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Abstract

Large language models (LLMs) are increas-001
ingly impacting human society, particularly002
in textual information. Based on more than003
30,000 papers and 1,000 presentations from ma-004
chine learning conferences, we examined and005
compared the words used in writing and speak-006
ing, representing the first large-scale study of007
how LLMs influence the two main modes of008
verbal communication and expression within009
the same group of people. Our empirical re-010
sults show that LLM-style words such as “sig-011
nificant” have been used more frequently in012
abstracts and oral presentations. The implicit013
impact on human expression like writing and014
speaking is beginning to emerge and is likely015
to grow in the future. We take the first step in016
building an automated monitoring platform to017
record its longitudinal changes to call attention018
to the implicit influence and ripple effect of019
LLMs on human society.020

1 Introduction021

The development and popularity of large language022

models (LLMs) (OpenAI, 2024; Anthropic, 2024;023

OpenAI, 2023) have alerted more researchers to024

the impact of LLMs on human society. In this pa-025

per, we focus on the impact of LLMs in academia,026

especially on writing and speaking.027

While the rapid increase in usage and impact of028

LLMs have been demonstrated in academic papers029

(Liang et al., 2024b; Geng and Trotta, 2024), few030

studies have addressed the influence of LLMs be-031

yond writing. Only recently, a preprint pointed out032

the impact of LLMs on the words used in speak-033

ing, as collected in YouTube videos (Yakura et al.,034

2024). The similarities and differences in how writ-035

ing and speaking are influenced, particularly for036

the same population, have not been explored.037

People can use LLMs to write emails or accom-038

plish tasks other than paper writing, which possibly039

changes their English expression and is reflected040

in their academic output later. Just like the use of 041

Google Translate can affect the English expression 042

of non-native English speakers (Resende and Way, 043

2021), a similar influence might be at play with 044

LLM users and eventually influence even the way 045

people speak. 046

Besides, detecting a mixture of machine- 047

generated and human-written text is another dif- 048

ficulty being actively researched (Lee et al., 2022; 049

Gao et al., 2024). Researchers have paid more at- 050

tention to whether a piece of text is generated by 051

LLMs, while the implicit impact of LLMs is of- 052

ten underestimated. Here we refer to people who 053

do not directly use LLMs to create content but are 054

influenced through exposure to such content. 055

In the face of these challenges and gaps, our 056

contributions are three-fold: 057

1. We are the first to analyze and compare the im- 058

pact of LLM on the writing and speaking in the 059

same group of people. 060

2. We propose a simplified simulation-based 061

method for estimating LLM impact. 062

3. We are calling attention to the implicit impact 063

of LLMs, as the words used in the machine 064

learning conference presentations show signs of 065

being influenced by LLMs. 066

2 Data and Methodology 067

2.1 Datasets 068

To better explore and compare how the “same” 069

group of people are affected in writing and speak- 070

ing by LLMs, we crawled presentations and meta- 071

information of papers from three machine learning 072

conferences. The abstracts of papers rather than 073

the full papers were used in the analysis, as the 074

former are more representative. More than 30,000 075

papers and 1,000 talks were collected, detailed in 076

Appendix B. 077
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Figure 1: Overview of processing and analysis.

Then we use some Machine-Generated Text078

(MGT) detectors or analyze the changes in word079

frequency. The whole process is shown in Figure 1.080

2.2 Word Frequency Analysis081

Given that word frequencies are always changing,082

the issue of noise cannot be ignored. To reduce083

the error caused by the randomness of word usage,084

the target words are considered as a group, denoted085

as WI = {wi | i ∈ I}, where i is the frequency086

ranking in the corresponding dataset.087

For a group of words WI0 , the control group088

with shift n is defined as WIn = {wi+n | i ∈089

I0}. Given a corpus S, the corresponding fre-090

quency Fn(S) is Fn(S) =
∑

w∈In fw(S), where091

fw means the frequency of word w in set S. The092

frequency ratio between two different corpus is093

Rn(S, S
′) = Fn(S)

Fn(S′) .094

Constructing control groups to analyze changes095

in word frequency has been used before (Matsui,096

2024; Yakura et al., 2024). In this paper, the words097

in each group have roughly the same frequency098

based on the ranking in the dataset, which shows099

whether the change in frequency of the target words100

is unusual.101

2.3 LLM Simulations and Impact Estimation102

Some researchers have estimated the impact of103

LLMs by excess vocabulary only (Kobak et al.,104

2024), but the words in the abstract are also related105

to the topic of papers, and the hot topics of machine106

learning conferences change frequently. Therefore,107

it is also helpful to perform LLM simulations, and108

compare texts before and after processing for a109

reliable estimation of LLM impact.110

If the frequency of word i is f(S1) and f(S2)111

in a corpus before and after LLM processing, the112

frequency change rate ri is estimated as r̂i =113

f(S2)−f(S1)
f(S1)

