
Integrating Vectorized Lexical Constraints
for Neural Machine Translation

Anonymous ACL submission

Abstract

Lexically constrained neural machine transla-001
tion (NMT), which controls the generation of002
NMT models with pre-specified constraints, is003
important in many practical scenarios. Due to004
the representation gap between discrete con-005
straints and continuous vectors of NMT mod-006
els, most existing works propose to construct007
synthetic data or modify the decoding algo-008
rithm to impose lexical constraints, treating009
the NMT model as a black box. In this010
work, we directly integrate the constraints011
into NMT models through vectorizing discrete012
constraints into continuous keys and values013
that can be utilized by the attention modules014
of NMT models. The proposed integration015
method is based on the assumption that the016
correspondence between the keys and values017
in attention modules is naturally suitable for018
modeling constraint pairs. Experimental re-019
sults show that our method consistently outper-020
forms several representative baselines on four021
language pairs, demonstrating the necessity of022
integrating vectorized lexical constraints.023

1 Introduction024

Controlling the lexical choice of the translation025

is important in a wide range of settings, such as026

interactive machine translation (Koehn, 2009), en-027

tity translation (Li et al., 2018), and translation in028

safety-critical domains (Wang et al., 2020). How-029

ever, different from the case of statistical machine030

translation (Koehn et al., 2007), it is non-trivial to031

directly integrate discrete lexical constraints into032

neural machine translation (NMT) models (Bah-033

danau et al., 2015; Vaswani et al., 2017), whose034

hidden states are all continuous vectors that are035

difficult for humans to understand.036

In accordance with this problem, one branch037

of studies directs its attention to designing ad-038

vanced decoding algorithms (Hokamp and Liu,039

2017; Hasler et al., 2018; Post and Vilar, 2018)040

to impose hard constraints and leave NMT models041

12

The Beatles are a great band

Keys

Values

band

Ԕࢫ

Beatles

Beatles The Beatles are a great band

Figure 1: An example of the integration of vectorized
lexical constraints into attention proposed in this work.
We omit queries for simplicity. Blue and green squares
denote the continuous representation of the source sen-
tence and the constraints, respectively. The provided
constraints are "Beatles→Beatles" and "band→乐团".

unchanged. For instance, Hu et al. (2019) propose a 042

vectorized dynamic beam allocation (VDBA) algo- 043

rithm, which devotes part of the beam to candidates 044

having met some constraints. Although this kind 045

of method can guarantee the presence of target con- 046

straints in the output, they are found to potentially 047

result in poor translation quality (Chen et al., 2021; 048

Zhang et al., 2021), such as repeated translation or 049

source phrase omission. 050

Another branch of works proposes to learn 051

constraint-aware NMT models through data aug- 052

mentation. They construct synthetic data by replac- 053

ing source constraints with their target-language 054

correspondents (Song et al., 2019) or appending tar- 055

get constraints right after the corresponding source 056

phrases (Dinu et al., 2019). During inference, the 057

input sentence is edited in advance and then pro- 058

vided to the NMT model. The major drawback of 059

data augmentation-based methods is that they may 060

suffer from a low success rate of generating target 061

constraints in some cases, indicating that only ad- 062

justing the training data is sub-optimal for lexical 063

constrained translation (Chen et al., 2021). 064

To make NMT models better learn from and 065

cope with lexical constraints, we propose to lever- 066

age attention modules (Vaswani et al., 2017) in 067

NMT models to explicitly integrate vectorized lexi- 068

cal constraints. As illustrated in Figure 1, we use 069

1

vectorized source constraints as additional keys and070

vectorized target constraints as additional values.071

Intuitively, the additional keys are used to estimate072

the relevance between the current query and the073

source phrases while the additional values are used074

to integrate the information of the target phrases.075

In this way, each revised attention is aware of the076

guidance to translate which source phrase into what077

target phrase.078

Experiments show that our method can signifi-079

cantly improve the ability of NMT models to trans-080

late with constraints, indicating that the correspon-081

dence between attention keys and values is suitable082

for modeling constraint pairs. Inspired by recent083

progress in controlled text generation (Dathathri084

et al., 2020; Pascual et al., 2021), we also intro-085

duce a plug-in to the output layer that can further086

improve the success rate of generating constrained087

tokens. We conduct experiments on four language088

pairs and find that our model can consistently out-089

perform several representative baselines.090

2 Neural Machine Translation091

Training The goal of machine translation is092

to translate a source-language sentence x =093

x1 . . . x|x| into a target-language sentence y =094

y1 . . . y|y|. We use P (y|x;θ) to denote an NMT095

model (Vaswani et al., 2017) parameterized by θ.096

Modern NMT models are usually trained by maxi-097

mum likelihood estimation (Bahdanau et al., 2015;098

Vaswani et al., 2017), where the log-likelihood is099

defined as100

logP (y|x;θ) =
|y|∑
t=1

logP (yt|y<t,x;θ), (1)101

in which y<t is a partial translation.102

Inference The inference of NMT models can be103

divided into two sub-processes:104

• probability estimation: the model estimates105

the token-level probability distribution for106

each partial hypothesis within the beam;107

• candidate selection: the decoding algorithm108

selects some candidates based on the proba-109

bility estimated by the NMT model.110

These two sub-processes are performed alterna-111

tively until reaching the maximum length or gener-112

ating the end-of-sentence token.113

3 Approach 114

3.1 Vectorizing Lexical Constraints 115

Let s = s(1), . . . , s(N) be the source constraints 116

and t = t(1), . . . , t(N) be the target constraints. 117

Given a constraint pair 〈s(n), t(n)〉, lexically con- 118

strained translation requires that the system must 119

translate the source phrase s(n) into the target 120

phrase t(n). Since the inner states of NMT mod- 121

els are all continuous vectors rather than discrete 122

tokens, we need to vectorize the constraints before 123

integrating them into NMT models. 124

For the n-th constraint pair 〈s(n), t(n)〉, let |s(n)| 125

and |t(n)| be the lengths of s(n) and t(n), respec- 126

tively. We use S
(n)
k ∈ Rd×1 to denote the vector 127

representation of the k-th token in s(n), which is 128

the sum of word embedding and positional embed- 129

ding (Vaswani et al., 2017). Therefore, the matrix 130

representation of s(n) is given by: 131

S(n) =
[
S
(n)
1 ; . . . ;S

(n)

