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Figure 1: Our virtual reality (VR) teleoperation system projects a stereoscopic camera view to the VR headset, providing the
human operator an egocentric perspective and a detailed rendering of the environment with depth perception. The human
operator manipulates the robot end effector by moving and controlling the Quest 3 controller. We intend to use our system for
collecting data where robots collaborate with humans on various tasks.

ABSTRACT
Large and diverse datasets are required to train general purpose
models in NLP, computer vision, and robot manipulation. However,
existing robotics datasets have single robots interacting in a static
environment whereas in many real world scenarios, robots have
to interact with humans or other dynamic agents. In this work, we
present a virtual reality (VR) teleoperation system to enable data
collection for human robot collaborative (HRC) tasks. The human
operator using the VR system receives an immersive and high
fidelity egocentric view with a stereoscopic depth effect, providing
the situational awareness required to teleoperate the robot remotely
to perform various tasks. We propose to collect data on a set of HRC
tasks and introduce a taxonomy to categorize the tasks. We envision
that our VR system will broaden the scope of tasks robots can
∗Both authors contributed equally to this research.
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perform with human collaborators and that the proposed dataset
will enable the development of new algorithms for HRC.

CCS CONCEPTS
• Human-centered computing→ Virtual reality; Collabora-
tive interaction.
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1 INTRODUCTION AND MOTIVATION
Large-scale pretrained models that are trained on broad and di-
verse datasets have shown generalizability and adaptability across
multiple tasks in various environments. The Open X-Embodiment
[14], which compiles robotic manipulation datasets from different
sources and robot embodiments, has demonstrated the effective-
ness of transformer-based models trained on this data. While these
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datasets enable robots to learn generalizable skills in a variety of
settings, the robots are interacting in mostly static environments
without humans or other dynamic agents. As robots get deployed
in homes and public spaces, these autonomous agents must learn
to interact or collaborate with humans. Importantly, humans and
robots have complementary skills: humans have strong reasoning
abilities and adaptability, whereas robots excel in numerical tasks
and precision. This creates a synergistic partnership, making hu-
man robot collaboration an advantageous approach for many tasks
[20].

Teleoperating robots protects the human operator from haz-
ardous environments and also enables data collection on tasks
demanding human dexterity, expertise, and extensive background
knowledge, all without the need for the human to be physically
present [6]. Traditional systems display camera video streams on
a computer monitor and rely on keyboards or joysticks to control
the robot. On the other hand, virtual reality (VR) interfaces offer
an immersive 3D experience, enabling the user to perceive depth
and translate human arm movement to robot actions.

In this paper, we present a VR teleoperation system intended for
collecting data on human-robot collaborative tasks. We introduce
a series of shared workspace tasks along with a taxonomy that
indicates if the task involves shared contact, whether the action
space of the human and the robot are the same (homogeneous) or
different (heterogeneous), and if the robot assumes a leader or a
supporter role. We envision that such a dataset will facilitate the
development of robot learning algorithms that collaborate with
humans on various tasks.

2 RELATEDWORK
Virtual reality (VR) interfaces provide an immersive 3D environ-
ment for better situational awareness and a more intuitive method
for robot control compared to traditional teleoperation systems
that use monitors and keyboards [19]. VR teleoperation systems
that remotely control a robot have been developed in domains rang-
ing from space [15] to surgery [17] to manufacturing [5, 10]. To
visualize the environment, VR headsets often render a point cloud
from remote color and depth cameras [12, 16]. Omarali et al. [13]
uses a RGBD camera to render an OctoMap mapping of the remote
environment which has fewer distortions and occlusions compared
to point clouds. Wei et al. [18] uses a stereo camera and aligns a
local camera on the robot end effector to the global 3D point cloud.
Our system uses a pair of RGB cameras, with one casting its feed
to the VR interface’s left eye and the other to the right, creating a
perception of depth (stereopsis) for the human operator [9]. The
cameras are positioned on the robot’s body to provide an egocentric
view, allowing the human operator to provide controls from the
robot’s perspective. Using stereo camera data delivers the highest
fidelity reconstruction of the environment possible, with greater
accuracy than can be achieved with point cloud methods, at the
expense of limiting the operator’s viewpoint to that of the camera.