. Then for the “proportion” (impact) of 114

LLMs texts η(S), the following equation is a sim- 115

plified and direct version of the method proposed 116

by Geng and Trotta (2024), 117

fd
i (S)− f∗

i (S) = η(S)f∗
i (S)r̂i + δi(S) (1) 118

where fd
i (S) represents the frequency of word i 119

in the set of texts S, f∗
i (S) represents the one if 120

LLMs do not affect writing abstracts, and δi(S) is 121

a noise term. 122

The estimate of LLM impact given by Ordinary 123

Least Squares (OLS) is expressed as 124

η̂(S) =

∑
i∈I(f

d
i (S)− f∗

i (S))f
∗
i (S)r̂i∑

i∈I(f
∗
i (S)r̂i)

2
(2) 125

where I is the set of words used for estimation, and 126

different I give us different estimates. 127

3 Results 128

3.1 AIGC Detectors 129

Several AIGC detectors1 like Fast-DetectGPT (Bao 130

et al., 2023), GLTR (Gehrmann et al., 2019) and 131

RADAR (Hu et al., 2023) are used to detect the 132

probability that the abstracts and speeches are gen- 133

erated by AI. The results show no significant differ- 134

ence between the pre-ChatGPT and post-ChatGPT 135

era, more details and results are in Appendix C.1. 136

Therefore, we dive deeper into fine-grained word 137

frequency analysis, as researchers have discovered 138

that the frequency of some words increased rapidly 139

across academic papers in different disciplines after 140

the end of 2022 (Liang et al., 2024a). 141

1We do not use GPTZero because the size of its context
window is smaller than the length of oral presentation.
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(a) In abstracts of ICLR
poster papers.

(b) In abstracts of ICLR pa-
pers (sum).

(c) In abstracts of ICML
oral papers.

(d) In presentations of ICML
oral papers.

Figure 2: Word frequency in abstracts and presentations.

3.2 Changes in Word Frequencies142

We found a similar trend for some words in the143

abstracts of conference papers. For example, the144

8 words (significant, crucial, effectively, addi-145

tionally, comprehensive, enhance, capabilities,146

valuable), listed as examples by Geng and Trotta147

(2024), are much more often observed in the ab-148

stracts of ICLR 2024 accepted papers than before,149

as shown in Figure 2a. Besides, Figure 2b indicates150

that the frequency sums of the 8 words are “signifi-151

cantly” higher in the ICLR 2024 abstracts than in152

abstracts of 2021 and 2022, in all three categories153

of accepted papers, as well as in the reject and154

withdrawn papers. The results also suggest the cor-155

relation between the use of these words and their156

destination in ICLR, with a lower frequency in oral157

and a higher frequency in withdrawn papers.158

Figure 8 in the appendix provides more examples159

of this trend, including cases with the full text of160

the articles rather than just the abstracts. In fact,161

our estimates of LLM impact are based on 40162

different groups of words, each group consisting163

of hundreds of words. The 8 words here are only164

used as illustrative examples.165

Although these conference papers are mostly166

submitted to the arXiv as well, their average quality167

is higher than the same type of arXiv papers. These168

eight words shown above were taken together for169

better comparison and were not selected based on170

the data in this paper, reconfirming the LLM impact171

in academic research.172

We further compared word frequency used in the173

abstracts and speeches of the oral papers. Since174

(a) Frequency ratio in ab-
stracts of oral papers.

(b) Frequency ratio in pre-
sentations of oral papers.

Figure 3: Word frequency ratio in abstracts and talks
of ICML oral papers. The error bars represent one
standard deviation in each bin.

(a) Word frequency after
ChatGPT processing.

(b) Word frequency ratio be-
tween simulated abstracts
and original abstracts.

Figure 4: Word frequency in abstracts of ICML oral.

the time for presentations varied from year to year, 175

the number of words was normalized based on the 176

total number of words used in 2021. The results for 177

ICML oral papers and presentations are presented 178

in Figure 2c and Figure 2d, which shows that these 179

example words are more frequently used in the ab- 180

stracts of papers after 2022. Words in the speeches 181

share the same trend as well, though not as strongly 182

as in the abstracts. 183

3.3 Distribution of Frequency Ratios 184

The word frequencies in the abstracts of poster pa- 185

pers in NeurIPS from 2021 to 2023 were used for 186

ranking i the words to form the control group WI 187

with the shift as defined in section 2.2. The fre- 188

quency ratio Rn(S, S
′) for the abstracts and talks 189

of the ICML oral papers in 2024 compared to those 190

from 2021 to 2022 are shown in Figure 3, with shift 191

n from −250 to 250 forming the control groups. 192

The frequency ratios of the example word group 193

are 3.4 standard deviations and 5.8 standard devi- 194

ations away from the mean within the bin in ab- 195

stracts and speeches, respectively. The vast major- 196

ity of word groups do not have as much frequency 197

change as the example word group. 198

3.4 LLM Simulations 199

The simulations of LLM were performed on GPT- 200

3.5 with a simple prompt: “Revise the following 201

sentences”. 202

The word frequency analysis on abstracts revised 203
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Figure 5: Estimation of LLM’s impact on oral papers.
Error bars indicate the standard deviation of the esti-
mates using different groups of words.

