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Abstract

Trustworthiness reasoning aims to enable
agents in multiplayer games with incomplete
information to identify potential allies and ad-
versaries, thereby enhancing decision-making.
In this paper, we introduce the graph retrieval-
augmented trustworthiness reasoning (GRATR)
framework, which retrieves observable evi-
dence from the game environment to inform
decision-making by large language models
(LLMs) without requiring additional training,
making it a zero-shot approach. Within the
GRATR framework, agents first observe the
actions of other players and evaluate the result-
ing shifts in inter-player trust, constructing a
corresponding trustworthiness graph. During
decision-making, the agent performs multi-hop
retrieval to evaluate trustworthiness toward a
specific target, where evidence chains are re-
trieved from multiple trusted sources to form
a comprehensive assessment. Experiments in
the multiplayer game Werewolf demonstrate
that GRATR outperforms the alternatives, im-
proving reasoning accuracy by 50.5% and re-
ducing hallucination by 30.6% compared to
the baseline method. Additionally, when tested
on a dataset of Twitter tweets during the U.S.
election period, GRATR surpasses the baseline
method by 10.4% in accuracy, highlighting its
potential in real-world applications such as in-
tent analysis.

1 Introduction

In multiplayer games with incomplete information,
trustworthiness reasoning is critical for evaluating
the intentions of players, who may conceal their
true motives through actions, dialogue, and other
observable behaviors. Autonomous agents analyze
the trustworthiness of players based on observable
actions to identify potential allies and adversaries
(Fig. 1). Current methods supporting such reason-
ing include symbolic reasoning, evidential theory
(Liu et al., 2021), Bayesian reasoning (Wojtowicz
and DeDeo, 2020; Sohn and Narain, 2021; Wan

and Du, 2021), and reinforcement learning (Wan
et al., 2021; Wang et al., 2020; Tiwari et al., 2021).
While effective, these methods struggle to address
the complexity of natural language interactions,
the ambiguity of player behavior, and the dynamic
nature of strategic decision-making in such envi-

ronments.
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Figure 1: Illustration of trustworthiness reasoning.

Agent observes the actions of other players to gather ev-
idence, and then evaluates inter-player trust and informs
decision-making.

To address these limitations, large language mod-
els (LLMs) offer a promising approach for trustwor-
thiness reasoning in multiplayer games, owing to
their advanced natural language understanding and
generation capabilities (Brown et al., 2020; Kenton
and Toutanova, 2019; Radford et al., 2019). LLMs
utilize these capabilities to interpret complex dia-
logues, infer latent intentions, and detect deceptive
behaviors from contextual cues. However, LLMs
face inherent challenges, including the risk of hal-
lucination and knowledge obsolescence (Ji et al.,
2023; Maynez et al., 2020). To mitigate these is-
sues, techniques such as supervised fine-tuning and
reinforcement learning have been proposed to en-
hance their reasoning performance (Ouyang et al.,
2022; Stiennon et al., 2020). Nonetheless, these ap-
proaches often require extensive historical data and
well-defined reward signals, which may be scarce
or unavailable in real-world game scenarios.

To enhance the capabilities of LLMs in



dynamic, knowledge-intensive environments,
retrieval-augmented generation (RAG) (Gao
et al., 2024; Zhao et al., 2024) has emerged
as a promising alternative. RAG addresses the
limitations of LLMs by integrating an external
retrieval mechanism that dynamically fetches
relevant information to augment the generation
process. In the RAG framework, a retriever
first indexes and retrieves pertinent data chunks,
which are then combined with an input query
to refine the generation process. This approach
mitigates issues such as knowledge obsolescence
and hallucination by incorporating up-to-date and
contextually relevant information, making it a
promising solution for trustworthiness reasoning
in multiplayer games with incomplete information.
However, trustworthiness reasoning in multi-
player games presents additional challenges that
exceed the capabilities of current RAG methods.
Specifically, it requires the real-time collection and
analysis of statements and actions as evidence ex-
hibited by players. Due to the complexity of player
interactions, trustworthiness reasoning for a given
player must consider the actions of other players
toward that target. This necessitates multi-hop re-
trieval and synthesis of evidence, which becomes
computationally intensive and time-consuming,
particularly in scenarios involving many players.
Contributions. We propose a novel method,
the graph retrieval-augmented trustworthiness rea-
soning (GRATR) framework, which constructs a
dynamic trustworthiness graph to model player in-
teractions in real time, thus avoiding the compu-
tational overhead of retrieving information from
large text corpora repeatedly. During the obser-
vation phase, agents collect observable evidence
to dynamically update the graph’s nodes (repre-
senting players) and edges (representing trust re-
lationships). During decision-making, GRATR
performs multi-hop retrieval to evaluate the trust-
worthiness of a specific target player, leveraging
evidence chains from multiple trusted sources to
form a comprehensive assessment. This approach
enhances reasoning and decision-making without
additional training, making it a zero-shot solution.
We validate GRATR in the multiplayer game Were-
wolf, comparing it to baseline LLMs and LLMs
with state-of-the-art RAG techniques. The exper-
imental results demonstrate its ability to model
dynamic trust relationships and support informed
decision-making in complex, incomplete informa-
tion scenarios. Furthermore, GRATR enhances

transparency and traceability by visualizing tem-
poral evidence and evidence chains through the
trustworthiness graph, overcoming the limitations
of previous methods. Beyond multiplayer games,
we also apply GRATR to real-world scenarios, i.e.,
analyzing the intent behind social media tweets,
showcasing its broader applicability.

