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ABSTRACT

In light of AI’s growing ubiquity, concerns about its societal impact have prompted
extensive efforts to mitigate different types of bias, often relying on the assump-
tion of complete information regarding individuals’ sensitive attributes. In this
work, we tackle the problem of algorithmic fairness under partially annotated
sensitive attributes. Previous approaches often rely on an attribute classifier as
a proxy model to infer ”hard” pseudo labels, which are then used to optimize the
final model using fairness-aware regularization techniques. In contrast, we pro-
pose a novel regularization approach, that leverages the output probability of the
attribute classifier as ”soft” pseudo labels, derived from the definition of the fair-
ness criteria. Additionally, we study the effect of the uncertainty on the attribute
classifier parameters that naturally arise in the case of limited available sensitive
attribute annotations. We adopt the Bayesian viewpoint and we propose to opti-
mize our model with respect to the marginal model of the attribute classifier, while
our second approach optimizes the fairness objective with respect to each model
of the decision maker’s belief. To validate our approach, we conduct extensive
experiments on Adult and CelebA datasets with tabular and image modalities, re-
spectively. The results of our study highlight the effectiveness of our method as
well as the significance of incorporating uncertainty, in improving both utility and
fairness compared to a variety of different baselines.

1 INTRODUCTION

Artificial Intelligence (AI) has rapidly emerged as a powerful and transformative technology that
undeniably impacts our everyday lives. Organizations frequently employ AI-powered automated
decision-making applications as solutions to complex problems, enhancements to existing solutions,
or to minimize human effort across various tasks. Some of the most promising and beneficial appli-
cations of AI include Natural Language Processing (NLP) for machine translation (Bahdanau et al.,
2015), Computer Vision (CV) in healthcare for diagnosis and treatment (Esteva et al., 2021), and
Reinforcement Learning (RL) for self-driving cars (Bojarski et al., 2016), enhancing transportation
safety and efficiency.

On the other hand, problems regarding the reliability, safety, and biases of AI systems have raised
concerns about the negative impact of AI on our society. Algorithmic fairness has become a focus
area, addressing ethical and societal implications associated with potential biases and discrimination
arising from the use of AI algorithms, particularly in applications that directly impact people.

The question of fairness is rather philosophical. To determine what is fair, one first has to answer
the question of how fairness should formally be defined in a certain setting (Bechavod & Ligett,
2017). There are two main notions of algorithmic fairness: individual and group fairness. The
concept of individual fairness (Dwork et al., 2012) states that similar individuals should be treated
similarly by the AI system. The notion of group fairness considers the different treatment of the
groups and the potential harms of the disadvantaged groups (Hardt et al., 2016), based on statistical
parity metrics where different individuals are grouped based on some sensitive attributes such as
race or gender. Research efforts are primarily devoted to analyzing different notions of fairness or
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developing practical fairness-aware learning algorithms to mitigate the biases of the models while
maintaining a desirable level of performance.

Most of the existing methods that try to mitigate biases in the group fairness notation silently as-
sume fully annotated sensitive information of individuals in both the training and evaluation phases.
However, in many practical applications, this assumption does not hold, and we often end up with
no or partial information about a sensitive attribute, making the learning of fairness-aware models
especially difficult. This concept naturally arises in many different scenarios where legal or ethical
concerns force the data acquisition procedure to limit the collection of sensitive-related information.
A straightforward example is the personal data protection law, i.e., the EU General Data Protection
Regulation (GDPR), where the consent of the users is required to store and manipulate sensitive
information. Another motivational example involves human annotation, which can be resource-
intensive, time-consuming, or ethically sensitive.

In this work, we consider the problem of fairness-aware learning under partly annotated sensitive
attributes. More specifically, we consider the case where our dataset D consists of a potentially large
part with no annotations about the sensitive information DU and another part with full annotations
about the sensitive attributes DL that can be significantly smaller, i.e., |DU | ≫ |DL|. Most of
the existing methods approach the problem by estimating the sensitive attributes of the unlabeled
data using an attribute classifier (often called a proxy model) trained on the labeled data, and then
applying any fairness-aware method to mitigate the bias of the model. We argue that the use of
these proxy models that produce ”hard” sensitive labels can potentially harm the overall fairness
performance of the model due to over-fitting incorrect sensitive labels. Similar arguments about
confirmation bias are also present in the literature of semi-supervised learning (Arazo et al., 2020)
and learning with noisy labels (Tanaka et al., 2018).

