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ABSTRACT

Imitation Learning (IL) is one of the most widely used methods in machine learning.
Yet, many works find it is often unable to fully recover the underlying expert
behavior (Wen et al., 2020; Jacob et al., 2022), even in constrained environments
like single-agent games (De Haan et al., 2019; Hambro et al., 2022b). However,
none of these works deeply investigate the role of scaling up the model and data
size. Inspired by recent work in Natural Language Processing (NLP) (Kaplan et al.,
2020; Hoffmann et al., 2022) where “scaling up” has resulted in increasingly more
capable LLMs, we investigate whether carefully scaling up model and data size
can bring similar improvements in the imitation learning setting for single-agent
games. We first demonstrate our findings on a variety of Atari games, and thereafter
focus on the extremely challenging game of NetHack. In all games, we find that
IL loss and mean return scale smoothly with the compute budget (FLOPs) and
are strongly correlated, resulting in power laws for training compute-optimal IL
agents. Finally, we forecast and train several NetHack agents with IL and find they
outperform prior state-of-the-art by 2x in all settings. Our work both demonstrates
the scaling behavior of imitation learning in a variety of single-agent games, as well
as the viability of scaling up current approaches for increasingly capable agents in
NetHack, a game that remains elusively hard for current AI systems.

1 INTRODUCTION

While conceptually simple, imitation learning has powered some of the most impressive feats of
AI in recent years. AlphaGo (Silver et al., 2016) used imitation on human Go games to bootstrap
its Reinforcement Learning (RL) policy. Cicero, an agent that can play the challenging game of
Diplomacy, used an IL-based policy as an anchor to guide planning (Jacob et al., 2022). Go-Explore,
a method for hard-exploration problems which solved all previously unsolved Atari games, used
self-imitation learning in its robustification phase (Ecoffet et al., 2021).

Despite its prevalence, several works have pointed out some of the limitations of IL. De Haan et al.
(2019) and Wen et al. (2020) call out the issue of causal confusion, where the IL policy relies on
spurious correlations to achieve high training and held-out accuracy, but performs far worse than the
data-generating policy, even in single-agent Atari games. Jacob et al. (2022) have mentioned similar
issues for policies learning from human games: they consistently underperform the data-generating
policy. However, in many of these works, the role of model and data size is not deeply investigated.
This is especially striking considering the increasingly impressive capabilities that recent language
models have exhibited, mostly as a consequence of scale. In a series of papers trying to characterize
these improvements with scale starting with Hestness et al. (2017) and Rosenfeld et al. (2019), it has
been shown language modeling loss (i.e. cross-entropy) scales smoothly with model size and number
of training tokens (Kaplan et al., 2020; Hoffmann et al., 2022). If we think of language models as
essentially performing “imitation learning” on text, then a natural next question is whether some of
these results extend to IL-based agents in games, and whether scale could provide similar benefits
and alleviate some of the issues mentioned earlier on.

In this paper, we ask the following question: How does compute in terms of model and data size
affect the performance of agents trained with imitation learning in the single-agent game setting? We
first focus on several Atari games with dense rewards which allows us to demonstrate our findings
on a variety of games. However, since Atari games have all been solved at this point, there is not
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much room for further improvement in terms of scaling up. To demonstrate the potential of scaling
up IL, our core focus will be on the extremely challenging game of NetHack, a roguelike video game
released in 1987. NetHack is an especially well-suited and interesting domain to study for several
reasons. First, it is procedurally generated and highly stochastic, disqualifying approaches relying
heavily on memorization instead of generalization, such as Go-Explore (Ecoffet et al., 2021). Second,
the game is partially observed, requiring the use of memory, potentially for thousands of steps due
to the game’s long-term dependencies. Finally, the game is extremely challenging for current AI
systems, with current agents reaching scores nowhere close to average human performance1. The
best agent on NetHack is a purely rule-based system called AutoAscend (Hambro et al., 2022a), with
RL approaches lagging behind (Hambro et al., 2022b; Küttler et al., 2020; Mu et al., 2022; Mazoure
et al., 2023). Even just recovering this system is hard, with Hambro et al. (2022b) reporting that the
best neural agents achieve less than 10% of the system’s mean return in the environment, causing the
authors to call for significant research advances. We instead investigate whether simply scaling up
BC can help close some of this gap.

Contributions. We train a suite of neural Atari and NetHack agents with different model sizes
using BC to imitate expert policies and analyze the loss and mean return isoFLOP profiles. We
find the optimal cross-entropy loss scales as a power law in the compute budget, and we use two
different methods to derive scaling laws for the loss-optimal model and data sizes. We then relate
the cross-entropy loss of our trained BC agents to their respective mean return when rolled out in
the environment, and find that the mean return follows a power law with respect to the optimal
cross-entropy loss, showing improvements in loss predictably translate in better performing agents.
We use our two scaling law derivations to forecast the training requirements of a compute-optimal
neural BC agent for NetHack. These forecasts are then used to train an agent which outperforms prior
neural NetHack agents by 2x in all settings, showing scale can provide dramatic improvements in
performance. We briefly extend our results to the RL setting, where we also train a suite of NetHack
agents using IMPALA (Espeholt et al., 2018) and again find that model and data size scale as power
laws in the compute budget.

Our results demonstrate that the improvements in imitation learning performance for single-agent
games with dense rewards2 can be described by clean power laws. This suggests carefully scaling up
model and data size can provide a promising path towards increasingly capable game agents, as well
as potentially boost performance in other imitation learning settings.

2 PRELIMINARIES

We now introduce the formal setup for behavioral cloning. We assume the environment can be
described by a Partially Observable Markov Decision Process (POMDP) ⟨S, T,A,O,R, γ⟩, with
states S, transition function T , action set A, possible observation emissions O, reward function
R(s, a), and discount factor γ.