by ChatGPT is in Figure 4a, obtained after the204

same calculations as for Figures 2a and 2c. The fre-205

quency of these words has all increased after Chat-206

GPT processing, which reconfirms that ChatGPT207

favors these words. The comparison of simulated208

and original data in Figure 4b tells us that words209

sensitive to ChatGPT are in the minority.210

Based on our results, it is hard to believe that211

the change in word frequency revealed in Figure212

2 is a coincidence. Further, the results above have213

illustrated the correlation between word frequency214

changes and word preferences of LLMs.215

3.5 LLM Impact Estimations216

The ChatGPT-modified abstracts of spotlight217

(poster) papers from ICML 2022 were utilized to218

calculate r̂i and LLM impact estimations. And219

f∗
i (S) is approximated by the word frequency of220

the abstracts of poster or spotlight papers in 2021221

for each conference, after normalization to have the222

same total number of words. To reduce the effect of223

topic-specific words, only the words that ranked in224

the top 10,000 of the Google Ngram dataset2 were225

considered in the calculations, which represent the226

most frequent words in Google Books. Finally,227

hundreds of words are used for estimating, not just228

2https://www.kaggle.com/datasets/wheelercode/
english-word-frequency-list

the eight previously exemplified. 229

Because of the lack of presentation data before 230

2021, the f∗
i (S) of speeches were also approxi- 231

mated with the contents of the abstracts. Estimates 232

of LLM impact based on different word selection 233

criteria determined by f∗
i (S) and r̂i are shown in 234

in Figure 5. Since the words written and spoken 235

are different, the means of the estimates for 2021 236

and 2022 were also calibrated to “0”, with cor- 237

responding adjustments for 2023 and 2024. Not 238

surprisingly, LLM impact increased in the abstracts 239

for the 2024 conference. In the presentations, the 240

estimate of LLM impact has also increased, but not 241

as “significantly" as in the abstracts. 242

Note that the LLM impact term here is a relative 243

value, which is an estimate based on the output of 244

a specific prompt via ChatGPT. Different prompts 245

and different LLMs will have different outputs, and 246

the implicit impact also plays a role. 247

4 Lifelong Platform for LLM Influence 248

Monitoring 249

To investigate LLMs’ potential indirect influences 250

on human writing and speaking patterns, we de- 251

veloped an automated monitoring framework as 252

shown in Figure 7. Our system collects research 253

paper and oral presentations, then employs LLM 254

simulations and algorithmic analysis to measure 255

these influences in real-time, examining word fre- 256

quency, sentence structure, and readability metrics. 257

Through longitudinal analysis, we aim to uncover 258

subtle influences that emerge over time. Data and 259

software will be open-sourced under CC 4.0. 260

5 Discussions and Conclusions 261

Speech is one of the scenarios in which LLMs 262

have an implicit impact (broadly), for it is usually 263

safe to assume that the speaker is not using an 264

LLM while presenting. In addition, because of the 265

difference between written and spoken language, 266

it is actually difficult to directly compare LLM 267

impact on writing and speaking. 268

The rapid increase in AI-generated content re- 269

quires us to pay more attention, as synthetic data 270

can lead to model collapse (Shumailov et al., 2024; 271

Briesch et al., 2023) and even knowledge collapse 272

(Peterson, 2024). In the near future, a paper con- 273

sidered likely to be the product of LLMs may be 274

so only because the authors have read too many pa- 275

pers containing LLM-style sentences. The implicit 276

impact of LLMs seems unstoppable. 277
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Limitations278

