanilla Trans-
former, but its CSR is much lower than other
methods. Since the open-sourced implementa-
tion of CDAlign® does not support batched decod-
ing, we compare our method with CDAlign with
batch_size = 1. The speed of our method using
beam search is faster than that of CDAlign (0.9 xvs.
0.7 x). An interesting finding is that when provided
with batched inputs, our method can slightly speed
up VDBA (2.3xvs. 2.1x). A potential reason is
that the probability estimated by our model is more
closely related to the correctness of the candidates,
making target constraints easier to find.

Model DA Prob. Acc. ECE(])
Vanilla B 072 0.67 7.50
Ours 072 0.72 5.58
Vanilla v 0.68 0.70 8.68
Ours 0.69 0.70 6.49

Table 6: ECE on the Zh—En validation set.

Calibration To validate whether the probability
of our model is more accurate than vanilla mod-
els, we follow Wang et al. (2020) to investigate the
gap between the probability and the correctness
of model outputs, which is measured by inference
expected calibration error (ECE). As shown in Ta-
ble 6, the inference ECE of our method is much
lower than that of the vanilla model, demonstrating
that our method indeed improves the reliability of
model probabilities.

$https://github.com/ghchenl8/cdalign
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Constraints Zielsetzung — objectives, Fiorella — Fiorella
Source Mit der Zielsetzung des Berichtes von Fiorella Ghilardotti allerdings sind
wir einverstanden .
Reference Even so , we do agree with the objectives of Fiorella Ghilardotti’s report .
Vanilla However , we agree with the aims of the Ghilardotti report .
Fiorella’s Ghilardotti report , however , has our objectives of being one
VDBA . .
which we agree with .
Replace However , we agree with the objectives of the Ghilardotti report .
CDAlign However , we agree with objectives of FiFiorella Ghilardotti’s report .
Ours We agree with the objectives of Fiorella Ghilardotti’s report , however .

Table 7: Example translations of different lexically constrained NMT approaches.

Case Study Table 7 shows some example trans-
lations of different methods. We find Replace tends
to omit some constraints. Although VDBA and
CDAlign can successfully generate constrained to-
kens, the translation quality of the two methods is
not satisfying. Our result not only contains con-
strained tokens but also maintains the translation
quality compared with the unconstrained model,
confirming the necessity of integrating vectorized
constraints into NMT models.

6 Related Work

Lexically Constrained NMT One line of ap-
proaches to lexically constrained NMT focuses on
designing advanced decoding algorithms (Hasler
et al., 2018). Hokamp and Liu (2017) propose
grid beam search (GBS), which enforces target
constraints to appear in the output by enumerating
constraints at each decoding step. The beam size
required by GBS varies with the number of con-
straints. Post and Vilar (2018) propose dynamic
beam allocation (DBA) to fix the problem of vary-
ing beam size for GBS, which is then extended by
Hu et al. (2019) into VDBA that supports batched
decoding.

There are also some other constrained decod-
ing algorithms that leverage word alignments to
impose constraints (Song et al., 2020; Chen et al.,
2021). Although the alignment-based decoding
methods are faster than VDBA, they may be neg-
atively affected by noisy alignments, resulting in
low CSR. Recently, Susanto et al. (2020) adopt
Levenshtein Transformer (Gu et al., 2019) to insert
target constraints in a non-autoregressive manner,
for which the constraints must be provided with the
same order as that in the reference.

Another branch of studies proposes to edit the
training data to induce constraints (Sennrich et al.,
2016a). Song et al. (2019) directly replace source
constraints with their target translations and Dinu
et al. (2019) insert target constraints into the source
sentence without removing source constraints. Sim-
ilarly, Chen et al. (2020) propose to append target
constraints after the source sentence.

In this work, we propose to integrate vectorized
lexical constraints into NMT models. Our work
is orthogonal to both constrained decoding and
constraint-oriented data augmentation.

Controlled Text Generation Recent years have
witnessed rapid progress in controlled text gener-
ation. Dathathri et al. (2020) propose to use the
gradients of a discriminator to control a pre-trained
language model to generate towards a specific topic.
Krause et al. (2020) use a contrastive strategy to
softly control text generation. We borrow the idea
presented in Pascual et al. (2021) to insert a plug-in
into the output layer. The difference between our
plug-in network and Pascual et al. (2021) is that we
use an input-dependent gate to control the effect of
the plugged probability.

7 Conclusion

In this work, we propose to vectorize and integrate
lexical constraints into NMT models. Our basic
idea is to use the correspondence between keys and
values in attention modules to model constraint
pairs. Experiments show that our approach can
outperform several representative baselines across
four different translation directions. In the future,
we plan to vectorize other attributes, such as the
topic, the style, and the sentiment, to better control
the generation of NMT models.
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A Integrating Vectorized Constraints
into the Decoder

The decoder of the Transformer is a stack of J
identical layers, each of which is composed of a
self-attention, a cross-attention, and a feed-forward
module. We integrate vectorized constraints into
the cross-attention module for the decoder. For-
mally, the vanilla cross-attention is given by

) gO gO

dec? enc’ enc) ’

where Séje)c e R™W is the output of the self-
attention module in the ¢-th decoder layer, and
Hé{)c € Rl ig the output of the last encoder
layer. We adapt the constraint-related keys and val-

ues to match the manifold in the j-th decoder layer:

attn (s (13)

KY), . = [adapt(K.); HL)], "
Ve = ladapt(V,); HL).

Then we revise the vanilla cross-attention
(Eq. (13)) into the following form:

V(J)

c4dec> :

B More Details of Model Configuration

attn (s(j) KY) (15)

dec’ ~*cddec?

All the involved models are optimized by
Adam (Kingma and Ba, 2015), with 8 = 0.9,
By = 0.98 and € = 1072, The dropout rate is
set to 0.3 for Zh<En and 0.1 for De<En. Label
smoothing is employed and the smoothing penalty
is set to 0.1 for all language pairs. We use the same
learning rate schedule as Vaswani et al. (2017).
All models are trained on 4 NVIDIA V100 GPUs
and evaluated on 1 NVIDIA V100 GPU. During
training, each mini batch contains roughly 32K to-
kens in total across all GPUs. We set the values
of a and 3 based on the results on the validation
set. Specifically, for models using VDBA, we set
«a = = 0.5, while for models using beam search,
we set @ = 0.8 and 8 = 0.2. The beam size is set
to 4 during inference.

C Memory vs. Extrapolation

To address the concern that the proposed model
may only memorize the constraints seen in the train-
ing set, we calculate the overlap ratio of constraints
between training and test sets. As shown in Table 8,
we find that only 36.6% of the test constraints are
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Z—E E—=Z D—E E—=D Avg
42.4% 449% 289% 33.8% 36.6%

Table 8: Overlap ratio of lexical constraints between
training and test sets across the four directions.

seen in the training data, while the CSR of our
model decoding without VDBA is 95.1%. The re-
sults indicate that our method extrapolates well to
constraints unseen during training.



