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Abstract

We propose ACProp (Asynchronous-centering-Prop), an adaptive optimizer which
combines centering of second momentum and asynchronous update (e.g. for t-th
update, denominator uses information up to step t − 1, while numerator uses
gradient at t-th step). ACProp has both strong theoretical properties and empirical
performance. With the example by Reddi et al. (2018), we show that asynchronous
optimizers (e.g. AdaShift, ACProp) have weaker convergence condition than syn-
chronous optimizers (e.g. Adam, RMSProp, AdaBelief); within asynchronous
optimizers, we show that centering of second momentum further weakens the con-
vergence condition. We demonstrate that ACProp has a convergence rate of O( 1√

T
)

for the stochastic non-convex case, which matches the oracle rate and outperforms
the O( logT√

T
) rate of RMSProp and Adam. We validate ACProp in extensive empiri-

cal studies: ACProp outperforms both SGD and other adaptive optimizers in image
classification with CNN, and outperforms well-tuned adaptive optimizers in the
training of various GAN models, reinforcement learning and transformers. To sum
up, ACProp has good theoretical properties including weak convergence condition
and optimal convergence rate, and strong empirical performance including good
generalization like SGD and training stability like Adam. We provide the imple-
mentation at https://github.com/juntang-zhuang/ACProp-Optimizer.

1 Introduction

Deep neural networks are typically trained with first-order gradient optimizers due to their com-
putational efficiency and good empirical performance [1]. Current first-order gradient optimizers
can be broadly categorized into the stochastic gradient descent (SGD) [2] family and the adaptive
family. The SGD family uses a global learning rate for all parameters, and includes variants such as
Nesterov-accelerated SGD [3], SGD with momentum [4] and the heavy-ball method [5]. Compared
with the adaptive family, SGD optimizers typically generalize better but converge slower, and are the
default for vision tasks such as image classification [6], object detection [7] and segmentation [8].

The adaptive family uses element-wise learning rate, and the representatives include AdaGrad [9],
AdaDelta [10], RMSProp [11], Adam [12] and its variants such as AdamW [13], AMSGrad [14]
AdaBound [15], AdaShift [16], RAdam [17] and AdaBelief [18]. Compared with the SGD family, the
adaptive optimizers typically converge faster and are more stable, hence are the default for generative
adversarial networks (GANs) [19], transformers [20], and deep reinforcement learning [21].

We broadly categorize adaptive optimizers according to different criteria, as in Table. 1. (a) Centered
v.s. uncentered Most optimizers such as Adam and AdaDelta uses uncentered second momentum in
the denominator; RMSProp-center [11], SDProp [22] and AdaBelief [18] use square root of centered
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Table 1: Categories of adaptive optimizers
Uncentered second momentum Centered second momentum

Synchronous Adam , RAdam, AdaDelta, RMSProp RMSProp-center, SDProp, AdaBelief
Asynchronous AdaShift ACProp (ours)

second momentum in the denominator. AdaBelief [18] is shown to achieve good generalization
like the SGD family, fast convergence like the adaptive family, and training stability in complex
settings such as GANs. (b) Sync vs async The synchronous optimizers typically use gradient gt in
both numerator and denominator, which leads to correlation between numerator and denominator;
most existing optimizers belong to this category. The asynchronous optimizers decorrelate numerator
and denominator (e.g. by using gt as numerator and use {g0, ...gt−1} in denominator for the t-th
update), and is shown to have weaker convergence conditions than synchronous optimizers[16].

We propose Asynchronous Centering Prop (ACProp), which combines centering of second momentum
with the asynchronous update. We show that ACProp has both good theoretical properties and strong
empirical performance. Our contributions are summarized as below:

• Convergence condition (a) Async vs Sync We show that for the example by Reddi et al. (2018),
asynchronous optimizers (AdaShift, ACProp) converge for any valid hyper-parameters, while
synchronous optimizers (Adam, RMSProp et al.) could diverge if the hyper-paramaters are
not carefully chosen. (b) Async-Center vs Async-Uncenter Within the asynchronous optimizers
family, by example of an online convex problem with sparse gradients, we show that Async-Center
(ACProp) has weaker conditions for convergence than Async-Uncenter (AdaShift).