LLMs have started a paradigm revolution in AI279

and transformed the game completely. While the280

discussion of the social impact of LLMs began long281

before the storm hit (Solaiman et al., 2019), it took282

some time to really “delve into” it.283

There are many sources of implicit impacts, and284

it is also difficult to have a standard definition. For285

instance, the titles of papers (Matsui, 2024; Kobak286

et al., 2024; Astarita et al., 2024) analyzing the use287

of LLMs in academic papers begin with “delving288

into” (one of ChatGPT’s signature words). This fits289

our definition of implicit impact in the broad sense,290

but some argue that it’s just a means for authors to291

get readers’ attention.292

It is also true that researchers may have prepared293

presentations or slides using LLMs, in which case294

their choice of wording may have been influenced.295

The sample sizes in speaking are not as large as in296

writing, but they are homogenized and representa-297

tive.298

We concentrated on the frequency of words and299

did not address other forms. The use of words300

reflects the most basic information, and some301

changes should have occurred in the way they are302

expressed.303

Ethics Statement304

Our paper primarily focuses on LLM’s influence on305

writing and speaking, and we must first declare that306

our research adheres to all applicable ethical stan-307

dards. This study is intended to promote academic308

discussion and technological progress and all ex-309

periments are conducted in a strictly controlled en-310

vironment. Our research encourages relevant devel-311

opers to enhance the supervision of LLMs, thereby312

making them more trustworthy. We ensured that all313

datasets and benchmarks used in the study comply314

with their intended purposes and standards.315
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A Related Works503

A.1 Impacts of LLMs504

The storm of LLMs also crossed the boundaries of505

language, as researchers began to explore the wide506

variety of competencies and applications of LLMs507

in various disciplines: math (Ahn et al., 2024),508

physics (Sun et al., 2024), chemistry (Guo et al.,509

2023b), social science (Geng et al., 2024), psy-510

chology (Demszky et al., 2023), cognitive science511

(Chen et al., 2024), and almost all corners of sci-512

ence. In the process of interacting with LLMs,513

people’s opinions may also change (Costello et al.,514

2024).515

A.2 Measuring LLM Impact Through Word516

Frequency517

We know that many scientists are using LLMs, but518

there are not many papers with quantitative esti-519

mates of the impact of LLMs in the scientific com-520

munity.521

As we mentioned before, there are also several522

papers that estimate the influence of LLMs based523

on word frequency, such as in academic writing524

(Liang et al., 2024b; Geng and Trotta, 2024; Kobak525

et al., 2024) and in peer review (Liang et al., 2024a).526

In addition, there are also some papers that simply527

observe changes (Gray, 2024; Matsui, 2024; As-528

tarita et al., 2024) and some with more detailed529

analyses (Bao et al., 2024; Latona et al., 2024).530

A.3 Machine Generated Text Detection531

Detection of machine-generated text has also begun532

much earlier with different approaches (Gehrmann533

et al., 2019; Bakhtin et al., 2019; Uchendu et al.,534

2020). More have approaches have been proposed535

later, including metric-based methods (Mitchell536

et al., 2023; Yang et al., 2023; Bao et al., 2023),537

model-based methods (Guo et al., 2023a; Verma538

et al., 2023), and benchmarks (He et al., 2023). In539

addition, some papers also illustrate the ways to540

avoid LLM detection (Krishna et al., 2023; Koike541

et al., 2023), which makes this game harder.542

Detecting a mixture of machine-generated text543

and human-written text is another challenge. Re-544

cent research on “LLM-as-a-Coauthor” (Zhang545

et al., 2024) explores the complex interactions be-546

tween humans and LLMs in collaborative writing,547

investigating real-world applications of human-AI548

mixed text, moving beyond simple binary classifi-549

cation. In the face of mixed text (Zeng et al., 2024;550

Ji et al., 2024), more methods have also been pro-551

posed in the literature for detection and estimation, 552

e.g., through words (Liang et al., 2024a) and styles 553

(Gao et al., 2024). 554

But with implicit impact and ripple effects 555

from LLMs, the line between human-written and 556

machine-generated text is indistinct, and monitor- 557

ing LLM-style text may be more meaningful than 558

detecting who the author is. 559
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B Data Collection and Experiments560