|s(n)|

]
, (2) 132

where S(n) ∈ Rd×|s(n)| is the concatenation of all 133

vector representations of tokens in s(n). Similarly, 134

the matrix representation of the target constraint 135

t(n) is T(n) ∈ Rd×|t(n)|. Note that the positional 136

embedding for each constraint is calculated inde- 137

pendently, which is also independent of the posi- 138

tional embeddings of the source sentence x and the 139

target sentence y. 140

3.2 Integrating Vectorized Constraints 141

We adopt Transformer (Vaswani et al., 2017) as 142

our NMT model, which is nowadays one of the 143

most popular and effective NMT models (Liu et al., 144

2020). Typically, a Transformer consists of an en- 145

coder, a decoder, and an output layer, of which 146

the encoder and decoder map discrete tokens into 147

vectorized representations and the output layer con- 148

verts such representations into token-level proba- 149

bility distributions. We propose to utilize the at- 150

tention modules to integrate the constraints into 151

the encoder and decoder and use a plug-in mod- 152

ule to integrate constraints into the output layer. 153

We change the formal representation of our model 154

from P (y|x;θ) to P (y|x, s, t;θ) to indicate that 155

the model explicitly considers lexical constraints 156

when estimating probability. 157

Constraint-Related Keys and Values We pro- 158

pose to map source and target constraints into addi- 159

tional keys and values, which are called constraint- 160

related keys and values, in order to distinguish from 161

2

10

Encoder

DecoderConstraints

Kx2Kx1 Kx3 Kx4 Kx5Ks(1)1 Ks(2)1

Vx2Vx1 Vx3 Vx4 Vx5Vs(1)1 Vs(2)1

Qy1 Qy3 Qy5Qy4Qy2

(a) Overview

10

Kx2Kx1

Qx2

Kx3 Kx4 Kx5Ks(1)1
c Ks(2)1

c

Vx2Vx1 Vx3 Vx4 Vx5Vt(1)1
c Vt(2)1

c

Qx1 Qx3 Qx4 Qx5 Qy1 Qy3 Qy5Qy4Qy2

Kx2Kx1 Kx3 Kx4 Kx5Ks(1)1
c Ks(2)1

c

Vx2Vx1 Vx3 Vx4 Vx5Vt(1)1
c Vt(2)1

c

(b) Integration into enc. self-attn.

10

Kx2Kx1

Qx2

Kx3 Kx4 Kx5Ks(1)1
c Ks(2)1

c

Vx2Vx1 Vx3 Vx4 Vx5Vt(1)1
c Vt(2)1

c

Qx1 Qx3 Qx4 Qx5 Qy1 Qy3 Qy5Qy4Qy2

Kx2Kx1 Kx3 Kx4 Kx5Ks(1)1
c Ks(2)1

c

Vx2Vx1 Vx3 Vx4 Vx5Vt(1)1
c Vt(2)1

c

(c) Integration into dec. cross-attn.

Figure 2: Illustration of the integration of vectorized lexical constraints into both the encoder and the decoder.
Blue, red, and green squares represent vectorized representations for source tokens, target tokens, and tokens of
constraint pairs, respectively. The basic idea is to use source constraints as indicators to select the corresponding
target constraints for each query. We only plot the attention weights for one query for simplicity.

the original keys and values in vanilla attention162

modules. In practice, source and target constraints163

may have different lengths and they are usually not164

monotonically aligned (Du et al., 2021), making it165

challenging to directly convert the constraints into166

keys and values. To fix this problem, We adopt a167

multi-head attention (Vaswani et al., 2017) to align168

the bilingual constraints. The constraint-related169

keys and values for the n-th constraint pair are170

given by171

K(n)
c = S(n),

V(n)
c = attn

(
S(n),T(n),T(n)

)
,

(3)172

where K
(n)
c ∈ Rd×|s(n)| and V

(n)
c ∈ Rd×|s(n)|.173

attn(Q,K,V) denotes the multi-head attention174

function. Note that the resulting K
(n)
c and V

(n)
c175

are of the same shape. V
(n)
c can be seen as a re-176

distributed version of the representation of target177

constraints. The constraint-related keys and values178

of each constraint pair are calculated separately and179

then concatenated together:180

Kc = [K(1)
c ; . . . ;K(N)

c],

Vc = [V(1)
c ; . . . ;V(N)

c],
(4)181

where Kc ∈ Rd×|s| and Vc ∈ Rd×|s|. |s| is the182

total length of all the N source constraints.183

Integration into the Encoder The encoder of184

Transformer is a stack of I identical layers, each185

layer contains a self-attention module to learn186

context-aware representations. For the i-th layer,187

the self-attention module can be represented as188

attn
(
H(i−1)

enc ,H(i−1)
enc ,H(i−1)