In the behavioral cloning setup, we don’t assume access to the rewards but instead assume access to a
dataset D consisting of trajectories τ = (s0, a0, s1, a1, . . .) of states and actions. These trajectories
can be generated by multiple (possibly sub-optimal) demonstrators acting in the environment. How-
ever, in this work, they are assumed to all come from the same expert policy π. The goal is to recover
this expert policy. To do this, a learner πθ will optimize the following cross-entropy loss:

L(θ) = −E(ht,at)∼D [log πθ(at|ht)] , (1)

where ht can include part or the entirety of the history of past states and actions.

3 EXPERIMENTAL SETUP

We analyzed the scaling behavior of agents trained with BC in two domains: (1) Atari and (2)
NetHack. The former serves to test the validity of the scaling laws in a range of games, while the
latter tests the performance gains of scaling in an extremely challenging and unsolved game.

1The average overall human performance is around 127k (Hambro et al., 2022b), while the current best
performing NetHack agent gets a score of 10k.

2Please refer to section 6 for a discussion of why we need this requirement.
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NetHack Battle Zone Q*bert
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(a) IsoFLOP curves
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(b) Optimal loss vs. FLOPs
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(c) Optimal parameters vs. FLOPs
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(d) Optimal samples vs. FLOPs

Figure 1: BC loss scaling. We train a wide range of model sizes across several orders of magnitudes
of FLOP budgets. We plot the validation loss for each model, with fitted parabolas per IsoFLOPs
curve (a). We then regress the loss minima (b), the loss-optimal number of parameters (c), and the
loss-optimal number of samples (d) on their corresponding FLOP budgets. We find clear power law
trends for Nethack (first column), Battle Zone (middle column), and Q*bert (last column). The full
list of Atari results can be found in Appendix I.

Whenever we report FLOP or parameter counts, we are referring to their effective counts, which we
define as only including the parts of the network that are being scaled, similar to Hilton et al. (2023)
(see Appendix E for full details). Please see Appendix F for details on all hyperparameters.

3.1 ATARI

We chose the following set of 8 Atari games: Battle Zone, Q*bert, Bank Heist, Boxing, Breakout,
Name This Game, Phoenix, and Space Invaders. We chose these games either because they were
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part of the Atari-5 subset3 (Aitchison et al., 2023), a reduced dataset that aims to be representative
of the full set, or they were games where the reward is at least somewhat dense (see section 6 for
more discussion on this). We then perform the following steps for each game. First, we train a
CNN-based agent with PPO (Schulman et al., 2017) in order to get an expert agent. Second, we
gather a dataset of about 1B samples consisting of rollouts of the expert agent. We then train a family
of CNN-based agents on this dataset using BC, varying the width of the core CNN and the final linear
layer (see Appendix E). The total number of parameters ranged from 1k to 5M.

3.2 NETHACK

We train LSTM-based agents on the NLD-AA dataset (Hambro et al., 2022b), mainly varying the
width of the LSTM (see Appendix E). The total number of parameters ranged from 10k to 500M.
While the original NLD-AA dataset already contains around 3B samples, we extended the dataset to
around 60B samples (NLD-AA-L) and 150B samples (NLD-AA-XL) by collecting more rollouts
from AutoAscend (i.e. the data-generating policy). NLD-AA-L is used for the results in Figure 1a,
while NLD-AA-XL is used for all our forecasting-based experiments (see section 5).

4 SCALING UP IMITATION LEARNING

This section is structured as follows. We first investigate the role of model size and number of samples
with respect to cross-entropy loss (subsection 4.1). While intuitively it feels like a lower loss should
result in a better agent, we verify this by directly investigating the role of model size and number of
samples with respect to the environment return (subsection 4.2), and relating these results to the loss
results. Finally, we also show a possible extension of our analysis to the RL setting (subsection 4.3).

4.1 SCALING LAWS FOR BC LOSS

To investigate the role of model size and number of samples with respect to cross-entropy loss, we
follow similar approaches to the ones used in Hoffmann et al. (2022).

Approach #1: isoFLOP profiles. “IsoFLOP” refers to constant FLOP budget contour lines. For
Atari, we train up to 12 different model sizes, ranging from 1k to 5M. For NetHack, we train 14
different model sizes, ranging from 10k to 500M. For all domains, we train FLOP budgets of at least
1e13 and up to 1e18. In Figure 1 we plot the loss evaluated on a held-out set of about 100 trajectories
against the parameter count for each FLOP budget. Similarly to Hoffmann et al. (2022), we observe
clear parabolas with well-defined minima at the optimal model size for a given compute budget in
all games. We take these loss-optimal data points to fit three regressions: one that regresses the log
parameters on the log FLOPs, another that regresses the log samples on the log FLOPs, and a final
one that regresses the log loss on the log FLOPs. These regressions give rise to the following power
laws (Figure 1c, Figure 1d, and Figure 1b):

Nopt ∝ Cα Dopt ∝ Cβ Lopt ∝ Cγ , (2)

where Nopt indicates the loss-optimal model size, Dopt the loss-optimal number of training samples,
Lopt the minimal validation loss, and C the compute budget in FLOPs. We refer to the legends
of Figure 1c, Figure 1d, and Figure 1b for sample values of α, β, and γ, respectively.

Approach #2: parametric fit. Instead of only fitting the loss-optimal points as was done in
approach #1 above, one can also fit all points from Figure 1a to the following quadratic form:

log L̂(N,D) = β0+βN logN+βD logD+βN2(logN)2+βND logN logD+βD2(logD)2. (3)

If we only look at the linear terms here, we notice that this loss has the form of a Cobb-Douglas
production function:

L̂(N,D) = exp(β0)×NβN ×DβD , (4)

3We also experimented with Double Dunk, which is part of the Atari-5, but found even our smallest models
could perfectly learn the policy with very few samples for the expert we trained. Therefore, we left it out.
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NetHack Battle Zone Q*bert
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(a) IsoFLOP curves
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(b) Optimal return vs. FLOPs
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(c) Optimal parameters vs. FLOPs
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(d) Optimal samples vs. FLOPs

