
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

POLYNOMIAL COMPOSITION ACTIVATIONS: UN-
LEASHING THE DYNAMICS OF LARGE LANGUAGE
MODELS

Anonymous authors
Paper under double-blind review

ABSTRACT

Transformers have found extensive applications across various domains due to
the powerful fitting capabilities. This success can be partially attributed to their
inherent nonlinearity. Thus, in addition to the ReLU function employed in the
original transformer architecture, researchers have explored alternative modules
such as GeLU and SwishGLU to enhance nonlinearity and thereby augment rep-
resentational capacity. In this paper, we propose a novel category of polynomial
composition activations (PolyCom), designed to optimize the dynamics of trans-
formers. Theoretically, we provide a comprehensive mathematical analysis of
PolyCom, highlighting its enhanced expressivity and efficacy relative to other ac-
tivation functions. Notably, we demonstrate that networks incorporating Poly-
Com achieve the optimal approximation rate, indicating that PolyCom networks
require minimal parameters to approximate general smooth functions in Sobolev
spaces. We conduct empirical experiments on the pre-training configurations of
large language models (LLMs), including both dense and sparse architectures. By
substituting conventional activation functions with PolyCom, we enable LLMs
to capture higher-order interactions within the data, thus improving performance
metrics in terms of accuracy and convergence rates. Extensive experimental re-
sults demonstrate the effectiveness of our method, showing substantial improve-
ments over other activation functions.

Figure 1: Training loss, validation perplexity (PPL), and downstream performance of 1B dense
models. We compare models employing different activation functions, including SwiGLU, GELU,
ReLU, PolyReLU, and PolyNorm. It indicates that models using PolyReLU and PolyNorm exhibit
lower training loss and validation PPL, alongside better downstream performance.

1 INTRODUCTION

Transformers (Vaswani et al., 2017) have revolutionized the field of deep learning, facilitating un-
precedented advancements in natural language processing (Radford et al., 2019), computer vision
(Dosovitskiy et al., 2021), and beyond (Dong et al., 2018; Arnab et al., 2021). Characterized
by their attention mechanisms, transformers excel at capturing intricate relationships within data,
making them indispensable in contemporary machine learning applications. However, despite their
widespread success, there remain opportunities for further refinement, particularly concerning the
selection of activation functions. The activation function plays a crucial role in determining the out-
put of each neuron within a neural network. Traditionally, simple nonlinearities such as Rectified

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Linear Unit (ReLU) (Nair & Hinton, 2010) and its variants (Hendrycks & Gimpel, 2016; So et al.,
2021) have been favored due to their computational efficiency and ease of implementation. Al-
though effective, these activation functions are inherently limited in their ability to model complex
higher-order relationships within data. This limitation can be particularly restrictive in transformer
architectures, where the ability to capture subtle and complex dependencies is essential.

In this paper, we introduce a novel category of polynomial composition activation functions
(PolyCom), specifically engineered to enhance the performance of transformer architectures. In
contrast to conventional activation functions, which are predominantly linear or piecewise linear,
polynomial composition activations facilitate the modeling of more complex patterns within data.
This augmentation in the activation function’s expressiveness endows the model with superior ex-
pressive capacity, enabling it to capture higher-order interactions that might otherwise be neglected.
Unlike other forms of polynomials ((Hornik et al., 1989; Trefethen, 2019)) that suffer from inade-
quate approximation, exploding values, and oscillatory behavior, we demonstrate that PolyCom pos-
sesses a more potent expressive capability than both ReLU and traditional polynomials and achieves
optimal approximation within Sobolev space.

We posit that the integration of polynomial composition activations within transformer models can
lead to enhanced performance in tasks requiring intricate data interpretation. To evaluate this hypoth-
esis, we conducted comprehensive experiments on the pre-training configurations of large language
models (LLMs), including both dense and sparse architectures. These evaluations were performed
across various benchmarks, assessing the performance of transformers employing polynomial com-
position activations in comparison to those utilizing traditional activation functions. The results in-
dicate that the proposed method not only improves model accuracy, but also accelerates convergence
rates, thereby suggesting that polynomial composition activations provide a substantive advantage
in deep learning applications.

The main contributions of this paper are summarized in the following.

• We propose a new activation function PolyCom which is a composition of the polyno-
mial and other types of function. In particular, we introduce two instances of PolyCom:
PolyReLU and PolyNorm, and details its integration into the transformer architecture.

• Theoretically, we derive bounds on the number of trainable parameters required for
PolyReLU networks to approximate ReLU networks, and vice versa. Additionally, we
show that a PolyReLU network of size O(ϵ−d/n) can approximate any function in Sobolev
spaces with error tolerance ϵ, achieving optimal approximation rates.

• Empirically, we validate the effectiveness of this new activation function on LLMs with
both 1B dense models and MoE models with 1B active and 7B total parameters. The
results of both models demonstrate that PolyCom can accelerate the converging speed and
significantly outperform SwiGLU, GELU, and ReLU et al.

The outline of this paper is structured as follows: In Section 2, we present the mathematical formu-
lation of PolyCom and discuss its integration within transformer architectures. Section 3 delivers a
comprehensive theoretical analysis of PolyCom, emphasizing its enhanced expressivity and effec-
tiveness. In Section 4, we provide a detailed account of our experimental results involving large
language models (LLMs). Section 5 provides an overview of related work in the field of activation
functions and their applications in transformer models. Finally, we conclude the paper and outline
potential directions for future research.

2 POLYNOMIAL COMPOSITION ACTIVATION FUNCTION

In this section, we present the mathematical formulation of the polynomial composition activation
function (PolyCom) and detail its integration into the transformer architecture.

PolyCom. The study of the polynomial activation function can be traced back to the seminal work
of Hornik et al. (1989), which showed that neural networks with polynomial activation are not dense
within the space of continuous functions. Additionally, empirical evidence has shown that deep
neural networks employing pure polynomial activations tend to underperform (Trefethen, 2019). To
overcome these limitations, we propose PolyCom, a novel composition of polynomial and other

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

N N N N
�� ��−� ⋯ �� ��

�� ��−� ⋯ ��

FC

FC

�� ��−� ⋯ ��

�� ��−� ⋯ �� ��

FC

FC

ReLU

FC

FC

ReLU / GELU

ReLU / GELU SwiGLU PolyNormPolyReLU

�� N

��

FCFC

Swish

FC

Figure 2: Block diagrams of Transformer MLP blocks utilizing ReLU/GELU, SwiGLU, PolyReLU
and PolyNorm. “FC” stands for Fully Connected layer. “xi” represents the i-th power of the input
tensor x, while “aj” denotes the j-th element of the learnable weight vector a. “N” indicates a
normalization operation.

functions. Specifically, we explore two composition approaches:{
Type I: x 7→

∑r
i=0 aiρ

i(x),

Type II: x 7→
∑r

i=0 aiρ(x
i),

ai ∈ R, (1)

where r ∈ N denotes the order of PolyCom and ρ represents an arbitrary functions such as ReLU,
PReLU, Sigmoid, SiLU, or normalization. The key distinction between the two approaches lies
in whether the function is composed before or after the power operation. It can be theoretically
shown that both approaches have equivalent expressivity, provided that ρ is a non-linear function.
This is because polynomial terms are symmetric with respect to composition, allowing both Type I
and Type II to approximate similar function classes. In other words, rearranging the order of ρ and
the polynomial powers does not affect the ability to approximate complex non-linear functions. In
practice, we use a third-order PolyCom (r = 3) with trainable coefficients ai. For initialization, we
set ai = 1/r for i = 1, 2, . . . , r and a0 = 0.

For Type I PolyCom, we specifically consider a composition involving the ReLU function due to its
simplicity, which we term PolyReLU. An r-order PolyReLU is defined as:

PolyReLU(x) =

r∑
i=0

aiReLU
i(x), (2)

whereReLUi(x) = max{x, 0}i. This formulation can be seen as an extension of both ReLU and
square ReLU.

For Type II PolyCom, we introduce PolyNorm, which normalizes the powers to ensure consistent
magnitudes across terms:

PolyNorm(x) =

r∑
i=0

ai
xi

∥xi∥2
, (3)

where xi = [xi
1, x

i
2, · · · , xi

d]
⊤ represents element-wise exponentiation, and ∥ · ∥2 denotes the L2

normalization.

Integration into Transformer. The transformer architecture (Vaswani et al., 2017) consists of
two alternating modules, Multi-Head Attention (MHA) and position-wise Feed-Forward Networks
(FNN). Activation functions predominantly influence the performance of FFN layers. We begin by
formalizing the common paradigm of FFN,

FFNρ(x) = ρ(xW1)W2 (4)

where ρ represents the activation function such as ReLU, GeLU, PolyReLU, or PolyNorm. We
replace the traditional activation function with our proposed PolyCom variants to enhance model
capacity and performance, as illustrated in Figure 2.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

3 THEORETICAL ANALYSIS

From Figure 1, one can see that the expressivity of PolyNorm is greater than or equal to that of
PolyReLU. To streamline the analysis, we focus solely on the theoretical properties of PolyReLU,
specifically its expressivity and effectiveness. Additional, nonlinear activations such as GeLU and
SwiGLU can be locally approximated by Taylor polynomials around the origin, which allows us to
primarily compare PolyReLU with ReLU and polynomial activations. To avoid confusion, we refer
to networks that use ReLU activations as ReLU networks, and those that use PolyReLU activations
as PolyReLU networks.