enc

)
, (5)189

where H(i−1)
enc ∈ Rd×|x| is the output of the (i− 1)- 190

th layer, and H
(0)
enc is initialized as the sum of word 191

embedding and positional embedding (Vaswani 192

et al., 2017). For different layers, H(i−1)
enc may lay 193

in various manifolds, containing different levels 194

of information (Voita et al., 2019). Therefore, we 195

should adapt the constraint-related keys and val- 196

ues for each layer before the integration. We use a 197

two-layer adaptation network to do this: 198

K
(i)
c4enc = [adapt(Kc);H

(i−1)
enc],

V
(i)
c4enc = [adapt(Vc);H

(i−1)
enc],

(6) 199

where adapt(·) denotes the adaptation network, 200

which consists of two linear transformations with 201

shape d × d and a ReLU activation in between. 202

The adaptation networks across all layers are in- 203

dependent of each other. K
(i)
c4enc ∈ Rd×(|s|+|x|) 204

and V
(i)
c4enc ∈ Rd×(|s|+|x|) are the constraint-aware 205

keys and values for the i-th encoder layer, respec- 206

tively. The vanilla self-attention module illustrated 207

in Eq. (5) is revised into the following form: 208

attn
(
H(i−1)

enc ,K
(i)
c4enc,V

(i)
c4enc

)
. (7) 209

Integration into the Decoder The integration 210

into the decoder is similar to that into the en- 211

coder, the major difference is that we use the cross- 212

attention module to model constraints for the de- 213

coder. Figure 2c plots an example of the integration 214

into the decoder, of which the formal description is 215

detailed in Appendix A due to limited space. 216

Integration into the Output Layer In vanilla 217

Transformer, an output layer is employed to convert 218

the output of the last decoder layer into token-level 219

3

12

ht wt(1)1 wt(2)1wy(1) wy(|V|)

Target Constraints

…

Word Embeddings

Pplug gPmodel

Figure 3: Illustration of the integration into the output
layer. Please refer to Eq (8), (9), and (10) for the defi-
nition of Pmodel, Pplug, and g, respectively.

probabilities. Let ht ∈ Rd×1 be the decoder output220

at the t-th time step, the output probability of the221

Transformer model is defined as222

Pmodel(y|y<t,x, s, t;θ) = softmax
(
h>t W

)
,

(8)223

where W ∈ Rd×|V| is the output embedding ma-224

trix and |V| is the vocabulary size. Inspired by the225

plug-and-play method (Pascual et al., 2021) in the226

field of controlled text generation (Dathathri et al.,227

2020; Pascual et al., 2021), we introduce an addi-228

tional probability distribution over the vocabulary229

to better generate constrained tokens:230

Pplug(y|y<t,x, s, t;θ)

=

0 y /∈ t

max

(
0, cos

(
wy

|wy|
,
ht

|ht|

))
y ∈ t

,

(9)

231

where wy ∈ Rd×1 is the word embedding of token232

y and t is the sequence of all the target-side con-233

strained tokens. We also use a gating sub-layer to234

control the strength of the additional probability:235

g(y,ht)

= sigmoid
(
tanh

([
w>y W1;h

>
t W2

])
W3

)
,

(10)

236

where W1 ∈ Rd×d, W2 ∈ Rd×d, and W3 ∈237

R2d×1 are three trainable linear transformations.238

The final output probability is given by239

P (y|y<t,x, s, t;θ)

= (1− g(y,ht))Pmodel(y|y<t,x, s, t;θ)

+ g(y,ht)Pplug(y|y<t,x, s, t;θ).

(11)

240

3.3 Training and Inference 241

Training The proposed constraint-aware NMT 242

model should not only generate pre-specified con- 243

straints but also maintain or improve the translation 244

quality compared with vanilla NMT models. We 245

thus propose to distinguish between constraint to- 246

kens and constraint-unrelated tokens during train- 247

ing. Formally, the training objective is given by 248

249

L(y|x, s, t;θ)

= α
∑

yt∈y∩t
logP (yt|y<t,x, s, t;θ)

+ β
∑

yt∈y\t

logP (yt|y<t,x, s, t;θ),

(12) 250

where α and β are hyperparameters to balance the 251

learning of translation and constraint generation. 252

We can divide the parameter set of the whole 253

model into two subsets: θ = θv ∪ θc, where θv 254

is a set of original vanilla model parameters and 255

θc is a set of newly-introduced parameters that are 256

used to vectorize and integrate lexical constraints.1 257

Since θc is significantly smaller than θv, it requires 258

much less training iterations. Therefore, we adopt 259

the strategy of two-stage training (Tu et al., 2018; 260

Zhang et al., 2018) for model optimization. Specif- 261

ically, we optimize θv using the standard NMT 262

training objective (Bahdanau et al., 2015; Vaswani 263

et al., 2017) at the first stage and then learn the 264

whole model θ at the second stage. The second 265

stage is significantly shorter than the first stage, we 266

will give more details in Section 4.1. 267

Inference As discussed in Section 2, the infer- 268

ence process is composed of two sub-processes: 269

probability estimation and candidate selection. In 270

this work, we aim to improve the probability esti- 271

mation sub-process and our method is orthogonal 272

to constrained decoding algorithms (Hokamp and 273

Liu, 2017; Post and Vilar, 2018; Hu et al., 2019), 274

which instead focus on candidate selection. There- 275

fore, we can employ not only beam search but also 276

constrained decoding algorithms at inference time. 277

We use VDBA (Hu et al., 2019) as the default 278

constrained decoding algorithm, which supports 279

batched inputs and is significantly faster than most 280

other counterparts (Hokamp and Liu, 2017; Post 281

and Vilar, 2018; Hasler et al., 2018). 282

1θc includes parameters of the attention presented in
Eq (3), the adaptation networks described in Eq (6) and (14),
and the gating sub-layer illustrated in Eq (10).