• Convergence rate We demonstrate that ACProp achieves a convergence rate of O( 1√
T

) for
stochastic non-convex problems, matching the oracle of first-order optimizers [23], and outper-
forms the O( logT√

T
) rate of Adam and RMSProp.

• Empirical performance We validate performance of ACProp in experiments: on image classi-
fication tasks, ACProp outperforms SGD and AdaBelief, and demonstrates good generalization
performance; in experiments with transformer, reinforcement learning and various GAN models,
ACProp outperforms well-tuned Adam, demonstrating high stability. ACProp often outperforms
AdaBelief, and achieves good generalization like SGD and training stability like Adam.

2 Overview of algorithms

2.1 Notations

x, xt ∈ Rd: x is a d−dimensional parameter to be optimized, and xt is the value at step t.
f(x), f∗ ∈ R: f(x) is the scalar-valued function to be minimized, with optimal (minimal) f∗.

αt, ε ∈ R: αt is the learning rate at step t. ε is a small number to avoid division by 0.
gt ∈ Rd: The noisy observation of gradient∇f(xt) at step t.

β1, β2 ∈ R: Constants for exponential moving average, 0 ≤ β1, β2 < 1.
mt ∈ Rd: mt = β1mt−1 + (1− β1)gt. The Exponential Moving Average (EMA) of observed

gradient at step t.
∆gt ∈ Rd: ∆gt = gt −mt. The difference between observed gradient gt and EMA of gt.
vt ∈ Rd: vt = β2vt−1 + (1− β2)g2t . The EMA of g2t .

st ∈ Rd: st = β2st−1 + (1− β2)(∆gt)
2. The EMA of (∆gt)

2.

2.2 Algorithms

In this section, we summarize the AdaBelief [18] method in Algo. 1 and ACProp in Algo. 2. For
the ease of notations, all operations in Algo. 1 and Algo. 2 are element-wise, and we omit the
bias-correction step of mt and st for simplicity. ΠF represents the projection onto feasible set F .

We first introduce the notion of “sync (async)” and “center (uncenter)”. (a) Sync vs Async The
update on parameter xt can be generally split into a numerator (e.g. mt, gt) and a denominator (e.g.
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Algorithm 1: AdaBelief
Initialize x0, m0 ← 0 , s0 ← 0, t← 0
While xt not converged

t← t+ 1
gt ← ∇xft(xt−1)
mt ← β1mt−1 + (1− β1)gt
st ← β2st−1+(1−β2)(gt−mt)

2

xt ←
∏
F,√st

(
xt−1 − α√

st+ε
mt

)

Algorithm 2: ACProp
Initialize x0, m0 ← 0 , s0 ← 0, t← 0
While xt not converged

t← t+ 1
gt ← ∇xft(xt−1)
mt ← β1mt−1 + (1− β1)gt

xt ←
∏
F,√st−1

(
xt−1 − α√

st−1+ε
gt

)
st ← β2st−1+(1−β2)(gt−mt)

2

√
st,
√
vt). We call it “sync” if the denominator depends on gt, such as in Adam and RMSProp; and

call it “async” if the denominator is independent of gt, for example, denominator uses information up
to step t−1 for the t-th step. (b) Center vs Uncenter The “uncentered” update uses vt, the exponential
moving average (EMA) of g2t ; while the “centered” update uses st, the EMA of (gt −mt)

2.

Adam (Sync-Uncenter) The Adam optimizer [12] stores the EMA of the gradient in mt, and stores
the EMA of g2t in vt. For each step of the update, Adam performs element-wise division between
mt and

√
vt. Therefore, the term αt

1√
vt

can be viewed as the element-wise learning rate. Note that
β1 and β2 are two scalars controlling the smoothness of the EMA for the first and second moment,
respectively. When β1 = 0, Adam reduces to RMSProp [24].

AdaBelief (Sync-Center) AdaBelief optimizer [18] is summarized in Algo. 1. Compared with
Adam, the key difference is that it replaces the uncentered second moment vt (EMA of g2t ) by an
estimate of the centered second moment st (EMA of (gt −mt)

2). The intuition is to view mt as an
estimate of the expected gradient: if the observation gt deviates much from the prediction mt, then it
takes a small step; if the observation gt is close to the prediction mt, then it takes a large step.