Figure 2: BC return scaling. We train a wide range of model sizes across several orders of magnitudes
of FLOP budgets (same models as in Figure 1a) and plot their average return in the environment (a).
We left off the first four FLOP budgets as we found them to be especially noisy. We then regress the
optimal returns (b), the return-optimal number of parameters (c), and the return-optimal number of
samples (d) on their corresponding FLOP budgets. We find mostly clear power law trends for Nethack
(left), Battle Zone (middle), and Q*bert (right). Full Atari results can be found in Appendix I.

where we can think of parameters N and samples D as inputs that affect how much output (i.e. loss)
gets produced. We then take the functional form in Equation 3 and minimize the loss subject to the
constraint that FLOPs(N,D) ≈ 6ND4. To do this, we used the method of Lagrange multipliers to
get the following functional forms for Nopt and Dopt (see Appendix A for full derivation):

4Note that this FLOPs equation is only valid for our NetHack experiments, since the model there is LSTM-
based. To carry out a similar analysis for Atari, where the models are CNN-based, this formula needs to be
adjusted. We only perform the analysis for NetHack due to the simplicity of the FLOPs equation.
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Table 1: Fitted power law coefficients in NetHack. We list the scaling coefficients for model size
(α) and number of samples (β) for all three settings. 95% CIs are noted in parentheses, where the
delta method was used for the parametric fit parameters (see Appendix G).

Setting IsoFLOP profiles Parametric fit
α β α β

1. BC Loss 0.57 (0.50, 0.64) 0.43 (0.36, 0.50) 0.48 (0.47, 0.49) 0.52 (0.51, 0.53)
2. BC Return 0.35 (0.18, 0.52) 0.65 (0.48, 0.82) 0.34 (0.33, 0.35) 0.66 (0.65, 0.67)

Nopt = G

(
C

6

)α

, Dopt = G−1

(
C

6

)β

, where G = exp

(
βD − βN

2βD2 − 2βND + 2βN2

)
.

(5)
We find that α =

2βD2−βND

2βD2−2βND+2βN2
and β =

2βN2−βND

2βD2−2βND+2βN2
. We compare the two approaches

for NetHack in Table 1.

4.2 SCALING LAWS FOR BC RETURN

Note that the analysis in the previous section was all in terms of cross-entropy loss. However, in
the imitation learning setting, we almost never care directly about this quantity. Instead, we care
about the average return of the resulting agent in the environment. To investigate how this quantity
scales, we roll out every model from Figure 1a in the corresponding Atari or NetHack environment
and average their score across 100 (Atari) and 1k (NetHack) rollouts each. We show the results
in Figure 2a. We then follow a similar procedure as in subsection 4.1 and perform the same three
regressions, giving rise to the following power laws (Figure 2c, Figure 2d, and Figure 2b):

Nopt ∝ Cα Dopt ∝ Cβ Ropt ∝ Cγ , (6)

where Nopt indicates the return-optimal model size, Dopt the return-optimal data size, Ropt the
maximal return, and C the compute budget in FLOPs. We refer to the legends of Figure 2c, Figure 2d,
and Figure 2b for sample values of α, β, and γ, respectively. When looking at Figure 2b, we find that
for the Atari games the power laws hold all the way until expert performance5. For NetHack, we find
more FLOPs will be required to reach the expert score of 10k.

Additionally, we can take the functional form in Equation 3 and simply replace loss with mean return.
We can then solve the same constrained optimization problem resulting in the exact same expressions
as found in Equation 5. We list the resulting coefficients for NetHack in Table 1.

To investigate the relationship between loss and mean return, we regress the loss-optimal log returns
on the corresponding log loss values. We find a power law of the form Ropt ∝ Lδ

opt, as shown
in Figure 3. The fit in the figure shows optimal loss and mean return are highly correlated in all
games, indicating we can expect return to increase smoothly as we make improvements in loss, rather
than showing sudden jumps.

4.3 EXTENSION TO REINFORCEMENT LEARNING

Given the stark trends we found for BC in the previous sections, we investigate whether similar trends
can be found for RL. We explore this briefly for the game of NetHack since several works in the past
years have attempted RL-based approaches for NetHack (Küttler et al., 2020; Hambro et al., 2022b)
without too much success, unlike in Atari. We investigate the role of model size and environment
interactions using approaches 1 and 2 from subsection 4.1 applied to IMPALA (Espeholt et al., 2018).

While learning curves in RL tend to have high variance, Figure 4 suggests that compute-optimal
agents should increase both the number of parameters and number of environment interactions as the

5Note that the breaking down of our scaling laws after reaching expert performance is expected. This is
similar to other scaling laws such as those of Kaplan et al. (2020) breaking down at the entropy of language.
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Figure 3: BC return vs. optimal loss. We investigate the relationship between the optimal loss of a
BC agent and the mean return. We find they are highly correlated for all games.
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(d) Samples vs. FLOPs

Figure 4: RL return scaling. We train a wide range of model sizes across several orders of magnitude
of FLOP budgets and plot the average return when rolled out in the environment at the end of training
(a). We then regress the return-optimal average returns (b), parameters (c), and samples (d) on their
corresponding FLOP budgets. We run 1 seed per point on the isoFLOP profile.

FLOP budgets are scaled up. We also find that the NetHack game score varies smoothly with FLOPs
and hence can be seen as a natural performance metric (Hilton et al., 2023). We provide complete
details of our setup and results in Appendix H.

5 FORECASTING COMPUTE-OPTIMAL BC AGENTS

The isoFLOP profiles and power laws shown in Figure 1 and Figure 2 allow us to estimate the
compute-optimal number of samples and parameters needed to train an agent that recovers the
expert’s behavior. For all our Atari games except for Space Invaders, we already found such an agent!
It is simply the first dot that reaches the expert score in Figure 2b. However, for NetHack, even the
largest FLOP budget models don’t come close to expert performance (10k). To attempt to close this
gap, we forecast and train a compute-optimal NetHack agent aimed at getting a score of 10k.