2 Preliminary

In a multi-player game with incomplete informa-
tion, the game can be described by the following
components:

* Players: P = {p1,p2,...,pn}, where p; rep-
resents the i-th player, and each player p; has
a private type 0; € ©;, where O; is the set of
possible types for player p;.

Actions: In each round ¢, player p; chooses
an action a;? € A;, where A; is the set of avail-
able actions for player p;. A; is assumed to be
finite to simplify the analytical and computa-
tional complexity.

Observations: After all players choose their
actions, each player p; receives an observation
og € O;, where O; is the set of possible ob-
servations for p;. The observation o} depends
on the joint actions a' = (a},d}, ..., al) and
possibly other public or private signals. Public
signals can be observed by all players, while
private signals are unique to the particular
players, such as the results of a seer’s check
in the Werewolf Game.

Objective: Each player p; aims to maximize
their utility function U;(a;, 0;,0_;,T'), where
o_; is the strategy distribution of others, and
T is the trustworthiness judgment. Greater
accuracy in T’ (better trustworthiness reason-
ing) leads to higher utility. 6 and a of tra-
ditional methods are complex, but our algo-
rithm simplifies this by classifying characters
as enemies/ allies and actions as protective/
aggressive. While theoretical analysis is com-
plex due to model evaluation challenges, ex-
perimental results indirectly validate strong

trustworthiness reasoning via action scores.
The game proceeds as follows:
At the beginning of each round ¢, each player
p; observes hl and selects an action af =
s;(ht,0;), where h means the history and s
means the strategy function for choosing ac-
tions based on history and private type.

! are chosen, players receive

After all actions a
observations of.



* Players update their beliefs o/ ™1 (_; | hi™)
based on the new history A" that includes
o! and a.

* The game continues for a fixed number of
rounds 7', or until a stopping condition is met.

3 Methodology

To enhance the effectiveness of LLM reasoning, es-
pecially in environments where trust and strategic
interactions are crucial, it is essential to retrieve
the most relevant evidence from historical data.
This motivated us to develop a framework where
the information observed by agents is structured
into a graph-based evidence base. By maintain-
ing this evidence graph, we can retrieve related
evidence chains, augment LLM reasoning, and mit-
igate the issues of hallucination and opacity. This
methodology forms the foundation of our proposed
GRATR system. Figure 2 presents the framework
of GRATR. The process begins with the initial-
ization of a trustworthiness graph when an agent
participates in the game. Observations made by the
agent are analyzed using the LLM to extract evi-
dence and assess its credibility, which is then used
to update the trustworthiness graph GG. Through
multi-hop retrieval on (7, evidence chains are con-
structed to evaluate the trustworthiness of other
players. Finally, the system updates trustworthiness
relationships among players based on the gathered
evidence, leveraging the graph structure to provide
a transparent and well-grounded reasoning process.

3.1 The Trustworthiness Graph Initialization
Assume an agent participates as a player in a mul-
tiplayer game with incomplete information, main-
taining a directed graph G* to record historical ob-
servations h! up to round ¢ as a dynamic evidence
base. This graph G? serves as the foundation for
the agent’s reasoning process, enabling the retrieval
and use of real-time evidence. The graph consists
of two core components: nodes and edges.

Nodes: Each node in the graph G? represents a
player p; and stores two parameters.

¢ Trustworthiness of Nodes 7"%(p;) € [—1,1]:
The perceived trustworthiness of player p;
by the agent at time t. When T%(p;) > e,
the agent regards player p; as an ally, when
Tt(p;) < —e, the agent regards player p; an
adversary; otherwise, the agent regards player
p; as indifferent.

* Historical Observations ! (p;): The history
of observations gathered by the agent about

player p; up to round ¢, serving as the evidence
base.

Edges: Each directed edge e!(p;, p;) connects
player node p; to player node p; and stores two
parameters.

« Evidence List D'(p;, pj): This list contains
a set of evidence items d’(p;, p;) that record
the actions of player p; towards player p; as
observed by the agent. Each evidence item
includes the specific action taken and its as-
sociated credibility c!(p;, p;), indicating the
significance of this action in assessing trust-
worthiness.

* Trustworthiness of Edges T*(p;, pj): This
weight reflects the trustworthiness of p; in p;
from the agent’s perspective, determined by
the accumulated evidence in the evidence list.

GRATR initializes a directed graph where nodes
represent players and edges denote trustworthiness.
At the initial time ¢ = 0, the edge weight is set
to zero, i.e., T9(p;, pj) = 0, and the evidence list
DO(p;, p;) is empty, indicating no prior observa-
tions or assessments. The graph structure is fixed,
but edge weights and evidence lists are dynamically
updated during interactions.

3.2 The Trustworthiness Graph Update
When the agent receives a new observation of(p;)
following an action by player p;, the evidence
graph G must be updated to incorporate this new
information. This ensures that G* accurately rep-
resents the current state of trustworthiness among
the players at time ¢.