AdaShift (Async-Uncenter) AdaShift [16] performs temporal decorrelation between numerator and
denominator. It uses information of {gt−n, ...gt} for the numerator, and uses {g0, ...gt−n−1} for the
denominator, where n is the “delay step” controlling where to split sequence {gi}ti=0. The numerator
is independent of denominator because each gi is only used in either numerator or denominator.

ACProp (Async-Center) Our proposed ACProp is the asynchronous version of AdaBelief and is
summarized in Algo. 2. Compared to AdaBelief, the key difference is that ACProp uses st−1 in
the denominator for step t, while AdaBelief uses st. Note that st depends on gt, while st−1 uses
history up to step t − 1. This modification is important to ensure that E(gt/

√
st−1|g0, ...gt−1) =

(Egt)/
√
st−1. It’s also possible to use a delay step larger than 1 similar to AdaShift, for example, use

EMA({gi}ti=t−n) as numerator, and EMA({(gi −mi)
2}t−n−1i=0 ) for denominator.

3 Analyze the conditions for convergence

We analyze the convergence conditions for different methods in this section. We first analyze the
counter example by Reddi et al. (2018) and show that async-optimizers (AdaShift, ACProp) always
converge ∀β1, β2 ∈ (0, 1), while sync-optimizers (Adam, AdaBelief, RMSProp et al.) would diverge
if (β1, β2) are not carefully chosen; hence, async-optimizers have weaker convergence conditions than
sync-optimizers. Next, we compare async-uncenter (AdaShift) with async-center (ACProp) and show
that momentum centering further weakens the convergence condition for sparse-gradient problems.
Therefore, ACProp has weaker convergence conditions than AdaShift and other sync-optimizers.

3.1 Sync vs Async

We show that for the example in [14], async-optimizers (ACProp, AdaShift) have weaker convergence
conditions than sync-optimizers (Adam, RMSProp, AdaBelief).
Lemma 3.1 (Thm.1 in [14]). There exists an online convex optimization problem where sync-
optimizers (e.g. Adam, RMSProp) have non-zero average regret, and one example is

ft(x) =

{
Px, if t%P = 1

−x, Otherwise
x ∈ [−1, 1], P ∈ N, P ≥ 3 (1)
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Figure 1: Numerical results for the example defined by Eq. (1). We set the initial value as x0 = 0, and run each
optimizer for 104 steps trying different initial learning rates in {10−5, 10−4, 10−3, 10−2, 10−1, 1.0}, and set
the learning rate decays with 1/

√
t. If there’s a proper initial learning rate, such that the average distance between

the parameter and its optimal value x∗ = −1 for the last 1000 steps is below 0.01, then it’s marked as “converge"
(orange plus symbol), otherwise as “diverge” (blue circle). For each optimizer, we sweep through different
β2 values in a log grid (x-axis), and sweep through different values of P in the definition of problem (y-axis).
We plot the result for β1 = 0.9 here; for results with different β1 values, please refer to appendix. Our results
indicate that in the (P, β2) plane, there’s a threshold curve beyond which sync-optimizers (Adam, RMSProp,
AdaBelief) will diverge; however, async-optimizers (ACProp, AdaShift) always converge for any point in the
(P, β2) plane. Note that for AdaShift, a larger delay step n is possible to cause divergence (see example in Fig. 2
with n = 10). To validate that the “divergence” is not due to numerical issues and sync-optimizers are drifting
away from optimal, we plot trajectories in Fig. 2

Lemma 3.2 ([25]). For problem (1) with any fixed P , there’s a threshold of β2 above which RMSProp
converges.

Figure 2: Trajectories of x for different optimizers in
Problem by Eq. 1. Initial point is x0 = 0, the optimal
is x∗ = −1, the trajectories show that sync-optimizers
(Adam, AdaBelief, RMSProp) diverge from the optimal,
validating the divergent area in Fig. 1 is correct rather
than artifacts of numerical issues. Async-optimizers
(ACProp, AdaShift) converge to optimal value, but large
delay step n in AdaShift could cause non-convergence.

