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Abstract001

Trustworthiness reasoning aims to enable002
agents in multiplayer games with incomplete003
information to identify potential allies and ad-004
versaries, thereby enhancing decision-making.005
In this paper, we introduce the graph retrieval-006
augmented trustworthiness reasoning (GRATR)007
framework, which retrieves observable evi-008
dence from the game environment to inform009
decision-making by large language models010
(LLMs) without requiring additional training,011
making it a zero-shot approach. Within the012
GRATR framework, agents first observe the013
actions of other players and evaluate the result-014
ing shifts in inter-player trust, constructing a015
corresponding trustworthiness graph. During016
decision-making, the agent performs multi-hop017
retrieval to evaluate trustworthiness toward a018
specific target, where evidence chains are re-019
trieved from multiple trusted sources to form020
a comprehensive assessment. Experiments in021
the multiplayer game Werewolf demonstrate022
that GRATR outperforms the alternatives, im-023
proving reasoning accuracy by 50.5% and re-024
ducing hallucination by 30.6% compared to025
the baseline method. Additionally, when tested026
on a dataset of Twitter tweets during the U.S.027
election period, GRATR surpasses the baseline028
method by 10.4% in accuracy, highlighting its029
potential in real-world applications such as in-030
tent analysis.031

1 Introduction032

In multiplayer games with incomplete information,033

trustworthiness reasoning is critical for evaluating034

the intentions of players, who may conceal their035

true motives through actions, dialogue, and other036

observable behaviors. Autonomous agents analyze037

the trustworthiness of players based on observable038

actions to identify potential allies and adversaries039

(Fig. 1). Current methods supporting such reason-040

ing include symbolic reasoning, evidential theory041

(Liu et al., 2021), Bayesian reasoning (Wojtowicz042

and DeDeo, 2020; Sohn and Narain, 2021; Wan043

and Du, 2021), and reinforcement learning (Wan 044

et al., 2021; Wang et al., 2020; Tiwari et al., 2021). 045

While effective, these methods struggle to address 046

the complexity of natural language interactions, 047

the ambiguity of player behavior, and the dynamic 048

nature of strategic decision-making in such envi- 049

ronments. 050
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Figure 1: Illustration of trustworthiness reasoning.
Agent observes the actions of other players to gather ev-
idence, and then evaluates inter-player trust and informs
decision-making.

To address these limitations, large language mod- 051

els (LLMs) offer a promising approach for trustwor- 052

thiness reasoning in multiplayer games, owing to 053

their advanced natural language understanding and 054

generation capabilities (Brown et al., 2020; Kenton 055

and Toutanova, 2019; Radford et al., 2019). LLMs 056

utilize these capabilities to interpret complex dia- 057

logues, infer latent intentions, and detect deceptive 058

behaviors from contextual cues. However, LLMs 059

face inherent challenges, including the risk of hal- 060

lucination and knowledge obsolescence (Ji et al., 061

2023; Maynez et al., 2020). To mitigate these is- 062

sues, techniques such as supervised fine-tuning and 063

reinforcement learning have been proposed to en- 064

hance their reasoning performance (Ouyang et al., 065

2022; Stiennon et al., 2020). Nonetheless, these ap- 066

proaches often require extensive historical data and 067

well-defined reward signals, which may be scarce 068

or unavailable in real-world game scenarios. 069

To enhance the capabilities of LLMs in 070
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dynamic, knowledge-intensive environments,071