The agent uses the LLM to extract evidence
items d'(p;, p;) and their corresponding weights
c*(pi, p;) from the observation o(p;) (the related
prompt used for LLLM interactions is provided in
Appendix 1.1). For each directed edge e’ (p;, p;) in
the graph, the evidence list D'™!(p;, p;) associated
with the edge €' (p;, pj) is updated by adding the
new evidence d'(p;, p;):

D" (s, pj) = DX (pi, pj) U{d' (pisps)}. (1)

The sign of ¢! (p;, p;) indicates the nature of p;’s
intention towards p;: negative for hostility and
positive for support, with |c!(p;, p;)| reflecting its
strength. Note that the evidence list D! (p;, pj) is
updated with the new observation, and the edge
weight T (p;, p;) is adjusted accordingly during
retrieval to maintain an accurate representation of
trustworthiness.
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Figure 2: The overall framework of GRATR: Step 1. An agent participates in the game as player 1, and initializes
a trustworthiness graph G. Step 2. When player 1 receives a new observation of (p3) following an action by af
at time ¢, it uses an LLM to extract the action into new evidence and its credibility and then updates and merges
evidence on the graph G*. Step 3. Player 1 obtains multiple evidence chains by multi-hop retrieval and updates the
trustworthiness of player 4. Step 4. Update the trustworthiness of player 4 towards player 2 and player 3.

Meanwhile, the agent updates the trustworthi-
ness of p; in response to the evidence items ex-
tracted from the LLM. The update depends on the
two factors: the perceived trustworthiness of p;, the
credibility ¢! (p;, p;) of the d*(p;, p;), which also
represents the p;’s confidence of the p;’s current
role classification R*(p;). The updated trustwor-
thiness 77 (p;) is computed as follows:

T'(pj), if |u'(p;)| < [T (pj)l,
Tt+1 ;) = J J J 3
(®s) &mm,ﬂwm>>W@» )

u!(p;) represents the inference of p;’s trustworthi-
ness through the observation of(p;).

3.2.1 Evidence Merging
In this phase, the objective is to aggregate and eval-

uate the various evidence collected by the agent
over time, specifically related to the interactions
between players p; and p;. Assume that the agent
has n pieces of evidence d'(p;, p;) towards player
p; in the evidence list D*(p;, p;) associated with
the directed edge €' (p;, p;). The evidence is sorted
in chronological order, with each piece of evidence
having an associated weight ¢! (p;, p;) and a tempo-
ral importance factor p. The updated edge weight
T (p;, pj) is computed as follows:

“)

Tt+l(piapj) = tanh (ZZ:l pn_k : Ct(piapj)) .

The impact of evidence decreases over time, with
more recent evidence having greater influence. The
tanh function is used to constrain the edge weight
T*(p;, p;) within the interval [—1, 1], providing
a bounded measure of the trustworthiness between
players. The motivation and intuition behind the
difference between Eq. (4) and Eq. (2) (3) lie in the
distinct roles of 77! (p;) and T""!(p;, p;). Updat-
ing T*"!(p;) with a single piece of evidence (Eq.
(2) (3)) reflects real-time adjustments based on im-
mediate observations, focusing on simplicity and
responsiveness. In contrast, updating 71 (p;, p;)
by merging all evidence (Eq. (4)) accounts for the
chronological accumulation and potential conflicts
of past observations, aiming to provide a compre-
hensive and accurate trustworthiness assessment
over time. This distinction ensures both adaptabil-
ity to new evidence and robustness in reasoning
about long-term confidence.

3.3 Graph Retrieval Augmented Reasoning

During the agent’s turn, particularly when decid-
ing on an action involving player p,, the reasoning
process is augmented by retrieving and leveraging
relevant evidence from the evidence graph G*. This
graph-based retrieval augments the player’s trust-
worthiness assessment by incorporating historical
evidence into the reasoning process. The retrieval
process is divided into three key phases: evidence
merging, forward retrieval, backward update, and



reasoning.

3.3.1 Forward Retrieval

Given that the agent holds a trustworthiness value
T*(p1) towards player p1, if there exists a evidence
chain C,, : p, — Po—1 — --- — p1, the value
Ve,, of this evidence chain and the cumulative trust-
worthiness update u!, (p,) towards player p, are

computed as follows:
o—1
Ve, =Y T'(prs1) - T'(Prs1,px), )
k=1

o—1
up(po) = T' (1) - [[ T (rs1smp). - (6)

The uncertainty associated with the chain Cp is
defined by:

H(Cn) = —|uy (po)| logy [z, (po)]. - (7)
For the player p, with m related evidence chains

C1,Ca, ..., Cpm, the updated trustworthiness 77 (p,)
is given by:

Tt+1(p0) _ Z?:l (ch — H(Cn)) : Uf-b(po) . (8)
>on=1(Ve, — H(Cr))

The trustworthiness update is a weighted sum of
the relevant evidence chains, where each chain’s
weight is determined by its value and associated
uncertainty.

3.3.2 Backward Update

Once T*(p,) is updated, the edge weights associ-
ated with the relevant evidence chains need to be
updated in reverse:

T (po)

TtJrl(poapo—l) =7 T, 1)

poil) +Tt(povpo—1)- (9)

Here, ~y represents the learning rate for the back-
ward update, and p,_1 is the preceding player in
the evidence chain C,, (n = 1,2,...m).

3.3.3 Reasoning

After updating the trustworthiness of the agent to-
wards p,, a summary and reasoning are made based
on the trustworthiness of player p, and the relevant
evidence chains retrieved. Specifically, the trust-
worthiness of the agent towards p,, and the evidence
chains are combined into a prompt sent to LLM,
which ultimately returns the summary and reason-
ing of the player p,. The prompt used is shown in
Appendix 1.2.

4 Experiments

In this section, we evaluate the enhancement of
LLMs’ reasoning and intent analysis capabilities
with GRATR, testing it on both the Werewolf game

and the Twitter dataset from the 2024 U.S. election.
We use pure LLMs as the baseline, alongside state-
of-the-art algorithms, including NativeRAG (Lewis
et al., 2020), RerankRAG (Sun et al., 2023), and
LightRAG (Guo et al., 2024), for comparison.