In order to better explain the two lemmas above,
we conduct numerical experiments on the prob-
lem by Eq. (1), and show results in Fig. 1. Note
that

∑k+P
t=k ft(x) = x, hence the optimal point

is x∗ = −1 since x ∈ [−1, 1]. Starting from ini-
tial value x0 = 0, we sweep through the plane of
(P, β2) and plot results of convergence in Fig. 1,
and plot example trajectories in Fig. 2.

Lemma. 3.1 tells half of the story: looking at
each vertical line in the subfigure of Fig. 1, that
is, for each fixed hyper-parameter β2, there ex-
ists sufficiently large P such that Adam (and
RMSProp) would diverge. Lemma. 3.2 tells the
other half of the story: looking at each horizontal
line in the subfigure of Fig. 1, for each problem
with a fixed period P , there exists sufficiently
large β2s beyond which Adam can converge.

The complete story is to look at the (P, β2) plane
in Fig. 1. There is a boundary between conver-

gence and divergence area for sync-optimizers (Adam, RMSProp, AdaBelief), while async-optimizers
(ACProp, AdaShift) always converge.
Lemma 3.3. For the problem defined by Eq. (1), using learning rate schedule of αt = α0√

t
, async-

optimizers (ACProp and AdaShift with n = 1) always converge ∀β1, β2 ∈ (0, 1),∀P ∈ N, P ≥ 3.

The proof is in the appendix. Note that for AdaShift, proof for the always-convergence property only
holds when n = 1; larger n could cause divergence (e.g. n = 10 causes divergence as in Fig. 2).
The always-convergence property of ACProp and AdaShift comes from the un-biased stepsize, while
the stepsize for sync-optimizers are biased due to correlation between numerator and denominator.
Taking RMSProp as example of sync-optimizer, the update is −αt gt√

vt
= −αt gt√

βt
2g

2
0+...+β2g2t−1+g

2
t

.

Note that gt is used both in the numerator and denominator, hence a large gt does not necessarily
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Figure 3: Area of convergence for the problem in Eq. (2). The numerical experiment is performed under the
same setting as in Fig. 1.Our results experimentally validated the claim that compared with async-uncenter
(AdaShift), async-center (ACProp) has a larger convergence area in the hyper-parameter space.

generate a large stepsize. For the example in Eq. (1), the optimizer observes a gradient of −1 for
P − 1 times and a gradient of P once; due to the biased stepsize in sync-optimizers, the gradient of
P does not generate a sufficiently large stepsize to compensate for the effect of wrong gradients −1,
hence cause non-convergence. For async-optimizers, gt is not used in the denominator, therefore, the
stepsize is not biased and async-optimizers has the always-convergence property.

Remark Reddi et al. (2018) proposed AMSGrad to track the element-wise maximum of vt in order
to achieve the always-convergence property. However, tracking the maximum in the denominator
will in general generate a small stepsize, which often harms empirical performance. We demonstrate
this through experiments in later sections in Fig. 6.

3.2 Async-Uncenter vs Async-Center

In the last section, we demonstrated that async-optimizers have weaker convergence conditions than
sync-optimizers. In this section, within the async-optimizer family, we analyze the effect of centering
second momentum. We show that compared with async-uncenter (AdaShift), async-center (ACProp)
has weaker convergence conditions. We consider the following online convex problem:

ft(x) =


P/2× x, t%P == 1

−x, t%P == P − 2

0, otherwise
P > 3, P ∈ N, x ∈ [0, 1]. (2)

Initial point is x0 = 0.5. Optimal point is x∗ = 0. We have the following results:

Lemma 3.4. For the problem defined by Eq. (2), consider the hyper-parameter tuple (β1, β2, P ),
there exists cases where ACProp converges but AdaShift with n = 1 diverges, but not vice versa.

We provide the proof in the appendix. Lemma. 3.4 implies that ACProp has a larger area of conver-
gence than AdaShift, hence the centering of second momentum further weakens the convergence
conditions. We first validate this claim with numerical experiments in Fig. 3; for sanity check, we
plot the trajectories of different optimizers in Fig. 4. We observe that the convergence of AdaShift
is influenced by delay step n, and there’s no good criterion to select a good value of n, since Fig. 2
requires a small n for convergence in problem (1), while Fig. 4 requires a large n for convergence in
problem (2). ACProp has a larger area of convergence, indicating that both async update and second
momentum centering helps weaken the convergence conditions.