To do this, we follow two approaches:

1. Using loss isoFLOP profiles. We first plug in R = 10k into the regression in Figure 3a to
solve for L10k, the loss needed for a score of 10k. Then, we plug L10k into the regression
in Figure 1b to get C10k, the FLOPs needed to recover a score of 10k. Then we find the
optimal parameters and samples using Figure 1c and Figure 1d. This way, we find that the
model size should be 43M, and the data size should be 144B.

2. Using parametric fit. We take C10k from above, and use Equation 5 found by the parametric
fit to solve for the parameters N and samples D. This way, we find that the model size
should be 17M, and the data size should be 362B.

We find that the second approach predicts a smaller model size but more samples, similar to findings
in Hoffmann et al. (2022). Based on early forecasting fits, we train a 30M parameter model for
115B samples, which took 11 days on 8 GPUs. The results can be found in Table 2. While we do
not recover the underlying expert behavior (score of 10k), we do find the resulting model gets a big
boost in performance and outperforms prior state-of-the-art by 2x, both when using a random initial
character (hardest setting) as well as when its kept fixed to human monk.
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Discussion The gap with the expert could have several explanations. Uncertain power law exponents
may have caused substantial extrapolation error when predicting model and data sizes for FLOP
budgets much larger than those in the isoFLOP profile. In Appendix J, we perform a rolling cross-
validation to evaluate one-step-ahead forecasting performance, which we do find to be accurate.

Table 2: Forecasting results. We compare a model trained with BC using 30M parameters on
115B samples with previous models in the NetHackChallenge-v0 environment and find it
outperforms all of them on both randomized character initialization (harder) as well as on human
monk (easier). ∗Exact scores not reported. Scores from Hambro et al. (2022b) were adjusted to
account for an error in their evaluation code. See Appendix B for full results with standard errors.

All Human
Models Random Monk
Offline only
DQN-Offline (Hambro et al., 2022b) 0.0 0.0
CQL (Hambro et al., 2022b) 352 366
IQL (Hambro et al., 2022b) 171 267
BC (CDGPT5) (Hambro et al., 2022b;a) 554 1059
BC (Transformer) (Piterbarg et al., 2023) 1318 -
Scaled-BC (ours) 2740 5218
Offline + Online
Kickstarting + BC (Hambro et al., 2022b) 962 2090
APPO + BC (Hambro et al., 2022b) 1282 2809
APPO + BC (Piterbarg et al., 2023) 1551 -
LDD∗ (Mu et al., 2022) - 2100

6 LIMITATIONS

Natural performance metrics. There is no reason in general to expect game scores to scale
smoothly. If they do, Hilton et al. (2023) define them as natural performance metrics. We expect that
for any game score to be a natural performance metric, it needs to be at least somewhat dense so it
tracks learning progress, which is why we focused on environments with relatively dense rewards in
this paper6. It’s possible our results extend to highly sparse reward settings as well, but one may need
to introduce alternative proxy metrics (e.g. intrinsic performance (Hilton et al., 2023)) in that case.

Experimental setup. Previous works have pointed to the importance of tuning hyperparameters
(e.g. learning rate, batch size, adam optimizer parameters, etc.) for every run on the isoFLOP profile.
Since we didn’t find any major sensitivies to hyperparameters during some initial tuning, and to limit
computational cost, we kept all hyperparameters fixed for all isoFLOP profiles (Figure 1a, Figure 2a,
and Figure 4a) and used “snapshots” of the same run to evaluate different FLOP budgets for the same
model size. Therefore, we would like to point out there is considerable uncertainty in the exact values
of the reported power law coefficients. Nevertheless, we expect the overall trends to still hold.

7 RELATED WORK

NetHack Work on NetHack has been quite limited so far, with early work establishing the NLE
benchmark (Küttler et al., 2020), evaluating symbolic vs. neural agents (Hambro et al., 2022a), and
creating large-scale datasets based off of rule-based and human playthroughs for methods aiming
to learn from demonstrations (Hambro et al., 2022b). More recent work has either focused on
better reward signal supervision and sample efficiency through proxy metrics and contrastive pre-
training (Mazoure et al., 2023; Bruce et al., 2023) or leveraged dynamics models with language
descriptions in order to improve sample efficiency and generalization (Mu et al., 2022). Concurrent

6This, however, does not guarantee we will observe scaling laws in these environments when using IL!
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work also investigates the gap between neural methods and AutoAscend, but focuses on leveraging
an action hierarchy, improvements in architecture, and fine-tuning with RL (Piterbarg et al., 2023).

Scaling laws Hestness et al. (2017) and Rosenfeld et al. (2019) are one of the earliest works that
try to characterize empirical scaling laws for deep learning. Kaplan et al. (2020) and Hoffmann
et al. (2022) specifically focus on training compute-optimal language models, finding similar trends
as presented in this paper. While in the imitation learning setting, our agents also minimize cross-
entropy loss, we additionally show that the eventual performance of the agent as measured by the
average return in the environment scales smoothly with the loss. Other works focus more broadly
on generative modeling (Henighan et al., 2020), or analyze specific use cases such as acoustic
modeling (Droppo & Elibol, 2021). Clark et al. (2022) investigate scaling laws for routing networks,
and Hernandez et al. (2021) study scaling laws for transfer, finding the effective data transferred (the
amount of extra data required to match a pre-trained model from scratch) follows a power-law in the
low-data regime. More recent works have also tried to extend these scaling law results to multi-modal
learning (Cherti et al., 2022; Aghajanyan et al., 2023). Caballero et al. (2022) introduce broken neural
scaling laws, which allow modeling of double descent and sharp inflection points. Finally, scaling
laws relate to sample complexity theory, which shows that increases in the number of samples (i.e.
dataset size) can improve the suboptimality of IL (Rajaraman et al., 2020; Xu et al., 2020; Rajaraman
et al., 2021) and is applicable to all architectures and datasets.

Perhaps the closest work to our paper is that of Hilton et al. (2023), who characterize scaling laws
in RL. However, they don’t consider IL, and they do not evaluate on Atari or NetHack, the latter of
which we consider an especially interesting environment because of its extremely challenging nature.