4.1 Experiment on Werewolf Game

We implemented our GRATR method using the
classic multiplayer game Werewolf (Xu et al.,
2024). The game consists of 8 players, including
three leaders (the witch, the guard, and the seer),
three werewolves, and two villagers. The history
message window size K is set to 15. We use the
GPT-3.5-turbo, GPT-40, GPT-40-mini, Qwen-Max,
and DeepSeek-V3 models as the backend LLMs,
with their temperatures set to 0.3 according to the
original paper’s setup. In each game, four players
are assigned to each algorithm, with three players
randomly assigned to the leader and werewolf roles,
and the remaining player assigned to the village
side. The algorithm corresponding to the winning
side is considered the winner of the game. Each
algorithm participated in 50 games with different
backend LLMs.

4.1.1 Win Rate Analysis

Table 1 presents the win rates of LLMs with
GRATR in pairwise comparisons against the base-
line and LLMs with NativeRAG, RerankRAG, and
LightRAG in the Werewolf game. The win rates
include total win rate (TWR), werewolf win rate
(WWR), and leader win rate (LWR).

From the mean TWR in Table 1, it is clear
that GRATR significantly outperforms both pure
LLMs and LLMs with advanced RAG methods.
Except for the match against NativeRAG, where
the win rate is 78.4%, GRATR achieves win rates
above 80% in all other pairwise competitions.
The experimental results support the claim that
GRATR effectively enhances LLM reasoning in
incomplete information games and improves win
rates. More specifically, the results show that
GRATR achieves the highest win rate when play-
ing against pure LLMs, followed by LightRAG,
RerankRAG, and NativeRAG. This suggests that
external retrieval-based techniques are beneficial
for enhancing LLM reasoning. Furthermore, while
LightRAG, as a graph-based retrieval-augmented
generation method, excels at summarization rather
than reasoning, and RerankRAG, though a com-
mendable variant, fails to capture the causal rela-
tionships of player actions in multi-hop retrieval,
which results in its lower performance compared



and GPT-40-mini. Therefore, we conclude that
stronger LLLMs further amplify the performance
advantages of GRATR.

4.1.2 Action Scores

In the Werewolf game, win rate alone evaluates
the overall performance of the team, but it does
not fully reflect the individual agent’s actual per-
formance. Therefore, this section further analyzes
the agent’s action scores in each game to highlight
its superiority in reasoning, social interaction, role
identification, and other aspects. Table 2 presents
the detailed scoring breakdown for agents under
different identities, including scores for correct and
incorrect votes. Additionally, each winning player
is pre-allocated a base score of 5 points.

GRATR vs. Model TWR WWR LWR
GPT-3.5-turbo  76.0% 72.0% 80.0%
GPT-40 88.0% 84.0% 92.0%
Baseline GPT-40-mini  84.0% 76.0% 92.0%
Qwen-max 94.0% 88.0% 100.0%
DeepSeek-v3  92.0% 88.0% 96.0%
Mean 86.8% 81.6% 92.0%
GPT-3.5-turbo  66.0% 60.0% 72.0%
GPT-40 80.0% 76.0% 84.0%
NativeRAG ~ GPT-40-mini  78.0% 72.0% 84.0%
Qwen-max 80.0% 76.0% 84.0%
SeepAeek-v3  88.0% 80.0% 96.0%
Mean 78.4% 72.8% 84.0%
GPT-3.5-turbo  72.0% 76.0% 68.0%
GPT-40 90.0% 84.0% 96.0%
RerankRAG ~ GPT-40-mini  80.0% 80.0% 80.0%
Qwen-max 92.0% 84.0% 100.0%
DeepSeek-v3  90.0% 84.0% 96.0%
Mean 84.8% 81.6% 88.0%
GPT-3.5-turbo  80.0% 76.0% 84.0%
GPT-40 90.0% 96.0% 84.0%
LightRAG GPT-40-mini  84.0% 80.0% 88.0%
Qwen-max 88.0% 84.0% 90.0%
DeepSeek-v3  88.0% 96.0%  80.0%
Mean 86.0% 86.4% 85.2%

Table 1: The total, werewolf, and leader win rates
(TWR, WWR, LWR) of GRATR in pairwise compar-
isons against the baseline and LLMs with NativeRAG,
RerankRAG, and LightRAG in the Werewolf game.

to NativeRAG.

Further analysis of the win rates when the agent
plays as a werewolf or leader reveals that the agent
performs significantly better as a leader. Notably,
when using Qwen-Max, the win rate reaches 100%
against both Baseline and RerankRAG. This can
be attributed to the game dynamics of Werewolf,
where the werewolf must deceive other players
to conceal their identity, whereas the leader only
needs to reason out who the werewolf is. The high
win rates for the leader role provide evidence that
GRATR enhances the reasoning ability of LL.Ms,
enabling them to identify the concealed werewolf.
Although GRATR also performs well when the
agent plays as a werewolf, the deception required
for this role presents a greater challenge for LLMs.

The experiment shows that different LLMs have
a significant impact on the results. As shown in
Table 1, GRATR achieves better performance with
GPT-40, Qwen-Max, and DeepSeek-V3, with win
rate improvements of 4%, 2%, 10%, and 4%, re-
spectively. Publicly available evidence (Chiang
et al., 2024; Contributors, 2023) indicates that GPT-
40, Qwen-Max, and DeepSeek-V3 exhibit stronger
reasoning capabilities compared to GPT-3.5-turbo

Werewolf Witch Guard Seer Villager
Correct 0.5 1.5 1.5 1.5 1.0
Incorrect -0.5 -1.5 -1.5 -1.5 -1.0

Table 2: Correct and incorrect action scores for different
identities in Werewolf game.