retrieval-augmented generation (RAG) (Gao072

et al., 2024; Zhao et al., 2024) has emerged073

as a promising alternative. RAG addresses the074

limitations of LLMs by integrating an external075

retrieval mechanism that dynamically fetches076

relevant information to augment the generation077

process. In the RAG framework, a retriever078

first indexes and retrieves pertinent data chunks,079

which are then combined with an input query080

to refine the generation process. This approach081

mitigates issues such as knowledge obsolescence082

and hallucination by incorporating up-to-date and083

contextually relevant information, making it a084

promising solution for trustworthiness reasoning085

in multiplayer games with incomplete information.086

However, trustworthiness reasoning in multi-087

player games presents additional challenges that088

exceed the capabilities of current RAG methods.089

Specifically, it requires the real-time collection and090

analysis of statements and actions as evidence ex-091

hibited by players. Due to the complexity of player092

interactions, trustworthiness reasoning for a given093

player must consider the actions of other players094

toward that target. This necessitates multi-hop re-095

trieval and synthesis of evidence, which becomes096

computationally intensive and time-consuming,097

particularly in scenarios involving many players.098

Contributions. We propose a novel method,099

the graph retrieval-augmented trustworthiness rea-100

soning (GRATR) framework, which constructs a101

dynamic trustworthiness graph to model player in-102

teractions in real time, thus avoiding the compu-103

tational overhead of retrieving information from104

large text corpora repeatedly. During the obser-105

vation phase, agents collect observable evidence106

to dynamically update the graph’s nodes (repre-107

senting players) and edges (representing trust re-108

lationships). During decision-making, GRATR109

performs multi-hop retrieval to evaluate the trust-110

worthiness of a specific target player, leveraging111

evidence chains from multiple trusted sources to112

form a comprehensive assessment. This approach113

enhances reasoning and decision-making without114

additional training, making it a zero-shot solution.115

We validate GRATR in the multiplayer game Were-116

wolf, comparing it to baseline LLMs and LLMs117

with state-of-the-art RAG techniques. The exper-118

imental results demonstrate its ability to model119

dynamic trust relationships and support informed120

decision-making in complex, incomplete informa-121

tion scenarios. Furthermore, GRATR enhances122

transparency and traceability by visualizing tem- 123

poral evidence and evidence chains through the 124

trustworthiness graph, overcoming the limitations 125

of previous methods. Beyond multiplayer games, 126

we also apply GRATR to real-world scenarios, i.e., 127

analyzing the intent behind social media tweets, 128

showcasing its broader applicability. 129

2 Preliminary 130

In a multi-player game with incomplete informa- 131

tion, the game can be described by the following 132

components: 133

• Players: P = {p1, p2, . . . , pn}, where pi rep- 134

resents the i-th player, and each player pi has 135

a private type θi ∈ Θi, where Θi is the set of 136

possible types for player pi. 137

• Actions: In each round t, player pi chooses 138

an action ati ∈ Ai, where Ai is the set of avail- 139

able actions for player pi. Ai is assumed to be 140

finite to simplify the analytical and computa- 141

tional complexity. 142

• Observations: After all players choose their 143

actions, each player pi receives an observation 144

oti ∈ Oi, where Oi is the set of possible ob- 145

servations for pi. The observation oti depends 146

on the joint actions at = (at1, a
t
2, . . . , a

t
n) and 147

possibly other public or private signals. Public 148

signals can be observed by all players, while 149

private signals are unique to the particular 150

players, such as the results of a seer’s check 151

in the Werewolf Game. 152

• Objective: Each player pi aims to maximize 153

their utility function Ui(ai, θi, σ−i, T ), where 154

σ−i is the strategy distribution of others, and 155

T is the trustworthiness judgment. Greater 156

accuracy in T (better trustworthiness reason- 157

ing) leads to higher utility. θ and a of tra- 158

ditional methods are complex, but our algo- 159

rithm simplifies this by classifying characters 160

as enemies/ allies and actions as protective/ 161

aggressive. While theoretical analysis is com- 162

plex due to model evaluation challenges, ex- 163

perimental results indirectly validate strong 164

trustworthiness reasoning via action scores. 165

The game proceeds as follows: 166

• At the beginning of each round t, each player 167

pi observes hti and selects an action ati = 168

si(h
t
i, θi), where h means the history and s 169

means the strategy function for choosing ac- 170

tions based on history and private type. 171

• After all actions at are chosen, players receive 172

observations oti. 173
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• Players update their beliefs σt+1
i (θ−i | ht+1