VR teleoperation is a popular choice for collecting data from
robots, and prior work has collected large scale datasets of robots
manipulating objects [7, 22]. When trained using imitation learning,
robots have demonstrated high success rates and generalization.
However, the vast majority of existing datasets only include single

robot tasks in static environments whereas many real world tasks
involve interaction with humans or other dynamic agents. In this
work, we present a VR teleoperation system for collecting data on
robots collaborating with humans.

Previous research has collected datasets on human robot interac-
tion that have facilitated robot learning and the learning of human
behavior models. Ben-Youssef et al. [2] recorded humans interact-
ing with the social robot Pepper. Celiktutan et al. [3] introduced
human-human and human-human-robot datasets where partici-
pants asked personality questions to each other. Some works have
provided multimodal datasets where a human teaches a robot to
recognize new objects [1, 8]. In contrast, our proposed data col-
lection focuses on physical human robot collaborative tasks, as
summarized in Table 1.

3 VR INTERFACE DESIGN
3.1 Stereoscopic Visualization
To achieve an immersive, 3D visualization of the environment from
the robot’s point of view, we pass dual RGB camera feeds to a VR
interface. In our case, we use a pair of RealSense D435 cameras,
communicating with a Meta Quest 3 headset. The cameras are
placed next to each other, spaced roughly to match an average
human’s interpupillary distance. The feed from the leftmost camera
is passed to the left eye of the operator, with the rightmost camera
passed to the right eye. The binocular disparity in these images
creates a depth effect in the viewer, tricking the visual cortex to
interpret the scene as 3-dimensional [4].

Since the camera position and orientation are not tied to the head
movements of the operator, the camera feeds are projected onto a
spatially-anchored window within the immersive VR environment,
almost as if the operator were looking at a large monitor displaying
the robot’s camera feed in 3D. This prevents any motion sickness in
operators that would arise from moving their head and not seeing
a corresponding motion in their environment, causing a mismatch
between the senses of vision and proprioception [11].

3.2 Teleoperation
Operators are able to command the robot using Meta Quest Touch
Plus handheld controllers within the VR interface (a single con-
troller for stationary manipulators and two controllers for mobile
manipulator robots). For controlling the base of a mobile robot,
operators use a pair of thumb sticks to control robot translation
and rotation. For controlling a manipulator arm, we use the 6DOF
position of the right hand controller, collected via the VR head-
set’s internal tracking, with the human spatially tracing intended
behavior for the robot’s end effector.

To prevent unwanted robot arm movement when the operator
is not engaged in a manipulation task, controller poses are only
passed through to the robot’s inverse kinematic solver when the
trigger button on the right hand controller is depressed. When the
operator does not have the trigger depressed, a semi-transparent
hologram of the controller is displayed, positioned in the immersive
VR coordinate system so that it maps to the current position and ori-
entation of the real robot’s end effector. When the operator wishes
to begin control of the manipulator arm, they will match their own
controller position with that of the semi-transparent hologram,
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(2) The robot leads the effort to
move the box through the door.

(3) The robot paints the wood
while the human stabilizes it.

(4) The robot sorts recyclables
while the human assists.

(5) The human lifts up objects
as the robot cleans the table.

Su
pp

or
te
r

(6) The robot follows the
human’s lead moving the box.

(7) The robot holds the board
while the human inserts screw.

(8) The robot cooks the food
for the human to consume.

(9) The robot brings parts to
assist in the assembly.

Table 1: The taxonomy of our proposed human robot collaboration tasks for data collection.

depress the trigger, and begin their movement. This prevents large
uncontrolled robot motions interpolating between discontinuous
poses on either end of a gap in teleoperation. Operators can open
or close the gripper with a button reachable by the right thumb.