4

4 Experiments283

4.1 Setup284

Training Data In this work, we conduct ex-285

periments on Chinese⇔English (Zh⇔En) and286

German⇔English (De⇔En) translation tasks. For287

Zh⇔En, the training set contains 1.25M sentence288

pairs from LDC2. For De⇔En, the training set is289

from the WMT 2014 German⇔English translation290

task, which consists of 4.47M sentence pairs. We291

apply BPE (Sennrich et al., 2016b) with 32K joint292

merge operations for both Zh⇔En and De⇔En.293

Evaluation Data Following Chen et al. (2021),294

we evaluate our approach on the test sets with295

human-annotated alignments. For Zh⇔En, we use296

the alignment datasets from Liu et al. (2005)3, in297

which the validation and test sets both contain 450298

sentence pairs. For De⇔En, we use the alignment299

dataset from (Zenkel et al., 2020)4 as the test set,300

which consists of 508 sentence pairs. Since there is301

no human-annotated alignment validation sets for302

De⇔En, we use fast-align5 to annotate the303

newstest 2013 as the validation set for De⇔En.304

Lexical Constraints In real-world applications,305

lexical constraints are usually provided by human306

translators. We follow Chen et al. (2021) to simu-307

late the practical scenario by sampling constraints308

from the phrase pairs that are extracted from par-309

allel data using alignments. The script for phrase310

pair extraction is publicly available.6 For the val-311

idation and test sets of Zh⇔En and the test set of312

De⇔En, we use human-annotated alignments to313

extract phrase pairs. For the training corpora in314

both Zh⇔En and De⇔En, we use fast-align315

to firstly learn an alignment model and then use316

the model to automatically annotate the alignments.317

The validation set of De⇔En is also annotated by318

the alignment model learned on the correspond-319

ing training corpus. We use the same strategy as320

Chen et al. (2021) to sample constraints from the321

extracted phrase pairs. More concretely, the num-322

ber of constraints in each sentence is up to 3. The323

2The total training set for Zh⇔En is composed
of LDC2002E18, LDC2003E07, LDC2003E14, part of
LDC2004T07, LDC2004T08 and LDC2005T06.

3http://nlp.csai.tsinghua.edu.cn/~ly/
systems/TsinghuaAligner/TsinghuaAligner.
html

4https://github.com/lilt/
alignment-scripts

5https://github.com/clab/fast_align
6https://github.com/ghchen18/cdalign/

blob/main/scripts/extract_phrase.py

length of each constrained phrase is uniformly sam- 324

pled among 1 and 3. For each sentence pair, all the 325

constraint pairs are shuffled and then supplied to 326

the model in an unordered manner. 327

Model Configuration We use the base set- 328

ting (Vaswani et al., 2017) for our model. Specif- 329

ically, the hidden size d is 512 and the depths of 330

both the encoder and the decoder are 6. Each multi- 331

head attention module has 8 individual attention 332

heads. Since our method introduces additional pa- 333

rameters, we use a larger model with an 8-layer 334

encoder and an 8-layer decoder to assimilate the 335

parameter count for the baselines. For Zh⇔En, we 336

optimize θv for 50K iterations at the first stage and 337

then optimize θ for 10K iterations at the second 338

stage. For a fair comparison, we train the base- 339

lines for 60K iterations in total. For De⇔En, we 340

optimize θv for 90K iterations then optimize θ for 341

10K iterations. The baselines are trained for 100K 342

iterations. See Appendix B for more details. 343

Baselines We compare our approach with three 344

representative baselines: 345

• VDBA (Hu et al., 2019): dynamically devot- 346

ing part of the beam for constraint-related hy- 347

potheses at inference time; 348

• Replace (Song et al., 2019): directly replacing 349

source constraints in the training data with 350

their corresponding target constraints. The 351

model is also improved with pointer network; 352

• CDAlign (Chen et al., 2021): explicitly using 353

an alignment model to decide the position to 354

insert target constraints during inference. 355

Evaluation Metrics We evaluate the involved 356

methods using the following two metrics: 357

• BLEU: we use sacreBLEU7 (Post, 2018) to 358

report the BLEU score; 359

• Copying Success Rate (CSR): We follow Chen 360

et al. (2021) to use the percentage of con- 361

straints that are successfully generated in the 362

translation as the CSR, which is calculated at 363

word level after removing the BPE separator. 364

We use compare-mt (Neubig et al., 2019) for 365

significance testing, with bootstrap = 1000 and 366

prob_thresh = 0.05. 367

7Signature for Zh→En, De→En, and En→De: nrefs:1
| case:mixed | eff:no | tok:13a | smooth:exp | version:2.0.0.
Signature for En→Zh: nrefs:1 | case:mixed | eff:no | tok:zh |
smooth:exp | version:2.0.0.

5

http://nlp.csai.tsinghua.edu.cn/~ly/systems/TsinghuaAligner/TsinghuaAligner.html
http://nlp.csai.tsinghua.edu.cn/~ly/systems/TsinghuaAligner/TsinghuaAligner.html
http://nlp.csai.tsinghua.edu.cn/~ly/systems/TsinghuaAligner/TsinghuaAligner.html
https://github.com/lilt/alignment-scripts
https://github.com/lilt/alignment-scripts
https://github.com/clab/fast_align
https://github.com/ghchen18/cdalign/blob/main/scripts/extract_phrase.py
https://github.com/ghchen18/cdalign/blob/main/scripts/extract_phrase.py

Method Para. BLEU CSR (%)

Z→E E→Z D→E E→D Avg. Z→E E→Z D→E E→D Avg.

Vanilla 82M 36.1 64.3 33.1 25.7 39.8 32.5 28.5 16.3 11.9 22.3

VDBA 82M 37.8 66.3 36.1 28.5 42.2 99.4 98.9 100.0 100.0 99.6
Replace 82M 38.0 67.0 35.8 29.1 42.5 93.2 88.7 91.3 90.1 90.8
CDAlign 82M 37.5 66.5 36.9? 29.3 42.6 90.4 92.3 96.7 96.0 93.9

Ours 81M 38.9 68.3 37.4 30.0 43.7 99.4 98.9 100.0 100.0 99.6

Table 1: Results on lexically constrained test sets. "Z→E" denotes Zh→En, "D→E" denotes De→En. "Para."
denotes the number of model parameters. The best BLEU in each column is highlighted in bold, and "?" indicates
no significant difference with the method achieving the best BLEU. The best CSR in each column is italicized.