8 DISCUSSION

Extensions beyond single-agent games. We have shown that in the imitation learning (and to some
extend in the reinforcement learning setting), scaling up model and data size provides predictable
improvements, and a promising path to improving performance, as demonstrated in a variety of Atari
games and in the full game of NetHack. While we do not extend our analysis beyond single-agent
games in this paper, we believe these results could be suggestive of similar findings across many
imitation learning domains, where oftentimes model and data sizes are not carefully picked.

Leveraging human data. In this work, we did not consider analyzing the scaling relationships
when using human trajectories (e.g. from NLD-NAO (Hambro et al., 2022b)) instead of those from
AutoAscend (NLD-AA (Hambro et al., 2022b)). This is because extra care must be taken to handle
the lack of actions in the human dataset, requiring techniques such as BCO (Torabi et al., 2018).
Investigating scaling laws here could be especially interesting since: (1) the human dataset is more
diverse, containing trajectories from many different players with varying level of skill, and (2) it
contains many examples of trajectories that ascend (i.e. win the game). (1) could shed perspective on
the role of scaling when the data includes many different and potentially suboptimal demonstrations,
similar to Beliaev et al. (2022). (2) could provide insight into the viability of methods such as Video
PreTraining (Baker et al., 2022) since these rely heavily on being able to clone the expert data well.

9 CONCLUSION

In this work, we find that imitation learning loss and mean return follow clear power law trends with
respect to FLOPs, as demonstrated in Atari and in the challenging game of NetHack. In addition,
we find loss and mean return to be highly correlated, meaning improvements in loss predictably
translate in improved performance in the environment. Using the found power laws, we forecast
the compute requirements (in terms of model and data size) to train compute-optimal agents aimed
at recovering the underlying expert. In NetHack, we find the performance improves dramatically,
surpassing prior SOTA by 2x in all settings. We also briefly extend our results to the reinforcement
learning setting, and find similar power laws for model size and number of interactions in NetHack.
Our results demonstrate that scaling up model and data size is a promising path towards training
increasingly capable agents for single-agent games. More broadly, they also call for work in the
larger imitation learning and reinforcement learning community to more carefully consider and study
the role of scaling laws, which could provide large improvements in many other domains.

9
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10 ETHICS STATEMENT

While we do not see a direct path towards any negative applications, we note that scaling up could
have unknown unintended consequences. As scaling results in imitation and reinforcement learning
agents that are increasingly more capable and influential in our lives, it will be important to keep
them aligned with human values.

11 REPRODUCIBILITY STATEMENT

Due to legal reasons, we unfortunately cannot release the code for the NetHack results. However,
we included the code for all Atari results as part of the supplementary material. In addition, we
plan to release the pretrained weights of the forecasted NetHack agent ( section 5). Finally, we
have dedicated several sections in the appendix to ensure reproducibility of our results. Appendix F
provides a complete account of all training details, including hyperparameters, dataset information,
GPU types, training times, etc. Appendix D provides complete details of our architectures for both
domains. Appendix E provides details on how we scale our networks and how we do FLOP counting.
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A PARAMETRIC FIT: POWER LAW DERIVATION

In this section, we show the derivation resulting in Equation 5. We first restate Equation 3 for
convenience:

log L̂(N,D) = β0 + βN logN + βD logD + βN2 log2 N + βND logN logD + βD2 log2 D.

Now, to minimize this equation with the constraint that FLOPs(N,D) = C ≈ 6ND, we use
Lagrange multipliers. We first write down the Lagrangian:

L(N,D, λ) = L̂(N,D)− λ(g(N,D)− C),

where g(N,D) = 6ND. Now, setting ∇L = 0 we get:

∇ log L̂(N,D) = λ∇(6ND) and 6ND = C.

The former results in the following system of equations:

∂ log L̂(N,D)

∂N
= λ

∂(6ND)

∂N

∂ log L̂(N,D)

∂D
= λ

∂(6ND)

∂D
.

This means that

βN
1

N
+ βND logD

1

N
+ 2βN2 logN

1

N
= λ6D

βD
1

D
+ βND logN

1

D
+ 2βD2 logD

1

D
= λ6N.

Multiplying the top equation by N and the bottom one by D we have that

βN + βND logD + 2βN2 logN = βD + βND logN + 2βD2 logD.

Recalling C = 6ND, we solve for N and D in terms of C, giving the results listed in Equation 5.

B FULL FORECASTING RESULTS

The full set of forecasting results in NetHack can be found in Table 3.

Table 3: Forecasting results (full). Table 2 with added standard errors. Results from Hambro et al.
(2022b) use 10 seeds, those from Piterbarg et al. (2023) use 6 seeds, while ours are 1 seed due to
computational cost. ∗Exact scores not reported in original work. Scores from Hambro et al. (2022b)
were adjusted to account for an error in their original evaluation code.

All Human
Models Random Monk
Offline only
DQN-Offline (Hambro et al., 2022b) 0.0 ± 0.0 0.0 ± 0.0
CQL (Hambro et al., 2022b) 352 ± 18 366 ± 35
IQL (Hambro et al., 2022b) 171 ± 6 267 ± 28
BC (CDGPT5) (Hambro et al., 2022b;a) 554 ± 45 1059 ± 159
BC (Transformer) (Piterbarg et al., 2023) 1318 ± 38 -
Scaled-BC (ours) 2740 ± - 5218 ± -

Offline + Online
Kickstarting + BC (Hambro et al., 2022b) 962 ± 50 2090 ± 123
APPO + BC (Hambro et al., 2022b) 1282 ± 87 2809 ± 103
APPO + BC (Piterbarg et al., 2023) 1551 ± 73 -
LDD∗ (Mu et al., 2022) - 2100 ± -
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Figure 5: Full isoFLOP curves. (a) is similar to Figure 1a but including the full set of points. (b) is
similar to Figure 2a but including the full set of points. (c) is similar to Figure 4a but including the
full set of points.