3.1 APPROXIMATING RELU NETWORKS BY POLYRELU
In this subsection, we present theoretical results on approximating ReLU networks using PolyReLU
networks. The following lemma shows that ReLU, ReLU2, and polynomial activation are special
cases of PolyReLU activation, highlighting the superior expressivity of PolyReLU. This implies that
PolyReLU has stronger approximation abilities with fewer trainable parameters compared to ReLU
and other polynomial activations.
Lemma 1. ReLU, ReLU2 and polynomial activation can be represented by PolyReLU.

Proof of Lemma 1. For ReLU activation, set a1 = 1, ai = 0,∀i ̸= 1, leading to PolyReLU(x) =
ReLU(x).

For ReLU2 activation, set a2 = 1, ai = 0,∀i ̸= 2, giving PolyReLU(x) = ReLU2(x).

For a general polynomial activation, observe that for ∀x ∈ R and i ∈ N:

xi = ReLUi(x) + (−1)iReLUi(−x), ∀x ∈ R,∀i ∈ N. (5)

Thus, for any polynomial activation of order r,

Poly(x) = PolyReLU1(x) + PolyReLU2(−x), (6)

where PolyReLU1(x) =
∑r

i=0 aiReLU
i(x) and PolyReLU2(x) =

∑r
i=1(−1)iaiReLU

i(x).

Building on Lemma 1, we can formally prove that any ReLU network can be exactly represented by
a PolyReLU network of the same size, as stated in the following theorem.
Theorem 1. Let f : [−1, 1]d → [−1, 1] be a ReLU network with depth L and width K. Then, there
exists a PolyReLU network g : [−1, 1]d → [−1, 1] of size O(LK) such that

f(x) = g(x), for∀ x ∈ [−1, 1]d. (7)

This theorem, proved in Appendix A, shows that PolyReLU networks can exactly match the repre-
sentational power of ReLU networks without increasing the model size.

3.2 APPROXIMATING POLYRELU WITH RELU NETWORKS

In this part, we give theoretical results on approximating PolyReLU networks using ReLU networks.
The following Lemma 2 demonstrates that the PolyReLU activation can be approximated by a ReLU
network within a given error tolerance.
Lemma 2. For the fixed positive integer r and the activation PolyReLU(x) =∑r

i=0 aiReLU
i(x), x ∈ [−1, 1] with ai ∈ [−1, 1]. Given any ϵ ∈ (0, 1), there exists a

ReLU network f : [−1, 1] → [−1, 1] with size O(ln2(1/ϵ)), such that

max
x∈[−1,1]

|f(x)− PolyReLU(x)| < ϵ. (8)

The proof is provided in the Appendix A. Lemma 2 establishes an upper bound on the size of a
ReLU network needed to approximate a PolyReLU activation function. This result highlights that
while ReLU networks can approximate PolyReLU activations, they require a significantly larger
number of parameters.

Building on Lemma 2, we derive the following theorem, which provides both upper and lower
bounds for approximating PolyReLU networks with ReLU networks.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Theorem 2. Let g : [−1, 1]d → [−1, 1] be a PolyReLU network with depth L and width K, and
PolyReLU activation with order r and Lipschitz constant α. Suppose each neuron computes x 7→
PolyReLU(a⊤x+ b) with the pair (a, b) satisfies ∥a∥1 + b ≤ 1 and PolyReLU : [−1, 1] → [−1, 1]
(a, b, and PolyReLU are possibly distinct across neurons). For any given ϵ ∈ (0, 1), there exists a
ReLU network f : [−1, 1]d → [−1, 1] of size

O

(
LK ln2

(
LαL

ϵ

))
, (9)

such that
max

x∈[−1,1]d
|f(x)− g(x)| < ϵ. (10)

Conversely, there exists PolyReLU networks cannot be approximated within tolerance ϵ by any ReLU
network with a size less than

Ω

(
KL ln

(
1

ϵ

))
. (11)

Theorem 2 tells us that the total number of trainable parameters required by ReLU networks to ap-
proximate a PolyReLU neural network within a tolerance of ϵ is O(ln2(1/ϵ)). Conversely, there
exists a PolyReLU network that can not be approximated by ReLU networks of size less than
Ω(ln(1/ϵ). Combined with Theorem 1, we conclude that PolyReLU networks are more efficient
in terms of representational capacity than ReLU networks.

3.3 APPROXIMATION OF GENERAL SMOOTH FUNCTION

Similar to Yarotsky (2017); Boullé et al. (2020), we also explore the universal approximation ca-
pabilities of PolyReLU networks in the context of Sobolev spaces (Adams & Fournier, 2003).
Specifically, we show that PolyReLU networks achieve the optimal approximation rate within
these spaces, meaning that PolyReLU networks require minimum parameters to approximate gen-
eral smooth functions in Sobolev spaces, compared with networks with the other activation.

The definition of Sobolev space Wn,∞ ([−1, 1]d
)

is stated below. The set [−1, 1]d can be replaced
by any compact set in Rd, we use it just for the sake of brevity.
Definition 1 (Sobolev Spaces). For n, d ∈ N, Sobolev space Wn,∞ ([−1, 1]d

)
is defined as

Wn,∞ ([−1, 1]d
)
=
{
f ∈ L∞

(
[−1, 1]d

)
|∥f∥Wn,∞([−1,1]d) < ∞

}
, (12)

with the norm which is defined as the following

∥f∥Wn,∞([−1,1]d) = max
n:∥n∥1≤n

ess sup
x∈[−1,1]d

∥Dnf(x)∥∞ , (13)

where n ∈ Nd and Dnf is the respective weak derivative of f , and ess sup means the essential
supremum in functional analysis.

Intuitively, a Sobolev space is a space of functions endowed with a weaker notion of smooth-
ness compared to differentiability and possessing generalized derivatives. The Sobolev space
Wn,∞ ([−1, 1]d

)
contains functions from Cn−1

(
[−1, 1]d

)
which consists of functions whose

derivatives of order n − 1 are Lipschitz continous. In the sequel, we mainly consider the unit
ball within Wn,∞ ([−1, 1]d

)
, which is defined as follows

Fn,d = {f ∈ Wn,∞ ([−1, 1]d
)
|∥f∥Wn,∞([−1,1]d) ≤ 1}.

With the above definitions established, we can present the following main results. We provide an
upper bound on the size of PolyReLU networks required to approximate any function in Fn,d.

Theorem 3. Suppose that d, n ∈ N and ϵ ∈ (0, 1). For any f ∈ Fd,n, there exists a PolyReLU
network g with size O(ϵ−d/n) that can approximate f at a given error tolerance ϵ, i.e.,

max
x∈[−1,1]d

∥f(x)− g(x)∥∞ < ϵ. (14)

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Theorem 3 indicates that PolyReLU networks can achieve an optimal approximation rate of
O(ϵ−d/n). In contrast, previous works by Yarotsky (2017) demonstrated that ReLU networks re-
quire O(ϵ−d/n ln(1/ϵ)) parameters to achieve a similar approximation error. Similarly Boullé et al.
(2020) showed that rational neural networks need O(ϵ−d/n ln(ln(1/ϵ))) parameters for the same
task. Therefore, the approximation ability of PolyReLU networks is superior to that of both ReLU
networks and rational networks. Furthermore, Theorem 4.2 in DeVore et al. (1989) shows that the to-
tal number of parameters required by neural networks to approximate functions in Fn,d is Ω(ϵ−d/n).
Therefore, our PolyReLU networks achieve the optimal approximation rate in the context of Sobolev
spaces. Additional disscution is included in Appendix B.

4 EXPERIMENTS

In this section, we demonstrate the expressivity and effectiveness of PolyCom within the transformer
through experiments on LLMs.

4.1 SETUP

Baseline. We evaluate PolyCom across two series of models: a 1B dense model and a Mixture
of Experts (MoE) model with 1B active and 7B total parameters. The 1B dense model contains
approximately 1.3 billion parameters with an architecture similar to Llama 2 (Touvron et al., 2023).
For the MoE model, we use the OLMoE framework (Muennighoff et al., 2024), which activates 1.3B
parameters out of a total of 6.9B parameters. Both models are trained from scratch. We compare the
performance of PolyCom with several activation functions, including ReLU, square ReLU, GELU,
and SwiGLU. All experiments are conducted on Nvidia A100-80G GPUs, 32 GPUs for the dense
model, and 64 GPUs for the MoE model.