4.2 Main Results368

Table 1 shows the results of lexically constrained369

translation on test sets of all four translation tasks.370

All the investigated methods can effectively im-371

prove the CSR over the vanilla Transformer. The372

CSR of VDBA on Zh⇔En is not 100.0% for the373

reason that some target constraints contain out-of-374

vocabulary tokens. Replace (Song et al., 2019)375

achieves better BLEU scores on three translation376

directions (i.e., Zh⇔En and En→De) than VDBA,377

but its CSR is much lower. CDAlign (Chen et al.,378

2021) performs better than Replace on average re-379

garding both BLEU and CSR. Our method consis-380

tently outperforms all the three baselines across381

the four translation directions in terms of BLEU,382

demonstrating the necessity of integrating vector-383

ized constraints into NMT models. Decoding with384

VDBA, we also achieve the highest CSR. To dis-385

entangle the effect of integrating vectorized con-386

straints and VDBA, we report the result of our387

model using beam search in Table 2. Decoding388

with beam search, our model can also achieve a bet-389

ter BLEU score than the baselines and the CSR is390

higher than both Replace and CDAlign on average.391

Metric Z→E E→Z D→E E→D Avg.

BLEU 39.3 68.6 37.2 30.1 43.8
CSR (%) 94.8 94.1 97.1 94.5 95.1

Table 2: Performance on lexically constrained test sets
of the proposed model decoding with beam search.

4.3 Ablation Study392

We investigate the effect of different components393

through an ablation study, the results are shown394

in Table 3. We find that only integrating lexical395

constraints into attention can significantly improve396

Integration DA BLEU CSR (%)
Attention Output

X ×
B

42.5 92.6
× X 40.8 64.6
X X 42.8 95.1

X ×
V

42.4 98.6
× X 41.2 98.6
X X 42.5 98.6

Table 3: Effect of different components. The results are
reported on the Zh→En validation set. "Attention": the
constraint integration of attention modules. "Output":
the integration into the output layer. "DA": decoding
algorithm. "B": beam search. "V": VDBA.

the CSR over the vanilla model (92.6% vs. 30.4%), 397

which is consistent with our motivation that the cor- 398

respondence between keys and values is naturally 399

suitable for modeling the relation between source 400

and target constraints. Plugging target constraints 401

into the output layer can further improve the per- 402

formance, but the output plug-in itself can only 403

generate 64.6% of constraints. When decoding 404

with VDBA, combining both the two types of inte- 405

gration achieves the best BLEU score, indicating 406

that every component is important for the model to 407

translate with constraints. 408

4.4 Code-Switched Translation 409

Task Description and Data Preparation An in- 410

teresting application of lexically constrained ma- 411

chine translation is code-switched translation, of 412

which the output contains terms across different 413

languages. Figure 1 shows an example of code- 414

switched translation, where the output Chinese sen- 415

tence should include the English token "Beatles". 416

Code-switched machine translation is important in 417

6

many scenarios, such as entity translation (Li et al.,418

2018) and the translation of sentences containing419

product prices or web URLs (Chen et al., 2021). In420

this work, we evaluate the performance of several421

approaches on code-switched machine translation.422

The parallel data and extracted constraint pairs for423

each language pair are the same as those used in the424

lexically constrained translation task. To construct425

the training and evaluation data for code-switched426

translation, we randomly replace 50% of the target427

constraints with their corresponding source con-428

straints. The target sentence is also switched if it429

contains switched target constraints.430

Method BLEU

Z→E E→Z D→E E→D

Vanilla 35.6 60.9 32.6 24.9

VDBA 36.4 61.9 35.5 27.8
Replace 37.1 63.7 34.7 27.6
CDAlign 36.2 64.0 35.4 28.0

Ours 38.3? 65.4? 36.1 28.6?

w/o VDBA 38.6 65.6 35.8? 29.0

(a) BLEU score on code-switched test sets.

Method CSR (%)

Z→E E→Z D→E E→D

Vanilla 15.0 18.3 10.2 9.3

VDBA 99.4 98.5 100.0 100.0
Replace 46.7 47.3 47.2 46.3
CDAlign 88.7 89.8 95.4 91.1

Ours 99.4 98.5 100.0 100.0
w/o VDBA 95.9 93.5 95.6 93.7

(b) CSR on code-switched test sets.

Table 4: Results on the code-switched translation task.

Results Table 4 gives the results on the code-431

switched translation task. The CSR of Re-432

place (Song et al., 2019) is lower than 50% across433

all the four translation directions, indicating that434

simply replacing the training data can not handle435

the code-switched translation. A potential reason436

is that it is difficult for the NMT model to decide437

whether to translate or copy some source phrases in438

the input sentence. Surprisingly, VDBA, CDAlign,439

and our method all perform well in this scenario,440

and our method outperforms the two baselines.441

These results suggest the capability of our method442

to cope with flexible types of lexical constraints.443

5 Discussion 444

Method Batch Size (# Sent.)

1 128

Vanilla 1.0× 43.2×

VDBA 0.5× 2.1×
Replace 0.9× 40.5×
CDAlign 0.7× n/a

Ours 0.5× 2.3×
w/o VDBA 0.9× 39.2×

Table 5: Inference speed with different batch sizes.

Inference Speed We report the inference speed 445

of each involved approach in Table 5. The speed 446

of Replace is close to that of the vanilla Trans- 447

former, but its CSR is much lower than other 448

methods. Since the open-sourced implementa- 449

tion of CDAlign8 does not support batched decod- 450

ing, we compare our method with CDAlign with 451

batch_size = 1. The speed of our method using 452

beam search is faster than that of CDAlign (0.9×vs. 453

0.7×). An interesting finding is that when provided 454

with batched inputs, our method can slightly speed 455

up VDBA (2.3×vs. 2.1×). A potential reason is 456

that the probability estimated by our model is more 457

closely related to the correctness of the candidates, 458

making target constraints easier to find. 459

Model DA Prob. Acc. ECE (↓)

Vanilla
B

0.72 0.67 7.50
Ours 0.72 0.72 5.58

Vanilla
V

0.68 0.70 8.68
Ours 0.69 0.70 6.49

Table 6: ECE on the Zh→En validation set.