C NETHACK FULL SET OF FIGURES

We show the full set of IsoFLOP curves in NetHack for all settings in Figure 5.

D ARCHITECTURE DETAILS

D.1 ATARI

Our architecture for BC experiments in Atari is simple. It consists of the following layers:

1. A convolutional layer with 8 x 8 filter size and stride 4, followed by a ReLU activation layer.

2. A convolutional layer with 4 x 4 filter size and stride 2, followed by a ReLU activation layer.

3. A convolutional layer with 3 x 3 filter size and stride 1, followed by a ReLU activation layer.

4. A final linear layer that maps the flattened output dimension of the CNN layers above to the
number of actions in the respective Atari game.

D.2 NETHACK

We use two main architectures for all our experiments, one for the BC experiments and another for
the RL experiments.

BC architecture. The NLD-AA dataset (Hambro et al., 2022b) is comprised of ttyrec-formatted
trajectories, which are 24× 80 ASCII character and color grids (one for each) along with the cursor
position. To encode these, we modify the architecture used in Hambro et al. (2022b), resulting in the
following:

• Dungeon encoder. This component encodes the main observation in the game, which is
a 21 × 80 grid per time step. Note the top row and bottom two rows are cut off as those
are fed into the message and bottom line statistics encoder, respectively. We embed each
character and color in an embedding lookup table, after which we concatenate them and
put them in their respective positions in the grid. We then feed this embedded grid into a
ResNet, which consists of 2 identical modules, each using 1 convolutional layer followed by
a max pooling layer and 2 residual blocks (of 2 convolutional layers each), for a total of 10
convolutional layers, closely following the setup in Espeholt et al. (2018).

• Message encoder. The message encoder takes the top row of the grid, converts all ASCII
characters into a one-hot vector, and concatenates these, resulting in a 80× 256 = 20, 480
dimensional vector representing the message. This vector is then fed into a 2-layer MLP,
resulting in the message representation.

• Bottom line statistics. To encode the bottom line statistics, we flatten the bottom two
rows of the grid and create a “character-normalized” (subtract 32 and divide by 96) and
“digits-normalized” (subtract 47 and divide by 10, mask out ASCII characters smaller than
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45 or larger than 58) input representation, which we then stack, resulting in a 160 × 2
dimensional input. This closely follows the Sample Factory7 model used in Hambro et al.
(2022b).

After the components above are encoded, we concatenate all of them together. Additionally, we also
concatenate the previous frame’s action representation (coming from an embedding lookup table),
and a crop representation (a 9 × 9 crop around the player, processed by a 5-layer CNN). We then
feed this combined representation into a 2-layer MLP, after which a single layer LSTM processes the
representation further. Finally, we have two linear heads on top of the LSTM, one for the policy and
one for the value (not used for BC).

RL architecture. We modify the architecture from Küttler et al. (2020) to also include a 5-layer
1-dimensional CNN that processes the message, as well as another 5-layer 2-dimensional CNN that
processes a 9× 9 crop of the dungeon grid around the player.

E FLOP AND PARAMETER COUNTING

As mentioned in the main text, we only count FLOPs and parameters for the parts of the model being
scaled.

E.1 ATARI

The model network only consists of three convolutional layers interleaved with ReLUs (see Ap-
pendix D for details), followed by a linear layer (i.e. the policy head). We simply scale the width of
all layers. This means we scale the channels of the convolutional network, and the width of the linear
head on top.

Since we scale the whole network, we count the FLOPs from all convolutional and linear layers. We
compute the forward FLOPs of a convolutional layer as 2 ∗ hout ∗ wout ∗ cout ∗ p, where hout is
the height of the output shape, wout is the width of the output shape, cout are the number of output
channels, and p indicates the number of parameters in one filter of the current layer (without counting
bias). Hence, p = k2 ∗ cin, where k is the kernel size and cin is the number of input channels.
Following prior work (Hilton et al., 2023), we assume the backward pass takes about twice the
number of FLOPs from the forward pass.

E.2 NETHACK

For all our BC and RL experiments, we only scale the following parts of the model and keep the rest
fixed:

• The hidden size of the two-layer MLP right before the LSTM.

• The hidden size of the LSTM.

• The input size of the two linear layers for the actor and critic respectively (i.e. the policy
and value heads).

Similar to prior work (Kaplan et al., 2020; Hoffmann et al., 2022), we found 6ND to be a good
approximation for the number of FLOPs used based on model size N and number of samples D.
This is because we found there to be about 2ND FLOPs in the forward pass, and we assume the
backward pass takes about the twice the number of FLOPs from the forward pass.

For the RL experiments, there is a slight change in the way we count FLOPs, which is that we count
every forward pass number of FLOPs from the learner twice, since there is a corresponding forward
pass from an actor. Hence, for RL our formula becomes 8ND.

7https://github.com/Miffyli/nle-sample-factory-baseline
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F TRAINING DETAILS

F.1 ATARI

We list the hyperparameters for all our BC experiments in Atari in Table 4a, and the ones to
train expert policies for each Atari game in Table 4b. To train these expert policies, we used the
Stable Baselines3 (Raffin et al., 2021) implementation of PPO (Schulman et al., 2017). We use
Adam (Kingma & Ba, 2014) as our optimizer for both settings. All training experiments were done
on NVIDIA GPUs (a mix of GeForce RTX 3090, GeForce RTX 2080 Ti, RTX A5000, and RTX
A6000) and took about 1 - 2 days depending on the game and FLOP budget.

Table 4: Hyperparameters for all experiments in Atari. We list the hyperparameters for all our BC
experiments (a) as well as the ones used to train the PPO expert agent for each game (b).