Model Configuration. For the dense model, the transformer consists of 24 layers with hidden size
dmodel = 2048 and 16 attention heads. In the MoE model, the transformer is composed of 16
layers, with a hidden size of dmodel = 2048, 16 attention heads, and 64 experts. To maintain a
consistent number of trainable parameters across all activation functions, we adjust the intermediate
size accordingly. Specifically, for SwiGLU, the intermediate size is set to two-thirds that of the other
activations in all experiments. More details can be found in Appendix D.

Datasets. The dense model is trained on the RedPajama-1T dataset 1 (Computer, 2023), which was
developed by the open-source AI community to enable competitive performance against proprietary
models. The MoE model is trained on the OLMoE Mix dataset 2 (Muennighoff et al., 2024).

Hyperparameters. Unless otherwise specified, we use a third-order PolyCom by default and ini-
tialize the coefficients as ai = 1/3 for i = 1, 2, 3 and set a0 = 0. Model weights are randomly
initialized. For optimization, we apply the AdamW optimizer with β1 = 0.9 and β2 = 0.95. All
models are trained on sequences of 4096 tokens. For the dense model, we set the initial learning rate
to 3e-4, decaying to 1.5e-5 using a cosine scheduler. The MoE model starts with a learning rate of
4e-4, also decaying according to a cosine schedule. We summary the hyperparameters in Table 7.

Evaluation To evaluate the performance of LLMs with PolyCom, we use a wide range of open
benchmarks, including ARC-Easy (Clark et al., 2018), ARC-Challenge (Clark et al., 2018), Hel-
laSwag (Zellers et al., 2019), PIQA (Bisk et al., 2020), SciQ (Welbl et al., 2017), CoQA (Reddy
et al., 2019), Winogrande (Sakaguchi et al., 2021), MMLU (Hendrycks et al., 2021), BoolQ (Clark
et al., 2019), COPA (Gordon et al., 2012), CSQA (Talmor et al., 2019), OBQA (Mihaylov et al.,
2018), and SocialIQA (Sap et al., 2019). We utilize the LM Eval Harness (Gao et al., 2023) for
standardized performance evaluation.

4.2 RESULTS ON DENSE MODEL

Training Dynamics of 1B Dense Model. Figure 1 compares the training dynamics of the 1B
dense model across different activation functions. As shown in the figure, models using PolyReLU
and PolyNorm exhibit lower training loss and validation perplexity throughout the training process
compared to models utilizing other activation functions. This indicates that PolyCom accelerates
the convergence of LLMs. The models with PolyReLU and PolyNorm also consistently outperform

1RedPajama-1T is available at https://github.com/togethercomputer/RedPajama-Data.
2OLMoE Mix dataset is available at https://huggingface.co/datasets/allenai/

OLMoE-mix-0924.

6

https://github.com/togethercomputer/RedPajama-Data
https://huggingface.co/datasets/allenai/OLMoE-mix-0924
https://huggingface.co/datasets/allenai/OLMoE-mix-0924

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Table 1: Overall results of the 1B dense model with different activation functions, reported in terms
of training loss, validation perplexity, and downstream accuracy (%). ARC-E and ARC-C refer to
ARC-Easy and ARC-Challenge, respectively. The best results in each column are highlighted in
bold. “Avg.” denotes the average accuracy of all downstream tasks.

Loss↓ PPL↓ ARC-E ARC-C HellaSwag PIQA SciQ Winograde Avg.↑
SwiGLU 2.19 3.22 56.61 27.47 49.23 68.61 86.10 56.83 57.47
GELU 2.20 3.24 55.43 27.73 48.42 68.12 87.40 54.78 56.98
ReLU 2.21 3.26 55.68 28.50 48.59 68.39 87.10 54.85 57.18
PolyReLU 2.17 3.18 57.53 27.99 50.19 70.29 87.60 55.72 58.22
PolyNorm 2.17 3.17 59.68 29.01 50.86 69.15 87.20 56.20 58.68

Figure 3: training and validation loss on C4 and Wikipedia for MoE models with 200 billion training
tokens. We compare models using SwiGLU and PolyNorm activation functions. PolyNorm demon-
strates lower training and validation losses, indicating faster convergence.

others in downstream tasks by large margins, highlighting the advantage of PolyCom in improving
the overall expressivity and effectiveness of LLMs.

Downstream Evaluation. Table 1 presents the training loss, validation perplexity, and downstream
task accuracy (%) after processing 250 billion training tokens. The downstream tasks include ARC-
Easy, ARC-Challenge, HellaSwag, PIQA, SciQ, and Winograde. More detailed results are provided
in Appendix F. The results clearly demonstrate that the PolyCom family (PolyReLU and PolyNorm)
outperforms the other activation functions. For instance, PolyNorm outperforms SwiGLU by an av-
erage margin of 1.21% across six downstream tasks. This underscores the expressivity and efficiency
of PolyCom as an activation function in transformer models.

4.3 RESULTS ON MOE MODEL

Our experiments with MoE modes are based on OLMOE-1B-7B, which has 1 billion activate param-
eters and 7 billion total parameters (Muennighoff et al., 2024). Due to computational constraints,
we compare only the PolyNorm activation function, shown to perform best in dense models, with
the widely used SwiGLU activation function, which is commonly employed in current LLM archi-
tectures.

Training dynamics of MoE model. In Figure 3, we report the training and validation loss of MoE
models trained on 200 billion tokens. Models using PolyNorm consistently show lower losses com-
pared to those using SwiGLU, indicating that PolyNorm enables faster learning. Figure 4 shows the
downstream performance on HellaSwag, MMLU Var3, ARC-Challenge, and SciQ. PolyNorm out-
performs SwiGLU on all tasks, with notable improvements, demonstrating superior generalization
capabilities.

Dowmstream Evaluation. Table 2 presents the validation losses on 11 datasets. PolyNorm consis-
tently achieves lower validation losses than SwiGLU across all datasets, with an average improve-

3MMLU Var is a variant of MMLU (Hendrycks et al., 2021) using varied few-shots (Muennighoff et al.,
2024).

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Figure 4: Downstrean performance dynamics on HellaSwag, MMLU Var, ARC-Challenge, and
SciQ for MoE models with 200 billion training tokens. Models with PolyNorm significantly outper-
form those with SwiGLU on downstream tasks.

Table 2: Validation losses of MoE models with different activation functions. CC denotes Common
Crawl. Best results per column are bold.

Methods C4 Books CC peS2o Reddit Stack Wiki-
pedia ICE M2D2 Pile Wiki-

text Avg.↓

SwiGLU 2.72 2.59 2.79 2.16 2.93 1.01 2.30 2.50 3.07 2.07 2.37 2.41
PolyNorm 2.71 2.57 2.78 2.15 2.92 1.00 2.29 2.49 3.06 2.03 2.34 2.39

Table 3: Downstream evaluation results of MoE models with different activation functions. ARC-C,
ARC-E, OQA denote ARC-Challenge, ARC-Easy, and OpenbookQA, respectively. Best results per
column are in bold.

Tasks MMLU
Var

Hella-
Swag SciQ ARC-C ARC-E PIQA Wino-

Grande OQA COPA Avg.↑

SwiGLU 37.07 66.49 90.60 37.12 71.58 76.61 62.75 39.80 83.00 62.78
PolyNorm 37.27 67.63 92.40 38.46 70.70 77.04 62.19 40.60 84.00 63.37

ment of 0.02. In Table 3, we also observe that PolyNorm outperforms SwiGLU on 8 downstream
tasks. These results highlight the superior performance of models using the PolyNorm activation
function. Additional results can be found in Appendix G.

4.4 ABLATIONS AND ANALYSIS.

Order of PolyCom. We first investigate the effect of different orders of PolyCom. We vary the
order r of PolyReLU in the set {2, 3, 4} and plot the results in Figure 5(a). As seen, the convergence
speed improves as the order increases. However, there is no noticeable difference between orders 3
and 4 in terms of convergence speed. Additionally, increasing the order can lead to computational
overhead and overflow issues, particularly when using low-precision arithmetic. Based on these
observations, we select r = 3 as the default order for PolyCom in our experiments, balancing both
performance and computational efficiency.

Different Polynomial Composition Functions. We evaluate the impact of different polynomial
composition functions by comparing PolyReLU, PolyPReLU, PolyNorm, and PolyReLUNorm in
Figure 5(b). Our results indicate that PolyNorm, which uses normalization as the composition func-
tion, achieves the lowest training loss and best overall performance. This suggests that normalization
plays a key role in stabilizing training and enhancing the model’s ability to generalize. In contrast,
combining ReLU with normalization (PolyReLUNorm) provides intermediate results, suggesting
that more complex compositions do not always lead to better outcomes.