Calibration To validate whether the probability 460

of our model is more accurate than vanilla mod- 461

els, we follow Wang et al. (2020) to investigate the 462

gap between the probability and the correctness 463

of model outputs, which is measured by inference 464

expected calibration error (ECE). As shown in Ta- 465

ble 6, the inference ECE of our method is much 466

lower than that of the vanilla model, demonstrating 467

that our method indeed improves the reliability of 468

model probabilities. 469

8https://github.com/ghchen18/cdalign

7

https://github.com/ghchen18/cdalign

Constraints Zielsetzung→ objectives, Fiorella→ Fiorella

Source Mit der Zielsetzung des Berichtes von Fiorella Ghilardotti allerdings sind
wir einverstanden .

Reference Even so , we do agree with the objectives of Fiorella Ghilardotti’s report .

Vanilla However , we agree with the aims of the Ghilardotti report .

VDBA
Fiorella’s Ghilardotti report , however , has our objectives of being one
which we agree with .

Replace However , we agree with the objectives of the Ghilardotti report .
CDAlign However , we agree with objectives of FiFiorella Ghilardotti’s report .

Ours We agree with the objectives of Fiorella Ghilardotti’s report , however .

Table 7: Example translations of different lexically constrained NMT approaches.

Case Study Table 7 shows some example trans-470

lations of different methods. We find Replace tends471

to omit some constraints. Although VDBA and472

CDAlign can successfully generate constrained to-473

kens, the translation quality of the two methods is474

not satisfying. Our result not only contains con-475

strained tokens but also maintains the translation476

quality compared with the unconstrained model,477

confirming the necessity of integrating vectorized478

constraints into NMT models.479

6 Related Work480

Lexically Constrained NMT One line of ap-481

proaches to lexically constrained NMT focuses on482

designing advanced decoding algorithms (Hasler483

et al., 2018). Hokamp and Liu (2017) propose484

grid beam search (GBS), which enforces target485

constraints to appear in the output by enumerating486

constraints at each decoding step. The beam size487

required by GBS varies with the number of con-488

straints. Post and Vilar (2018) propose dynamic489

beam allocation (DBA) to fix the problem of vary-490

ing beam size for GBS, which is then extended by491

Hu et al. (2019) into VDBA that supports batched492

decoding.493

There are also some other constrained decod-494

ing algorithms that leverage word alignments to495

impose constraints (Song et al., 2020; Chen et al.,496

2021). Although the alignment-based decoding497

methods are faster than VDBA, they may be neg-498

atively affected by noisy alignments, resulting in499

low CSR. Recently, Susanto et al. (2020) adopt500

Levenshtein Transformer (Gu et al., 2019) to insert501

target constraints in a non-autoregressive manner,502

for which the constraints must be provided with the503

same order as that in the reference.504

Another branch of studies proposes to edit the 505

training data to induce constraints (Sennrich et al., 506

2016a). Song et al. (2019) directly replace source 507

constraints with their target translations and Dinu 508

et al. (2019) insert target constraints into the source 509

sentence without removing source constraints. Sim- 510

ilarly, Chen et al. (2020) propose to append target 511

constraints after the source sentence. 512

In this work, we propose to integrate vectorized 513

lexical constraints into NMT models. Our work 514

is orthogonal to both constrained decoding and 515

constraint-oriented data augmentation. 516

Controlled Text Generation Recent years have 517

witnessed rapid progress in controlled text gener- 518

ation. Dathathri et al. (2020) propose to use the 519

gradients of a discriminator to control a pre-trained 520

language model to generate towards a specific topic. 521

Krause et al. (2020) use a contrastive strategy to 522

softly control text generation. We borrow the idea 523

presented in Pascual et al. (2021) to insert a plug-in 524

into the output layer. The difference between our 525

plug-in network and Pascual et al. (2021) is that we 526

use an input-dependent gate to control the effect of 527

the plugged probability. 528

7 Conclusion 529

In this work, we propose to vectorize and integrate 530

lexical constraints into NMT models. Our basic 531

idea is to use the correspondence between keys and 532

values in attention modules to model constraint 533

pairs. Experiments show that our approach can 534

outperform several representative baselines across 535

four different translation directions. In the future, 536

we plan to vectorize other attributes, such as the 537

topic, the style, and the sentiment, to better control 538

the generation of NMT models. 539

8

References540

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-541
gio. 2015. Neural machine translation by jointly542
learning to align and translate. In ICLR.543

Guanhua Chen, Yun Chen, and Victor O.K. Li. 2021.544
Lexically constrained neural machine translation545
with explicit alignment guidance. In AAAI, pages546
12630–12638.547

Guanhua Chen, Yun Chen, Yong Wang, and Victor O.K.548
Li. 2020. Lexical-constraint-aware neural machine549
translation via data augmentation. In IJCAI.550

Sumanth Dathathri, Andrea Madotto, Janice Lan, Jane551
Hung, Eric Frank, Piero Molino, Jason Yosinski, and552
Rosanne Liu. 2020. Plug and play language models:553
A simple approach to controlled text generation. In554
ICLR.555

Georgiana Dinu, Prashant Mathur, Marcello Federico,556
and Yaser Al-Onaizan. 2019. Training neural ma-557
chine translation to apply terminology constraints.558
In ACL.559

Cunxiao Du, Zhaopeng Tu, and Jing Jiang. 2021.560
Order-agnostic cross entropy for non-autoregressive561
machine translation. In ICML.562

Jiatao Gu, Changhan Wang, and Junbo Zhao. 2019.563
Levenshtein transformer. In NeurIPS.564