Setups561

B.1 Data Collection562

The abstracts for ICML 2021 and 2022 were col-563

lected from the official website, and all other data564

were scraped from the OpenReview platform. Since565

ICLR 2023 didn’t distinguish oral and spotlight,566

we consider the notable top 5% papers and no-567

table top 25% papers as them, respectively. As for568

NeurIPS 2022, accepted papers were not further569

classified. In addition, there are more than 10,000570

rejected and withdrawn papers in ICLR from 2022571

to 2024.572

The videos of the oral presentation were col-573

lected from the official websites of ICLR, ICML,574

and NeurIPS. As NeurIPS 2022 did not feature575

oral papers, the videos of this year’s NeurIPS were576

skipped. The videos of the ICLR 2024 oral pre-577

sentation haven’t been available online. To extract578

speech from the videos, we used the subtitle fea-579

ture provided by each website. Using the Internet580

Download Manager (IDM) extension in Google581

Chrome, we downloaded all subtitle files in vtt for-582

mat, which were converted into text via Python583

later.584

B.2 Human Annotation Details585

In this section, we provide details for human an-586

notation. Dataset of oral presentation and abstract587

are annotated with four author of this paper, with588

two are female and two are male. As acknowl-589

edged, the diversity of annotators plays a crucial590

role in reducing bias and enhancing the reliability591

of the benchmark. These annotators have knowl-592

edge in this domain, with different genders, ages,593

and educational backgrounds. To ensure the anno-594

tators can proficiently mark the data, we provide595

them with detailed tutorials, teaching them how to596

evaluate model responses more objectively. Specif-597

ically, they are required to give judgments without598

considering answer lengths, and certain names or599

positions of the response. Besides, we implement600

cross-validation between different annotators and601

conduct continuous monitoring to ensure they are602

maintaining objectivity and fairness. We provide603

screenshots of the instruction and annotation in604

Figure 6.605

B.3 LLM simulations606

• model: gpt-3.5-turbo-0125607

• temperature: 1 608

• seed: index of the abstract in the dataset 609

• top_p: 0.9 610

B.4 Estimations of LLM impact 611

The choice of words is based on the value of f∗ 612

and r̂. 613

• 1
f∗ : 30, 40, 50, 60, 70, 80, 100, 150, 200, 500 614

• r̂: 0.4, 0.5, 0.6, 0.7 (corresponding value of 615
r̂+1
r̂2

) 616

C Supplementary Results 617

C.1 AIGC detector results 618

In this section, we present the detection results 619

from Fast-DetectGPT (Bao et al., 2023), GLTR 620

(Gehrmann et al., 2019) and RADAR (Hu et al., 621

2023). All experiments are conducted in a dual- 622

4090 server, detailed as follows: 623

• Fast-DetectGPT serves as a coarse binary- 624

classification, and the results are summarized in 625

Figure 11 and detailed in Figures 12, 13, and 14. 626

A higher criterion represents a greater probability 627

of machine-generated text. 628

• GLTR works as a coarse four-class classification, 629

and the results are summarized in Figures 15 to 630

18 and detailed in Figures 19 to 30. It analyzes 631

GPT-2’s predictions at each position in the text 632

and calculates the rank of every word. Words 633

ranked in the top 10 are classified as green, those 634

in the top 100 as yellow, in the top 1000 as red, 635

and the rest as purple. 636

• RADAR provides robust binary classification 637

experiments, and the results are summarized in 638

Figure 31 and detailed in Figures 32, 33, and 639

34. A higher threshold indicates an increased 640

likelihood of identifying machine-generated text 641

through adversarial learning techniques. 642

Consistent with previous analyses, there is no ob- 643

vious effect of LLMs in the presentations of these 644

oral presentations, demonstrating the need for fine- 645

grained detection such as the word frequency ex- 646

periments we presented before. 647
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Table 1: Statistics and source data link of each conference analyzed in our paper. Missing data are marked with “*”.

Conf. Year Oral Spotlight Poster Source Link

ICML 2021 166 1017 * https://icml.cc/Conferences/2021/Schedule
2022 118 1115 * https://icml.cc/Conferences/2022/Schedule
2023 155 * 1673 https://openreview.net/group?id=ICML.cc/2023/Conference
2024 144 191 2275 https://openreview.net/group?id=ICML.cc/2024/Conference

NeurIPS 2021 60 284 2286 https://openreview.net/group?id=NeurIPS.cc/2021/Conference
2022 * * 2671 https://openreview.net/group?id=NeurIPS.cc/2022/Conference
2023 67 378 2773 https://openreview.net/group?id=NeurIPS.cc/2023/Conference

ICLR 2021 53 114 692 https://openreview.net/group?id=ICLR.cc/2021/Conference
2022 55 175 864 https://openreview.net/group?id=ICLR.cc/2022/Conference
2023 90 281 1201 https://openreview.net/group?id=ICLR.cc/2023/Conference
2024 86 367 1807 https://openreview.net/group?id=ICLR.cc/2024/Conference

(a) Instruction for annotators. (b) An example for human annotation.

Figure 6: Annotation details.