Fig. 3 presents the action scores of GRATR
VS. baseline LLM, LLM with NativeRAG,
RerankRAG, and LightRAG in the Werewolf game.
Overall, when the agent plays as a villager, the
score differences are minimal, generally under 2
points, and even less than 1 point when compared
to baseline LLM and LL.Ms with NativeRAG or
RerankRAG. This indicates that, on average, the
agent makes fewer than one error per game round.
It is important to note that in the Werewolf game,
villagers have no prior information other than their
own identity, so all reasoning is based on the in-
consistencies and consistencies in players’ actions
rather than validating with prior knowledge. There-
fore, the superior behavior scores of GRATR when
the agent plays as a villager demonstrate the algo-
rithm’s multi-hop retrieval capability and its advan-
tage in causal reasoning.

For identities other than the villager, such as the
werewolf and leader, the action score differences
are significantly larger. A major portion of this
difference stems from the win rate, as the winning
side is awarded a base score of 5 points. The re-
maining differences are due to the correctness of
the agent’s actions. For example, when the agent
plays as a werewolf, the score difference is greater
than 5 points, indicating that the agent made incor-
rect actions. However, in the Werewolf game, the
werewolf has prior knowledge of all teammates and
opponents, SO any errors in actions are primarily
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Figure 3: Action scores of GRATR vs. baseline LLM, LLM with NativeRAG, RerankRAG, and LightRAG in

Werewolf game

attributed to LLM hallucination. While there may
be potential deception and disguise involved, this
section does not delve further into this aspect, as
no additional supporting information is available.

4.1.3 Hallucination Detection

This section detects LLM hallucination by analyz-
ing the agent’s thinking and actions. If the agent’s
reasoning aligns with their true stance, the process
is correct. If the agent’s actions conflict with their
reasoning, it indicates strategic deception. If the
agent’s thinking deviates from their real stance, it
signals cognitive bias or hallucination. We manu-
ally labeled the consistency of the agent’s thinking
and actions, with the results shown in Table 3.

Method Identity Correct Reasoning Deception Hallucination
Baseline Werewolf 61.9% 1.5% 36.6%
Leader 69.7% 0.5% 29.8%
GRATR Werewolf 85.1% 11.4% 3.5%
Leader 97.0% 1.3% 1.7%
NativeRAG ~ Werewolf 79.1% 3.1% 17.8%
Leader 84.4% 1.7% 13.9%
RerankRAG  Werewolf 74.6% 9.4% 16.0%
Leader 83.9% 6.0% 10.1%
LightRAG Werewolf 76.2% 10.1% 13.7%
Leader 86.2% 4.5% 9.3%

Table 3: Correct Reasoning, deceive, and hallucination
rates of different methods in different identities.

The data in the table shows that the GRATR
method outperforms others in both correct reason-
ing and hallucination mitigation. It improves cor-
rect reasoning by at least 6% and 12.6% for the
Werewolf and Leader identities, respectively. It
also exhibits an 11.4% deception rate for the Were-
wolf identity. However, the deception rate is lower
for the Leader identity, as the Leader typically
needs to reveal their identity to guide the villagers
to victory, with deception used only for strategic
purposes. Most importantly, GRATR significantly
mitigates LLM hallucination, reducing them by a
factor of 10 for the Werewolf identity and 17 for the
Leader identity compared to the baseline. These
results strongly support GRATR’s effectiveness in

enhancing LLM reasoning capabilities and reduc-
ing hallucination.

4.2 Experiment on Intent Analysis

In this section, we utilize a public dataset of Twitter
tweets at the time of the U.S. election (Balasubra-
manian et al., 2024) to evaluate GRATR for their
intent analysis capability. This dataset comprehen-
sively captures large-scale social media discourse
related to the 2024 U.S. presidential election. The
dataset includes approximately 27 million publicly
available political tweets collected between May 1
and November 1, 2024. Each tweet is accompanied
by detailed metadata, including precise timestamps
and multi-dimensional user engagement metrics
(such as reply count, retweet count, like count, and
view count).

4.2.1 Experimential Results

We define five possible tweet intents: Anti-
Democrat, Anti-Republican, Pro-Democrat, Pro-
Republican, and Neutral (Ibrahim et al., 2024). To
evaluate the accuracy of the algorithm, we manu-
ally annotated the intents of 26,523 valid tweets
(i.e., tweets that are not garbled and are meaning-
ful). For this, we generalized each tweet to the
individual who sent it (since a person may have
sent multiple tweets) and followed the timeline to
simulate a real Twitter discussion environment. In
this setup, we applied LLMs with GRATR, base-
line LLMs, LLMs with NativeRAG, RerankRAG,
and LightRAG to analyze the stance of each indi-
vidual and further analyze the intent of their tweets.
Table 5 presents the accuracy and macro F1-score
of all comparison algorithms for intent analysis of
the tweets.