Eva Hasler, Adrià de Gispert, Gonzalo Iglesias, and565
Bill Byrne. 2018. Neural machine translation decod-566
ing with terminology constraints. In NAACL.567

Chris Hokamp and Qun Liu. 2017. Lexically con-568
strained decoding for sequence generation using grid569
beam search. In ACL.570

J. Edward Hu, Huda Khayrallah, Ryan Culkin, Patrick571
Xia, Tongfei Chen, Matt Post, and Benjamin572
Van Durme. 2019. Improved lexically constrained573
decoding for translation and monolingual rewriting.574
In NAACL.575

Diederik P. Kingma and Jimmy Ba. 2015. Adam:576
A method for stochastic optimization. CoRR,577
abs/1412.6980.578

Philipp Koehn. 2009. A process study of computer-579
aided translation. Machine Translation, 23(4):241–580
263.581

Philipp Koehn, Hieu Hoang, Alexandra Birch, Chris582
Callison-Burch, Marcello Federico, Nicola Bertoldi,583
Brooke Cowan, Wade Shen, Christine Moran,584
Richard Zens, Chris Dyer, Ondrej Bojar, Alexandra585
Constantin, and Evan Herbst. 2007. Moses: Open586
source toolkit for statistical machine translation. In587
ACL.588

Ben Krause, Akhilesh Deepak Gotmare, Bryan Mc-589
Cann, Nitish Shirish Keskar, Shafiq R. Joty, Richard590
Socher, and Nazneen Rajani. 2020. Gedi: Gen-591
erative discriminator guided sequence generation.592
ArXiv, abs/2009.06367.593

Xiaoqing Li, Jinghui Yan, Jiajun Zhang, and 594
Chengqing Zong. 2018. Neural name translation im- 595
proves neural machine translation. In CWMT. 596

Yang Liu, Qun Liu, and Shouxun Lin. 2005. Log-linear 597
models for word alignment. In ACL. 598

Yinhan Liu, Jiatao Gu, Naman Goyal, Xian Li, Sergey 599
Edunov, Marjan Ghazvininejad, Mike Lewis, and 600
Luke Zettlemoyer. 2020. Multilingual denoising 601
pre-training for neural machine translation. Trans- 602
actions of the ACL, 8:726–742. 603

Graham Neubig, Zi-Yi Dou, Junjie Hu, Paul Michel, 604
Danish Pruthi, and Xinyi Wang. 2019. compare-mt: 605
A tool for holistic comparison of language genera- 606
tion systems. In NAACL (Demo). 607

Damian Pascual, Beni Egressy, Clara Meister, Ryan 608
Cotterell, and Roger Wattenhofer. 2021. A plug-and- 609
play method for controlled text generation. 610

Matt Post. 2018. A call for clarity in reporting BLEU 611
scores. In WMT. 612

Matt Post and David Vilar. 2018. Fast lexically con- 613
strained decoding with dynamic beam allocation for 614
neural machine translation. In NAACL. 615

Rico Sennrich, Barry Haddow, and Alexandra Birch. 616
2016a. Controlling politeness in neural machine 617
translation via side constraints. In NAACL. 618

Rico Sennrich, Barry Haddow, and Alexandra Birch. 619
2016b. Neural machine translation of rare words 620
with subword units. In ACL. 621

Kai Song, Kun Wang, Heng Yu, Yue Zhang, 622
Zhongqiang Huang, Weihua Luo, Xiangyu Duan, 623
and Min Zhang. 2020. Alignment-enhanced trans- 624
former for constraining nmt with pre-specified trans- 625
lations. In AAAI. 626

Kai Song, Yue Zhang, Heng Yu, Weihua Luo, Kun 627
Wang, and Min Zhang. 2019. Code-switching for 628
enhancing NMT with pre-specified translation. In 629
NAACL. 630

Raymond Hendy Susanto, Shamil Chollampatt, and 631
Liling Tan. 2020. Lexically constrained neural ma- 632
chine translation with Levenshtein transformer. In 633
ACL. 634

Zhaopeng Tu, Yang Liu, Shuming Shi, and Tong Zhang. 635
2018. Learning to remember translation history with 636
a continuous cache. Transactions of the Association 637
for Computational Linguistics, 6:407–420. 638

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob 639
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz 640
Kaiser, and Illia Polosukhin. 2017. Attention is all 641
you need. In NeurIPS. 642

Elena Voita, Rico Sennrich, and Ivan Titov. 2019. The 643
bottom-up evolution of representations in the trans- 644
former: A study with machine translation and lan- 645
guage modeling objectives. In EMNLP. 646

