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ABSTRACT

Transformers have found extensive applications across various domains due to
the powerful fitting capabilities. This success can be partially attributed to their
inherent nonlinearity. Thus, in addition to the ReLU function employed in the
original transformer architecture, researchers have explored alternative modules
such as GeLU and SwishGLU to enhance nonlinearity and thereby augment rep-
resentational capacity. In this paper, we propose a novel category of polynomial
composition activations (PolyCom), designed to optimize the dynamics of trans-
formers. Theoretically, we provide a comprehensive mathematical analysis of
PolyCom, highlighting its enhanced expressivity and efficacy relative to other ac-
tivation functions. Notably, we demonstrate that networks incorporating Poly-
Com achieve the optimal approximation rate, indicating that PolyCom networks
require minimal parameters to approximate general smooth functions in Sobolev
spaces. We conduct empirical experiments on the pre-training configurations of
large language models (LLMs), including both dense and sparse architectures. By
substituting conventional activation functions with PolyCom, we enable LLMs
to capture higher-order interactions within the data, thus improving performance
metrics in terms of accuracy and convergence rates. Extensive experimental re-
sults demonstrate the effectiveness of our method, showing substantial improve-
ments over other activation functions.

Figure 1: Training loss, validation perplexity (PPL), and downstream performance of 1B dense
models. We compare models employing different activation functions, including SwiGLU, GELU,
ReLU, PolyReLU, and PolyNorm. It indicates that models using PolyReLU and PolyNorm exhibit
lower training loss and validation PPL, alongside better downstream performance.

1 INTRODUCTION

Transformers (Vaswani et al., 2017) have revolutionized the field of deep learning, facilitating un-
precedented advancements in natural language processing (Radford et al., 2019), computer vision
(Dosovitskiy et al., 2021), and beyond (Dong et al., 2018; Arnab et al., 2021). Characterized
by their attention mechanisms, transformers excel at capturing intricate relationships within data,
making them indispensable in contemporary machine learning applications. However, despite their
widespread success, there remain opportunities for further refinement, particularly concerning the
selection of activation functions. The activation function plays a crucial role in determining the out-
put of each neuron within a neural network. Traditionally, simple nonlinearities such as Rectified
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Linear Unit (ReLU) (Nair & Hinton, 2010) and its variants (Hendrycks & Gimpel, 2016; So et al.,
2021) have been favored due to their computational efficiency and ease of implementation. Al-
though effective, these activation functions are inherently limited in their ability to model complex
higher-order relationships within data. This limitation can be particularly restrictive in transformer
architectures, where the ability to capture subtle and complex dependencies is essential.

In this paper, we introduce a novel category of polynomial composition activation functions
(PolyCom), specifically engineered to enhance the performance of transformer architectures. In
contrast to conventional activation functions, which are predominantly linear or piecewise linear,
polynomial composition activations facilitate the modeling of more complex patterns within data.
This augmentation in the activation function’s expressiveness endows the model with superior ex-
pressive capacity, enabling it to capture higher-order interactions that might otherwise be neglected.
Unlike other forms of polynomials ((Hornik et al., 1989; Trefethen, 2019)) that suffer from inade-
quate approximation, exploding values, and oscillatory behavior, we demonstrate that PolyCom pos-
sesses a more potent expressive capability than both ReLU and traditional polynomials and achieves
optimal approximation within Sobolev space.

We posit that the integration of polynomial composition activations within transformer models can
lead to enhanced performance in tasks requiring intricate data interpretation. To evaluate this hypoth-
esis, we conducted comprehensive experiments on the pre-training configurations of large language
models (LLMs), including both dense and sparse architectures. These evaluations were performed
across various benchmarks, assessing the performance of transformers employing polynomial com-
position activations in comparison to those utilizing traditional activation functions. The results in-
dicate that the proposed method not only improves model accuracy, but also accelerates convergence
rates, thereby suggesting that polynomial composition activations provide a substantive advantage
in deep learning applications.

The main contributions of this paper are summarized in the following.

• We propose a new activation function PolyCom which is a composition of the polyno-
mial and other types of function. In particular, we introduce two instances of PolyCom:
PolyReLU and PolyNorm, and details its integration into the transformer architecture.

• Theoretically, we derive bounds on the number of trainable parameters required for
PolyReLU networks to approximate ReLU networks, and vice versa. Additionally, we
show that a PolyReLU network of size O(ϵ−d/n) can approximate any function in Sobolev
spaces with error tolerance ϵ, achieving optimal approximation rates.

• Empirically, we validate the effectiveness of this new activation function on LLMs with
both 1B dense models and MoE models with 1B active and 7B total parameters. The
results of both models demonstrate that PolyCom can accelerate the converging speed and
significantly outperform SwiGLU, GELU, and ReLU et al.

The outline of this paper is structured as follows: In Section 2, we present the mathematical formu-
lation of PolyCom and discuss its integration within transformer architectures. Section 3 delivers a
comprehensive theoretical analysis of PolyCom, emphasizing its enhanced expressivity and effec-
tiveness. In Section 4, we provide a detailed account of our experimental results involving large
language models (LLMs). Section 5 provides an overview of related work in the field of activation
functions and their applications in transformer models. Finally, we conclude the paper and outline
potential directions for future research.

2 POLYNOMIAL COMPOSITION ACTIVATION FUNCTION

In this section, we present the mathematical formulation of the polynomial composition activation
function (PolyCom) and detail its integration into the transformer architecture.

PolyCom. The study of the polynomial activation function can be traced back to the seminal work
of Hornik et al. (1989), which showed that neural networks with polynomial activation are not dense
within the space of continuous functions. Additionally, empirical evidence has shown that deep
neural networks employing pure polynomial activations tend to underperform (Trefethen, 2019). To
overcome these limitations, we propose PolyCom, a novel composition of polynomial and other
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Figure 2: Block diagrams of Transformer MLP blocks utilizing ReLU/GELU, SwiGLU, PolyReLU
and PolyNorm. “FC” stands for Fully Connected layer. “xi” represents the i-th power of the input
tensor x, while “aj” denotes the j-th element of the learnable weight vector a. “N” indicates a
normalization operation.

functions. Specifically, we explore two composition approaches:{
Type I: x 7→

∑r
i=0 aiρ

i(x),

Type II: x 7→
∑r

i=0 aiρ(x
i),

ai ∈ R, (1)

where r ∈ N denotes the order of PolyCom and ρ represents an arbitrary functions such as ReLU,
PReLU, Sigmoid, SiLU, or normalization. The key distinction between the two approaches lies
in whether the function is composed before or after the power operation. It can be theoretically
shown that both approaches have equivalent expressivity, provided that ρ is a non-linear function.
This is because polynomial terms are symmetric with respect to composition, allowing both Type I
and Type II to approximate similar function classes. In other words, rearranging the order of ρ and
the polynomial powers does not affect the ability to approximate complex non-linear functions. In
practice, we use a third-order PolyCom (r = 3) with trainable coefficients ai. For initialization, we
set ai = 1/r for i = 1, 2, . . . , r and a0 = 0.

For Type I PolyCom, we specifically consider a composition involving the ReLU function due to its
simplicity, which we term PolyReLU. An r-order PolyReLU is defined as:

PolyReLU(x) =

r∑
i=0

aiReLU
i(x), (2)

whereReLUi(x) = max{x, 0}i. This formulation can be seen as an extension of both ReLU and
square ReLU.