4 PROPOSED DATA COLLECTION
Using the VR teleoperation interface, the human operator sitting in
a remote location can control a robot that is collocated with human
participants to collaborate on a variety of tasks. We plan to col-
lect a human-robot interaction dataset, recording robot joint states,
the robot’s camera view (also the human operator’s view through
VR), and third person camera views that capture the robot and the
human in the same frame. The human participants will wear arm
sleeves, gloves, and a vest with fiducial markers tracked via a set of
OptiTrack motion capture cameras, providing ground truth human
poses. We will also include natural language text descriptions of
the human and robot’s tasks. We categorize our proposed human-
robot collaboration tasks via the following taxonomy: 1) Shared
Contact vs. Non-Shared Contact: the human and the robot in-
teract with the same vs. different objects, 2) Homogeneous vs.
Heterogeneous Actions: the human and the robot have the same
vs. different action spaces, and 3) Leader vs. Supporter Roles:
the human adapts to the robot’s actions vs. the robot adapts to

the human. Some tasks allow the robot to take either the leader or
supporter role, and we plan to collect data capturing the robot’s
behavior for both cases.

4.1 Shared Contact
4.1.1 Homogeneous Actions. The task requires the human robot
team to carry heavy or large and unwieldy objects such as boxes,
furniture or planks of wood for construction. For leader role, the
robot guides the human towards the destination (Fig. 2) while the
robot follows the human in the supporter role (Fig. 6).

4.1.2 Heterogeneous Actions. The human and the robot are in-
teracting with the same object but perform different actions. For
example, the robot in a leader role paints the wood while the
human stabilizes it (Fig. 3). In a supporter role, the robot stabilizes
a wooden plank while the human inserts screw (Fig. 7).

4.2 Non-Shared Contact
4.2.1 Homogeneous Actions. The human and the robot are sorting
recyclables into the correct bins (Fig. 4). The robot assumes the
leader role by sorting recyclables while the human supervises
and assists with items placed in the wrong bins or items the robot
cannot pick up. In a supporter role, the robot maintains a belief
of the item the human is picking up and selects a different item to
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sort. Another supporter role task is a robotic chef that places food
into a hot pot to cook and also picks up cooked food for the human
(Fig. 8).

4.2.2 Heterogeneous Actions. The human robot team is tasked to
clean the table (Fig. 5). In a leader role, the robot wipes the surface
with a cloth while the human lifts up objects on the table to allow
the robot to clean the area beneath the objects. Conversely, when
the robot adopts a supporter role, it takes on the task of lifting
objects and the human wipes down the surfaces. The second task is
a collaborative assembly of a miniature table [21]. The robot takes
on a supporter role and fetches parts for the human as the human
assembles the table (Fig. 9).

5 CONCLUSION
In this paper, we introduce a VR teleoperation system to collect
data on a robot collaborating with humans. Instead of displaying
point clouds in VR, our approach involves streaming data from
two RGB cameras onto a plane in Unity to create a high fidelity
reconstruction of the environment along with depth perception
from stereopsis. We implement an intuitive interface for controlling
the robot, directly translating human arm movements to robot
end effector motion and using the Quest controller thumbsticks
for translation and rotation of mobile bases. Lastly, we present a
taxonomy of human robot collaboration tasks and provide examples
for each categorization from which we aim to gather data.

We envision that our VR teleoperation system will enable dexter-
ous manipulation of objects in complex environments, broadening
the scope for robots to engage in more sophisticated tasks alongside
humans. We plan to make the dataset publicly available, facilitating
the development of robot learning that collaborates with humans
and other agents.

REFERENCES
[1] Pablo Azagra, Florian Golemo, Yoan Mollard, Manuel Lopes, Javier Civera, and

Ana C. Murillo. 2017. Amultimodal dataset for object model learning from natural
human-robot interaction. In 2017 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS). 6134–6141. https://doi.org/10.1109/IROS.2017.8206514

[2] Atef Ben-Youssef, Chloé Clavel, Slim Essid, Miriam Bilac, Marine Chamoux,
and Angelica Lim. 2017. UE-HRI: a new dataset for the study of user en-
gagement in spontaneous human-robot interactions. In Proceedings of the 19th
ACM International Conference on Multimodal Interaction (Glasgow, UK) (ICMI
’17). Association for Computing Machinery, New York, NY, USA, 464–472.
https://doi.org/10.1145/3136755.3136814

[3] Oya Celiktutan, Efstratios Skordos, and Hatice Gunes. 2019. Multimodal Human-
Human-Robot Interactions (MHHRI) Dataset for Studying Personality and En-
gagement. IEEE Transactions on Affective Computing 10, 4 (2019), 484–497.
https://doi.org/10.1109/TAFFC.2017.2737019

[4] Bruce G Cumming and Gregory C DeAngelis. 2001. The physiology of stereopsis.
Annual review of neuroscience 24, 1 (2001), 203–238.