Baseline GRATR NativeRAG RerankRAG LightRAG

0.818 0.922 0.868 0.879 0.891
0.809 0.914 0.869 0.878 0.893

Accuracy
Macro F1

Table 4: Accuracy and Macro Fl-score of baseline
LLMs, LLMs with GRATR, NativeRAG, RerankRAG,

and LightRAG on intent analysis of the tweets. )
Among all the methods, LLMs enhanced with



GRATR achieve the highest accuracy of 0.922 and
a macro Fl-score of 0.914, demonstrating supe-
rior performance. The accuracy metric reflects the
proportion of correctly classified tweets out of the
total. However, accuracy alone may not fully cap-
ture performance when dealing with imbalanced
data, such as political tweets, where certain intents
(e.g., Pro-Democrat or Anti-Republican) are more
prevalent than others. In these cases, the macro F1-
score provides a more balanced evaluation by con-
sidering both precision and recall for each intent
category individually, ensuring equal weight for
less frequent categories. The significantly higher
macro Fl-score of LLMs with GRATR (0.914),
compared to the baseline models (0.809), indicates
that GRATR enhances the model’s ability to accu-
rately predict all intents, especially the subtle or
less frequent ones, in politically charged discourse.
This result highlights GRATR’s capacity to inte-
grate contextual and temporal information, which
is critical for understanding the nuanced intents of
tweets, particularly in dynamic environments like
social media during a presidential election. Addi-
tionally, LLMs with RAG, including NativeRAG,
RerankRAG, and LightRAG, all outperform the
baseline LLMs, underscoring the effectiveness of
RAG in improving intent analysis.

5 Related Work

Reasoning Task. In incomplete information
games, players enhance decision-making by reason-
ing through observed data and analyzing behaviors
in real time, despite misleading information (Wu
et al., 2024; Zhang et al., 2024; Cheng et al., 2024;
Qin et al., 2024; Costarelli et al., 2024). Traditional
methods like Bayesian approaches (Zamir, 2020),
evolutionary game theory (Deng et al., 2015), and
machine learning techniques such as Monte Carlo
tree search (Cowling et al., 2012) and reinforce-
ment learning (RL) (Heinrich and Silver, 2016)
have been used, with RL gaining prominence for its
inference capabilities. However, RL’s reliance on
domain-specific data limits generalizability. Large
language models (LLMs) offer an alternative with
extensive knowledge and language capabilities, as
shown by Xu et al. (Xu et al., 2023), who combined
LLMs and RL for strategic language agents. Yet,
LLMs face challenges like high training costs, in-
ability to update data in real time, and hallucination,
hindering real-time reasoning in multiplayer games.
RAG addresses these limitations, enhancing LLMs’
reasoning in dynamic game environments.

Retrieval Augmented Generation. RAG en-
hances LLMs by integrating external knowledge
retrieval. NativeRAG (Lewis et al., 2020) involves
document chunking/encoding, vector-based seman-
tic retrieval, and prompt construction. While ef-
ficient, it often retrieves low-relevance chunks.
RerankRAG improves accuracy by adding a rerank-
ing step (e.g., transformer-based cross-encoders)
to prioritize relevant chunks (Sun et al., 2023).
GraphRAG uses knowledge graphs, modeling enti-
ties as nodes and relationships as edges, supporting
multi-hop reasoning, and capturing complex depen-
dencies for deeper queries (Edge et al., 2024). Both
Rerank and GraphRAG increase computational
complexity. LightRAG (Guo et al., 2024) mitigates
this with lightweight strategies like heuristic filter-
ing, balancing efficiency and relevance. Retrieval-
Augmented Reasoning (RAR) (Tran et al., 2024)
integrates dynamic knowledge retrieval with rea-
soning modules, improving temporal relevance but
facing challenges in multi-step inference and trust-
worthiness verification.

6 Conclusion

This paper introduces GRATR, a novel framework
that enhances agent reasoning in multiplayer games
with incomplete information through trustworthi-
ness reasoning. Unlike the existing RAG works,
GRATR addresses the limitations in handling tem-
poral and causal evidence in long-term games by
implementing a dynamic trustworthiness graph that
updates in real-time with new evidence. The frame-
work consists of two main phases. During the
agent observation phase, evidence is collected to
update the nodes and edges of the graph. During
the agent’s turn, relevant evidence chains are re-
trieved to assess the trustworthiness of the player’s
actions, thereby improving reasoning and decision-
making. Experiments conducted in the multiplayer
game Werewolf demonstrate that GRATR outper-
forms existing methods in terms of game winning
rate, overall performance, and reasoning ability,
while mitigating LLM hallucination. Additionally,
GRATR enables the traceability and visualization
of the reasoning process through time-based evi-
dence and evidence chains. Furthermore, GRATR’s
application to the U.S. election Twitter dataset high-
lights its effectiveness in intent analysis, showcas-
ing its potential for real-world applications.



Limitations

While the GRATR framework demonstrates
promising performance in our experiments, there
are several limitations. First, the computational
complexity of the framework increases with the
number of players and game progression, particu-
larly during multi-hop retrieval, which may affect
real-time performance. Second, the framework’s
performance relies on the reasoning capabilities
of LLMs, with significant variations across differ-
ent models. Finally, in real-world scenarios, the
framework may encounter more uncertainties and
noise. In future work we will further optimize the
graph structure of the framework and improve the
robustness.

Ethics Statement

This research involves several ethical considera-
tions that we have carefully addressed:

* Data Privacy and Security: In our experi-
ments with the Twitter dataset, we only used
publicly available tweets and ensured that all
data collection and processing complied with
Twitter’s terms of service. We did not col-
lect or store any personal information beyond
what was publicly accessible.

* AI Safety and Fairness: Our framework is
designed to enhance reasoning capabilities
while maintaining transparency and account-
ability. The trustworthiness graph structure al-
lows for clear traceability of decision-making
processes, helping to prevent potential biases
or unfair outcomes.