For Type II PolyCom, we introduce PolyNorm, which normalizes the powers to ensure consistent
magnitudes across terms:

PolyNorm(x) =

r∑
i=0

ai
xi

∥xi∥2
, (3)

where xi = [xi
1, x

i
2, · · · , xi

d]
⊤ represents element-wise exponentiation, and ∥ · ∥2 denotes the L2

normalization.

Integration into Transformer. The transformer architecture (Vaswani et al., 2017) consists of
two alternating modules, Multi-Head Attention (MHA) and position-wise Feed-Forward Networks
(FNN). Activation functions predominantly influence the performance of FFN layers. We begin by
formalizing the common paradigm of FFN,

FFNρ(x) = ρ(xW1)W2 (4)

where ρ represents the activation function such as ReLU, GeLU, PolyReLU, or PolyNorm. We
replace the traditional activation function with our proposed PolyCom variants to enhance model
capacity and performance, as illustrated in Figure 2.
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3 THEORETICAL ANALYSIS

From Figure 1, one can see that the expressivity of PolyNorm is greater than or equal to that of
PolyReLU. To streamline the analysis, we focus solely on the theoretical properties of PolyReLU,
specifically its expressivity and effectiveness. Additional, nonlinear activations such as GeLU and
SwiGLU can be locally approximated by Taylor polynomials around the origin, which allows us to
primarily compare PolyReLU with ReLU and polynomial activations. To avoid confusion, we refer
to networks that use ReLU activations as ReLU networks, and those that use PolyReLU activations
as PolyReLU networks.

3.1 APPROXIMATING RELU NETWORKS BY POLYRELU
In this subsection, we present theoretical results on approximating ReLU networks using PolyReLU
networks. The following lemma shows that ReLU, ReLU2, and polynomial activation are special
cases of PolyReLU activation, highlighting the superior expressivity of PolyReLU. This implies that
PolyReLU has stronger approximation abilities with fewer trainable parameters compared to ReLU
and other polynomial activations.
Lemma 1. ReLU, ReLU2 and polynomial activation can be represented by PolyReLU.

Proof of Lemma 1. For ReLU activation, set a1 = 1, ai = 0,∀i ̸= 1, leading to PolyReLU(x) =
ReLU(x).

For ReLU2 activation, set a2 = 1, ai = 0,∀i ̸= 2, giving PolyReLU(x) = ReLU2(x).

For a general polynomial activation, observe that for ∀x ∈ R and i ∈ N:

xi = ReLUi(x) + (−1)iReLUi(−x), ∀x ∈ R,∀i ∈ N. (5)

Thus, for any polynomial activation of order r,

Poly(x) = PolyReLU1(x) + PolyReLU2(−x), (6)

where PolyReLU1(x) =
∑r

i=0 aiReLU
i(x) and PolyReLU2(x) =

∑r
i=1(−1)iaiReLU

i(x).

Building on Lemma 1, we can formally prove that any ReLU network can be exactly represented by
a PolyReLU network of the same size, as stated in the following theorem.
Theorem 1. Let f : [−1, 1]d → [−1, 1] be a ReLU network with depth L and width K. Then, there
exists a PolyReLU network g : [−1, 1]d → [−1, 1] of size O(LK) such that

f(x) = g(x), for∀ x ∈ [−1, 1]d. (7)

This theorem, proved in Appendix A, shows that PolyReLU networks can exactly match the repre-
sentational power of ReLU networks without increasing the model size.

3.2 APPROXIMATING POLYRELU WITH RELU NETWORKS

In this part, we give theoretical results on approximating PolyReLU networks using ReLU networks.
The following Lemma 2 demonstrates that the PolyReLU activation can be approximated by a ReLU
network within a given error tolerance.
Lemma 2. For the fixed positive integer r and the activation PolyReLU(x) =∑r

i=0 aiReLU
i(x), x ∈ [−1, 1] with ai ∈ [−1, 1]. Given any ϵ ∈ (0, 1), there exists a

ReLU network f : [−1, 1] → [−1, 1] with size O(ln2(1/ϵ)), such that

max
x∈[−1,1]

|f(x)− PolyReLU(x)| < ϵ. (8)

The proof is provided in the Appendix A. Lemma 2 establishes an upper bound on the size of a
ReLU network needed to approximate a PolyReLU activation function. This result highlights that
while ReLU networks can approximate PolyReLU activations, they require a significantly larger
number of parameters.

Building on Lemma 2, we derive the following theorem, which provides both upper and lower
bounds for approximating PolyReLU networks with ReLU networks.
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Theorem 2. Let g : [−1, 1]d → [−1, 1] be a PolyReLU network with depth L and width K, and
PolyReLU activation with order r and Lipschitz constant α. Suppose each neuron computes x 7→
PolyReLU(a⊤x+ b) with the pair (a, b) satisfies ∥a∥1 + b ≤ 1 and PolyReLU : [−1, 1] → [−1, 1]
(a, b, and PolyReLU are possibly distinct across neurons). For any given ϵ ∈ (0, 1), there exists a
ReLU network f : [−1, 1]d → [−1, 1] of size

O

(
LK ln2

(
LαL

ϵ

))
, (9)

such that
max

x∈[−1,1]d
|f(x)− g(x)| < ϵ. (10)

Conversely, there exists PolyReLU networks cannot be approximated within tolerance ϵ by any ReLU
network with a size less than

Ω

(
KL ln

(
1

ϵ

))
. (11)

Theorem 2 tells us that the total number of trainable parameters required by ReLU networks to ap-
proximate a PolyReLU neural network within a tolerance of ϵ is O(ln2(1/ϵ)). Conversely, there
exists a PolyReLU network that can not be approximated by ReLU networks of size less than
Ω(ln(1/ϵ). Combined with Theorem 1, we conclude that PolyReLU networks are more efficient
in terms of representational capacity than ReLU networks.

3.3 APPROXIMATION OF GENERAL SMOOTH FUNCTION

Similar to Yarotsky (2017); Boullé et al. (2020), we also explore the universal approximation ca-
pabilities of PolyReLU networks in the context of Sobolev spaces (Adams & Fournier, 2003).
Specifically, we show that PolyReLU networks achieve the optimal approximation rate within
these spaces, meaning that PolyReLU networks require minimum parameters to approximate gen-
eral smooth functions in Sobolev spaces, compared with networks with the other activation.

The definition of Sobolev space Wn,∞ ([−1, 1]d
)

is stated below. The set [−1, 1]d can be replaced
by any compact set in Rd, we use it just for the sake of brevity.
Definition 1 (Sobolev Spaces). For n, d ∈ N, Sobolev space Wn,∞ ([−1, 1]d

)
is defined as

Wn,∞ ([−1, 1]d
)
=
{
f ∈ L∞

(
[−1, 1]d

)
|∥f∥Wn,∞([−1,1]d) < ∞

}
, (12)

with the norm which is defined as the following

∥f∥Wn,∞([−1,1]d) = max
n:∥n∥1≤n

ess sup
x∈[−1,1]d

∥Dnf(x)∥∞ , (13)

where n ∈ Nd and Dnf is the respective weak derivative of f , and ess sup means the essential
supremum in functional analysis.