[5] Bryan R Galarza, Paulina Ayala, Santiago Manzano, and Marcelo V Garcia. 2023.
Virtual Reality Teleoperation System for Mobile Robot Manipulation. Robotics
12, 6 (2023), 163.

[6] Rebecca Hetrick, Nicholas Amerson, Boyoung Kim, Eric Rosen, Ewart J. de
Visser, and Elizabeth Phillips. 2020. Comparing Virtual Reality Interfaces for
the Teleoperation of Robots. In 2020 Systems and Information Engineering Design
Symposium (SIEDS). 1–7. https://doi.org/10.1109/SIEDS49339.2020.9106630

[7] Eric Jang, Alex Irpan,Mohi Khansari, Daniel Kappler, Frederik Ebert, Corey Lynch,
Sergey Levine, and Chelsea Finn. 2021. BC-Z: Zero-Shot Task Generalization
with Robotic Imitation Learning. In 5th Annual Conference on Robot Learning.
https://openreview.net/forum?id=8kbp23tSGYv

[8] Patrick Jenkins, Rishabh Sachdeva, Gaoussou Youssouf Kebe, Padraig Higgins,
Kasra Darvish, Edward Raff, Don Engel, John Winder, Francis Ferraro, and Cyn-
thia Matuszek. 2020. Presentation and analysis of a multimodal dataset for
grounded language learning. arXiv preprint arXiv:2007.14987 (2020).

[9] Wai keung Fung, Wang tai Lo, Yun hui Liu, and Ning Xi. 2005. A case study of 3D
stereoscopic vs. 2D monoscopic tele-reality in real-time dexterous teleoperation.
In 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems. 181–
186. https://doi.org/10.1109/IROS.2005.1545299

[10] Jeffrey I. Lipton, Aidan J. Fay, and Daniela Rus. 2018. Baxter’s Homunculus:
Virtual Reality Spaces for Teleoperation in Manufacturing. IEEE Robotics and
Automation Letters 3, 1 (2018), 179–186. https://doi.org/10.1109/LRA.2017.2737046

[11] Alireza Mazloumi Gavgani, Frederick RWalker, DeborahMHodgson, and Eugene
Nalivaiko. 2018. A comparative study of cybersickness during exposure to virtual
reality and “classic” motion sickness: are they different? Journal of Applied
Physiology 125, 6 (2018), 1670–1680.

[12] Abdeldjallil Naceri, Dario Mazzanti, Joao Bimbo, Domenico Prattichizzo, Dar-
win G. Caldwell, Leonardo S. Mattos, and Nikhil Deshpande. 2019. Towards a
Virtual Reality Interface for Remote Robotic Teleoperation. In 2019 19th Interna-
tional Conference on Advanced Robotics (ICAR). 284–289. https://doi.org/10.1109/
ICAR46387.2019.8981649

[13] Bukeikhan Omarali, Brice Denoun, Kaspar Althoefer, Lorenzo Jamone, Maurizio
Valle, and Ildar Farkhatdinov. 2020. Virtual reality based telerobotics framework
with depth cameras. In 2020 29th IEEE International Conference on Robot and
Human Interactive Communication (RO-MAN). IEEE, 1217–1222.

[14] Abhishek Padalkar, Acorn Pooley, Ajinkya Jain, Alex Bewley, Alex Herzog, Alex
Irpan, Alexander Khazatsky, Anant Rai, Anikait Singh, Anthony Brohan, et al.
2023. Open x-embodiment: Robotic learning datasets and rt-x models. arXiv
preprint arXiv:2310.08864 (2023).