We provide an intuitive explanation on why momentum centering helps convergence. Due to the
periodicity of the problem, the optimizer behaves almost periodically as t → ∞. Within each
period, the optimizer observes one positive gradient P/2 and one negative gradient -1. As in Fig. 5,
between observing non-zero gradients, the gradient is always 0. Within each period, ACprop will
perform a positive update P/(2

√
s+) and a negative update −1/

√
s−, where s+ (s−) is the value

of denominator before observing positive (negative) gradient. Similar notations for v+ and v− in
AdaShift. A net update in the correct direction requires P

2
√
s+

> 1√
s−

, (or s+/s− < P 2/4).

When observing 0 gradient, for AdaShift, vt = β2vt−1 + (1− β2)02; for ACProp, st = β2st−1 +
(1 − β2)(0 − mt)

2 where mt 6= 0. Therefore, v− decays exponentially to 0, but s− decays to a
non-zero constant, hence s+

s− < v+

v− , hence ACProp is easier to satisfy s+/s− < P 2/4 and converge.
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Figure 4: Trajectories for problem defined by Eq. (2).
Note that the optimal point is x∗ = 0.

Figure 5: Value of uncentered second momentum vt
and centered momentum st for problem (2).

4 Analysis on convergence rate

In this section, we show that ACProp converges at a rate of O(1/
√
T ) in the stochastic nonconvex

case, which matches the oracle [23] for first-order optimizers and outperforms the O(logT/
√
T ) rate

for sync-optimizers (Adam, RMSProp and AdaBelief) [26, 25, 18]. We further show that the upper
bound on regret of async-center (ACProp) outperforms async-uncenter (AdaShift) by a constant.

For the ease of analysis, we denote the update as: xt = xt−1 − αtAtgt, where At is the diagonal
preconditioner. For SGD, At = I; for sync-optimizers (RMSProp), At = 1√

vt+ε
; for AdaShift with

n = 1, At = 1√
vt−1+ε

; for ACProp, At = 1√
st−1+ε

. For async optimizers, E[Atgt|g0, ...gt−1] =

AtEgt; for sync-optimizers, this does not hold because gt is used in At
Theorem 4.1 (convergence for stochastic non-convex case). Under the following assumptions:

• f is continuously differentiable, f is lower-bounded by f∗ and upper bounded by Mf . ∇f(x) is
globally Lipschitz continuous with constant L:

||∇f(x)−∇f(y)|| ≤ L||x− y|| (3)

• For any iteration t, gt is an unbiased estimator of ∇f(xt) with variance bounded by σ2. Assume
norm of gt is bounded by Mg .

E
[
gt
]

= ∇f(xt) E
[
||gt −∇f(xt)||2

]
≤ σ2 (4)

then for β1, β2 ∈ [0, 1), with learning rate schedule as: αt = α0t
−η, α0 ≤ Cl

LC2
u
, η ∈ [0.5, 1)

for the sequence {xt} generated by ACProp, we have

1

T

T∑
t=1

∣∣∣∣∣∣∇f(xt)
∣∣∣∣∣∣2 ≤ 2

Cl

[
(Mf − f∗)α0T

η−1 +
LC2

uσ
2α0

2(1− η)
T−η

]
(5)

where Cl and Cu are scalars representing the lower and upper bound for At, e.g. ClI � At � CuI ,
where A � B represents B −A is semi-positive-definite.

Note that there’s a natural bound for Cl and Cu: Cu ≤ 1
ε and Cl ≥ 1

2Mg
because ε is added to

denominator to avoid division by 0, and gt is bounded by Mg. Thm. 4.1 implies that ACProp has
a convergence rate of O(1/

√
T ) when η = 0.5; equivalently, in order to have ||∇f(x)||2 ≤ δ2,

ACProp requires at most O(δ−4) steps.
Theorem 4.2 (Oracle complexity [23]). For a stochastic non-convex problem satisfying assumptions
in Theorem. 4.1, using only up to first-order gradient information, in the worst case any algorithm
requires at least O(δ−4) queries to find a δ-stationary point x such that ||∇f(x)||2 ≤ δ2.