* Social Impact: While our framework demon-
strates potential applications in social me-
dia analysis, we acknowledge the importance
of responsible deployment. The technology
should not be used to manipulate public opin-
ion or interfere with democratic processes.

* Transparency: We have made our methodol-
ogy and experimental results fully transparent,
including limitations and potential risks. This
transparency helps ensure that the technology
can be properly evaluated and used responsi-
bly.

* Research Ethics: All experiments were con-
ducted with appropriate safeguards and ethical

guidelines in place. We ensured that our re-
search did not cause harm to any individuals
or groups.

We believe that these ethical considerations are
crucial for the responsible development and de-
ployment of Al technologies in social and political
contexts.
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A Pseudocode of GRATR

The pseudocode of GRATR’s process are shown in
Alg. 1, 2.

Algorithm 1 Graph Update Process

1: Input: Graph G?, observations o.

2: Query the LLM to extract
{R (pi, pj), d"(pi, j), ' (P pj) } from
the observation o’;

3: for each intention d*(p;, p;) do

4. Update the evidence list D' (p;, p;) using

Eq. (1);

5: end for

6: for each player p; connected by an edge
¢! (pla p]) do

7. Update the trustworthiness T%*1(p;) using

Egs. (2), 3);
8: end for
B Complexity Analysis and Practical

Deployment

The time complexity is O(1) for real-time up-
dates and O(nlogn) for retrieval and reasoning,
where n is the number of nodes, ensuring ac-
ceptable computational performance even with
large datasets. Through testing, the compari-
son algorithms average 0.21s for updates, 0.61s
for retrieval/reasoning, and 6.94 MB for storage.
GRATR (8 nodes) averages 0.35s for updates, 1.33s
for retrieval/reasoning, and 2.27 MB for storage,
reflecting a 0.67x increase in update time, a 1.18x
increase in reasoning time, and a 1/3 reduction in
space. For larger n, time is mainly spent on LLM
reasoning, while space is used for evidence storage.
In future work, we will optimize graph structures
and retrieval methods to reduce costs.

C Ablation Studies

We conduct ablation studies to demonstrate the
effectiveness of different components in our algo-
rithm. As shown in Table 1, we evaluate three vari-
ants of GRATR: GRATR-1 (without evidence merg-
ing), GRATR-2 (without multi-hop retrieval), and
GRATR-3 (without backward update). The results
reveal that all components contribute positively to
the model’s performance. The full GRATR model
achieves the best performance with 92.2% accuracy
and 91.4% macro F1-score. Removing multi-hop
retrieval (GRATR-2) leads to the most significant
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performance drop (12-13 percentage points), indi-
cating its crucial role in the model. The evidence
merging mechanism (GRATR-1) also shows sub-
stantial impact, with an 8-9 percentage point de-
crease in performance when removed. While the
backward update mechanism (GRATR-3) has a rel-
atively smaller contribution, its removal still results
in a 2-3 percentage point performance drop. These
results validate the necessity of each component in
our proposed architecture, with multi-hop retrieval
being the most essential feature for the model’s
effectiveness.

GRATR GRATR-1 GRATR-2 GRATR-3

0.922 0.834 0.793 0.901
0.914 0.837 0.792 0.905

Accuracy
Macro F1

Table 5: Accuracy and Macro Fl-score of GRATR,
GRATR-1 (without evidence merging), GRATR-2 (with-
out multi-hop retrieval), and GRATR-3 (without back-
ward update).

D LLM Prompts

D.1 Extract Evidence

Your task is to analyze a given player’s statement
and determine its type based on the context of a
role-playing deduction game. Based on the state-
ment provided, determine which of the following
types it belongs to:

- Attack: The player attempts to question or
accuse another character, suggesting they might
be suspicious, or provide evidence against another
character.

- Defend: The player tries to defend a charac-
ter, suggesting they are not suspicious. Note that
character A and character B must be members of
[Player 1, Player 2, ...], and might be the same,
meaning the statement might be self-defense.

- Deceive: The player attempts to mislead other
players with false information.

Additionally, provide a score indicating the
strength or certainty of the statement’s intent on a
scale of 0 to 10, where 0 is very weak/uncertain
and 10 is very strong/certain.

You must also determine the relationship be-
tween the players involved in the statement, cat-
egorizing it as one of the following:

- Ally: The player is supporting or aligning with
another player.

- Adversary: The player is opposing or accusing
another player.



Algorithm 2 Graph Retrieval Augmented Reasoning

1: Input: Number of the selected top trustworthiness nodes w, the target player p,;

»

Initialization: Players py, ..

N « Sort(N,T%(n));
{ni1,ng,...,ny} < Top-w(N);
Q «+ {n1,ng,...,nu};
forj=1,2,...,wdo

Cj — {nl};
end for
while Q # 0 do
10: 7, Ce < argmax,, g Tt(n);
H Qe Q\ {no):

12:  for each ny, € Neighbors(n,.) do

R A A

.,Pn; Nodes N in G%; Evidence chains list C' + [C1,Ca, . ..
player p, (initially empty); Priority Queue Q <+ (J;

, Cy] for

13: Merge evidence e!(pg, p.) to update T**1(py,, p.) based on the Eq. (4); // py, p. are the players

corresponding to the nodes ng, nc.
14:  end for
15: Ngx <— argmaxnkeNeighbors(nc)Tt (pk‘);
16:  Co 4 CoU{ng};
17: Q<+ QU {nk+};

18: end while

19: Use C to update T (p,) based on the Egs. (5), (6), (7), (8);

20: Update T**1(p,, po—1) based on the Eq. (9);

21: Summarize and reason based on 7% (p,) and the evidence chains retrieved C’

- Indifferent: The player’s statement does not
clearly indicate support or opposition toward an-
other player.