Variants of ReLU. In Figure 5(c), we compare different variants of the ReLU activation function,
including ReLU and ReLU2. PolyReLU consistently outperforms both ReLU and ReLU2 across
all tasks, highlighting the benefits of using polynomial composition. This result reinforces the hy-
pothesis that introducing higher-order terms through PolyCom enables the model to capture more

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

(a) Different orders of PolyReLU (b) Different compositions (c) ReLU variants

Figure 5: Training loss for 1B dense models with different activation functions. 5(a): We compare
different orders of PolyReLU. 5(b): Comparison of PolyCom with different composition functions.
5(c): Comparison of different variants of ReLU activation function.

(a) Rank of Wup, dense (b) Rank of Wdown, dense (c) Rank of Wup, MoE (d) Rank of Wdown, MoE

Figure 6: Rank of weights in each FNN. 6(a) & 6(b) for the dense model, 6(c) & 6(d) for the MoE
model.

complex data interactions, thus improving the expressivity of the activation function without signif-
icantly increasing model size or complexity.

Rank of Weights. To understand how PolyCom enhances model performance, we analyze the rank
of the weights in each FNN layer of the transformer. We use the effective rank (Roy & Vetterli,
2007) to measure the effective dimensionality of weights and its definition is in Appendix D.3.
Figure 6 shows that PolyReLU and PolyNorm result in higher weight ranks compared to other
activation functions such as SwiGLU, GELU, and ReLU. A higher rank in the weight matrices
usually indicates a greater capacity for representing complex patterns in the data. These findings
suggest that PolyCom improves the expressibility of transformers by allowing the FNN layers to
better utilize their parameters, ultimately leading to better generalization on downstream tasks.

Layer-wise Similarity. We further analyze the layer-wise similarity of hidden states using cosine
similarity, as illustrated in Figure 7. For both dense and MoE models, we compare SwiGLU with
PolyNorm. The results reveal that PolyNorm consistently maintains lower layer-wise similarity
compared to SwiGLU, indicating that PolyNorm promotes greater diversity between layers. This
diversity likely enables the model to learn more complex representations, as deeper layers are not
merely replicating the functionality of earlier ones. Notably, the gap in cosine similarity between
PolyNorm and SwiGLU widens in the deeper layers, which are generally more crucial for down-
stream task performance. This increased diversity across layers enhances the model’s ability to
capture complex relationships, thereby improving the overall effectiveness of LLMs.

5 RELATED WORK

The design of activation functions has been a critical area of research in neural networks, directly
influencing the performance and capabilities of deep learning models. Early activation functions
like Sigmoid and Tanh were widely used due to their smooth nonlinear transformations (Goodfel-
low et al., 2016). However, these functions faced challenges such as vanishing gradients, making

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

(a) SwiGLU, dense (b) PolyNorm, dense (c) SwiGLU, MoE (d) PolyNorm, MoE

Figure 7: Layer-wise cosine similarity of hidden states. 7(a) &7(b): for 1B dense models with
SwiGLU and PolyNorm, respectively. 7(c) & 7(d): for MoE models with SwiGLU and PolyNorm,
respectively.

it difficult to train deep networks effectively. The introduction of the Rectified Linear Unit (ReLU)
(Nair & Hinton, 2010) mitigated some of these issues by offering a simple, non-saturating nonlin-
earity, which has since become a standard in many deep learning applications. Variants of ReLU,
such as Leaky ReLU (Maas et al., 2013) and Parametric ReLU (PReLU) (He et al., 2015), were
developed to address the “dying ReLU” problem by allowing a small, non-zero gradient when the
input is negative. Other functions, like the Exponential Linear Unit (ELU) (Clevert, 2015), aimed to
provide smoother activation profiles, resulting in better generalization and faster convergence in cer-
tain tasks. Moreover, Manessi & Rozza (2018) proposed a combination of weighted base activation
functions for further enhancement.

Polynomial activation functions (Hornik et al., 1989; Oh et al., 2003), although less commonly
used, have been studied in various contexts for their ability to model higher-order, complex relation-
ships more effectively. For instance, Lokhande et al. (2020) introduced Hermite polynomial activa-
tions to improve pseudo-label accuracy, while Chrysos et al. (2020) proposed polynomial networks,
Π-nets, which apply to various domains such as image and audio processing. Building on this,
Chrysos et al. (2023) utilized regularization techniques to enhance the performance of polynomial
networks. These works highlight the potential of polynomial functions to increase the expressive-
ness of neural networks by capturing intricate, higher-order interactions. On the theoretical front,
the expressivity and approximation power of polynomial functions have been rigorously explored
(Kileel et al., 2019; Kidger & Lyons, 2020; Kubjas et al., 2024).

The choice of activation function in transformers has also become an important area of research.
Originally developed for natural language processing, transformers (Vaswani et al., 2017) have been
effectively adapted for diverse tasks, including image recognition, speech processing, and reinforce-
ment learning. Despite their broad applicability, the activation functions predominantly utilized in
transformers, ReLU and GELU, have seen minimal evolution. Recent studies, however, have be-
gun to explore alternatives to these conventional activations. For example, the Swish activation
(Ramachandran et al., 2017; Shazeer, 2020) and the Mish activation (Misra, 2019) are smooth and
non-monotonic functions that offer potential benefits in model performance and training stability.
Additionally, Gated Linear Units (GLU) were proposed by Dauphin et al. (2017), with SwiGLU
(Shazeer, 2020), a prominent variant, being used in models such as LLaMA-Series (Touvron et al.,
2023).

6 CONCLUSIONS

In this paper, we introduce the Polynomial Composition Activation (PolyCom) and demonstrate
its effectiveness within transformer models. By enabling the capture of higher-order interactions,
PolyCom enhances both the accuracy and convergence rates of these models. Our experiments,
conducted across different large language model architectures and multiple benchmarking datasets,
confirm that PolyCom consistently outperforms conventional activation functions. Furthermore, ab-
lation studies indicate that PolyCom increases model expressivity by elevating weight rank and re-
ducing redundancy across layers. These findings underscore the significant potential of polynomial-
based activations to improve transformer models, thereby paving the way for future research en-
deavors.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Robert A Adams and John JF Fournier. Sobolev spaces. Elsevier, 2003.

Anurag Arnab, Mostafa Dehghani, Georg Heigold, Chen Sun, Mario Lučić, and Cordelia Schmid.
Vivit: A video vision transformer. In Proceedings of the IEEE/CVF international conference on
computer vision, pp. 6836–6846, 2021.

Jonathan T Barron. Continuously differentiable exponential linear units. arXiv preprint
arXiv:1704.07483, 2017.

Yonatan Bisk, Rowan Zellers, Jianfeng Gao, Yejin Choi, et al. Piqa: Reasoning about physical com-
monsense in natural language. In Proceedings of the AAAI conference on artificial intelligence,
volume 34, pp. 7432–7439, 2020.

Nicolas Boullé, Yuji Nakatsukasa, and Alex Townsend. Rational neural networks. In Proceedings of
the 34th International Conference on Neural Information Processing Systems, pp. 14243–14253,
2020.

Grigorios G Chrysos, Stylianos Moschoglou, Giorgos Bouritsas, Yannis Panagakis, Jiankang Deng,
and Stefanos Zafeiriou. P-nets: Deep polynomial neural networks. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 7325–7335, 2020.

Grigorios G Chrysos, Bohan Wang, Jiankang Deng, and Volkan Cevher. Regularization of polyno-
mial networks for image recognition. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 16123–16132, 2023.

Christopher Clark, Kenton Lee, Ming-Wei Chang, Tom Kwiatkowski, Michael Collins, and Kristina
Toutanova. Boolq: Exploring the surprising difficulty of natural yes/no questions. In Proceedings
of the 2019 Conference of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 2924–2936,
2019.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and
Oyvind Tafjord. Think you have solved question answering? try arc, the ai2 reasoning challenge.
arXiv preprint arXiv:1803.05457, 2018.

Djork-Arné Clevert. Fast and accurate deep network learning by exponential linear units (elus).
arXiv preprint arXiv:1511.07289, 2015.

Together Computer. Redpajama: An open source recipe to reproduce llama training dataset, 2023.
URL https://github.com/togethercomputer/RedPajama-Data.

Yann N Dauphin, Angela Fan, Michael Auli, and David Grangier. Language modeling with gated
convolutional networks. In International conference on machine learning, pp. 933–941. PMLR,
2017.

Ronald A DeVore, Ralph Howard, and Charles Micchelli. Optimal nonlinear approximation.
Manuscripta mathematica, 63:469–478, 1989.

Linhao Dong, Shuang Xu, and Bo Xu. Speech-transformer: a no-recurrence sequence-to-sequence
model for speech recognition. In 2018 IEEE international conference on acoustics, speech and
signal processing (ICASSP), pp. 5884–5888. IEEE, 2018.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszko-
reit, and Neil Houlsby. An image is worth 16x16 words: Transformers for image recognition at
scale. In International Conference on Learning Representations, 2021.