Intuitively, a Sobolev space is a space of functions endowed with a weaker notion of smooth-
ness compared to differentiability and possessing generalized derivatives. The Sobolev space
Wn,∞ ([−1, 1]d

)
contains functions from Cn−1

(
[−1, 1]d

)
which consists of functions whose

derivatives of order n − 1 are Lipschitz continous. In the sequel, we mainly consider the unit
ball within Wn,∞ ([−1, 1]d

)
, which is defined as follows

Fn,d = {f ∈ Wn,∞ ([−1, 1]d
)
|∥f∥Wn,∞([−1,1]d) ≤ 1}.

With the above definitions established, we can present the following main results. We provide an
upper bound on the size of PolyReLU networks required to approximate any function in Fn,d.

Theorem 3. Suppose that d, n ∈ N and ϵ ∈ (0, 1). For any f ∈ Fd,n, there exists a PolyReLU
network g with size O(ϵ−d/n) that can approximate f at a given error tolerance ϵ, i.e.,

max
x∈[−1,1]d

∥f(x)− g(x)∥∞ < ϵ. (14)

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Theorem 3 indicates that PolyReLU networks can achieve an optimal approximation rate of
O(ϵ−d/n). In contrast, previous works by Yarotsky (2017) demonstrated that ReLU networks re-
quire O(ϵ−d/n ln(1/ϵ)) parameters to achieve a similar approximation error. Similarly Boullé et al.
(2020) showed that rational neural networks need O(ϵ−d/n ln(ln(1/ϵ))) parameters for the same
task. Therefore, the approximation ability of PolyReLU networks is superior to that of both ReLU
networks and rational networks. Furthermore, Theorem 4.2 in DeVore et al. (1989) shows that the to-
tal number of parameters required by neural networks to approximate functions in Fn,d is Ω(ϵ−d/n).
Therefore, our PolyReLU networks achieve the optimal approximation rate in the context of Sobolev
spaces. Additional disscution is included in Appendix B.

4 EXPERIMENTS

In this section, we demonstrate the expressivity and effectiveness of PolyCom within the transformer
through experiments on LLMs.

4.1 SETUP

Baseline. We evaluate PolyCom across two series of models: a 1B dense model and a Mixture
of Experts (MoE) model with 1B active and 7B total parameters. The 1B dense model contains
approximately 1.3 billion parameters with an architecture similar to Llama 2 (Touvron et al., 2023).
For the MoE model, we use the OLMoE framework (Muennighoff et al., 2024), which activates 1.3B
parameters out of a total of 6.9B parameters. Both models are trained from scratch. We compare the
performance of PolyCom with several activation functions, including ReLU, square ReLU, GELU,
and SwiGLU. All experiments are conducted on Nvidia A100-80G GPUs, 32 GPUs for the dense
model, and 64 GPUs for the MoE model.

Model Configuration. For the dense model, the transformer consists of 24 layers with hidden size
dmodel = 2048 and 16 attention heads. In the MoE model, the transformer is composed of 16
layers, with a hidden size of dmodel = 2048, 16 attention heads, and 64 experts. To maintain a
consistent number of trainable parameters across all activation functions, we adjust the intermediate
size accordingly. Specifically, for SwiGLU, the intermediate size is set to two-thirds that of the other
activations in all experiments. More details can be found in Appendix D.

Datasets. The dense model is trained on the RedPajama-1T dataset 1 (Computer, 2023), which was
developed by the open-source AI community to enable competitive performance against proprietary
models. The MoE model is trained on the OLMoE Mix dataset 2 (Muennighoff et al., 2024).

Hyperparameters. Unless otherwise specified, we use a third-order PolyCom by default and ini-
tialize the coefficients as ai = 1/3 for i = 1, 2, 3 and set a0 = 0. Model weights are randomly
initialized. For optimization, we apply the AdamW optimizer with β1 = 0.9 and β2 = 0.95. All
models are trained on sequences of 4096 tokens. For the dense model, we set the initial learning rate
to 3e-4, decaying to 1.5e-5 using a cosine scheduler. The MoE model starts with a learning rate of
4e-4, also decaying according to a cosine schedule. We summary the hyperparameters in Table 7.

Evaluation To evaluate the performance of LLMs with PolyCom, we use a wide range of open
benchmarks, including ARC-Easy (Clark et al., 2018), ARC-Challenge (Clark et al., 2018), Hel-
laSwag (Zellers et al., 2019), PIQA (Bisk et al., 2020), SciQ (Welbl et al., 2017), CoQA (Reddy
et al., 2019), Winogrande (Sakaguchi et al., 2021), MMLU (Hendrycks et al., 2021), BoolQ (Clark
et al., 2019), COPA (Gordon et al., 2012), CSQA (Talmor et al., 2019), OBQA (Mihaylov et al.,
2018), and SocialIQA (Sap et al., 2019). We utilize the LM Eval Harness (Gao et al., 2023) for
standardized performance evaluation.

4.2 RESULTS ON DENSE MODEL

Training Dynamics of 1B Dense Model. Figure 1 compares the training dynamics of the 1B
dense model across different activation functions. As shown in the figure, models using PolyReLU
and PolyNorm exhibit lower training loss and validation perplexity throughout the training process
compared to models utilizing other activation functions. This indicates that PolyCom accelerates
the convergence of LLMs. The models with PolyReLU and PolyNorm also consistently outperform

1RedPajama-1T is available at https://github.com/togethercomputer/RedPajama-Data.
2OLMoE Mix dataset is available at https://huggingface.co/datasets/allenai/

OLMoE-mix-0924.
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Table 1: Overall results of the 1B dense model with different activation functions, reported in terms
of training loss, validation perplexity, and downstream accuracy (%). ARC-E and ARC-C refer to
ARC-Easy and ARC-Challenge, respectively. The best results in each column are highlighted in
bold. “Avg.” denotes the average accuracy of all downstream tasks.

Loss↓ PPL↓ ARC-E ARC-C HellaSwag PIQA SciQ Winograde Avg.↑
SwiGLU 2.19 3.22 56.61 27.47 49.23 68.61 86.10 56.83 57.47
GELU 2.20 3.24 55.43 27.73 48.42 68.12 87.40 54.78 56.98
ReLU 2.21 3.26 55.68 28.50 48.59 68.39 87.10 54.85 57.18
PolyReLU 2.17 3.18 57.53 27.99 50.19 70.29 87.60 55.72 58.22
PolyNorm 2.17 3.17 59.68 29.01 50.86 69.15 87.20 56.20 58.68

Figure 3: training and validation loss on C4 and Wikipedia for MoE models with 200 billion training
tokens. We compare models using SwiGLU and PolyNorm activation functions. PolyNorm demon-
strates lower training and validation losses, indicating faster convergence.

others in downstream tasks by large margins, highlighting the advantage of PolyCom in improving
the overall expressivity and effectiveness of LLMs.

Downstream Evaluation. Table 1 presents the training loss, validation perplexity, and downstream
task accuracy (%) after processing 250 billion training tokens. The downstream tasks include ARC-
Easy, ARC-Challenge, HellaSwag, PIQA, SciQ, and Winograde. More detailed results are provided
in Appendix F. The results clearly demonstrate that the PolyCom family (PolyReLU and PolyNorm)
outperforms the other activation functions. For instance, PolyNorm outperforms SwiGLU by an av-
erage margin of 1.21% across six downstream tasks. This underscores the expressivity and efficiency
of PolyCom as an activation function in transformer models.