Optimal rate in big O Thm. 4.1 and Thm. 4.2 imply that async-optimizers achieves a convergence
rate of O(1/

√
T ) for the stochastic non-convex problem, which matches the oracle complexity and

outperforms the O(logT/
√
T ) rate of sync-optimizers (Adam [14], RMSProp[25], AdaBelief [18]).

Adam and RMSProp are shown to achieve O(1/
√
T ) rate under the stricter condition that β2,t → 1

[27]. A similar rate has been achieved in AVAGrad [28], and AdaGrad is shown to achieve a similar
rate [29]. Despite the same convergence rate, we show that ACProp has better empirical performance.
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Figure 6: From left to right: (a) Mean value of denominator for a 2-layer MLP on MNIST dataset. (b) Training
loss of different optimizers for the 2-layer MLP model. (c) Performance of AdaShift for VGG-11 on CIFAR10
varying with learning rate ranging from 1e-1 to 1e-5, we plot the performance of ACProp with learning rate 1e-3
as reference. Missing lines are because their accuracy are below display threshold. All methods decay learning
rate by a factor of 10 at 150th epoch. (d) Performance of AMSGrad for VGG-11 on CIFAR10 varying with
learning rate under the same setting in (c).

Constants in the upper bound of regret Though both async-center and async-uncenter optimizers
have the same convergence rate with matching upper and lower bound in big O notion, the constants
of the upper bound on regret is different. Thm. 4.1 implies that the upper bound on regret is an
increasing function of 1/Cl and Cu, and

1/Cl =
√
Ku + ε, Cu = 1/(

√
Kl + ε)

where Kl and Ku are the lower and upper bound of second momentum, respectively.

We analyze the constants in regret by analyzing Kl and Ku. If we assume the observed gradient gt
follows some independent stationary distribution, with mean µ and variance σ2, then approximately

Uncentered second momentum: 1/Cvl =
√
Kv
u + ε ≈

√
µ2 + σ2 + ε (6)

Centered second momentum: 1/Csl =
√
Ks
u + ε ≈

√
σ2 + ε (7)

During early phase of training, in general |µ| � σ, hence 1/Csl � 1/Cvl , and the centered
version (ACProp) can converge faster than uncentered type (AdaShift) by a constant factor of around√
µ2+σ2+ε√
σ2+ε

. During the late phase, gt is centered around 0, and |µ| � σ, hence Kv
l (for uncentered

version) and Ks
l (for centered version) are both close to 0, hence Cu term is close for both types.

Remark We emphasize that ACProp rarely encounters numerical issues caused by a small st as
denominator, even though Eq. (7) implies a lower bound for st around σ2 which could be small in
extreme cases. Note that st is an estimate of mixture of two aspects: the change in true gradient
||∇ft(x)−∇ft−1(x)||2, and the noise in gt as an observation of ∇f(x). Therefore, two conditions
are essential to achieve st = 0: the true gradient ∇ft(x) remains constant, and gt is a noise-free
observation of ∇ft(x). Eq. (7) is based on assumption that ||∇ft(x) − ∇ft−1(x)||2 = 0, if we
further assume σ = 0, then the problem reduces to a trivial ideal case: a linear loss surface with clean
observations of gradient, which is rarely satisfied in practice. More discussions are in appendix.

Empirical validations We conducted experiments on the MNIST dataset using a 2-layer MLP. We
plot the average value of vt for uncentered-type and st for centered-type optimizers; as Fig. 6(a,b)
shows, we observe st ≤ vt and the centered-type (ACProp, AdaBelief) converges faster, validating
our analysis for early phases. For epochs > 10, we observe that min st ≈ min vt, validating our
analysis for late phases.

As in Fig. 6(a,b), the ratio vt/st decays with training, and in fact it depends on model structure and
dataset noise. Therefore, empirically it’s hard to compensate for the constants in regret by applying
a larger learning rate for async-uncenter optimizers. As shown in Fig. 6(c,d), for VGG network on
CIFAR10 classification task, we tried different initial learning rates for AdaShift (async-uncenter)
and AMSGrad ranging from 1e-1 to 1e-5, and their performances are all inferior to ACProp with a
learning rate 1e-3. Please see Fig.8 for a complete table varying with hyper-parameters.