Our contribution is to propose a soft labeling approach to learn fairness-aware models when only
partial information about sensitive attributes is available. More specifically, our method consists
of fair regularization that employs the probability of each sensitive class based on the output of a
probabilistic attribute classifier. We provide theoretical justifications for our approach derived from
the imposed fairness definition. Leveraging the information from the unlabeled data can intuitively
increase the predictive performance of our model, while we experimentally validate that utilizing the
information about the sensitive information encoded in the unlabeled data has also benefits regard-
ing fairness. In addition, we study the effect of uncertainty, which naturally arises when the labeled
training data DL is relatively small for estimating missing sensitive information. To tackle this
challenge, we introduce two alternative uncertainty formulations for the proposed soft regulariza-
tion method, drawing inspiration from the work of Dimitrakakis et al. (2019) on Bayesian fairness.
To empirically evaluate our approach, we conduct a comprehensive evaluation study using diverse
datasets and data modalities, comparing the results of our approach with various existing baselines.

2 RELATED WORK

Fairness under imperfect information: The concept of fairness under imperfect information can
be categorized based on the type of information that is missing. In this work, we study the setting of
partial annotation sensitive information where only a fraction of the dataset contains the information
of sensitive characteristics, which was first introduced in the work of Jung et al. (2022). Apart
from the partial information setting, there is also the extreme case of no sensitive information at all,
similar to unsupervised learning (Lahoti et al., 2020; Gupta et al., 2018; Buet-Golfouse & Utyagulov,
2022; Coston et al., 2019). Another interesting setting is the case where there is additional missing
information related to task labels. This scenario bears resemblance to semi-supervised learning
(SSL), as explored in Zhang et al. (2020); Chzhen et al. (2019); Noroozi et al. (2019).

Next, we delve into the primary methods concerning our setting of partial sensitive attribute infor-
mation in the literature. A straightforward solution, motivated by the work of Lee et al. (2013) on
SSL, is to train a group attribute classifier and assign pseudo labels to the group-unlabeled data as
a preprocessing step before applying any bias mitigation technique. The aforementioned work of
Jung et al. (2022) uses a similar method that assigns group pseudo labels only when the classifier
is sufficiently confident, by tuning the classification threshold. Another interesting approach with
the aim of learning fair representation that can be used in various downstream tasks is the work of
Zhang et al. (2022) which employs constructive learning in the computer vision domain using highly
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accurate generative models. The most relevant to our work is the paper of Chen et al. (2019), which
also employs a soft labeling approach but with the aim of assessing model bias rather than learning
fairness-aware models.

Fairness under uncertainty: The academic community has recently expressed growing interest in
the relationship between uncertainty and algorithmic fairness. In this work, we adopt the Bayesian
Fairness framework introduced by Dimitrakakis et al. (2019) that studies the effect of parameter
uncertainty from a decision-theoretic perspective. More specifically, they proposed a Bayesian-like
approach to calculate the imposed fairness criteria with respect to a set of possible world models
according to the decision maker’s belief, while the follow-up work of Athanasopoulos et al. (2023)
proposes a bootstrap method to scaling the framework for the continuous data case. The significance
of incorporating model uncertainty was also highlighted in Russell et al. (2017) from a point of view
of causal modeling. Additionally, a broader discussion about uncertainty as a form of transparency
is presented by Bhatt et al. (2021).

3 PRELIMINARIES

In this section, we begin with some preliminaries on algorithmic fairness and the notation used in this
work. Without loss of generality, we consider the binary classification setup where we have a dataset
of N individuals D = {xi, zi, yi}Ni=1 with inputs x ∈ X ⊆ Rd, sensitive attributes z ∈ Z = {0, 1}
and labels y ∈ Y = {0, 1}. We consider the probabilistic classifier f : Rd → [0, 1] that outputs the
model belief s ∈ [0, 1] that an individual n belongs to the positive class i.e. P (ŷ = 1 | x), where the
predicted label ŷ ∈ Ŷ = {0, 1} is obtained using a threshold t ∈ [0, 1] i.e. ŷ = 1s≥t

1.