4.3 RESULTS ON MOE MODEL

Our experiments with MoE modes are based on OLMOE-1B-7B, which has 1 billion activate param-
eters and 7 billion total parameters (Muennighoff et al., 2024). Due to computational constraints,
we compare only the PolyNorm activation function, shown to perform best in dense models, with
the widely used SwiGLU activation function, which is commonly employed in current LLM archi-
tectures.

Training dynamics of MoE model. In Figure 3, we report the training and validation loss of MoE
models trained on 200 billion tokens. Models using PolyNorm consistently show lower losses com-
pared to those using SwiGLU, indicating that PolyNorm enables faster learning. Figure 4 shows the
downstream performance on HellaSwag, MMLU Var3, ARC-Challenge, and SciQ. PolyNorm out-
performs SwiGLU on all tasks, with notable improvements, demonstrating superior generalization
capabilities.

Dowmstream Evaluation. Table 2 presents the validation losses on 11 datasets. PolyNorm consis-
tently achieves lower validation losses than SwiGLU across all datasets, with an average improve-

3MMLU Var is a variant of MMLU (Hendrycks et al., 2021) using varied few-shots (Muennighoff et al.,
2024).
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Figure 4: Downstrean performance dynamics on HellaSwag, MMLU Var, ARC-Challenge, and
SciQ for MoE models with 200 billion training tokens. Models with PolyNorm significantly outper-
form those with SwiGLU on downstream tasks.

Table 2: Validation losses of MoE models with different activation functions. CC denotes Common
Crawl. Best results per column are bold.

Methods C4 Books CC peS2o Reddit Stack Wiki-
pedia ICE M2D2 Pile Wiki-

text Avg.↓

SwiGLU 2.72 2.59 2.79 2.16 2.93 1.01 2.30 2.50 3.07 2.07 2.37 2.41
PolyNorm 2.71 2.57 2.78 2.15 2.92 1.00 2.29 2.49 3.06 2.03 2.34 2.39

Table 3: Downstream evaluation results of MoE models with different activation functions. ARC-C,
ARC-E, OQA denote ARC-Challenge, ARC-Easy, and OpenbookQA, respectively. Best results per
column are in bold.

Tasks MMLU
Var

Hella-
Swag SciQ ARC-C ARC-E PIQA Wino-

Grande OQA COPA Avg.↑

SwiGLU 37.07 66.49 90.60 37.12 71.58 76.61 62.75 39.80 83.00 62.78
PolyNorm 37.27 67.63 92.40 38.46 70.70 77.04 62.19 40.60 84.00 63.37

ment of 0.02. In Table 3, we also observe that PolyNorm outperforms SwiGLU on 8 downstream
tasks. These results highlight the superior performance of models using the PolyNorm activation
function. Additional results can be found in Appendix G.

4.4 ABLATIONS AND ANALYSIS.

Order of PolyCom. We first investigate the effect of different orders of PolyCom. We vary the
order r of PolyReLU in the set {2, 3, 4} and plot the results in Figure 5(a). As seen, the convergence
speed improves as the order increases. However, there is no noticeable difference between orders 3
and 4 in terms of convergence speed. Additionally, increasing the order can lead to computational
overhead and overflow issues, particularly when using low-precision arithmetic. Based on these
observations, we select r = 3 as the default order for PolyCom in our experiments, balancing both
performance and computational efficiency.

Different Polynomial Composition Functions. We evaluate the impact of different polynomial
composition functions by comparing PolyReLU, PolyPReLU, PolyNorm, and PolyReLUNorm in
Figure 5(b). Our results indicate that PolyNorm, which uses normalization as the composition func-
tion, achieves the lowest training loss and best overall performance. This suggests that normalization
plays a key role in stabilizing training and enhancing the model’s ability to generalize. In contrast,
combining ReLU with normalization (PolyReLUNorm) provides intermediate results, suggesting
that more complex compositions do not always lead to better outcomes.

Variants of ReLU. In Figure 5(c), we compare different variants of the ReLU activation function,
including ReLU and ReLU2. PolyReLU consistently outperforms both ReLU and ReLU2 across
all tasks, highlighting the benefits of using polynomial composition. This result reinforces the hy-
pothesis that introducing higher-order terms through PolyCom enables the model to capture more
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(a) Different orders of PolyReLU (b) Different compositions (c) ReLU variants

Figure 5: Training loss for 1B dense models with different activation functions. 5(a): We compare
different orders of PolyReLU. 5(b): Comparison of PolyCom with different composition functions.
5(c): Comparison of different variants of ReLU activation function.

(a) Rank of Wup, dense (b) Rank of Wdown, dense (c) Rank of Wup, MoE (d) Rank of Wdown, MoE

Figure 6: Rank of weights in each FNN. 6(a) & 6(b) for the dense model, 6(c) & 6(d) for the MoE
model.

complex data interactions, thus improving the expressivity of the activation function without signif-
icantly increasing model size or complexity.

Rank of Weights. To understand how PolyCom enhances model performance, we analyze the rank
of the weights in each FNN layer of the transformer. We use the effective rank (Roy & Vetterli,
2007) to measure the effective dimensionality of weights and its definition is in Appendix D.3.
Figure 6 shows that PolyReLU and PolyNorm result in higher weight ranks compared to other
activation functions such as SwiGLU, GELU, and ReLU. A higher rank in the weight matrices
usually indicates a greater capacity for representing complex patterns in the data. These findings
suggest that PolyCom improves the expressibility of transformers by allowing the FNN layers to
better utilize their parameters, ultimately leading to better generalization on downstream tasks.

Layer-wise Similarity. We further analyze the layer-wise similarity of hidden states using cosine
similarity, as illustrated in Figure 7. For both dense and MoE models, we compare SwiGLU with
PolyNorm. The results reveal that PolyNorm consistently maintains lower layer-wise similarity
compared to SwiGLU, indicating that PolyNorm promotes greater diversity between layers. This
diversity likely enables the model to learn more complex representations, as deeper layers are not
merely replicating the functionality of earlier ones. Notably, the gap in cosine similarity between
PolyNorm and SwiGLU widens in the deeper layers, which are generally more crucial for down-
stream task performance. This increased diversity across layers enhances the model’s ability to
capture complex relationships, thereby improving the overall effectiveness of LLMs.