Carefully read the following statement and de-
termine its type based on its content and tone:
[Player’s statement]

Please choose the appropriate type, relation-
ship, and briefly explain your reasoning in the
following format: [Role 1][Type][Role 2][Rea-
son][Score][Relationship].

Please note that the statement might address mul-
tiple players simultaneously. In such cases, list
each relevant result separately instead of in one
line.

Here are some examples:

1. Statement: [(Player 1): I think Player 2’s
behavior was very strange. He kept avoiding
important discussions. I believe Player 4 is
innocent because he has been helping us.]

Answer: [Player  1][Attack][Player
2][The Player 1 is questioning Player
2’s behavior, implying they might be
suspicious.][6][Adversary][Player  1][De-
fend][Player 4][The Player 1 is defending
Player 4, suggesting they are not suspi-
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cious.][7][Ally]

. Statement: [(Player 4): I observed that Player

3 was identified as suspicious by the modera-
tor. I believe we should carefully consider the
roles of the remaining players and gather more
information before making any decisions.]

Answer: [Player 4][Attack][Player 3][The
current player indirectly accuses Player 3 of
being suspicious by mentioning the modera-
tor’s identification, influencing others’ percep-
tions.][9][Adversary]

. Statement: [(Player 7): I believe Player 4 is

innocent. He has been helping us analyze the
situation. ]

Answer: [Player 7][Defend][Player 4][The
Player 7 is defending Player 4, suggesting
they are not suspicious.][7][Ally]

. Statement: [(Player 1): I choose to eliminate

Player 3.]

Answer: [Player 1][Attack][Player 3][The
Player 1 is strongly attacking Player
3.][10][Adversary]



5. Statement: [(Player 2): I choose to protect
Player 3.]

Answer: [Player 2][Defend][Player 3][The
Player 2 is strongly protecting Player
3.][10][Ally]

(End of Example)
Now, given the statement: Statement: [state-
ment]

D.2 Summary

Task: Summarize and reason about the trustwor-
thiness of player (p,) based on the updated trust-
worthiness score and the relevant evidence chains
retrieved. The summary should include an analy-
sis of the player’s inferred identity, trustworthiness
score, and the evidence supporting the inference.

Input:

- Trustworthiness Score: [Insert trustworthi-
ness score of the player]

- Evidence chains: [Insert supporting evidence]

Output Format:

1. Summary: Provide a concise summary of the
inferred identity of the player, the trustworthi-
ness score, and the evidence supporting the
inference.

2. Reasoning: Explain the reasoning behind the
inferred identity and trustworthiness score, in-
corporating the retrieved evidence chains.

Example Output: [Player 1] is inferred to be a
[identity], my [judge]. My level of trust in him is
[confidence] [evidence].

E Werewolf Game

E.1 Introduction

The Werewolf game is a classic social deduction
game typically played by 8 to 18 players. The
game is divided into two main factions: the Good
Faction and the Werewolf Faction. The goal of
the Good Faction is to identify and eliminate all
Werewolves, while the Werewolf Faction aims to
hide their identities and eliminate all members of
the Good Faction. Below is a detailed introduction
to the game.

E.2 Game Roles

The game features various roles, each with unique
abilities and objectives. Common roles include:

* Villager (Ordinary Villager): No special
abilities; they rely on deduction and voting
to identify Werewolves.

* Werewolf: Can kill one player each night and
disguises as a Villager during the day.

* Seer: Can check the identity of one player
each night to determine if they are a Werewolf
or Villager.

* Witch: Possesses a healing potion and a poi-
son potion. The healing potion can revive a
player killed by Werewolves, while the poison
potion can kill a player.

* Hunter: When killed by Werewolves or voted
out, the Hunter can shoot and eliminate an-
other player.

* Guard: Can protect one player each night,
preventing them from being killed by Were-
wolves.

E.3 Game Flow

The game alternates between Night and Day
phases.
Night Phase

* Werewolf Action: The Werewolf team dis-
cusses and selects a player to kill.

* Seer Action: The Seer chooses a player to
check their identity.

* Witch Action: The Witch can choose to use
the healing potion to save a player killed by
Werewolves or use the poison potion to kill a
player.

* Guard Action: The Guard selects a player to
protect from Werewolf attacks.

Hunter Action: If the Hunter is killed by Were-
wolves or voted out, they can shoot and elimi-
nate another player.

Day Phase

* Discussion: All players discuss the events of
the previous night and deduce who the Were-
wolves are.

* Voting: Players vote to eliminate one player.
The player with the most votes is eliminated.

* Reveal: The eliminated player reveals their
role, and the game proceeds to the next night.



E4

E.5

Victory Conditions

Good Faction Victory: All Werewolves are
eliminated.

Werewolf Faction Victory: The number of
Werewolves equals or exceeds the number of
members in the Good Faction.

Game Strategies

Deduction and Deception: Members of the
Good Faction must use logic to identify
Werewolves, while Werewolves must disguise
themselves and mislead other players.

Role Coordination: Roles like the Seer, Witch,
and Guard must use their abilities strategically
to help the Good Faction gain an advantage.

Psychological Play: Players must use lan-
guage and behavior to influence others’ judg-
ments, create confusion, or guide votes.
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