Hyperparameters Value
Learning rate 0.0001
Batch size 128× 1 (1 GPU)
Unroll length 32
Data workers 30

(a) BC hyperparameters

Hyperparameter Value

Learning rate 2.5e−4

Learner batch size 256
Entropy cost 0.01
Baseline cost 0.5
Total timesteps 5e7

Discount factor 0.99
GAE lambda 0.95
Clip range 0.2

(b) PPO hyperparameters

F.2 NETHACK

We use Adam (Kingma & Ba, 2014) as our optimizer for all BC experiments. For RL, we use
RMSprop. Please find all hyperparameters for both settings in Table 5, all of which were manually
tuned or taken from prior work. All experiments were run on NVIDIA V100 32GB or A100 40GB
GPUs, and took up to 4 days to run, depending on the FLOP budget. The one exception to this is our
forecasted BC model which consisted of 30M parameters and was run on 115B samples. This took
approximately 11 days, and was partially run on a A100 GPU, and continued on a V100 GPU.

The NLD-AA dataset (Hambro et al., 2022b) is released under the NetHack General Pub-
lic License and can be found at https://github.com/dungeonsdatasubmission/
dungeonsdata-neurips2022.

Table 5: Hyperparameters for all experiments in NetHack. We list the hyperparameters for all our
BC experiments (a) as well as the ones for our RL experiments (b).

Hyperparameters Value
Learning rate 0.0001
Batch size 128× 8 (8 GPUs)
Unroll length 80
Ttyrec workers 30

(a) BC hyperparameters

Hyperparameter Value
Learning rate 0.0002
Learner batch size 32
Unroll length 80
Entropy cost 0.001
Baseline cost 0.5
Maximum episode steps 5000
Reward normalization yes
Reward clipping none
Number of actors 90
Discount factor 0.99

(b) IMPALA hyperparameters
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G DELTA METHOD DERIVATION

Following standard linear regression assumptions, we have that
√
n(β̂−β)

D−→ N (0,Σ), where β̂ is
a vector containing all regression coefficients, i.e.

β̂ = ⟨β̂0, β̂N , β̂D, β̂N2 , β̂ND, β̂D2⟩

We also rewrite α from Equation 5 more explicitly as a function h:

α = h(β̂) =
2βD2 − βND

2βD2 − 2βND + 2βN2

Approximating h(β̂) with a first-order Taylor expansion around β we get:

h(β̂) ≈ h(β) +∇h(β)T · (β̂ − β)

Computing the variance of h(β̂) then gives8:

Var[h(β̂)] = Var[h(β) +∇h(β)T · (β̂ − β)]

= Var[h(β) +∇h(β)T · β̂ −∇h(β)T · β]
= Var[∇h(β)T · β̂]
= ∇h(β)T · Cov(β̂) · ∇h(β)

= ∇h(β)T
Σ

n
∇h(β)

Now the Standard Error (SE) can be found as

SE =

√
∇h(β)T

Σ

n
∇h(β).

Finally, we approximate the SE above by using ∇h(β̂) instead of ∇h(β), giving the following
confidence interval:

CI = h(β̂)± 1.96 · SE.

H RL SCALING LAWS IN NETHACK

Table 6: Model and data size predictions for RL scaling laws in NetHack.

RL - Avg. Human (127k)

1. IsoFLOP profiles 4.4B 13.2T
2. Parametric fit 67B 0.93T

We train LSTM-based agents on the NetHackScore-v0 environment. NetHackScore-v0
features the full game of NetHack but has a reduced action space, starting character fixed to human
monk, and automatic menu skipping. We also experimented with the NetHackChallenge-v0
environment but found the results too noisy at the FLOP budgets we were able to run. However, we
expect similar results will hold for this environment at larger FLOP budgets.

8We follow a very similar derivation as in https://en.wikipedia.org/wiki/Delta_method#
Multivariate_delta_method
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IsoFLOP profiles. We train 9 different model sizes ranging from 100k to 50M using IMPALA (Es-
peholt et al., 2018), each with a FLOP budget ranging from 1e13 to 1e17. For each of these models,
we evaluate the model at the end of training by rolling it out 1k times in the environment and reporting
the average return. While learning curves in RL tend to have high variance, we generally still find that
compute-optimal models should increase both the number of parameters and number of environment
interactions as the FLOP budgets are scaled up (see Figure 4). We also find that the NetHack game
score varies smoothly with FLOPs and hence can be seen as a natural performance metric (Hilton
et al., 2023), as discussed in more detail in section 6. We again follow a similar procedure as
in subsection 4.1 resulting in power laws as listed in Equation 6. We find α = 0.43, β = 0.56, and
γ = 0.32.

Parametric fit We take the functional form in Equation 3, and replace loss with mean return. We
can then solve the same constrained optimization problem resulting in the exact same expressions
as found in Equation 5 (the denominator of 6 is replaced with 8 due to a slight difference in FLOP
counting for RL, see Appendix E). After fitting, we find α = 0.60 and β = 0.40. Note we dropped
the low flop budgets when performing this regression, as we found this greatly improved the fit.

Forecasting human performance. Hambro et al. (2022b) report that average human performance
is around 127k. Based on the two approaches discussed above, we forecast the compute requirements
for training an RL agent from scratch to achieve human-level performance on NetHack, listed
in Table 6. For the isoFLOP profile approach, we first use Figure 4b to solve for C127k. Then we plug
this into the power laws from Figure 4c and Figure 4d. For the parametric fit, we instead plug C127k

into the power laws from Equation 5 with the correct α and β from above, where the denominator of 6
is replaced with 8 as mentioned earlier. In Table 6, we find the parametric fit to put significantly more
emphasis on model size, which could be possible due to dropping of the low FLOP budgets (optimal
model size tends to shift more clearly in larger FLOP budgets). Due to computational constraints,
we leave testing the limits of this prediction to future work. Finally, we perform rolling time series
cross-validation to evaluate one-step ahead forecasting performance, as described in Appendix J.

RL with pretraining. All our scaling law results on the RL side in this paper are with policies
trained from scratch. However, some of the most promising neural methods for NetHack and other
domains leverage a pre-trained (e.g. through imitation learning) policy that is then finetuned with RL.
It would be very interesting to analyze the scaling behaviors for these kind of kickstarted policies, and
see whether they scale differently than the ones trained from scratch. We leave this to future work.