5 RELATED WORK

The design of activation functions has been a critical area of research in neural networks, directly
influencing the performance and capabilities of deep learning models. Early activation functions
like Sigmoid and Tanh were widely used due to their smooth nonlinear transformations (Goodfel-
low et al., 2016). However, these functions faced challenges such as vanishing gradients, making
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(a) SwiGLU, dense (b) PolyNorm, dense (c) SwiGLU, MoE (d) PolyNorm, MoE

Figure 7: Layer-wise cosine similarity of hidden states. 7(a) &7(b): for 1B dense models with
SwiGLU and PolyNorm, respectively. 7(c) & 7(d): for MoE models with SwiGLU and PolyNorm,
respectively.

it difficult to train deep networks effectively. The introduction of the Rectified Linear Unit (ReLU)
(Nair & Hinton, 2010) mitigated some of these issues by offering a simple, non-saturating nonlin-
earity, which has since become a standard in many deep learning applications. Variants of ReLU,
such as Leaky ReLU (Maas et al., 2013) and Parametric ReLU (PReLU) (He et al., 2015), were
developed to address the “dying ReLU” problem by allowing a small, non-zero gradient when the
input is negative. Other functions, like the Exponential Linear Unit (ELU) (Clevert, 2015), aimed to
provide smoother activation profiles, resulting in better generalization and faster convergence in cer-
tain tasks. Moreover, Manessi & Rozza (2018) proposed a combination of weighted base activation
functions for further enhancement.

Polynomial activation functions (Hornik et al., 1989; Oh et al., 2003), although less commonly
used, have been studied in various contexts for their ability to model higher-order, complex relation-
ships more effectively. For instance, Lokhande et al. (2020) introduced Hermite polynomial activa-
tions to improve pseudo-label accuracy, while Chrysos et al. (2020) proposed polynomial networks,
Π-nets, which apply to various domains such as image and audio processing. Building on this,
Chrysos et al. (2023) utilized regularization techniques to enhance the performance of polynomial
networks. These works highlight the potential of polynomial functions to increase the expressive-
ness of neural networks by capturing intricate, higher-order interactions. On the theoretical front,
the expressivity and approximation power of polynomial functions have been rigorously explored
(Kileel et al., 2019; Kidger & Lyons, 2020; Kubjas et al., 2024).

The choice of activation function in transformers has also become an important area of research.
Originally developed for natural language processing, transformers (Vaswani et al., 2017) have been
effectively adapted for diverse tasks, including image recognition, speech processing, and reinforce-
ment learning. Despite their broad applicability, the activation functions predominantly utilized in
transformers, ReLU and GELU, have seen minimal evolution. Recent studies, however, have be-
gun to explore alternatives to these conventional activations. For example, the Swish activation
(Ramachandran et al., 2017; Shazeer, 2020) and the Mish activation (Misra, 2019) are smooth and
non-monotonic functions that offer potential benefits in model performance and training stability.
Additionally, Gated Linear Units (GLU) were proposed by Dauphin et al. (2017), with SwiGLU
(Shazeer, 2020), a prominent variant, being used in models such as LLaMA-Series (Touvron et al.,
2023).

6 CONCLUSIONS

In this paper, we introduce the Polynomial Composition Activation (PolyCom) and demonstrate
its effectiveness within transformer models. By enabling the capture of higher-order interactions,
PolyCom enhances both the accuracy and convergence rates of these models. Our experiments,
conducted across different large language model architectures and multiple benchmarking datasets,
confirm that PolyCom consistently outperforms conventional activation functions. Furthermore, ab-
lation studies indicate that PolyCom increases model expressivity by elevating weight rank and re-
ducing redundancy across layers. These findings underscore the significant potential of polynomial-
based activations to improve transformer models, thereby paving the way for future research en-
deavors.
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A OMITTED PROOFS

In this section, we provide the proofs that were omitted in the main body of the paper. The following
proofs build upon the work of Yarotsky (2017); Telgarsky (2017); Boullé et al. (2020).

A.1 PROOF OF LEMMA 2
The proof of Lemma 2 leverages Lemma 3.4 from Telgarsky (2017), which we state below.
Lemma A.1 (Lemma 3.4 in Telgarsky (2017)). Let ϵ ∈ (0, 1) be given. Suppose p : [0, 1]d →
[−1, 1] be a r order polynomial with s monomials and coefficients within [−1, 1]. Then there ex-
ists a ReLU network f : [0, 1]d → [−1, 1] of size O(min{sr ln(sr/ϵ), sd ln2(dsr/ϵ)}) such that
maxx∈[0,1]d |p(x)− f(x)| < ϵ.

Using this result, we now proceed with the proof of Lemma 2.

Proof of Lemma 2. First, we observe that PolyReLU(x) = Poly(ReLU(x), where Poly(x) =∑r
i=0 aix

i for x ∈ [−1, 1]. By Lemma A.1, there exists a ReLU network f1 : [0, 1] → [−1, 1] of
size O(ln2(1/ϵ)) such that:

max
x∈[0,1]

|f1(x)− Poly(x)| < ϵ. (15)

Thus, we construct f = f1 ◦ ReLU for inputs x ∈ [−1, 1]. This yields that:

max
x∈[−1,1]

|f(x)− PolyReLU(x)| = max
x∈[−1,1]

|f1 ◦ ReLU(x)− PolyReLU(x)|

= max
x∈[−1,1]

|f1(ReLU(x))− Poly(ReLU(x))|

= max
x∈[0,1]

|f1(x)− Poly(x)|

< ϵ.

(16)

Since f1 is a ReLU network, the constructed function f = f1 ◦ ReLU is also a ReLU network,
completing the proof.

A.2 PROOF OF THEOREM 1
The proof is an elementary extension of Lemma 1.

Proof of Theorem 1. Using Lemma 1, we can represent the ReLU activation on R using a PolyReLU
activation. Thus, we replace each ReLU activation in the ReLU network f with PolyReLU to
construct a new network g. Obviously, such g satisfies the above requirements. Hence, the size
and structure remain equivalent, and g serves as the PolyReLU network equivalent to the ReLU
network.

A.3 PROOF OF THEOREM 2
The lower bound of Theorem 2 follows directly from Theorem 11 in Liang & Srikant (2017), restated
here for clarity:
Lemma A.2 (Theorem 11 in Liang & Srikant (2017)). Suppose function f : [0, 1]d → R is
differentiable and strongly convex. Let ϵ ∈ (0, 1) be given and f̃ be a ReLU network. If
maxx∈[0,1]d |f(x)− f̃(x)|, then the network size of f̃ is at least Ω(ln(1/ϵ)).

Lemma A.2 shows that approximating the quadratic function x2 with an error tolerance ϵ requires
a network of size at least Ω(ln(1/ϵ)). Since x2 on [0, 1]d is a degradation case of PolyReLU, any
ReLU network approximating PolyReLU with error ϵ must also be at least Ω(ln(1/ϵ)) in size. The
upper bound is proved in the following.

Proof of Theorem 2. Denote gi as the i-th layer of PolyReLU neteeork f for 1 ≤ i ≤ L, such that:

g = gL ◦ gL−1 ◦ · · · ◦ g1.

For each neuron, since ∥a∥1 + b ≤ 1, it follows that:

|a⊤x+ b| ≤ |a⊤x|+ |b| ≤ ∥a∥1∥x∥∞ + |b| ≤ 1,∀x ∈ {x|∥x∥∞ ≤ 1}. (17)
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Additionally, note that the range of PolyReLU is [−1, 1]. Hence, by induction, the output of each
neuron remains within [−1, 1]. For each subnetwork gi, by applying Lemma 2, we can construct
a corresponding ReLU network fi by replacing each PolyReLU activation pi,j in gi with a ReLU
activation. Specifically, for any i ∈ [L]4 and j ∈ [K], there exists a ReLU network fi,j : [−1, 1] →
[−1, 1] that approximates the PolyReLU activation pi,j with given tolerance ϵi > 0.