5 Experiments

We validate the performance of ACProp in various experiments, including image classification
with convolutional neural networks (CNN), reinforcement learning with deep Q-network (DQN),
machine translation with transformer and generative adversarial networks (GANs). We aim to test
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Figure 7: Test accuracy (mean± std) on CIFAR10 datset. Left to right: VGG-11, ResNet-34, DenseNet-121.

Figure 8: Test accuracy (%) of VGG network on
CIFAR10 under different hyper-parameters. We
tested learning rate in {10−1, 10−2, 10−3, 10−4}
and ε ∈ {10−5, ..., 10−9}.

Figure 9: The reward (higher is better) curve of
a DQN-network on the four-rooms problem. We
report the mean and standard deviation across 10
independent runs.

Table 2: Top-1 accuracy of ResNet18 on ImageNet. � is reported in PyTorch Documentation, † is
reported in [30], ∗ is reported in [17], ‡ is reported in [18]

SGD Adam AdamW RAdam AdaShift AdaBelief ACProp
69.76� (70.23†) 66.54∗ 67.93† 67.62∗ 65.28 70.08‡ 70.46

both the generalization performance and training stability: SGD family optimizers typically are
the default for CNN models such as in image recognition [6] and object detection [7] due to their
better generalization performance than Adam; and Adam is typically the default for GANs [19],
reinforcement learning [21] and transformers [20], mainly due to its better numerical stability and
faster convergence than SGD. We aim to validate that ACProp can perform well for both cases.

Image classification with CNN We first conducted experiments on CIFAR10 image classification
task with a VGG-11 [31], ResNet34 [6] and DenseNet-121 [32]. We performed extensive hyper-
parameter tuning in order to better compare the performance of different optimizers: for SGD we
set the momentum as 0.9 which is the default for many cases [6, 32], and search the learning rate
between 0.1 and 10−5 in the log-grid; for other adaptive optimizers, including AdaBelief, Adam,
RAdam, AdamW and AdaShift, we search the learning rate between 0.01 and 10−5 in the log-grid,
and search ε between 10−5 and 10−10 in the log-grid. We use a weight decay of 5e-2 for AdamW,
and use 5e-4 for other optimizers. We report the mean± std for the best of each optimizer in Fig. 7:
for VGG and ResNet, ACProp achieves comparable results with AdaBelief and outperforms other
optimizers; for DenseNet, ACProp achieves the highest accuracy and even outperforms AdaBelief by
0.5%. As in Table 2, for ResNet18 on ImageNet, ACProp outperforms other methods and achieves
comparable accuracy to the best of SGD in the literature, validating its generalization performance.

To evaluate the robustness to hyper-parameters, we test the performance of various optimizers under
different hyper-parameters with VGG network. We plot the results for ACProp and AdaShift as an
example in Fig. 8 and find that ACProp is more robust to hyper-parameters and typically achieves
higher accuracy than AdaShift.

Reinforcement learning with DQN We evaluated different optimizers on reinforcement learning
with a deep Q-network (DQN) [21] on the four-rooms task [33]. We tune the hyper-parameters in
the same setting as previous section. We report the mean and standard deviation of reward (higher is
better) across 10 runs in Fig. 9. ACProp achieves the highest mean reward, validating its numerical
stability and good generalization.

Neural machine translation with Transformer We evaluated the performance of ACProp on
neural machine translation tasks with a transformer model [20]. For all optimizers, we set
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Table 3: BLEU score (higher is better) on machine translation with Transformer
Adam RAdam AdaShift AdaBelief ACProp

DE-EN 34.66±0.014 34.76±0.003 30.18±0.020 35.17±0.015 35.35±0.012
EN-VI 21.83±0.015 22.54±0.005 20.18±0.231 22.45±0.003 22.62±0.008
JA-EN 33.33±0.008 32.23±0.015 25.24±0.151 34.38±0.009 33.70±0.021
RO-EN 29.78± 0.003 30.26 ± 0.011 27.86±0.024 30.03±0.012 30.27±0.007