Leo Gao, Jonathan Tow, Baber Abbasi, Stella Biderman, Sid Black, Anthony DiPofi, Charles Fos-
ter, Laurence Golding, Jeffrey Hsu, Alain Le Noac’h, Haonan Li, Kyle McDonell, Niklas Muen-
nighoff, Chris Ociepa, Jason Phang, Laria Reynolds, Hailey Schoelkopf, Aviya Skowron, Lin-
tang Sutawika, Eric Tang, Anish Thite, Ben Wang, Kevin Wang, and Andy Zou. A framework
for few-shot language model evaluation, 12 2023. URL https://zenodo.org/records/
10256836.

11

https://github.com/togethercomputer/RedPajama-Data
https://zenodo.org/records/10256836
https://zenodo.org/records/10256836

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Xavier Glorot, Antoine Bordes, and Yoshua Bengio. Deep sparse rectifier neural networks. In
Proceedings of the fourteenth international conference on artificial intelligence and statistics, pp.
315–323. JMLR Workshop and Conference Proceedings, 2011.

Ian Goodfellow, Yoshua Bengio, Aaron Courville, and Yoshua Bengio. Deep learning, volume 1.
MIT Press, 2016.

Andrew Gordon, Zornitsa Kozareva, and Melissa Roemmele. Semeval-2012 task 7: Choice of
plausible alternatives: An evaluation of commonsense causal reasoning. In * SEM 2012: The First
Joint Conference on Lexical and Computational Semantics–Volume 1: Proceedings of the main
conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop
on Semantic Evaluation (SemEval 2012), pp. 394–398, 2012.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep into rectifiers: Surpassing
human-level performance on imagenet classification. In Proceedings of the IEEE international
conference on computer vision, pp. 1026–1034, 2015.

Dan Hendrycks and Kevin Gimpel. Gaussian error linear units (gelus). arXiv preprint
arXiv:1606.08415, 2016.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and Jacob
Steinhardt. Measuring massive multitask language understanding. In International Conference
on Learning Representations, 2021.

Kurt Hornik, Maxwell Stinchcombe, and Halbert White. Multilayer feedforward networks are uni-
versal approximators. Neural networks, 2(5):359–366, 1989.

Patrick Kidger and Terry Lyons. Universal approximation with deep narrow networks. In Conference
on learning theory, pp. 2306–2327. PMLR, 2020.

Joe Kileel, Matthew Trager, and Joan Bruna. On the expressive power of deep polynomial neural
networks. Advances in neural information processing systems, 32, 2019.

Alex Krizhevsky et al. Convolutional deep belief networks on cifar-10. 2010.

Kaie Kubjas, Jiayi Li, and Maximilian Wiesmann. Geometry of polynomial neural networks. arXiv
preprint arXiv:2402.00949, 2024.

Shiyu Liang and R Srikant. Why deep neural networks for function approximation? In International
Conference on Learning Representations, 2017.

Vishnu Suresh Lokhande, Songwong Tasneeyapant, Abhay Venkatesh, Sathya N Ravi, and Vikas
Singh. Generating accurate pseudo-labels in semi-supervised learning and avoiding overconfident
predictions via hermite polynomial activations. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 11435–11443, 2020.

Andrew L Maas, Awni Y Hannun, Andrew Y Ng, et al. Rectifier nonlinearities improve neural
network acoustic models. In Proc. ICML. Atlanta, GA, 2013.

Franco Manessi and Alessandro Rozza. Learning combinations of activation functions. In 2018
24th international conference on pattern recognition (ICPR), pp. 61–66. IEEE, 2018.

Todor Mihaylov, Peter Clark, Tushar Khot, and Ashish Sabharwal. Can a suit of armor conduct elec-
tricity? a new dataset for open book question answering. In Proceedings of the 2018 Conference
on Empirical Methods in Natural Language Processing, pp. 2381–2391, 2018.

Diganta Misra. Mish: A self regularized non-monotonic activation function. arXiv preprint
arXiv:1908.08681, 2019.

Niklas Muennighoff, Luca Soldaini, Dirk Groeneveld, Kyle Lo, Jacob Morrison, Sewon Min, Weijia
Shi, Pete Walsh, Oyvind Tafjord, Nathan Lambert, Yuling Gu, Shane Arora, Akshita Bhagia,
Dustin Schwenk, David Wadden, Alexander Wettig, Binyuan Hui, Tim Dettmers, Douwe Kiela,
Ali Farhadi, Noah A. Smith, Pang Wei Koh, Amanpreet Singh, and Hannaneh Hajishirzi. Olmoe:
Open mixture-of-experts language models, 2024. URL https://arxiv.org/abs/2409.
02060.

12

https://arxiv.org/abs/2409.02060
https://arxiv.org/abs/2409.02060

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Vinod Nair and Geoffrey E Hinton. Rectified linear units improve restricted boltzmann machines.
In ICML, pp. 807–814, 2010.

Sung-Kwun Oh, Witold Pedrycz, and Byoung-Jun Park. Polynomial neural networks architecture:
analysis and design. Computers & Electrical Engineering, 29(6):703–725, 2003.

Alec Radford, Jeff Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever. Language
models are unsupervised multitask learners. 2019.

Prajit Ramachandran, Barret Zoph, and Quoc V Le. Searching for activation functions. arXiv
preprint arXiv:1710.05941, 2017.

Siva Reddy, Danqi Chen, and Christopher D Manning. Coqa: A conversational question answering
challenge. Transactions of the Association for Computational Linguistics, 7:249–266, 2019.

Olivier Roy and Martin Vetterli. The effective rank: A measure of effective dimensionality. In
EUSIPCO, 2007.

Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavatula, and Yejin Choi. Winogrande: An adver-
sarial winograd schema challenge at scale. Communications of the ACM, 64(9):99–106, 2021.

Maarten Sap, Hannah Rashkin, Derek Chen, Ronan LeBras, and Yejin Choi. Socialiqa: Common-
sense reasoning about social interactions. arXiv preprint arXiv:1904.09728, 2019.

Noam Shazeer. Glu variants improve transformer. arXiv preprint arXiv:2002.05202, 2020.

David So, Wojciech Mańke, Hanxiao Liu, Zihang Dai, Noam Shazeer, and Quoc V Le. Searching
for efficient transformers for language modeling. Advances in neural information processing
systems, 34:6010–6022, 2021.

Alon Talmor, Jonathan Herzig, Nicholas Lourie, and Jonathan Berant. Commonsenseqa: A question
answering challenge targeting commonsense knowledge. In Proceedings of the 2019 Conference
of the North American Chapter of the Association for Computational Linguistics: Human Lan-
guage Technologies, Volume 1 (Long and Short Papers), pp. 4149–4158, 2019.

Matus Telgarsky. Neural networks and rational functions. In International Conference on Machine
Learning, pp. 3387–3393. PMLR, 2017.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Niko-
lay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, Dan Bikel, Lukas Blecher,
Cristian Canton-Ferrer, Moya Chen, Guillem Cucurull, David Esiobu, Jude Fernandes, Jeremy
Fu, Wenyin Fu, Brian Fuller, Cynthia Gao, Vedanuj Goswami, Naman Goyal, Anthony Hartshorn,
Saghar Hosseini, Rui Hou, Hakan Inan, Marcin Kardas, Viktor Kerkez, Madian Khabsa, Isabel
Kloumann, Artem Korenev, Punit Singh Koura, Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee,
Diana Liskovich, Yinghai Lu, Yuning Mao, Xavier Martinet, Todor Mihaylov, Pushkar Mishra,
Igor Molybog, Yixin Nie, Andrew Poulton, Jeremy Reizenstein, Rashi Rungta, Kalyan Saladi,
Alan Schelten, Ruan Silva, Eric Michael Smith, Ranjan Subramanian, Xiaoqing Ellen Tan, Binh
Tang, Ross Taylor, Adina Williams, Jian Xiang Kuan, Puxin Xu, Zheng Yan, Iliyan Zarov, Yuchen
Zhang, Angela Fan, Melanie Kambadur, Sharan Narang, Aurélien Rodriguez, Robert Stojnic,
Sergey Edunov, and Thomas Scialom. Llama 2: Open foundation and fine-tuned chat models.
arXiv preprint arXiv:2307.09288, 2023.

Lloyd N Trefethen. Approximation theory and approximation practice, extended edition. SIAM,
2019.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in Neural Informa-
tion Processing Systems, 2017.

Johannes Welbl, Nelson F Liu, and Matt Gardner. Crowdsourcing multiple choice science questions.
In Proceedings of the 3rd Workshop on Noisy User-generated Text, pp. 94–106, 2017.

Bing Xu, Naiyan Wang, Tianqi Chen, and Mu Li. Empirical evaluation of rectified activations in
convolutional network (2015). arXiv preprint arXiv:1505.00853, 2015.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Dmitry Yarotsky. Error bounds for approximations with deep relu networks. Neural networks, 94:
103–114, 2017.

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. Hellaswag: Can a ma-
chine really finish your sentence? In Proceedings of the 57th Annual Meeting of the Association
for Computational Linguistics, pp. 4791–4800, 2019.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

A OMITTED PROOFS

In this section, we provide the proofs that were omitted in the main body of the paper. The following
proofs build upon the work of Yarotsky (2017); Telgarsky (2017); Boullé et al. (2020).