Thus, the network fi is obtained by replacing each PolyReLU activation pi,j in gi with its ReLU
approximation fi,j . Obviously, fi is a ReLU network whose output dimensions are in range [−1, 1].

Next, we give the approximation error bound. Denote hg
i = gi ◦ · · · ◦ g1 and hf

i = fi ◦ · · · ◦ f1 for
i ∈ [L]. For the sake of brevity, we assume hg

0 = hf
0 as the identity map in [−1, 1]d. Hence, we have

hg
i = gi ◦ · · · ◦ g0 and hf

i = fi ◦ · · · ◦ f0. Suppose x 7→ pi,j(a
⊤
i,jh

g
i−1 + bi,j) be the output of j-th

neuron of gi. Denote the approximation between the PolyReLU network and the ReLU network at
i-th layer and j-th neuron as ei,j . And we use ei = maxj∈[K] ei,j to denote the approximation error
between the PolyReLU network and the ReLU network at i-th layer. Then for any i ∈ [L], we have
that

ei,j = max
x∈[−1,1]d

∣∣∣hg
i,j(x)− hf

i,j(x)
∣∣∣

= max
x∈[−1,1]d

∣∣∣pi,j(a⊤i,jhg
i−1(x) + bi,j)− fi,j(a

⊤
i,jh

f
i−1(x) + bi,j)

∣∣∣
= max

x∈[−1,1]d

∣∣∣∣pi,j(a⊤i,jhg
i−1(x) + bi,j)− pi,j(a

⊤
i,jh

f
i−1(x) + bi,j)

+ pi,j(a
⊤
i,jh

f
i−1(x) + bi,j)− fi,j(a

⊤
i,jh

f
i−1(x) + bi,j)

∣∣∣∣
≤ max

x∈[−1,1]d

∣∣∣pi,j(a⊤i,jhg
i−1(x) + bi,j)− pi,j(a

⊤
i,jh

f
i−1(x) + bi,j)

∣∣∣
+ max

x∈[−1,1]d

∣∣∣pi,j(a⊤i,jhf
i−1(x) + bi,j)− fi,j(a

⊤
i,jh

f
i−1(x) + bi,j)

∣∣∣
≤ max

x∈[−1,1]d
α
∣∣∣(a⊤i,jhg

i−1(x) + bi,j)− (a⊤i,jh
f
i−1(x) + bi,j)

∣∣∣+ ϵi

≤α max
x∈[−1,1]d

∥ai,j∥1
∥∥∥hg

i−1(x)− hf
i−1(x)

∥∥∥
∞

+ ϵi

≤α max
x∈[−1,1]d

∥∥∥hg
i−1(x)− hf

i−1(x)
∥∥∥
∞

+ ϵi.

(18)

The first inequality is using the triangular inequality. The second inequality holds because the Lip-
schitz constant of pi,j is α and the ReLU subnetwork fi,j approximates pi,j with error ϵi. In the
fourth inequality, we used Hölder’s inequality. Since ∥ai,j∥1 ≤ ∥ai,j∥1 + |bi,j | ≤ 1, the fifth
inequality holds.

Therefore, we derive the following approximation bound:

ei = max
j∈[K]

ei,j ≤ α max
x∈[−1,1]d

∥∥∥hg
i−1(x)− hf

i−1(x)
∥∥∥
∞

+ ϵi = αei−1 + ϵi, (19)

for ∀i ∈ [L]. Since hg
0 = hf

0 , we have e0 = 0. Let ϵi = ϵ/(LαL−i) for ∀i ∈ [L]. It follows that:

ei ≤
iϵ

LαL−i
, ∀i ∈ [L]. (20)

Hence, the final error at the last layer is bounded by eL ≤ ϵ.

Last, we need to estimate the size of the ReLU network f . By Lemma 2, the size of each ReLU
subnetwork fi,j is O(ln2(LαL−i/ϵ)). Therefore, the total size of the ReLU network f is:

O

(
L∑

i=1

K ln2
(
LαL−i

ϵ

))
= O

(
KL ln2

(
LαL

ϵ

))
, (21)

4We use notation [L] to denote the set {1, 2, . . . , L}.
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where we use the fact that:
L∑

i=1

ln2
(
LαL−i

ϵ

)
=

L∑
i=1

(
ln

(
LαL

ϵ

)
− i lnα

)2

= O

(
L ln2

(
LαL

ϵ

))
. (22)

This completes the proof.

A.4 PROOF OF THEOREM 3
Before proving Theorem 3, we begin by introducing a few useful lemmas.
Lemma A.3 (Proposition 1 in Yarotsky (2017)). Let M ∈ N and ρ : R → R be any continuous
piece-wise linear function with M breakpoints. Then the following two statements hold:

• For a network with activation ρ, depth L and width K, there exists a ReLU network with the
same depth L and width O(MK) that computes the same function as the original network.

• Conversely, if a ReLU network has depth L and width K, there exists a network with
activation ρ, depth L and width K that computes the same function on a bounded input
domain D.

This result, Combined with Lemma 1, directly leads to the following corollary, which demonstrates
that PolyReLU networks can represent any piece-wise linear function exactly on R.
Corollary A.1. Let M ∈ N and ρ : R → R be any continuous piece-wise linear function with M
breakpoints. Then there exists a PolyReLU network g of size O(M) such that:

ρ(x) = g(x), ∀x ∈ R.

In a similar manner to Proposition 10 in Boullé et al. (2020), we can show that PolyReLU networks
can represent powers xn exactly for any n ∈ N.
Lemma A.4. Suppose n, r ∈ N and r ≥ 2. Then xn can be represented exactly by a PolyReLU
network g with an r-th order PolyReLU activation and size O(ln2(n)).

Proof of Lemma A.4. We first prove that xn can be represented exactly by a polynomial network
ĝ with r-th order polynomial activation and having size O(ln2(n)). Based on ĝ, we construct a
PolyReLU network g that satisfies the requirements.

By expressing n in base r, we have that:

xn =

k∏
i=0

xcir
i

=

k∏
i=0

(
xci (xr)

i
)
, (23)

where k = ⌊logr n⌋, n =
∑k

i=0 cir
i, and ci ∈ {0, 1, 2, . . . , r − 1}. Each xcir

i

can be represented
by a polynomial network with i + 1 layers and width 1. It follows that xn can be represented by a
polynomial network of size

k∑
i=0

(i+ 1) = O(k2) = O(ln2(n)). (24)

By Lemma 1, we know that a PolyReLU activation can represent a polynomial activation. Hence,
there exists a PolyReLU network g with an r-th order activation and size O(ln2(n)) such that

g(x) = xn ∀x ∈ R.

With the above lemmas, we can now prove Theorem 3.

Proof of Theorem 3. The proof is composed of two parts. We first approximate f by local Taylor
polynomials and continuous piece-wise linear functions and then represent these functions using
PolyReLU networks, following Yarotsky (2017); Boullé et al. (2020).
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Part 1. Suppose N is a positive integer. We begin by dividing [−1, 1]d into a grid of (2N + 1)d

functions:∑
m

ϕm(x) = 1, ϕm(x) =

d∏
i=1

φ
(
3N
(
xk − mk

N

))
, ∀x = (x1, x2, . . . , xd) ∈ [−1, 1]d,

where m = (m1,m2, . . . ,md) ∈ {−N,−(N − 1), . . . , 0, . . . , N}d, and φ is defined as:

φ(x) =


1, |x| < 1,

0, 2 < |x|,
2− |x|, 1 ≤ |x| ≤ 2.