Table 4: FID (lower is better) for GANs
Adam RAdam AdaShift AdaBelief ACProp

DCGAN 49.29±0.25 48.24±1.38 99.32±3.82 47.25±0.79 43.43±4.38
RLGAN 38.18±0.01 40.61±0.01 56.18 ±0.23 36.58±0.12 37.15±0.13
SNGAN 13.14±0.10 13.00±0.04 26.62±0.21 12.70±0.17 12.44±0.02
SAGAN 13.98±0.02 14.25±0.01 22.11±0.25 14.17±0.14 13.54±0.15

Table 5: Performance comparison between AVAGrad and ACProp. ↑ (↓) represents metrics that upper
(lower) is better. ? are reported in the AVAGrad paper [28]

WideResNet Test Error (↓) Transformer BLEU (↑) GAN FID (↓)
CIFAR10 CIFAR100 DE-EN RO-EN DCGAN SNGAN

AVAGrad 3.80?±0.02 18.76?±0.20 30.23±0.024 27.73±0.134 59.32±3.28 21.02±0.14
ACProp 3.67±0.04 18.72±0.01 35.35±0.012 30.27±0.007 43.34±4.38 12.44±0.02

learning rate as 0.0002, and search for β1 ∈ {0.9, 0.99, 0.999}, β2 ∈ {0.98, 0.99, 0.999} and
ε ∈ {10−5, 10−6, ...10−16}. As shown in Table. 3, ACProp achieves the highest BLEU score in 3
out 4 tasks, and consistently outperforms a well-tuned Adam.

Generative Adversarial Networks (GAN) The training of GANs easily suffers from mode collapse
and numerical instability [34], hence is a good test for the stability of optimizers. We conducted
experiments with Deep Convolutional GAN (DCGAN) [35], Spectral-Norm GAN (SNGAN) [36],
Self-Attention GAN (SAGAN) [37] and Relativistic-GAN (RLGAN) [38]. We set β1 = 0.5, and
search for β2 and ε with the same schedule as previous section. We report the FID [39] on CIFAR10
dataset in Table. 4, where a lower FID represents better quality of generated images. ACProp achieves
the best overall FID score and outperforms well-tuned Adam.

Remark Besides AdaShift, we found another async-optimizer named AVAGrad in [28]. Unlike other
adaptive optimizers, AVAGrad is not scale-invariant hence the default hyper-parameters are very
different from Adam-type (lr = 0.1, ε = 0.1). We searched for hyper-parameters for AVAGrad for a
much larger range, with ε between 1e-8 and 100 in the log-grid, and lr between 1e-6 and 100 in the
log-grid. For experiments with a WideResNet, we replace the optimizer in the official implementation
for AVAGrad by ACProp, and cite results in the AVAGrad paper. As in Table 5, ACProp consistently
outperforms AVAGrad in CNN, Transformer, and GAN training.

6 Related Works
Besides the aforementioned, other variants of Adam include NosAdam [40], Sadam [41], Adax [42]),
AdaBound [15] and Yogi [43]. ACProp could be combined with other techniques such as SWATS
[44], LookAhead [45] and norm regularization similar to AdamP [46]. Regarding the theoretical
analysis, recent research has provided more fine-grained frameworks [47, 48]. Besides first-order
methods, recent research approximate second-order methods in deep learning [49, 50, 51].

7 Conclusion

We propose ACProp, a novel first-order gradient optimizer which combines the asynchronous update
and centering of second momentum. We demonstrate that ACProp has good theoretical properties:
ACProp has a “always-convergence" property for the counter example by Reddi et al. (2018), while
sync-optimizers (Adam, RMSProp) could diverge with uncarefully chosen hyper-parameter; for
problems with sparse gradient, async-centering (ACProp) has a weaker convergence condition than
async-uncentering (AdaShift); ACProp achieves the optimal convergence rate O(1/

√
T ), outper-

forming the O(logT/
√
T ) rate of RMSProp (Adam), and achieves a tighter upper bound on risk than

AdaShift. In experiments, we validate that ACProp has good empirical performance: it achieves good
generalization like SGD, fast convergence and training stability like Adam, and often outperforms
Adam and AdaBelief.
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