A.1 PROOF OF LEMMA 2
The proof of Lemma 2 leverages Lemma 3.4 from Telgarsky (2017), which we state below.
Lemma A.1 (Lemma 3.4 in Telgarsky (2017)). Let ϵ ∈ (0, 1) be given. Suppose p : [0, 1]d →
[−1, 1] be a r order polynomial with s monomials and coefficients within [−1, 1]. Then there ex-
ists a ReLU network f : [0, 1]d → [−1, 1] of size O(min{sr ln(sr/ϵ), sd ln2(dsr/ϵ)}) such that
maxx∈[0,1]d |p(x)− f(x)| < ϵ.

Using this result, we now proceed with the proof of Lemma 2.

Proof of Lemma 2. First, we observe that PolyReLU(x) = Poly(ReLU(x), where Poly(x) =∑r
i=0 aix

i for x ∈ [−1, 1]. By Lemma A.1, there exists a ReLU network f1 : [0, 1] → [−1, 1] of
size O(ln2(1/ϵ)) such that:

max
x∈[0,1]

|f1(x)− Poly(x)| < ϵ. (15)

Thus, we construct f = f1 ◦ ReLU for inputs x ∈ [−1, 1]. This yields that:

max
x∈[−1,1]

|f(x)− PolyReLU(x)| = max
x∈[−1,1]

|f1 ◦ ReLU(x)− PolyReLU(x)|

= max
x∈[−1,1]

|f1(ReLU(x))− Poly(ReLU(x))|

= max
x∈[0,1]

|f1(x)− Poly(x)|

< ϵ.

(16)

Since f1 is a ReLU network, the constructed function f = f1 ◦ ReLU is also a ReLU network,
completing the proof.

A.2 PROOF OF THEOREM 1
The proof is an elementary extension of Lemma 1.

Proof of Theorem 1. Using Lemma 1, we can represent the ReLU activation on R using a PolyReLU
activation. Thus, we replace each ReLU activation in the ReLU network f with PolyReLU to
construct a new network g. Obviously, such g satisfies the above requirements. Hence, the size
and structure remain equivalent, and g serves as the PolyReLU network equivalent to the ReLU
network.

A.3 PROOF OF THEOREM 2
The lower bound of Theorem 2 follows directly from Theorem 11 in Liang & Srikant (2017), restated
here for clarity:
Lemma A.2 (Theorem 11 in Liang & Srikant (2017)). Suppose function f : [0, 1]d → R is
differentiable and strongly convex. Let ϵ ∈ (0, 1) be given and f̃ be a ReLU network. If
maxx∈[0,1]d |f(x)− f̃(x)|, then the network size of f̃ is at least Ω(ln(1/ϵ)).

Lemma A.2 shows that approximating the quadratic function x2 with an error tolerance ϵ requires
a network of size at least Ω(ln(1/ϵ)). Since x2 on [0, 1]d is a degradation case of PolyReLU, any
ReLU network approximating PolyReLU with error ϵ must also be at least Ω(ln(1/ϵ)) in size. The
upper bound is proved in the following.

Proof of Theorem 2. Denote gi as the i-th layer of PolyReLU neteeork f for 1 ≤ i ≤ L, such that:

g = gL ◦ gL−1 ◦ · · · ◦ g1.

For each neuron, since ∥a∥1 + b ≤ 1, it follows that:

|a⊤x+ b| ≤ |a⊤x|+ |b| ≤ ∥a∥1∥x∥∞ + |b| ≤ 1,∀x ∈ {x|∥x∥∞ ≤ 1}. (17)

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Additionally, note that the range of PolyReLU is [−1, 1]. Hence, by induction, the output of each
neuron remains within [−1, 1]. For each subnetwork gi, by applying Lemma 2, we can construct
a corresponding ReLU network fi by replacing each PolyReLU activation pi,j in gi with a ReLU
activation. Specifically, for any i ∈ [L]4 and j ∈ [K], there exists a ReLU network fi,j : [−1, 1] →
[−1, 1] that approximates the PolyReLU activation pi,j with given tolerance ϵi > 0.

Thus, the network fi is obtained by replacing each PolyReLU activation pi,j in gi with its ReLU
approximation fi,j . Obviously, fi is a ReLU network whose output dimensions are in range [−1, 1].

Next, we give the approximation error bound. Denote hg
i = gi ◦ · · · ◦ g1 and hf

i = fi ◦ · · · ◦ f1 for
i ∈ [L]. For the sake of brevity, we assume hg

0 = hf
0 as the identity map in [−1, 1]d. Hence, we have

hg
i = gi ◦ · · · ◦ g0 and hf

i = fi ◦ · · · ◦ f0. Suppose x 7→ pi,j(a
⊤
i,jh

g
i−1 + bi,j) be the output of j-th

neuron of gi. Denote the approximation between the PolyReLU network and the ReLU network at
i-th layer and j-th neuron as ei,j . And we use ei = maxj∈[K] ei,j to denote the approximation error
between the PolyReLU network and the ReLU network at i-th layer. Then for any i ∈ [L], we have
that

ei,j = max
x∈[−1,1]d

∣∣∣hg
i,j(x)− hf

i,j(x)
∣∣∣

= max
x∈[−1,1]d

∣∣∣pi,j(a⊤i,jhg
i−1(x) + bi,j)− fi,j(a

⊤
i,jh

f
i−1(x) + bi,j)

∣∣∣
= max

x∈[−1,1]d

∣∣∣∣pi,j(a⊤i,jhg
i−1(x) + bi,j)− pi,j(a

⊤
i,jh

f
i−1(x) + bi,j)

+ pi,j(a
⊤
i,jh

f
i−1(x) + bi,j)− fi,j(a

⊤
i,jh

f
i−1(x) + bi,j)

∣∣∣∣
≤ max

x∈[−1,1]d

∣∣∣pi,j(a⊤i,jhg
i−1(x) + bi,j)− pi,j(a

⊤
i,jh

f
i−1(x) + bi,j)

∣∣∣
+ max

x∈[−1,1]d

∣∣∣pi,j(a⊤i,jhf
i−1(x) + bi,j)− fi,j(a

⊤
i,jh

f
i−1(x) + bi,j)

∣∣∣
≤ max

x∈[−1,1]d
α
∣∣∣(a⊤i,jhg

i−1(x) + bi,j)− (a⊤i,jh
f
i−1(x) + bi,j)

∣∣∣+ ϵi

≤α max
x∈[−1,1]d

∥ai,j∥1
∥∥∥hg

i−1(x)− hf
i−1(x)

∥∥∥
∞

+ ϵi

≤α max
x∈[−1,1]d

∥∥∥hg
i−1(x)− hf

i−1(x)
∥∥∥
∞

+ ϵi.

(18)

The first inequality is using the triangular inequality. The second inequality holds because the Lip-
schitz constant of pi,j is α and the ReLU subnetwork fi,j approximates pi,j with error ϵi. In the
fourth inequality, we used Hölder’s inequality. Since ∥ai,j∥1 ≤ ∥ai,j∥1 + |bi,j | ≤ 1, the fifth
inequality holds.

Therefore, we derive the following approximation bound:

ei = max
j∈[K]

ei,j ≤ α max
x∈[−1,1]d

∥∥∥hg
i−1(x)− hf

i−1(x)
∥∥∥
∞

+ ϵi = αei−1 + ϵi, (19)

for ∀i ∈ [L]. Since hg
0 = hf

0 , we have e0 = 0. Let ϵi = ϵ/(LαL−i) for ∀i ∈ [L]. It follows that:

ei ≤
iϵ

LαL−i
, ∀i ∈ [L]. (20)

Hence, the final error at the last layer is bounded by eL ≤ ϵ.

Last, we need to estimate the size of the ReLU network f . By Lemma 2, the size of each ReLU
subnetwork fi,j is O(ln2(LαL−i/ϵ)). Therefore, the total size of the ReLU network f is:

O

(
L∑

i=1

K ln2
(
LαL−i

ϵ

))
= O

(
KL ln2

(
LαL

ϵ

))
, (21)

4We use notation [L] to denote the set {1, 2, . . . , L}.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

where we use the fact that:
L∑

i=1

ln2
(
LαL−i

ϵ

)
=

L∑
i=1

(
ln

(
LαL

ϵ

)
− i lnα

)2

= O

(
L ln2

(
LαL

ϵ

))
. (22)

This completes the proof.

A.4 PROOF OF THEOREM 3
Before proving Theorem 3, we begin by introducing a few useful lemmas.
Lemma A.3 (Proposition 1 in Yarotsky (2017)). Let M ∈ N and ρ : R → R be any continuous
piece-wise linear function with M breakpoints. Then the following two statements hold:

• For a network with activation ρ, depth L and width K, there exists a ReLU network with the
same depth L and width O(MK) that computes the same function as the original network.