In terms of group fairness, we want the decisions of our classifier to be fair according to some
independence criteria based on sensitive attribute z while maximizing the task utility. Some of
the most famous independence criteria are demographic parity (DP) (Feldman et al., 2015) and
equalized odds (EO) (Hardt et al., 2016). More specifically, DP states that the model predictions ŷ
should be independent from the sensitive attribute z i.e. ŷ ⊥ z witch can equivalently be expressed
as follows:

P (ŷ | z = α) = P (ŷ | z = β) ∀α, β ∈ Z (1)

On the other hand, equal opportunity (EO) states that prediction ŷ should be independent of the
sensitive attribute z when conditioned to the true outcome y i.e. ŷ ⊥ z | y which can equivalently
be expressed as:

P (ŷ | z = α, y) = P (ŷ | z = β, y) ∀α, β ∈ Z (2)

Regularization methods are usually employed as a scalable approach to mitigate bias while preserv-
ing accuracy in models with a high number of parameters. More specifically the final model f can
be trained with the stochastic gradient descent (SGD) algorithm to minimize a combined loss that
accounts for both utility and fairness:

min
f
Lutility(f) + λfLfairness(f) (3)

where Lutility(f) = Ex,y∼P [l(x, y; f)] denotes the utility loss while, with l typically denoting the
cross-entropy loss. In addition Lfairness refers to the loss that tries to mitigate the bias according
to the fairness definition. For DP and EO Madras et al. (2018) propose the two following relaxed
metrics that are commonly employed in the literature:

LDP
fairness =| Ex∼P0f(x)− Ex∼P1f(x) | , LEO

fairness =
∑
y∈Y
| Ex∼Py

0
f(x)− Ex∼Py

1
f(x) | (4)

where we define Pa = P (· | z = a) and P y
a = P (· | y, z = a). The aforementioned metrics are

usually estimated by using the empirical deviation of the expectations.

11condition is the indicator function where is equal to 1 if the condition is true, 0 otherwise
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4 SOFT FAIR REGULARIZATION UNDER PARTIAL SENSITIVE INFORMATION

4.1 METHOD

In this work, we are interested in the setting where our dataset has partially annotated sensitive in-
formation. We introduce a simple and intuitive regularization approach that leverages the output
probabilities of each sensitive class obtained from an auxiliary sensitive attribute classifier, denoted
as fz , rather than relying on ’hard’ pseudo labels. In the current section, we present our soft regu-
larization method for both equalized odds (Eq.2) and demographic parity (Eq.1).

More formally, we assume that our dataset D is partitioned into a labeled dataset DL = {x, z, y}NL
i=1

and a group-unlabeled dataset DU = {x, y}NU
i=1, with size of NL and NU respectively. Our research

question is how we can utilize the non-annotated part of the dataset DU to enhance both the utility
and fairness of our final model f . Intuitively when NU ≫ NL the unlabeled part of the dataset DU

contains a lot of information about the joint distribution of (X,Y ) that can be leveraged to improve
both the utility and fairness.

In order to utilize the unlabeled dataset DU , we express the fairness loss Lfairness of the fair reg-
ularization method (Eq.3) as a combined loss that accounts both for the loss of the labeled part LL,
and loss of the unlabeled part LU of the dataset, weighted according to a scaling parameter λU .

Lfairness = (1− λU )LL + λULU (5)

The unlabeled part of the dataset has no information about the sensitive attribute z and therefore the
regularization criteria of equation 4 cannot be directly applied. We propose the following reformu-
lation of the fairness-aware regularisation criteria:

LDP
U =

∑
y∈Y
| Ex∼P

[
f(x)

p(z = 0 | x)
p(z = 0)

]
− Ex∼P

[
f(x)

p(z = 1 | x)
p(z = 1)

]
| (6)

LEO
U =

∑
y∈Y
| Ex∼Py

[
f(x)

p(z = 0 | x, y)
p(z = 0 | y)

]
− Ex∼Py

[
f(x)

p(z = 1 | x, y)
p(z = 1 | y)

]
| (7)

where we rewrite the expectations using basic probability theorems:

Ex∼Pa [f(x)] = Ex∼P

[
f(x)

p(z = a | x)
p(z = a)

]
(8)

Ex∼Py
a
[f(x)] = Ex∼Py

[
f(x)

p(z = a | x, y)
p(z = a | y)

]
(9)

In order to calculate our final metrics (Eq.6 and 7), we need to compute the two probabilities:
p(z = a | x, y) and p(z = a | y) or p(z = a | x) and p(z = a) according to the desired criteria,
using an auxiliary model. The first quantity, p(z = a | x, y) or p(z = a | x), can be estimated using
an attribute classifier fz that outputs the probability of each sensitive class z. The second term,
p(z = a | y) or p(z = a), can also be estimated using discrete probability models fd. Both models
can be trained using the labeled dataset DL. Implementation-wise, the overall proposed algorithm
is displayed in Algorithm 1.

Compared to the existing approaches in the literature for handling partially annotated sensitive at-
tributes, our soft regularization method weights each example according to the probability of each
sensitive attribute in the empirical deviation metric (Eq.6 and 7). Intuitively, examples with low con-
fidence, where the probabilities of the sensitive attributes are close, contribute less to our soft fair
regularization. In contrast, the pseudo-labeling approach assigns a label to each example, thereby
non-confident examples influencing the fair regularization. Additionally, methods that adjust the
classification threshold to ignore less confident predictions may still exhibit some residual bias in
confident predictions, with performance depending on the threshold adjustment.
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Algorithm 1 Soft Fair Regularization Under Partial Sensitive Information ( Equalised Odds )
Require: Group labeled DL data, Group unlabeled DU data, total iteration T, scaling algorithm

parameters λ and λf , learning rate η and batch size b
Train attribute classifier fa using DL

Train district probability model fd using DL

for t in T do
// Sample mini-batches
BU = {By

U
= (xi, y)

b
i=1 ∼ Dy

U
}y∈Y

BL = {By
aL

= (xi, z, y)
b
i=1 ∼ Dy

zL}(z,y)∈(Z×Y )

B = BU

⋃
BL

// Calculate Utility loss //
Lutility(B; f) = Ex,y∼B [l(x, y; f)]
// Calculate Fair loss //
LEO
U (BU ; f, fd, fa) =

∑
y∈Y | Ex∼By

U

[
f(x) fa(x,y)fd(y)

]
− Ex∼By

U

[
f(x) 1−fa(x,y)

1−fd(y)

]
| ▷ eq. 7

LEO
L (BL; f) =

∑
y∈Y | Ex∼By

0L
f(x)− Ex∼By

0L
f(x) | ▷ eq. 4

Lfairness = (1− λf )LEO
L + λfLEO

U ▷ eq. 5
// Optimise model f //
Ltotal = Lutility + λLfairness ▷ Total loss
θtf ← θt−1

f − η∇Ltotal ▷ SGD
end for

4.2 UNCERTAINTY AWARE REGULARIZATION

The current learning setting naturally depends on the uncertainty associated with the auxiliary mod-
els fz , fd (Eq.6 and 7). When the labeled data is significantly smaller in size compared to the
unlabeled data, and the former has a small size relative to the difficulty of the task then the attribute
classifier fz and discrete probability model fd can have a large epistemic uncertainty that may affect
the coverage of our final model f .

In this section, we discuss how we can incorporate uncertainty into our proposed regularization
method, motivated by the work of Dimitrakakis et al. (2019), which proposes a Bayesian viewpoint
that explicitly takes into account parameter uncertainty. We focus on the epistemic uncertainty of the
auxiliary models fz and fd, to highlight the effect of uncertainty in the setting of partially sensitive
information.

More formally when we train a model we have a belief β ∈ B which expresses our uncertainty
about the true world model parameter θ∗ of the joint distribution of our data (x, z, y) ∼ Pθ∗ . The
belief can be formed as a probability distribution over a set of parameters θ ∈ Θ that may contain
the actual parameter θ∗. In our setting, we have some uncertainty regarding the parameters of the
different auxiliary models fd and fz that can affect the fairness properties of our final model through
our proposed regularization.