C.2 Issues in Speech-to-Text and Abstracts648

In this section, we introduce the issues we discover649

in the speech-to-text process and abstracts, detailed650

as follows:651

• There are words such as “ok” and “okay” which652

have identical pronunciations and meanings, but653

Speech-to-Text systems may exhibit a preference654

for one over the other. For instance, in the ICML655

oral presentations of 2021 and 2022, “ok” was656

predominantly used, whereas in 2023 and 2024,657

“okay” became more common. Such discrepan-658

cies introduce inconsistencies that can affect the659

accuracy of word frequency analyses.660

• The conversion of technical terms by Speech-to-661

Text systems may not always be accurate. For662

example, in multiple oral presentations, the term663

“LoRA” (a well-known PEFT method) was incor-664

rectly transcribed as the name “Laura” in the665

subtitles, which is evidently erroneous. Fortu-666

nately, the impact of such errors on the overall667

word frequency statistics appears to be minimal.668

• While retrieving abstracts from ICML, ICLR,669

and NeurIPS conferences, it was observed670

that certain abstracts contained format-671

ting elements such as italics or citations,672

e.g., \textit{approximately valid} and 673

\cite{chen2020learning}. These formatting 674

artifacts can distort the frequency analysis of 675

certain words, such as “cite.” 676

• A comparative analysis was conducted between 677

the original subtitles of the oral presentations 678

and the transcripts generated by Whisper’s base 679

model (Radford et al., 2022) from the audio files 680

of the same presentations. This comparison, eval- 681

uating accuracy, consistency, and coherence, indi- 682

cated that the original subtitles were significantly 683

superior to the transcripts generated by Whisper. 684

Therefore, the original subtitles are deemed more 685

appropriate for use in word frequency analysis. 686

C.3 Word frequency 687

Figure 8 also shows the increasing trend in the 688

frequency of these words. 689

D Case Study 690

In this section, we sample some oral presentations 691

at each machine learning conference and visualize 692

the MGT detection results. An example of the 693

abstract is shown in Figure 35 and the presentation 694

of an oral paper in ICML 2022 shown in Figure 36, 695

37, and 38. 696

10

https://icml.cc/Conferences/2021/Schedule
https://icml.cc/Conferences/2022/Schedule
https://openreview.net/group?id=ICML.cc/2023/Conference
https://openreview.net/group?id=ICML.cc/2024/Conference
https://openreview.net/group?id=NeurIPS.cc/2021/Conference
https://openreview.net/group?id=NeurIPS.cc/2022/Conference
https://openreview.net/group?id=NeurIPS.cc/2023/Conference
https://openreview.net/group?id=ICLR.cc/2021/Conference
https://openreview.net/group?id=ICLR.cc/2022/Conference
https://openreview.net/group?id=ICLR.cc/2023/Conference
https://openreview.net/group?id=ICLR.cc/2024/Conference


Figure 7: An example of our monitoring platform.

Figure 8: Word frequency oral papers and spotlight
papers in ICLR.
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(a) Word frequency in abstracts of poster papers.

(b) The sum of the frequencies of example words in the
abstracts of different types of papers.

Figure 9: Word frequency in abstracts of NeurIPS pa-
pers. Papers accepted in 2022 are considered poster
papers, and word frequencies for spotlight and oral pa-
pers were completed by interpolation.
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Figure 10: Criterion distribution in abstracts of oral works.

Figure 11: Criterion distribution in abstracts of oral works.

Figure 12: Criterion distribution in ICLR oral presentations.
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Figure 13: Criterion distribution in ICML oral presentations.

Figure 14: Criterion distribution in NeurIPS oral presentations.

Figure 15: Green class of GLTR in abstract of oral works.
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Figure 16: Yellow class of GLTR in abstract of oral works.

Figure 17: Red class of GLTR in abstract of oral works.

Figure 18: Purple class of GLTR in abstract of oral works.

Figure 19: Green class of GLTR in ICLR oral presentations.
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Figure 20: Yellow class of GLTR in ICLR oral presentations.

Figure 21: Red class of GLTR in ICLR oral presentations.

Figure 22: Purple class of GLTR in ICLR oral presentations.
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Figure 23: Green class of GLTR in ICML oral presentations.

Figure 24: Yellow class of GLTR in ICML oral presentations.

Figure 25: Red class of GLTR in ICML oral presentations.
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Figure 26: Purple class of GLTR in ICML oral presentations.

Figure 27: Green class of GLTR in NeurIPS oral presentations.

Figure 28: Yellow class of GLTR in NeurIPS oral presentations.
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Figure 29: Red class of GLTR in NeurIPS oral presentations.

Figure 30: Purple class of GLTR in NeurIPS oral presentations.

Figure 31: AI-Generated probability in abstracts of oral works.
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Figure 32: AI-Generated probability in ICLR oral presentations.

Figure 33: AI-Generated probability in ICML oral presentations.
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Figure 34: AI-Generated probability in NeurIPS oral presentations.

Abstract Example
Large language models are trained on vast amounts of internet data, prompting concerns that they have memorized

public benchmarks. Detecting this type of contamination is challenging because the pretraining data used by proprietary

models are often not publicly accessible.

We propose a procedure for detecting test set contamination of language models with exact false positive guarantees

and without access to pretraining data or model weights. Our approach leverages the fact that when there is no data

contamination, all orderings of an exchangeable benchmark should be equally likely. In contrast, the tendency for

language models to memorize example order means that a contaminated language model will find certain canonical

orderings to be much more likely than others. Our test flags potential contamination whenever the likelihood of a

canonically ordered benchmark dataset is significantly higher than the likelihood after shuffling the examples.