• Conversely, if a ReLU network has depth L and width K, there exists a network with
activation ρ, depth L and width K that computes the same function on a bounded input
domain D.

This result, Combined with Lemma 1, directly leads to the following corollary, which demonstrates
that PolyReLU networks can represent any piece-wise linear function exactly on R.
Corollary A.1. Let M ∈ N and ρ : R → R be any continuous piece-wise linear function with M
breakpoints. Then there exists a PolyReLU network g of size O(M) such that:

ρ(x) = g(x), ∀x ∈ R.

In a similar manner to Proposition 10 in Boullé et al. (2020), we can show that PolyReLU networks
can represent powers xn exactly for any n ∈ N.
Lemma A.4. Suppose n, r ∈ N and r ≥ 2. Then xn can be represented exactly by a PolyReLU
network g with an r-th order PolyReLU activation and size O(ln2(n)).

Proof of Lemma A.4. We first prove that xn can be represented exactly by a polynomial network
ĝ with r-th order polynomial activation and having size O(ln2(n)). Based on ĝ, we construct a
PolyReLU network g that satisfies the requirements.

By expressing n in base r, we have that:

xn =

k∏
i=0

xcir
i

=

k∏
i=0

(
xci (xr)

i
)
, (23)

where k = ⌊logr n⌋, n =
∑k

i=0 cir
i, and ci ∈ {0, 1, 2, . . . , r − 1}. Each xcir

i

can be represented
by a polynomial network with i + 1 layers and width 1. It follows that xn can be represented by a
polynomial network of size

k∑
i=0

(i+ 1) = O(k2) = O(ln2(n)). (24)

By Lemma 1, we know that a PolyReLU activation can represent a polynomial activation. Hence,
there exists a PolyReLU network g with an r-th order activation and size O(ln2(n)) such that

g(x) = xn ∀x ∈ R.

With the above lemmas, we can now prove Theorem 3.

Proof of Theorem 3. The proof is composed of two parts. We first approximate f by local Taylor
polynomials and continuous piece-wise linear functions and then represent these functions using
PolyReLU networks, following Yarotsky (2017); Boullé et al. (2020).

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Part 1. Suppose N is a positive integer. We begin by dividing [−1, 1]d into a grid of (2N + 1)d

functions:∑
m

ϕm(x) = 1, ϕm(x) =

d∏
i=1

φ
(
3N
(
xk − mk

N

))
, ∀x = (x1, x2, . . . , xd) ∈ [−1, 1]d,

where m = (m1,m2, . . . ,md) ∈ {−N,−(N − 1), . . . , 0, . . . , N}d, and φ is defined as:

φ(x) =


1, |x| < 1,

0, 2 < |x|,
2− |x|, 1 ≤ |x| ≤ 2.

This function has the following properties:

max
x∈R

|φ(x)| = 1, max
x∈[−1,1]d

∥ϕm(x)∥∞ = 1, (25)

suppϕm =

{
x

∣∣∣∣∥∥∥x− m

N

∥∥∥
∞

<
2

3N

}
,∀m ∈ {−N,−(N − 1), . . . , N}d. (26)

Part 2. We use a degree-(n− 1) local Taylor approximation of the function f , defined as

fN (x) =
∑

m∈{−N,...,N}d

ϕm(x)Pm(x), (27)

where Pm is the degree-(n− 1) Taylor polynomial of f at x = m/N , i.e.,

Pm(x) =
∑

n:∥n∥1<n

1

n!
Dnf

(m
N

)(
x− m

N

)n
, (28)

with conventions n! =
∏d

i=1 ni! and
(
x− m

N

)n
=
∏d

i=1

(
xi − mi

N

)ni .

The approximation error between f and fN can be bounded as follows:

|f(x)− fN (x)| =

∣∣∣∣∣∣
∑

m∈{−N,...,N}d

ϕm (f(x)− Pm(x))

∣∣∣∣∣∣
≤

∑
m:∥x−m

N ∥∞< 2
3N

|f(x)− Pm(x)|

≤ 2d max
m:∥x−m

N ∥∞< 2
3N

|f(x)− Pm(x)|

≤ 2d

n!

(
2d

3N

)n

max
n:∥n∥1=n

ess sup
x∈[−1,1]d

∥Dnf(x)∥∞

≤ 2d

n!

(
2d

3N

)n

.

(29)

The first inequality is because of the triangular inequality and Eq. (25). In the second inequality,
we used the fact that ∀x ∈ [−1, 1]d belongs to the support of at most 2d functions ϕm. The third
inequality is a bound for the Taylor remainder and the fourth inequality uses the definition of Fn,d.
Let

N =

⌊
2d

3

(
2d

n!ϵ

) 1
n

⌋
+ 1, (30)

we have that
max

x∈[−1,1]d
|f(x)− fN (x)| < ϵ. (31)

Next, we construct a PolyReLU network gN to represent fN exactly. Let am,n = 1
n!D

nf
(
m
N

)
.

Since ∥f∥Wn,∞([−1,1]d) ≤ 1, |am,n| ≤ 1 for any m,n, we rewrite fN as:

fN (x) =
∑

m∈{−N,...,N}d

∑
n:∥n∥1<n

am,nϕm(x)
(
x− m

N

)n
. (32)

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Therefore, fN is composed of at most dn(2N + 1)d functions ϕm(x)
(
x− m

N

)n
. Since ϕm(x) =∏d

i=1 φ
(
3N
(
xk − mk

N

))
and each φ

(
3N
(
xk − mk

N

))
is a continuous piece-wise linear function,

we can apply Corollary A.1, which guarantees that there exists a PolyReLU network ϕ̂m of size
O(d) that can exactly represent ϕm on Rd, i.e., ϕ̂m(x) = ϕm(x),∀x ∈ Rd. For

(
x− m

N

)n
=∏d

i=1

(
xi − mi

N

)ni , by Lemma A.4, we know that there exists a PolyReLU network gm of size at
most O(d ln2(n)) such that gm(x) =

(
x− m

N

)n
,∀xRd. Combining these results, we can now

construct a larger PolyReLU network gn as follows:

gN (x) =
∑

m∈{−N,...,N}d

∑
n:∥n∥1<n

am,nϕ̂m(x)gm(x), (33)

where the total size of the network is:
O
(
dn(2N + 1)d(d+ d ln2(n))

)
= O(ϵ−

d
n).

Here, we use Eq. (30) to determine the size bound in terms of the error tolerance ϵ. Clearly, we
have:

fN (x) = gN (x), ∀x ∈ Rd. (34)
Hence, we conclude:

max
x∈[−1,1]d

|f(x)− gN (x) = max
x∈[−1,1]d

|f(x)− fN (x)| < ϵ. (35)

This completes the proof.

B DISCUSSION OF THE OPTIMAL APPROXIMATION RATE

For convenience, we state Theorem 4.2 in DeVore et al. (1989) in the following.
Theorem 4 (Theorem 4.2 in DeVore et al. (1989)). Let X be a Banach space Lq on Rd, 1 ≤ q ≤ ∞.
If F p

n,d = {f ∈ X |∥f∥Wn,p ≤ 1}, 1 ≤ p ≤ q, n ∈ N, then

sup
f∈Fp

n,d

inf
θ∈Rm

∥f −M(θ)∥q ≥ Cm−n
d , (36)

where M be a mapping from Rm into X which associate with each θ ∈ Rm the element M(θ) ∈ X ,
and C is a constant.

Particularly, let q = p = ∞ and X = L∞[−1,−1]d, the above theorem tells us that the approxima-
tion error of the neural networks with m parameters to approximate F∞

n,d, i.e., Fd,n, is larger than
Cm−n

d . Therefore, given error tolerance ϵ, we have

ϵ ≥ Cm−n
d . (37)

It follows that
m ≥ C

d
n ϵ−

d
n . (38)

Hence, the total number of parameters required by neural networks to approximate functions in Fn,d

is Ω(ϵ−
d
n). Combining with Theorem 3, we have that our PolyReLU networks achieve the optimal

approximation rate in the context of Sobolev spaces.

C ACTIVATION FUNCTIONS

We provide definitions of several commonly used non-linear activation functions in Table 4.

D EXPERIMENTAL DETAILS

D.1 ARCHITECTURE

Table 5 outlines the model architecture used for the 1B dense model. To ensure comparable numbers
of training parameters across different activation functions, we adjust the intermediate sizes accord-
ingly. For SwiGLU, the intermediate size is set to 5504, while for other activation functions, it is set
to 8256.

Table 6 outlines the model architecture used for the MoE models. Similarly, the intermediate size
for SwiGLU is set to 1024, while for other activation functions, it is set to 1536.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Table 4: Definition of activation functions.