If are willing to ignore uncertainty, then we can use the marginal model pm =
∫
Θ
pθdβ(θ) calculated

from our belief. Then we can define the following fair regularization:

LDP
Um

=
∑
y∈Y
| Ex∼P

[
f(x)

pm(z = 0 | x)
pm(z = 0)

]
− Ex∼P

[
f(x)

pm(z = 1 | x)
pm(z = 1)

]
| (10)

LEO
Um

=
∑
y∈Y
| Ex∼Py

[
f(x)

pm(z = 0 | x, y)
pm(z = 0 | y)

]
− Ex∼Py

[
f(x)

pm(z = 1 | x, y)
pm(z = 1 | y)

]
| (11)

If we want to really take uncertainty into account, we can use a Bayesian approach. This measures
how fair our model f is with respect to each possible parameter θ ∈ β in our belief and weights each
according to the probability of each model β(θ):

5



Under review as a conference paper at ICLR 2024

LDP
Uβ

=
∑
y∈Y

∫
Θ

| Ex∼P

[
f(x)

pθ(z = 0 | x)
pθ(z = 0)

]
− Ex∼P

[
f(x)

pθ(z = 1 | x)
pθ(z = 1)

]
| dβ(θ) (12)

LEO
Uβ

=
∑
y∈Y

∫
Θ

| Ex∼Py

[
f(x)

pθ(z = 0 | x, y)
pθ(z = 0 | y)

]
− Ex∼Py

[
f(x)

pθ(z = 1 | x, y)
pθ(z = 1 | y)

]
| dβ(θ) (13)

In the Bayesian case, the belief β is a posterior formed through the prior and available data. However,
even if the prior can be calculated in closed form, our metrics (Eq. 13, 12) can only be approximated
by sampling from the posterior to perform Bayesian quadrature. Calculation of the posterior itself
must also be approximated in general. If we are using Markov chain Monte Carlo, then posterior
samples can be directly obtained. In some cases it is also possible to sample from Bayesian neural
networks (MacKay, 1992). A more general method is to use an ensemble of models, in lieu of
samples from a posterior distribution. In neural networks, we can elaborate (Gal & Ghahramani,
2016) to obtain a set of networks. More generally, we can use some form of resampling of the
original data and fit each different model.

In this work, to form our belief we use the bagging ensemble technique (Breiman, 1996), where
ensemble members are neural networks trained on different bootstrap samples of the original training
set. To get the marginal model we simply average the output probabilities for each class over the
different models. To approximate the Bayesian objective (Eq. 13, 12) we can average the fairness
objective over their different models. This allows us to perform stochastic gradient descent by
calculating the gradients for each sampled model separately, similarly to Dimitrakakis et al. (2019).

5 EXPERIMENTS

In this section, we empirically evaluate the effectiveness of our approach, by comparing the results
of our method to the standard approaches on fairness-aware learning under partial information intro-
duced in section 2. More specifically we test our method using two different benchmarks, the Adult
and the CelebA datasets with tabular and image modalities, respectively. We provide our code2

which can be used to reproduce all the presented results.

Evaluation: We randomly partition our dataset into train, validation, and test sets with sizes 60%,
20%, and 20% respectively. We use the training set to train our algorithm and we additionally use
early stopping in the validation set to prevent models from over-fitting. To test our approach we
compare the trade-off between accuracy and fairness highlighting the benefits of our method. We
performed each experiment multiple times reporting the mean and the standard deviation of each
metric evaluated on the hold-out test set.

Setting: To extensively study the effect of our approach we performed multiple experiments using
different proportions for the labeled DL and group-unlabeled data DU . It is worth mentioning that
in every experiment the validation and test set remain the same. Moreover, in each different partition
setting, we use the same auxiliary model fz , fd trained in the labeled part of our dataset DL.

Baselines: We compare the results of the following baseline methods listed below for all the differ-
ent experiments. For each baseline that makes use of an attribute classifies fz to estimate the sen-
sitive attribute label we also perform the optimization using instead the empirical marginal model
fzm = 1

N

∑N
i fzi of N = 16 different attribute classifiers that were trained using a different boot-

strap sample. In addition, we also perform the Bayesian approach of equation 13 for our method as
explained in section 4.2.