We demonstrate that our procedure is sensitive enough to reliably detect contamination in challenging situations,

including models as small as 1.4 billion parameters, on small test sets with only 1000 examples, and datasets that appear

only a few times in the pretraining corpus. Finally, we evaluate LLaMA-2 to apply our test in a realistic setting and find

our results to be consistent with existing contamination evaluations.

Figure 35: Abstract Example.
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Presentation Example - 1
’Opening’: ’Hi Embassy Kuala’,

’Introduction’: ’And this presentation is about our clear paper titled complex query answering with neuron predictors.

And this is joint work with Erik Daniel Helle’,

’Related Work’: ’So let’s consider the setting. We have a knowledge graph graph structured knowledge base where

knowledge about the world is represented in the form of relationships between entities. In the knowledge graph like

this, one notes correspond to objects in the world or also upset concepts and I just correspond to relationships between

these. In this example we have a knowledge graph about biomedical entities which tells us that paroxetine is used to

treat anxiety and as bisimulation as a biological action. And that a pixel band treats deep vein thrombosis and one of its

pharmacological effects is that it’s an anticoagulant. Now one problem with real world where large scale knowledge

graphs is that they are often incomplete. In this particular case, we are missing a link stating the topics abandons a

medication that deep vein thrombosis is a disease and that a pixel band kind of side effects when taken together with

oxygen. A very effective solution to identifying missing links in large knowledge graphs is via neural in production

models in neural prediction. The underlying idea is that we can learn an embedding vector for all the nodes in the graph.

For example, in this case we will learn an embedding back to for a pixel band proximity in bisimulation, Deep vein

thrombosis and all other entities in the graph. Now assume we want to know the type of relationship if any between a

pixel band and boxed in the likelihood that two entities in this case picks abandoned parks 18 are linked by a given type

of relationship in this case interacts is a function of the embedding vectors of the source node. In this case a pixel man

and embedding vector of the target node in this case, proximity in. And we can use this function for ranking missing

links and find out that for example, a pixel bunnies are likely to interact with oxytocin. Even if this link is not directly

available in the knowledge graph. Now consider the problem of answering complex queries on incomplete knowledge

graphs. Here we have a query which medications have side effects when taken with drugs for treating anxiety and we

want to have a list of medications that hands are query. This query can be formalized in logic form and it reads as

follows, find M where M is available such that there is a D. Which is also variable, such that I am interacts with the and

the tweets anxiety know that this is just an example and our method supports arbitrarily complex logic queries with

conjunctions and dysfunctions. Now the best solution for solving this problem proposed so far is the following. First we

automatically generate millions of complex query answer path and then we train a deep neural network to produce the

correct answers given the creator, the neural model works as follows. First we represent the complex query as a graph.

We were each note um corresponds either to a variable or to an entity in the query. Then the graph is passes through a

deep neural network which will return ranking list of answers. Now that two main problems with this approach, one is

that training is extremely expensive, since the models need to be trained on millions of genetic queries. Also, it’s not

really clear what happens if we evaluate on queries that differ from the queries that we used for training. Another issue

is that there is no explanation for the reasons why a given answer was predicted to solve these problems.’

Figure 36: Presentation Example - 1
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Presentation Example - 2
’Method’: ’In this work, we propose a completely new paradigm for answering complex queries on incomplete

knowledge graphs. We first train a model F. I, financing simple atomic queries like which drugs to it anxiety. And then

we convert its query into an optimization problem where we need to identify the optimal values of the variables in this

case, M and D. In the query that maximize the likelihood of both that M interacts with the and likely that the tweets

anxiety. Then those two likelihoods are aggregated using a T norm, which is a continuous relaxation of the logical

and from fancy logic. And depending on whether we search for the best values of M and the united creator continuous

space, we can cast this problem as either as a continuous or discrete optimization problem. In the discrete case, we

want to identify the best mapping from variables to entities that maximizes the score of the query. We experimented

with a very simple greedy approach to solve this problem, we first start with the variable D. And search for the K most

likely values for the by finding the top K. Treatments for anxiety according to the Newell in prediction model. Then for

each of the candidate values of the we identify the most likely values for the problem and then we compute the query

scores, originated parts of values for M and E, and which are the most likely values for MMD. Another approach we

experimented with consists in directly optimizing the vector representations associated with the variables MMD. This

can be done by a gradient based optimization. We first initialize the embeddings of M and the randomly. And then we

optimize the embedding of them and the to maximize the score of the query. And finally replaced the embedding of

them with the embedding of all the candidate entities and rank them using the corresponding query score’,