I ATARI FULL RESULTS

Figure 6, Figure 7, Figure 8, and Figure 9 list the full set of Atari results with respect to cross entropy
loss. Figure 10, Figure 11, Figure 12, and Figure 13 list the full set of Atari results with respect to
environment return. Finally, Figure 14 lists the full set of Atari results relating environment return
and optimal loss. Note that for the return results, we can see that Space Invaders is the only Atari
game where didn’t run high enough FLOP budgets to reach expert performance.
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Figure 6: BC isoFLOP curves. Full results for all Atari games.
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Figure 7: BC optimal loss vs. FLOPs curves. Full results for all Atari games.
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Figure 8: BC optimal parameters vs. FLOPs curves. Full results for all Atari games.
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Figure 9: BC optimal samples vs. FLOPs curves. Full results for all Atari games.
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Figure 10: BC return isoFLOP curves. Full results for all Atari games.
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Figure 11: BC optimal returns vs. FLOPs curves. Full results for all Atari games.
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Figure 12: BC return-optimal parameters vs. FLOPs curves. Full results for all Atari games.
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Figure 13: BC return-optimal samples vs. FLOPs curves. Full results for all Atari games.
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Figure 14: BC return vs. optimal loss. Full results for all Atari games.
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J NETHACK FORECASTING CROSS-VALIDATION

To measure forecasting performance of all power law regressions done for NetHack, we leverage
a rolling time series cross-validation. Specifically, for every regression, we initially take the first 6
points (corresponding to the first 6 FLOP budgets) to be our training set to fit the regression, and
then compute the RMSE on the 7th point. Then, we include the 7th point in our training set and
evaluate on the 8th point. This process keeps going until all but the last point is included, after which
we average all resulting RMSEs. Note that this process ensures we always evaluate on future FLOP
budgets. Results can be found in Table 7.

To provide further insight into our time-series-based cross-validation results, we also visualize the
progression of the β0 and β1 parameters in Figure 15, Figure 16, Figure 17, and Figure 18.

Table 7: Cross-validation RMSEs. We use a time series rolling cross-validation to compute the
average Root Mean Squared Error (RMSE) for all regressions done in the paper.

Regressions Dev RMSE

Loss minima vs. FLOPs ( Figure 1b, left) 7.7e−2

Loss-optimal parameters vs. FLOPs ( Figure 1c, left) 4.3e5

Loss-optimal samples vs. FLOPs ( Figure 1d, left) 3.8e9

BC maximal returns vs. FLOPs ( Figure 2b, left) 3.9e2

BC return-optimal parameters vs. FLOPs ( Figure 2c, left) 1.6e6

BC return-optimal samples vs. FLOPs ( Figure 2d, left) 1.7e10

BC returns vs. loss minima ( Figure 3a, left) 1.2e2

RL maximal returns vs. FLOPs ( Figure 4b, left) 1.4e2

RL return-optimal parameters vs. FLOPs ( Figure 4c, left) 2.9e6

RL return-optimal samples vs. FLOPs ( Figure 4d, left) 1.6e9

K OBSERVATION & ACTION SPACE

For Atari, the observation space consists of an 84 x 84 image of pixel values between 0 and 255. The
action space is discrete and varies per game. See below for the size of the action space per game:

• Battle Zone: 18
• Q*bert: 6
• Bank Heist: 18
• Boxing: 18
• Breakout: 4
• Name This Game: 6
• Phoenix: 8
• Space Invaders: 6

For NetHack, the observation space consists of 24 x 80 ASCII character and color grids (one for
each), along with the cursor position (consisting of 2 coordinates). The action space is discrete and
consists of 121 actions for the full game (i.e. NetHackChallenge-v0) and 23 actions for the
simplified version (i.e. NetHackScore-v0).

28



Under review as a conference paper at ICLR 2024

6 8 10 12 14
# In-sample Cross Validation Points

8

9

10

11

12

13

0

(a) Loss vs. FLOPs β0
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(b) Loss vs. FLOPs β1
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(c) Optimal parameters vs. FLOPs β0
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(d) Optimal parameters vs. FLOPs β1
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(e) Optimal samples vs. FLOPs β0
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(f) Optimal samples vs. FLOPs β1

Figure 15: BC loss cross validation progression. We leverage a time-series-based rolling cross-
validation going from early to later FLOP budgets, and visualize the progression of the β0 and β1

coefficients.
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(b) Return vs. FLOPs β1
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(c) Parameters vs. FLOPs β0
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(d) Parameters vs. FLOPs β1
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(e) Samples vs. FLOPs β0
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(f) Samples vs. FLOPs β1

Figure 16: BC return cross validation progression. We leverage a time-series-based rolling cross-
validation going from early to later FLOP budgets, and visualize the progression of the β0 and β1

coefficients.
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(a) Return vs. optimal 1 / loss β0
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(b) Return vs. optimal 1 / loss β1
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(c) Return vs. loss-optimal parameters β0
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(d) Return vs. loss-optimal parameters β1
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(e) Return vs. loss-optimal samples β0
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(f) Return vs. loss-optimal samples β1

Figure 17: BC return-loss relation cross validation progression. We leverage a time-series-based
rolling cross-validation going from early to later FLOP budgets, and visualize the progression of the
β0 and β1 coefficients.

31



Under review as a conference paper at ICLR 2024

6 7 8 9 10 11 12
# In-sample Cross Validation Points

10

8

6

4

2

0

(a) Return vs. FLOPs β0
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(b) Return vs. FLOPs β1
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(c) Optimal parameters vs. FLOPs β0
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(d) Optimal parameters vs. FLOPs β1
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(e) Optimal samples vs. FLOPs β0

6 7 8 9 10 11 12
# In-sample Cross Validation Points

0.4

0.6

0.8

1.0

1.2

1.4

1

(f) Optimal samples vs. FLOPs β1

Figure 18: RL return cross validation progression. We leverage a time-series-based rolling cross-
validation going from early to later FLOP budgets, and visualize the progression of the β0 and β1

coefficients.
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