• vanilla (Vanilla) The baseline that is trained using empirical risk minimization on the la-
beled dataset DL without any fair regularization terms.

• reg gap (Fairness-aware regularization) This method uses the standard fairness-aware reg-
ularization technique (Eq.4) on the labeled dataset DL.

2to be published
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• pseudo (Pseudo-Label approach) This assigns sensitive labels at DU using the attribute
classifier fz as a preprocessing step. During the optimization phase, it applies the regular-
ization (Eq.4) as before. pseudo m is the same, but uses the marginal model to impute the
sensitive attribute.

• clg (Confidence-based pseudo-label) The approach of Jung et al. (2022) that uses only
confident pseudo-labels by adjusting the classification threshold. The clg m variant uses
the marginal model.

• soft reg (Soft Regularization) Our soft regularization method , as explained in Sec-
tion 4. We implement the marginal and Bayesian (Eq.13, 11) approaches explained in
the uncertainty-aware section (Section 4.2). The latter variants are named soft reg m,
soft reg b respectively.

Each of the aforementioned baselines where trained using the same base network architecture and
hyper-parameters provided in the following subsections.

5.1 ADULT DATASET

In this section, we present the results of the UCI Adult dataset (Becker & Kohavi, 1996) that con-
tains information about over 40,000 individuals from the 1994 US Census. The classification task is
to predict whether a particular person has an income greater than $50.000. As a sensitive attribute,
we consider the binary gender information. We perform multiple experiments using different pro-
portions of labeled and unlabeled datasets.

Figure 1: Results on adult dataset: The Results on Adult dataset for different methods and per-
centage of labeled data DL over 50 runs. We provide the average and the standard deviation for the
accuracy and equalized odds evaluated in the hold-out dataset. It’s important to recall that regarding
Equalized Odds (EO), lower disparities are indicative of better performance.

Implantation details: We follow a similar setup to Chuang & Mroueh (2021). More specifically
we use simple feed-forward neural networks for both the attribute classifier fz and the final model
f . Both models are two-layered neural networks with 512 and 64 units respectively followed by
a soft-max layer for the classification. For the first two layers, we use the ReLU (Nair & Hinton,
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2010) activation function and l2 regularization with a 0.0001 regularization factor. We train each
baseline 50 times using early stopping on the total loss (Eq.3) on the validation set. During the
training, we sampled 4 batches with 50 samples in each iteration, one for each pair of labels and
sensitive attribute to calculate the empirical version of the different regularization terms according
to the methods. Finally, we used a scaling parameter of λf = 1.0 and λU = 0.5 on the equations 3
and 5 respectively.

5.1.1 RESULTS

Figure 1 illustrates the results of various baselines under different proportions of labeled and unla-
beled datasets. In a broader view, the results validate the general assumption that group unlabeled
data is informative for both utility and fairness. More specifically, regarding accuracy, all methods
utilizing group unlabeled data perform similarly to each other, while they are relatively close to the
vanilla approach and significantly outperform the reg gap method. Additionally, we observe that
the performance of all baseline methods, in terms of accuracy, remains similar across the different
proportions of labeled data, even when compared to the vanilla approach with 100% labeled data.

In terms of fairness, our soft regularization method consistently achieves lower bias across varying
proportions of labeled and unlabeled samples. It is noteworthy that our method outperforms the
standard regularization method even when 100% of the labeled data is available. Furthermore,
methods that account for uncertainty (marginal and Bayesian) appear to result in fairer policies
compared to the standard version of the relative method. The complete table corresponding to this
figure can be found in Appendix A.

5.2 CELEBA DATASET

To further examine the performance and the scaling of our method to high-dimensional tasks we
use the CelebA image dataset (Liu et al., 2018). CelebA is a large-scale image dataset with 200.000
images of celebrities’ faces extracted from movies and public appearances, where each image is
associated with 40 human-annotated labels. As a classification task, we performed two different
experiments we performed experiments using two different downstream classification tasks, on the
attractiveness and smiling annotation while for the sensitive attribute, we used the binary gender
information in both cases. Moreover, due to high computational requirements, we perform experi-
ments only in the case of 5% labeled dataset.