9

https://arxiv.org/abs/1409.0473
https://arxiv.org/abs/1409.0473
https://arxiv.org/abs/1409.0473
https://ojs.aaai.org/index.php/AAAI/article/view/17496
https://ojs.aaai.org/index.php/AAAI/article/view/17496
https://ojs.aaai.org/index.php/AAAI/article/view/17496
https://doi.org/10.24963/ijcai.2020/496
https://doi.org/10.24963/ijcai.2020/496
https://doi.org/10.24963/ijcai.2020/496
https://openreview.net/forum?id=H1edEyBKDS
https://openreview.net/forum?id=H1edEyBKDS
https://openreview.net/forum?id=H1edEyBKDS
https://aclanthology.org/P19-1294
https://aclanthology.org/P19-1294
https://aclanthology.org/P19-1294
https://proceedings.neurips.cc/paper/2019/file/675f9820626f5bc0afb47b57890b466e-Paper.pdf
https://aclanthology.org/N18-2081
https://aclanthology.org/N18-2081
https://aclanthology.org/N18-2081
https://aclanthology.org/P17-1141
https://aclanthology.org/P17-1141
https://aclanthology.org/P17-1141
https://aclanthology.org/P17-1141
https://aclanthology.org/P17-1141
https://aclanthology.org/N19-1090
https://aclanthology.org/N19-1090
https://aclanthology.org/N19-1090
https://www.aclweb.org/anthology/P07-2045
https://www.aclweb.org/anthology/P07-2045
https://www.aclweb.org/anthology/P07-2045
https://aclanthology.org/P05-1057
https://aclanthology.org/P05-1057
https://aclanthology.org/P05-1057
https://doi.org/10.1162/tacl_a_00343
https://doi.org/10.1162/tacl_a_00343
https://doi.org/10.1162/tacl_a_00343
https://aclanthology.org/N19-4007
https://aclanthology.org/N19-4007
https://aclanthology.org/N19-4007
https://aclanthology.org/N19-4007
https://aclanthology.org/N19-4007
http://arxiv.org/abs/2109.09707
http://arxiv.org/abs/2109.09707
http://arxiv.org/abs/2109.09707
https://aclanthology.org/W18-6319
https://aclanthology.org/W18-6319
https://aclanthology.org/W18-6319
https://aclanthology.org/N18-1119
https://aclanthology.org/N18-1119
https://aclanthology.org/N18-1119
https://aclanthology.org/N18-1119
https://aclanthology.org/N18-1119
https://aclanthology.org/N16-1005
https://aclanthology.org/N16-1005
https://aclanthology.org/N16-1005
https://www.aclweb.org/anthology/P16-1162
https://www.aclweb.org/anthology/P16-1162
https://www.aclweb.org/anthology/P16-1162
https://aclanthology.org/N19-1044
https://aclanthology.org/N19-1044
https://aclanthology.org/N19-1044
https://aclanthology.org/2020.acl-main.325
https://aclanthology.org/2020.acl-main.325
https://aclanthology.org/2020.acl-main.325
https://papers.nips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://papers.nips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://papers.nips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://aclanthology.org/D19-1448
https://aclanthology.org/D19-1448
https://aclanthology.org/D19-1448
https://aclanthology.org/D19-1448
https://aclanthology.org/D19-1448
https://aclanthology.org/D19-1448
https://aclanthology.org/D19-1448

Shuo Wang, Zhaopeng Tu, Shuming Shi, and Yang Liu.647
2020. On the inference calibration of neural ma-648
chine translation. In ACL.649

Thomas Zenkel, Joern Wuebker, and John DeNero.650
2020. End-to-end neural word alignment outper-651
forms GIZA++. In ACL.652

Jiacheng Zhang, Huanbo Luan, Maosong Sun, Feifei653
Zhai, Jingfang Xu, and Yang Liu. 2021. Neural654
machine translation with explicit phrase alignment.655
IEEE/ACM Transactions on Audio, Speech, and Lan-656
guage Processing, 29:1001–1010.657

Jiacheng Zhang, Huanbo Luan, Maosong Sun, Feifei658
Zhai, Jingfang Xu, Min Zhang, and Yang Liu. 2018.659
Improving the transformer translation model with660
document-level context. In EMNLP.661

10

https://aclanthology.org/2020.acl-main.278
https://aclanthology.org/2020.acl-main.278
https://aclanthology.org/2020.acl-main.278
https://aclanthology.org/2020.acl-main.146
https://aclanthology.org/2020.acl-main.146
https://aclanthology.org/2020.acl-main.146

A Integrating Vectorized Constraints662

into the Decoder663

The decoder of the Transformer is a stack of J664

identical layers, each of which is composed of a665

self-attention, a cross-attention, and a feed-forward666

module. We integrate vectorized constraints into667

the cross-attention module for the decoder. For-668

mally, the vanilla cross-attention is given by669

attn
(
S
(j)
dec,H

(I)
enc,H

(I)
enc

)
, (13)670

where S
(j)
dec ∈ Rd×|y| is the output of the self-671

attention module in the i-th decoder layer, and672

H
(I)
enc ∈ Rd×|x| is the output of the last encoder673

layer. We adapt the constraint-related keys and val-674

ues to match the manifold in the j-th decoder layer:675

676

K
(j)
c4dec = [adapt(Kc);H

(I)
enc],

V
(j)
c4dec = [adapt(Vc);H

(I)
enc].

(14)677

Then we revise the vanilla cross-attention678

(Eq. (13)) into the following form:679

attn
(
S
(j)
dec,K

(j)
c4dec,V

(j)
c4dec

)
. (15)680

B More Details of Model Configuration681

All the involved models are optimized by682

Adam (Kingma and Ba, 2015), with β1 = 0.9,683

β2 = 0.98 and ε = 10−9. The dropout rate is684

set to 0.3 for Zh⇔En and 0.1 for De⇔En. Label685

smoothing is employed and the smoothing penalty686

is set to 0.1 for all language pairs. We use the same687

learning rate schedule as Vaswani et al. (2017).688

All models are trained on 4 NVIDIA V100 GPUs689

and evaluated on 1 NVIDIA V100 GPU. During690

training, each mini batch contains roughly 32K to-691

kens in total across all GPUs. We set the values692

of α and β based on the results on the validation693

set. Specifically, for models using VDBA, we set694

α = β = 0.5, while for models using beam search,695

we set α = 0.8 and β = 0.2. The beam size is set696

to 4 during inference.697

C Memory vs. Extrapolation698

To address the concern that the proposed model699

may only memorize the constraints seen in the train-700

ing set, we calculate the overlap ratio of constraints701

between training and test sets. As shown in Table 8,702

we find that only 36.6% of the test constraints are703

Z→E E→Z D→E E→D Avg.

42.4% 44.9% 28.9% 33.8% 36.6%

Table 8: Overlap ratio of lexical constraints between
training and test sets across the four directions.

seen in the training data, while the CSR of our 704

model decoding without VDBA is 95.1%. The re- 705

sults indicate that our method extrapolates well to 706

constraints unseen during training. 707

11