Activation Definition

ReLU (Nair & Hinton, 2010) ReLU (x) = max{x, 0}
ReLU2 (So et al., 2021) ReLU2 (x) = max{x, 0}2
ReLU6 (Krizhevsky et al., 2010) ReLU6 (x) = min(max{x, 0},6)

Leaky ReLU (Maas et al., 2013) LeakyReLU (x) =

{
x, if x ≥ 0

ax, otherwise
, a ∈ (0, 1) is a constant

RReLU (Xu et al., 2015) RReLU(x) =

{
x if x ≥ 0

ax otherwise,
a is randomly sampled from uniform distribution

Parametric ReLU (PReLU) PReLU (x) =

{
x, if x ≥ 0

ax, otherwise ,
(He et al., 2015) a is a learnable parameter
Tanh Tanh(x) = exp(x)−exp(−x)

exp(x)+exp(−x)

Softplus (Glorot et al., 2011) Softplus (x) = 1
a ∗ log(1 + exp(ax)),

a is a constant (default 1.0)
Mish (Misra, 2019) Mish (x) = x ∗ Tanh(Softplus(x))
Sigmoid Sigmoid(x) = σ(x) = 1

1+exp(−x)

SiLU(Swish) SiLU(x) = x ∗ σ(x)
(Ramachandran et al., 2017)

ELU (Clevert, 2015) ELU(x) =

{
x, if x > 0

a ∗ (exp(x)− 1), if x ≤ 0,
a is a constant (default 1.0)

CELU (Barron, 2017) CELU (x) = max(0, x) + min(0, α ∗ (exp(x/a)− 1)),
a is a constant (default 1.0)

GELU (Hendrycks & Gimpel, 2016) GELU(x) = x ∗ Φ(x),
Φ(x) is CDF for Gaussian distribution

GLU (Dauphin et al., 2017) GLU(x) = σ(xW)⊗ (xV)
SwiGLU (Shazeer, 2020) SwiGLU(x) = SiLU(xW)⊗ (xV),

W,V are learnable parameters
Poly Poly(x) =

∑r
i=0 aix

i, ai, i ∈ [r] are learnable parameters.

Table 5: Model architecture of the 1B dense model.

Params Hidden size Context Length Intermediate size Attention heads Hidden Layers

1.3B 2048 4096 5504/8256 16 24

Table 6: Model architecture of MoE model.

Activate Params Total Params Hidden size Intermediate size Attention heads

1.3B 6.9B 2048 1024/1536 16
Hidden Layers Exports Context Length Weight tying

16 64 4096 no

D.2 HYPERPARAMETERS

In Table 7, we list the hyperparameters that we use by default at training time for all our experiments
for the 1B dense model and MoE-1B-7B, unless stated otherwise.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

Table 7: Pretraining hyperparameters for the 1B dense model and MoE-1B-7B.

1B dense model MoE-1B-7B

Optimizer AdamW AdamW
Learning rate (LR) 3E-4 4E-4
minimum LR 3E-5 5E-5
LR schedule cosine cosine
Weight decay 0.1 0.1
β1 0.9 0.9
β2 0.95 0.95
Gradient clipping 1 1
Warmup tokens 620000000 -
Warmup steps - 2000
Init distribution normal trunc normal
Init std 1/(2d) 1/(2d)
Init trunc - 3× std
Load balancing loss weight - 0.01
Router z-loss weight - 0.001

D.3 DEFINITION OF EFFECTIVE RANK

We adopt the concept of effective rank from Roy & Vetterli (2007) to measure the effective dimen-
sionality of a matrix. Given a matrix A with Singular Value Decomposition (SVD) A = UΣV ⊤,
where Σ is a diagonal matrix containing singular values σ1 ≥ σ2 ≥ · · · ≥ σn ≥ 0. we define the
singular value distribution as pi = σi/

∑n
j=0 σj , i ∈ [n]. The effective rank of A is then given by:

Erank(A) = exp

(
−

n∑
i=0

pi ln pi

)
. (39)

E COMPUTATIONAL COMPLEXITY ANALYSIS

For the sake of simplicity, we only calculate the computational complexity in one-layer Feed-
Forward Networks (FNN) since activation only. Support input tensor of FFN is x ∈ RB×S×H ,
where B, L, and H are the batch size, length of the sequence, and hidden size, respectively. Roughly,
the relationship between computational FLOPs and model parameters can be regarded as propor-
tional 5. Therefore, we can estimate the proportion of the computational cost incurred by the ac-
tivation function calculations within the total computational cost of the FFN matrix computations
(24BSH2 The FLOPs ratio is calculated as:

FLOPs ratio =
FLOPs for activation

24BSH2

The results are summarized in the following table:

Table 8: Comparison of computational complexity for methods with different activation functions.

Method Intermediate Size FLOPs for activation FLOPs ratio (H=1024)

ReLU 4H 4BSH 1
6H = 0.016%

GeLU 4H 72BSH 3
H = 0.29%

SwiGLU 8
3H

112
3 BSH 14

9H = 0.15%
ReLU2 4H 8BSH 1

3H = 0.032%
3order PolyNorm 4H 72BSH 3

H = 0.29%
3order PolyReLU 4H 40BSH 5

3H = 0.16%

5https://blog.eleuther.ai/transformer-math/

21

https://blog.eleuther.ai/transformer-math/

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

We assume that the scale of the input tensor is set to [-1, 1]. In this case, the FLOPs for both tanh
and exp are approximately 10 each. For a fair comparison, the intermediate size of models with
SwiGLU activations is set to 8/3H to keep the overall numbers of parameters constant.

In practice, we utilized gradient checkpointing 6 to reduce the additional memory overhead to 0.
While this may introduce a certain computational overhead, given the overall modest computational
cost of the activation functions, the overall increase in GPU memory and computational cost is quite
small.

F ADDITIONAL RESULTS ON DENSE MODEL

More detailed results from our ablation studies are shown in Figures 8, 9, and 10. These figures
illustrate the training loss, validation loss, and validation perplexity (PPL) for the 1B dense model
under different configurations.

The results of the 1B dense models trained on 400 billion tokens are presented in Figure 11. As
shown in the figure, models employing PolyReLU and PolyNorm consistently achieve significantly
better performance compared to SwiGLU.

Figure 8: training loss, validation loss, and validation perplexity (PPL) for the 1B dense model with
different orders of PolyReLU activation functions.

Figure 9: training loss, validation loss, and validation perplexity (PPL) for the 1B dense model with
different polynomial compositions.

G ADDITIONAL RESULTS ON MOE MODEL

More results for the MoE model are provided in Figure 12, showcasing validation losses and down-
stream evaluations after 200 billion training tokens. The comparison highlights models with differ-
ent activation functions, such as SwiGLU and PolyNorm. As shown, models with PolyNorm exhibit
lower training and validation losses, along with superior downstream performance.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

Figure 10: Training loss, validation loss, and validation perplexity (PPL) for the 1B dense model
with different variants of ReLU activation functions.

Figure 11: Training loss, validation loss, and validation perplexity (PPL) for the 1B dense model
with 400 billion training tokens.

H SCALING CURVES

In Figure 13, we present the training loss scaling curves for dense models utilizing the activation
functions SwiGLU, PolyReLU, and PolyNorm. As illustrated in the figure, both PolyReLU and
PolyNorm consistently outperform SwiGLU across model sizes ranging from 110M to 1.3B param-
eters.

The model sizes used for the scaling law experiments are detailed in Table 9, and all models employ
the hyperparameters specified for 1B dense models, as listed in Table 7. Models with 110M, 226M,
and 502M parameters were trained on 200 tokens.

Table 9: Model sizes for scaling laws experiments.

Params Hidden size Context Length Intermediate size Attention heads Hidden Layers

110M 768 2048 2048/3072 16 12
226M 1024 2048 2560/3840 16 16
502M 1536 2048 4096/6144 16 16
1.3B 2048 4096 5504/8256 16 24

6https://pytorch.org/docs/stable/checkpoint.html

23

https://pytorch.org/docs/stable/checkpoint.html

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

Figure 12: Validation loss and downstream evaluations for MoE models with 200 billion training
tokens, comparing SwiGLU and PolyNorm activation functions. PolyNorm shows superior perfor-
mance in terms of lower loss and better downstream results.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

110M 226M 502M 1.3B
Model Size

2.2

2.3

2.4

2.5

2.6

2.7

Tr
ai

ni
ng

 L
os

s

SwiGLU
PolyReLU
PolyNorm

Figure 13: Scaling curves of models with different activation functions.

25

	Introduction
	Polynomial Composition Activation Function
	Theoretical Analysis
	Approximating ReLU Networks by PolyReLU
	Approximating PolyReLU with ReLU networks
	Approximation of General Smooth Function

	Experiments
	Setup
	Results on Dense Model
	Results on MoE Model
	Ablations and Analysis.

	Related Work
	Conclusions
	Omitted Proofs
	Proof of Lemma 2
	Proof of Theorem 1
	Proof of Theorem 2
	Proof of Theorem 3

	Discussion of the Optimal Approximation Rate
	Activation Functions
	Experimental Details
	Architecture
	Hyperparameters
	Definition of Effective Rank

	Computational complexity analysis
	Additional Results on Dense Model
	Additional Results on MoE model
	Scaling Curves