[15] Will Pryor, Liam J. Wang, Arko Chatterjee, Balazs P. Vagvolgyi, Anton Deguet,
Simon Leonard, Louis L. Whitcomb, and Peter Kazanzides. 2023. A Virtual
Reality Planning Environment for High-Risk, High-Latency Teleoperation. In
2023 IEEE International Conference on Robotics and Automation (ICRA). 11619–
11625. https://doi.org/10.1109/ICRA48891.2023.10161029

[16] Eric Rosen, David Whitney, Elizabeth Phillips, Daniel Ullman, and Stefanie Tellex.
2018. Testing robot teleoperation using a virtual reality interface with ROS reality.
In Proceedings of the 1st International Workshop on Virtual, Augmented, and Mixed
Reality for HRI (VAM-HRI). 1–4.

[17] Francesco Setti, Elettra Oleari, Alice Leporini, Diana Trojaniello, Alberto Sanna,
Umberto Capitanio, Francesco Montorsi, Andrea Salonia, and Riccardo Muradore.
2019. A Multirobots Teleoperated Platform for Artificial Intelligence Training
Data Collection in Minimally Invasive Surgery. In 2019 International Symposium
on Medical Robotics (ISMR). 1–7. https://doi.org/10.1109/ISMR.2019.8710209

[18] Dong Wei, Bidan Huang, and Qiang Li. 2021. Multi-View Merging for Robot
Teleoperation With Virtual Reality. IEEE Robotics and Automation Letters 6, 4
(2021), 8537–8544. https://doi.org/10.1109/LRA.2021.3109348

[19] David Whitney, Eric Rosen, Elizabeth Phillips, George Konidaris, and Stefanie
Tellex. 2019. Comparing robot grasping teleoperation across desktop and virtual
reality with ROS reality. In Robotics Research: The 18th International Symposium
ISRR. Springer, 335–350.

[20] Canjun Yang, Yuanchao Zhu, and Yanhu Chen. 2021. A review of human–machine
cooperation in the robotics domain. IEEE Transactions on Human-Machine Systems
52, 1 (2021), 12–25.

[21] S. Zeylikman, S. Widder, A. Roncone, O. Mangin, and B. Scassellati. 2018. The
HRC model set for human-robot collaboration research. In Intelligent Robots and
Systems (IROS), 2018 IEEE/RSJ International Conference on. IEEE.

[22] Tianhao Zhang, Zoe McCarthy, Owen Jow, Dennis Lee, Xi Chen, Ken Goldberg,
and Pieter Abbeel. 2018. Deep imitation learning for complex manipulation
tasks from virtual reality teleoperation. In 2018 IEEE International Conference on
Robotics and Automation (ICRA). IEEE, 5628–5635.

ACKNOWLEDGMENTS
This work was supported by the Office of Naval Research under
Grant N00014-22-1-2482 and the Army Research Laboratory under
Grant W911NF-21-2-0126. The authors would like to thank Wei
Jiang for his assistance with image editing.

https://doi.org/10.1109/IROS.2017.8206514
https://doi.org/10.1145/3136755.3136814
https://doi.org/10.1109/TAFFC.2017.2737019
https://doi.org/10.1109/SIEDS49339.2020.9106630
https://openreview.net/forum?id=8kbp23tSGYv
https://doi.org/10.1109/IROS.2005.1545299
https://doi.org/10.1109/LRA.2017.2737046
https://doi.org/10.1109/ICAR46387.2019.8981649
https://doi.org/10.1109/ICAR46387.2019.8981649
https://doi.org/10.1109/ICRA48891.2023.10161029
https://doi.org/10.1109/ISMR.2019.8710209
https://doi.org/10.1109/LRA.2021.3109348

	Abstract
	1 Introduction and Motivation
	2 Related Work
	3 VR Interface Design
	3.1 Stereoscopic Visualization
	3.2 Teleoperation

	4 Proposed Data Collection
	4.1 Shared Contact
	4.2 Non-Shared Contact

	5 Conclusion
	References
	Acknowledgments