Implementation details: Implementation-wise for each baseline and both models f and fz we use
the EfficientNetV2B0 (Tan & Le, 2021) architecture of the convolution neural network along with
one hidden layer of 512 units and a final soft-max classification layer. The hidden layer has a ReLU
activation function and 0.0001 L2 regularization factor. In addition, we use batch normalization and
a dropout layer with a dropout rate of 0.2 before the hidden layer. We initialize the EfficientNetV2B0
architecture with the weights trained on ImageNet. We use early stopping on the total loss measured
on the validation set. Due to computational requirements, we use the maximum size of 60 samples
per batch equally defined for each sensitive and task label as before. Moreover, we apply horizontal
and random flips as well as a random rotation as an augmentation step to further regularize our
network. Finally, we use the following scaling parameter of λf = 1.0 and λU = 0.5 on the equations
3 and 5 respectively.

5.2.1 RESULTS

In Table 1, we present the results of our experiment applied to the CelebA dataset, using two dif-
ferent downstream tasks. The results clearly demonstrate that our methods outperform the baselines
in both experiments. More specifically, we observe that the Bayesian version of our algorithm
(soft reg b) achieves superior performance in terms of fairness across the different baselines and
both labeled data proportion scenarios. Surprisingly, our method also performs exceptionally well in
terms of accuracy, indicating that our uncertainty-aware approach efficiently regularizes our model
to achieve a better trade-off between utility and fairness. Another advantage of our approach is that
it exhibits significantly less variance in all available metrics, indicating that our regularization helps
the model converge consistently in all runs of the algorithm. Moreover, in most cases, the version
that incorporates parameter uncertainty in the auxiliary models performs better in terms of fairness
compared to other methods. Lastly, it’s worth mentioning that the vanilla method for the smiling
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task = smiling task = attractive

DL % Method Accuracy Equalized Odds Accuracy Equalized Odds

100% vanilla 0.7914±0.09 0.3369±0.290 0.6977±0.105 0.3876±0.293
reg gap 0.7653±0.14 0.2507±0.295 0.6777±0.121 0.2214±0.292

5% vanilla 0.7880±0.10 0.2008±0.129 0.6523±0.113 0.5886±0.383
reg gap 0.7752±0.10 0.3327±0.315 0.6923±0.094 0.2289±0.082
pseudo 0.7631±0.12 0.2484±0.256 0.7073±0.055 0.1969±0.246
pseudo m 0.7441±0.14 0.1796±0.212 0.6812±0.052 0.2965±0.286
clg 0.8012±0.10 0.2052±0.243 0.6802±0.073 0.3145±0.362
clg m 0.7318±0.13 0.2596±0.269 0.7085±0.033 0.2192±0.236
soft reg 0.7498±0.10 0.2929±0.306 0.7386±0.026 0.1300±0.206
soft reg m 0.7574±0.13 0.2129±0.221 0.7406±0.032 0.1315±0.156
soft reg b 0.8299±0.10 0.1230±0.097 0.7143±0.079 0.0853±0.059

Table 1: Results on CelebA dataset: The Results on CelebA dataset for different methods and
percentage of labeled data DL over 10 runs. We provide the average and the standard deviation
for the accuracy and equalized odds evaluated in the hold-out dataset. It’s important to recall that
in the context of Equalized Odds (EO), lower disparities are indicative of better performance. It’s
important to recall that regarding Equalized Odds (EO), lower disparities are indicative of better
performance.

task, when applied to just 5% of the training data, surpasses most of the other methods in terms of
fairness while still maintaining a high level of accuracy.

6 CONCLUSION

In this work, we study the problem of fairness-aware learning under partially sensitive attribute in-
formation. We propose a fairness-aware regularization method that makes use of the soft labels of
attribute classifiers to alleviate the information of a group-unlabeled dataset. We also consider the
effect of the uncertainty of the attribute classifier, which is naturally connecting in the case of the
extremely low group labeled data size, proposing two alternative uncertainty-aware versions of our
method inspired by the Bayesian fairness framework (Dimitrakakis et al., 2019). To validate our
method we perform two experiments on a tabular and high-dimensional image modality, comparing
the trade-off between accuracy and fairness. The results validate the assumption that the group unla-
beled data is informative for both utility and fairness, while our soft regulation method consistently
outperforms all the available baselines. Moreover, we observe that the uncertainty-aware methods
outperform the standard single-model approach, especially in the case of a high-dimensional image
dataset where we have a greater degree of uncertainty due to the difficulty of the task. We hope that
our work will inspire the feather exploration of fairness under incomplete information as well as
motivate the integration of uncertainty-aware methods to improve fairness
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A ADULT RESULTS

The following table contains the results on the adult dataset discussed in the experiments section
5.1.1.