This function has the following properties:

max
x∈R

|φ(x)| = 1, max
x∈[−1,1]d

∥ϕm(x)∥∞ = 1, (25)

suppϕm =

{
x

∣∣∣∣∥∥∥x− m

N

∥∥∥
∞

<
2

3N

}
,∀m ∈ {−N,−(N − 1), . . . , N}d. (26)

Part 2. We use a degree-(n− 1) local Taylor approximation of the function f , defined as

fN (x) =
∑

m∈{−N,...,N}d

ϕm(x)Pm(x), (27)

where Pm is the degree-(n− 1) Taylor polynomial of f at x = m/N , i.e.,

Pm(x) =
∑

n:∥n∥1<n

1

n!
Dnf

(m
N

)(
x− m

N

)n
, (28)

with conventions n! =
∏d

i=1 ni! and
(
x− m

N

)n
=
∏d

i=1

(
xi − mi

N

)ni .

The approximation error between f and fN can be bounded as follows:

|f(x)− fN (x)| =

∣∣∣∣∣∣
∑

m∈{−N,...,N}d

ϕm (f(x)− Pm(x))

∣∣∣∣∣∣
≤

∑
m:∥x−m

N ∥∞< 2
3N

|f(x)− Pm(x)|

≤ 2d max
m:∥x−m

N ∥∞< 2
3N

|f(x)− Pm(x)|

≤ 2d

n!

(
2d

3N

)n

max
n:∥n∥1=n

ess sup
x∈[−1,1]d

∥Dnf(x)∥∞

≤ 2d

n!

(
2d

3N

)n

.

(29)

The first inequality is because of the triangular inequality and Eq. (25). In the second inequality,
we used the fact that ∀x ∈ [−1, 1]d belongs to the support of at most 2d functions ϕm. The third
inequality is a bound for the Taylor remainder and the fourth inequality uses the definition of Fn,d.
Let

N =

⌊
2d

3

(
2d

n!ϵ

) 1
n

⌋
+ 1, (30)

we have that
max

x∈[−1,1]d
|f(x)− fN (x)| < ϵ. (31)

Next, we construct a PolyReLU network gN to represent fN exactly. Let am,n = 1
n!D

nf
(
m
N

)
.

Since ∥f∥Wn,∞([−1,1]d) ≤ 1, |am,n| ≤ 1 for any m,n, we rewrite fN as:

fN (x) =
∑

m∈{−N,...,N}d

∑
n:∥n∥1<n

am,nϕm(x)
(
x− m

N

)n
. (32)
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Therefore, fN is composed of at most dn(2N + 1)d functions ϕm(x)
(
x− m

N

)n
. Since ϕm(x) =∏d

i=1 φ
(
3N
(
xk − mk

N

))
and each φ

(
3N
(
xk − mk

N

))
is a continuous piece-wise linear function,

we can apply Corollary A.1, which guarantees that there exists a PolyReLU network ϕ̂m of size
O(d) that can exactly represent ϕm on Rd, i.e., ϕ̂m(x) = ϕm(x),∀x ∈ Rd. For

(
x− m

N

)n
=∏d

i=1

(
xi − mi

N

)ni , by Lemma A.4, we know that there exists a PolyReLU network gm of size at
most O(d ln2(n)) such that gm(x) =

(
x− m

N

)n
,∀xRd. Combining these results, we can now

construct a larger PolyReLU network gn as follows:

gN (x) =
∑

m∈{−N,...,N}d

∑
n:∥n∥1<n

am,nϕ̂m(x)gm(x), (33)

where the total size of the network is:
O
(
dn(2N + 1)d(d+ d ln2(n))

)
= O(ϵ−

d
n ).

Here, we use Eq. (30) to determine the size bound in terms of the error tolerance ϵ. Clearly, we
have:

fN (x) = gN (x), ∀x ∈ Rd. (34)
Hence, we conclude:

max
x∈[−1,1]d

|f(x)− gN (x) = max
x∈[−1,1]d

|f(x)− fN (x)| < ϵ. (35)

This completes the proof.

B DISCUSSION OF THE OPTIMAL APPROXIMATION RATE

For convenience, we state Theorem 4.2 in DeVore et al. (1989) in the following.
Theorem 4 (Theorem 4.2 in DeVore et al. (1989)). Let X be a Banach space Lq on Rd, 1 ≤ q ≤ ∞.
If F p

n,d = {f ∈ X |∥f∥Wn,p ≤ 1}, 1 ≤ p ≤ q, n ∈ N, then

sup
f∈Fp

n,d

inf
θ∈Rm

∥f −M(θ)∥q ≥ Cm−n
d , (36)

where M be a mapping from Rm into X which associate with each θ ∈ Rm the element M(θ) ∈ X ,
and C is a constant.

Particularly, let q = p = ∞ and X = L∞[−1,−1]d, the above theorem tells us that the approxima-
tion error of the neural networks with m parameters to approximate F∞

n,d, i.e., Fd,n, is larger than
Cm−n

d . Therefore, given error tolerance ϵ, we have

ϵ ≥ Cm−n
d . (37)

It follows that
m ≥ C

d
n ϵ−

d
n . (38)

Hence, the total number of parameters required by neural networks to approximate functions in Fn,d

is Ω(ϵ−
d
n ). Combining with Theorem 3, we have that our PolyReLU networks achieve the optimal

approximation rate in the context of Sobolev spaces.

C ACTIVATION FUNCTIONS

We provide definitions of several commonly used non-linear activation functions in Table 4.

D EXPERIMENTAL DETAILS

D.1 ARCHITECTURE

Table 5 outlines the model architecture used for the 1B dense model. To ensure comparable numbers
of training parameters across different activation functions, we adjust the intermediate sizes accord-
ingly. For SwiGLU, the intermediate size is set to 5504, while for other activation functions, it is set
to 8256.

Table 6 outlines the model architecture used for the MoE models. Similarly, the intermediate size
for SwiGLU is set to 1024, while for other activation functions, it is set to 1536.

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Table 4: Definition of activation functions.