’Results’: ’Yeah. So we experimented on a variety of complex grid structures. And despite being only trained on simple

creation, we can see that our model systematically generalize is too complex queries better than models trained on

complex queries. In the first place, He had results on 3 - 15 K 237 for different complex great types. Here we can see the

results on three basic 15 K. Any other results on 995 and here we have the average results between all types of complex

queries that we considered. And we can see that our model produces significantly more accurate results on all the traii

datasets. This improves of the existing models, both in terms of the data efficiency, because we only need to train our

model on a much smaller dataset of simple queries and also in terms of out of out of distribution generalization, because

we get better generalization accuracy on complex queries without having to train on them In the 1st place. Another

really nice feature of this model is that it can provide explanations for its predictions. Other models in the space only

returns a list of answers to the query. For instance, in this case, the answer is being produced at a pixel ban, I’m 15

block setting and others. Our model can also be used to provide the intermediate results associated with each query in

the form of the variable assignments used to produce the answer. For example, here we can see that a pixel ban and

I’m tellin were considered as answers because according to the model, they interact with oxytocin while dual oxygen

was considered as as an answer because according to the model, it interacts with pregabalin and this allows us to check

whether the results are being produced for the right reasons. In this case box setting and pregabalin are two possible

treatments for anxiety. So the model is producing the correct answers for the correct reasons. This is not always the case.

For example, consider the following query from feedback is 15 K 237. What international organizations contain the

country of nationality of thomas Aquinas here, the model was able to return the correct set of answers NATO asI, D U

and Wt O. However, this return for the wrong reasons. Um thomas Aquinas was mistakenly assumed to be from the US

from the UK are from Germany. While the correct nationality of thomas Aquinas is italian. Our model enables us to

detect such iris and possibly cracked them by refining the underlying newly prediction model.’

Figure 37: Presentation Example - 2
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Presentation Example - 3
’Ending’: ’So, to summarize in this paper, we propose a new approach France and complex creates on large scale and

incomplete knowledge graphs. In our approach, we first train a neural prediction model on the task of answering simple

atomic creation. And then we cast the problem of answering complex grace as an optimization problem where we need

to find the mapping from variables, quantities that maximizes the score of the complex square. And we show that our

approach generalizes extremely well to complex queries despite not having been trained on them in the first place, all

the source code, the pre trained models and datasets online at this link. And if you want to collaborate on this topic or

have any questions or comments, please feel free to reach out to us and thank you for listening. thank you very much So

you may be. Now we will move to the next paper about complex query answering’,

’Q&A’: ’So we had one question from Cartier uh she mentioned that the work is supplied to relatively small data said

she wants to know essentially what happens if you try to scale it up. And I follow with the second question quickly. I

was wondering essentially because you have these different types of you know, complex queries and then you have two

types of optimization. One is the continuous relaxation, another is the greedy discrete approach. Which one is better in

which case is there any kind of ideal correlation between types of I don’t know, complexity of the queries, how they are

designed and so on or Yes, thank you. Thanks to the great questions. So about the first one about getting the method

up to much larger quantities of data like the millions um of data points they use in other methods. I think it’s super

interesting and we can I think we might observe significant improvement for that from that. For example. One thing

that we’re doing at the moment is we are fixing how so we select one continuous relaxation of the logical end and are

as an input parameter, we select the two norm and that economic beforehand as an input parameter and then we just

execute the method but I think by scaling this matter to larger conditional data and to complex creates during training

we can think of for example to um to train how we represent the logical and and or within the architecture and we can

we would be able to use for example, paramedic economics and economies, which we are not touching at the moment

because we don’t use complexities, complexities during training. And also um the naturally predictors that we use for

answering economic queries are not really trained. Um so um are not really trained on complex crises in in the first

place that trained on atomic quiz. And I think that so the scores are not really trying to do interact together in some

sense. So I think we might be able to observe a significant improvement from that as well. About the other question. So

what we observed is that the discrete search seems to work consistently better than the continuous search um across all

datasets and the types of complex queries. And we think that that might happen because the the continuous search for

the entity representations might find some entity representations that do not do not correspond to any real entities in

some sense. Or maybe the model might hallucinate some, I don’t know, a dog with seven legs. Uh The other entities

that are not really close in terms of representations to real entities in the knowledge base. So I think that’s my that that

might be a reason why um this could search works consistently better on uh continue such. Um Thanks. Okay, thank

you very much. I think that answers the question. So I’ll hand over tell me actually have another question about the

linking paper. So you have a two step approach for your first predict links and then you run queries on top of that. Can

you comment on? No, no, basically the links are predicted. Um so basically the links are predicted as kind of a part of

the optimization problem. We translate the complex series into each complex query is translated into an optimization

problem and the neural predictor. Um that makes whether there is a link between two entities is kind of a component of

this optimization problem because correcting like all drinks beforehand, doesn’t scale up because you can have billions

of possible links uh in the name, like materializing all the links beforehand doesn’t really uh scale also like you need

to decide uh what whether to materialize a link or not. So basically the link prediction process is part of the complex

variants diagnosis. Uh this map’.

Figure 38: Presentation Example - 3
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