Total Loss
Ltotal

Cross Entropy
Lutility

Accuracy Equalized Odds
Lfairness

DL % Method

1.00 vanilla 0.580+-0.016 0.427+-0.017 0.784+-0.009 0.153+-0.007
reg gap 0.504+-0.011 0.446+-0.010 0.778+-0.009 0.059+-0.004

0.50 vanilla 0.563+-0.021 0.430+-0.018 0.783+-0.010 0.133+-0.007
reg gap 0.501+-0.015 0.451+-0.013 0.770+-0.011 0.050+-0.004
pseudo 0.503+-0.017 0.442+-0.016 0.779+-0.012 0.061+-0.006
pseudo m 0.504+-0.018 0.448+-0.017 0.779+-0.012 0.056+-0.005
soft reg 0.495+-0.012 0.449+-0.011 0.774+-0.009 0.046+-0.003
soft reg m 0.500+-0.014 0.458+-0.012 0.769+-0.010 0.042+-0.005
soft reg b 0.499+-0.014 0.455+-0.013 0.771+-0.011 0.044+-0.004

0.25 vanilla 0.575+-0.024 0.449+-0.021 0.781+-0.009 0.125+-0.008
reg gap 0.500+-0.020 0.453+-0.015 0.769+-0.013 0.046+-0.008
pseudo 0.520+-0.021 0.450+-0.019 0.781+-0.012 0.070+-0.013
pseudo m 0.511+-0.019 0.450+-0.018 0.779+-0.013 0.061+-0.008
soft reg 0.493+-0.017 0.461+-0.015 0.766+-0.014 0.032+-0.004
soft reg m 0.499+-0.013 0.459+-0.011 0.768+-0.010 0.040+-0.005
soft reg b 0.497+-0.012 0.455+-0.010 0.769+-0.009 0.041+-0.005

0.10 vanilla 0.626+-0.051 0.499+-0.045 0.780+-0.010 0.126+-0.022
reg gap 0.539+-0.025 0.482+-0.025 0.765+-0.013 0.057+-0.007
pseudo 0.518+-0.023 0.448+-0.022 0.779+-0.013 0.070+-0.012
pseudo m 0.512+-0.023 0.445+-0.022 0.779+-0.015 0.066+-0.009
soft reg 0.504+-0.020 0.461+-0.019 0.766+-0.015 0.043+-0.006
soft reg m 0.501+-0.014 0.453+-0.012 0.771+-0.010 0.048+-0.004
soft reg b 0.503+-0.013 0.454+-0.011 0.770+-0.010 0.049+-0.005

0.05 vanilla 0.824+-0.075 0.625+-0.053 0.780+-0.011 0.199+-0.040
reg gap 0.643+-0.051 0.569+-0.044 0.760+-0.016 0.074+-0.019
pseudo 0.513+-0.018 0.443+-0.016 0.781+-0.012 0.070+-0.006
pseudo m 0.519+-0.019 0.453+-0.018 0.777+-0.014 0.067+-0.007
soft reg 0.527+-0.014 0.456+-0.013 0.770+-0.010 0.071+-0.004
soft reg m 0.512+-0.014 0.454+-0.015 0.769+-0.010 0.058+-0.003
soft reg b 0.517+-0.017 0.457+-0.016 0.768+-0.008 0.059+-0.004

Table 2: Results on adult dataset: The Results on Adult dataset for different methods and per-
centage of labeled data DL across different proportions of labeled and unlabeled data. We provide
the average and the standard deviation over 50 runs for the accuracy, cross-entropy, and equalized
odds as well as the total loss evaluated in the hold-out dataset. The total loss is the weighted sum of
equalized odds and cross-entropy loss which is also the objective of the optimization as in 3
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