Activation Definition

ReLU (Nair & Hinton, 2010) ReLU (x) = max{x, 0}
ReLU2 (So et al., 2021) ReLU2 (x) = max{x, 0}2
ReLU6 (Krizhevsky et al., 2010) ReLU6 (x) = min(max{x, 0},6 )

Leaky ReLU (Maas et al., 2013) LeakyReLU (x) =

{
x, if x ≥ 0

ax, otherwise
, a ∈ (0, 1) is a constant

RReLU (Xu et al., 2015) RReLU(x) =

{
x if x ≥ 0

ax otherwise,
a is randomly sampled from uniform distribution

Parametric ReLU (PReLU) PReLU (x) =

{
x, if x ≥ 0

ax, otherwise ,
(He et al., 2015) a is a learnable parameter
Tanh Tanh(x) = exp(x)−exp(−x)

exp(x)+exp(−x)

Softplus (Glorot et al., 2011) Softplus (x) = 1
a ∗ log(1 + exp(ax)),

a is a constant (default 1.0)
Mish (Misra, 2019) Mish (x) = x ∗ Tanh(Softplus(x))
Sigmoid Sigmoid(x) = σ(x) = 1

1+exp(−x)

SiLU(Swish) SiLU(x) = x ∗ σ(x)
(Ramachandran et al., 2017)

ELU (Clevert, 2015) ELU(x) =

{
x, if x > 0

a ∗ (exp(x)− 1), if x ≤ 0,
a is a constant (default 1.0)

CELU (Barron, 2017) CELU (x) = max(0, x) + min(0, α ∗ (exp(x/a)− 1)),
a is a constant (default 1.0)

GELU (Hendrycks & Gimpel, 2016) GELU(x) = x ∗ Φ(x),
Φ(x) is CDF for Gaussian distribution

GLU (Dauphin et al., 2017) GLU(x) = σ(xW )⊗ (xV )
SwiGLU (Shazeer, 2020) SwiGLU(x) = SiLU(xW )⊗ (xV ),

W,V are learnable parameters
Poly Poly(x) =

∑r
i=0 aix

i, ai, i ∈ [r] are learnable parameters.

Table 5: Model architecture of the 1B dense model.

Params Hidden size Context Length Intermediate size Attention heads Hidden Layers

1.3B 2048 4096 5504/8256 16 24

Table 6: Model architecture of MoE model.

Activate Params Total Params Hidden size Intermediate size Attention heads

1.3B 6.9B 2048 1024/1536 16
Hidden Layers Exports Context Length Weight tying

16 64 4096 no

D.2 HYPERPARAMETERS

In Table 7, we list the hyperparameters that we use by default at training time for all our experiments
for the 1B dense model and MoE-1B-7B, unless stated otherwise.
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Table 7: Pretraining hyperparameters for the 1B dense model and MoE-1B-7B.

1B dense model MoE-1B-7B

Optimizer AdamW AdamW
Learning rate (LR) 3E-4 4E-4
minimum LR 3E-5 5E-5
LR schedule cosine cosine
Weight decay 0.1 0.1
β1 0.9 0.9
β2 0.95 0.95
Gradient clipping 1 1
Warmup tokens 620000000 -
Warmup steps - 2000
Init distribution normal trunc normal
Init std 1/(2d) 1/(2d)
Init trunc - 3× std
Load balancing loss weight - 0.01
Router z-loss weight - 0.001

D.3 DEFINITION OF EFFECTIVE RANK

We adopt the concept of effective rank from Roy & Vetterli (2007) to measure the effective dimen-
sionality of a matrix. Given a matrix A with Singular Value Decomposition (SVD) A = UΣV ⊤,
where Σ is a diagonal matrix containing singular values σ1 ≥ σ2 ≥ · · · ≥ σn ≥ 0. we define the
singular value distribution as pi = σi/

∑n
j=0 σj , i ∈ [n]. The effective rank of A is then given by:

Erank(A) = exp

(
−

n∑
i=0

pi ln pi

)
. (39)

E COMPUTATIONAL COMPLEXITY ANALYSIS

For the sake of simplicity, we only calculate the computational complexity in one-layer Feed-
Forward Networks (FNN) since activation only. Support input tensor of FFN is x ∈ RB×S×H ,
where B, L, and H are the batch size, length of the sequence, and hidden size, respectively. Roughly,
the relationship between computational FLOPs and model parameters can be regarded as propor-
tional 5. Therefore, we can estimate the proportion of the computational cost incurred by the ac-
tivation function calculations within the total computational cost of the FFN matrix computations
(24BSH2 The FLOPs ratio is calculated as:

FLOPs ratio =
FLOPs for activation

24BSH2

The results are summarized in the following table:

Table 8: Comparison of computational complexity for methods with different activation functions.

Method Intermediate Size FLOPs for activation FLOPs ratio (H=1024)

ReLU 4H 4BSH 1
6H = 0.016%

GeLU 4H 72BSH 3
H = 0.29%

SwiGLU 8
3H

112
3 BSH 14

9H = 0.15%
ReLU2 4H 8BSH 1

3H = 0.032%
3order PolyNorm 4H 72BSH 3

H = 0.29%
3order PolyReLU 4H 40BSH 5

3H = 0.16%

5https://blog.eleuther.ai/transformer-math/
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We assume that the scale of the input tensor is set to [-1, 1]. In this case, the FLOPs for both tanh
and exp are approximately 10 each. For a fair comparison, the intermediate size of models with
SwiGLU activations is set to 8/3H to keep the overall numbers of parameters constant.

In practice, we utilized gradient checkpointing 6 to reduce the additional memory overhead to 0.
While this may introduce a certain computational overhead, given the overall modest computational
cost of the activation functions, the overall increase in GPU memory and computational cost is quite
small.

F ADDITIONAL RESULTS ON DENSE MODEL

More detailed results from our ablation studies are shown in Figures 8, 9, and 10. These figures
illustrate the training loss, validation loss, and validation perplexity (PPL) for the 1B dense model
under different configurations.

The results of the 1B dense models trained on 400 billion tokens are presented in Figure 11. As
shown in the figure, models employing PolyReLU and PolyNorm consistently achieve significantly
better performance compared to SwiGLU.

Figure 8: training loss, validation loss, and validation perplexity (PPL) for the 1B dense model with
different orders of PolyReLU activation functions.

Figure 9: training loss, validation loss, and validation perplexity (PPL) for the 1B dense model with
different polynomial compositions.

G ADDITIONAL RESULTS ON MOE MODEL

More results for the MoE model are provided in Figure 12, showcasing validation losses and down-
stream evaluations after 200 billion training tokens. The comparison highlights models with differ-
ent activation functions, such as SwiGLU and PolyNorm. As shown, models with PolyNorm exhibit
lower training and validation losses, along with superior downstream performance.
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Figure 10: Training loss, validation loss, and validation perplexity (PPL) for the 1B dense model
with different variants of ReLU activation functions.

Figure 11: Training loss, validation loss, and validation perplexity (PPL) for the 1B dense model
with 400 billion training tokens.

H SCALING CURVES

In Figure 13, we present the training loss scaling curves for dense models utilizing the activation
functions SwiGLU, PolyReLU, and PolyNorm. As illustrated in the figure, both PolyReLU and
PolyNorm consistently outperform SwiGLU across model sizes ranging from 110M to 1.3B param-
eters.

The model sizes used for the scaling law experiments are detailed in Table 9, and all models employ
the hyperparameters specified for 1B dense models, as listed in Table 7. Models with 110M, 226M,
and 502M parameters were trained on 200 tokens.

Table 9: Model sizes for scaling laws experiments.

Params Hidden size Context Length Intermediate size Attention heads Hidden Layers

110M 768 2048 2048/3072 16 12
226M 1024 2048 2560/3840 16 16
502M 1536 2048 4096/6144 16 16
1.3B 2048 4096 5504/8256 16 24

6https://pytorch.org/docs/stable/checkpoint.html
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Figure 12: Validation loss and downstream evaluations for MoE models with 200 billion training
tokens, comparing SwiGLU and PolyNorm activation functions. PolyNorm shows superior perfor-
mance in terms of lower loss and better downstream results.
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Figure 13: Scaling curves of models with different activation functions.
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