i )174

based on the new history ht+1
i that includes175

oti and ati.176

• The game continues for a fixed number of177

rounds T , or until a stopping condition is met.178

3 Methodology179

To enhance the effectiveness of LLM reasoning, es-180

pecially in environments where trust and strategic181

interactions are crucial, it is essential to retrieve182

the most relevant evidence from historical data.183

This motivated us to develop a framework where184

the information observed by agents is structured185

into a graph-based evidence base. By maintain-186

ing this evidence graph, we can retrieve related187

evidence chains, augment LLM reasoning, and mit-188

igate the issues of hallucination and opacity. This189

methodology forms the foundation of our proposed190

GRATR system. Figure 2 presents the framework191

of GRATR. The process begins with the initial-192

ization of a trustworthiness graph when an agent193

participates in the game. Observations made by the194

agent are analyzed using the LLM to extract evi-195

dence and assess its credibility, which is then used196

to update the trustworthiness graph G. Through197

multi-hop retrieval on G, evidence chains are con-198

structed to evaluate the trustworthiness of other199

players. Finally, the system updates trustworthiness200

relationships among players based on the gathered201

evidence, leveraging the graph structure to provide202

a transparent and well-grounded reasoning process.203

3.1 The Trustworthiness Graph Initialization204

Assume an agent participates as a player in a mul-205

tiplayer game with incomplete information, main-206

taining a directed graph Gt to record historical ob-207

servations ht up to round t as a dynamic evidence208

base. This graph Gt serves as the foundation for209

the agent’s reasoning process, enabling the retrieval210

and use of real-time evidence. The graph consists211

of two core components: nodes and edges.212

Nodes: Each node in the graph Gt represents a213

player pi and stores two parameters.214

• Trustworthiness of Nodes T t(pi) ∈ [−1, 1]:215

The perceived trustworthiness of player pi216

by the agent at time t. When T t(pi) > ϵ,217

the agent regards player pi as an ally, when218

T t(pi) < −ϵ, the agent regards player pi an219

adversary; otherwise, the agent regards player220

pi as indifferent.221

• Historical Observations ht(pi): The history222

of observations gathered by the agent about223

player pi up to round t, serving as the evidence 224

base. 225

Edges: Each directed edge et(pi, pj) connects 226

player node pi to player node pj and stores two 227

parameters. 228

• Evidence List Dt(pi, pj): This list contains 229

a set of evidence items dt(pi, pj) that record 230

the actions of player pi towards player pj as 231

observed by the agent. Each evidence item 232

includes the specific action taken and its as- 233

sociated credibility ct(pi, pj), indicating the 234

significance of this action in assessing trust- 235

worthiness. 236

• Trustworthiness of Edges T t(pi, pj): This 237

weight reflects the trustworthiness of pi in pj 238

from the agent’s perspective, determined by 239

the accumulated evidence in the evidence list. 240

241
GRATR initializes a directed graph where nodes 242

represent players and edges denote trustworthiness. 243

At the initial time t = 0, the edge weight is set 244

to zero, i.e., T 0(pi, pj) = 0, and the evidence list 245

D0(pi, pj) is empty, indicating no prior observa- 246

tions or assessments. The graph structure is fixed, 247

but edge weights and evidence lists are dynamically 248

updated during interactions. 249

3.2 The Trustworthiness Graph Update 250

When the agent receives a new observation ot(pi) 251

following an action by player pi, the evidence 252

graph Gt must be updated to incorporate this new 253

information. This ensures that Gt accurately rep- 254

resents the current state of trustworthiness among 255

the players at time t. 256

The agent uses the LLM to extract evidence 257

items dt(pi, pj) and their corresponding weights 258

ct(pi, pj) from the observation ot(pi) (the related 259

prompt used for LLM interactions is provided in 260

Appendix 1.1). For each directed edge et(pi, pj) in 261

the graph, the evidence list Dt+1(pi, pj) associated 262

with the edge et(pi, pj) is updated by adding the 263

new evidence dt(pi, pj): 264

Dt+1(pi, pj) = Dt(pi, pj) ∪ {dt(pi, pj)}. (1) 265

The sign of ct(pi, pj) indicates the nature of pi’s 266

intention towards pj : negative for hostility and 267

positive for support, with |ct(pi, pj)| reflecting its 268

strength. Note that the evidence list Dt(pi, pj) is 269

updated with the new observation, and the edge 270

weight T t(pi, pj) is adjusted accordingly during 271

retrieval to maintain an accurate representation of 272

trustworthiness. 273
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Figure 2: The overall framework of GRATR: Step 1. An agent participates in the game as player 1, and initializes
a trustworthiness graph G. Step 2. When player 1 receives a new observation ot1(p3) following an action by at3
at time t, it uses an LLM to extract the action into new evidence and its credibility and then updates and merges
evidence on the graph Gt. Step 3. Player 1 obtains multiple evidence chains by multi-hop retrieval and updates the
trustworthiness of player 4. Step 4. Update the trustworthiness of player 4 towards player 2 and player 3.

Meanwhile, the agent updates the trustworthi-274

ness of pj in response to the evidence items ex-275

tracted from the LLM. The update depends on the276

two factors: the perceived trustworthiness of pi, the277

credibility ct(pi, pj) of the dt(pi, pj), which also278

represents the pi’s confidence of the pj’s current279

role classification Rt(pj). The updated trustwor-280

thiness T t
i (pj) is computed as follows:281

ut(pj) = T t(pi) · ct(pi, pj), (2)282

283 T t+1(pj) =

{
T t(pj), if |ut(pj)| ≤ |T t(pj)|,
ut(pj), if |ut(pj)| > |T t(pj)|.

(3)284

ut(pj) represents the inference of pj’s trustworthi-285

ness through the observation ot(pi).286

3.2.1 Evidence Merging287
In this phase, the objective is to aggregate and eval-288

uate the various evidence collected by the agent289

over time, specifically related to the interactions290

between players pi and pj . Assume that the agent291

has n pieces of evidence dt(pi, pj) towards player292

pj in the evidence list Dt(pi, pj) associated with293

the directed edge et(pi, pj). The evidence is sorted294

in chronological order, with each piece of evidence295

having an associated weight ct(pi, pj) and a tempo-296

ral importance factor ρ. The updated edge weight297

T t+1(pi, pj) is computed as follows:298

T t+1(pi, pj) = tanh
(∑n

k=1 ρ
n−k · ct(pi, pj)

)
. (4)299

300

The impact of evidence decreases over time, with 301

more recent evidence having greater influence. The 302

tanh function is used to constrain the edge weight 303

T t+1(pi, pj) within the interval [−1, 1], providing 304

a bounded measure of the trustworthiness between 305

players. The motivation and intuition behind the 306

difference between Eq. (4) and Eq. (2) (3) lie in the 307

distinct roles of T t+1(pj) and T t+1(pi, pj). Updat- 308

ing T t+1(pj) with a single piece of evidence (Eq. 309

(2) (3)) reflects real-time adjustments based on im- 310

mediate observations, focusing on simplicity and 311

responsiveness. In contrast, updating T t+1(pi, pj) 312

by merging all evidence (Eq. (4)) accounts for the 313

chronological accumulation and potential conflicts 314

of past observations, aiming to provide a compre- 315

hensive and accurate trustworthiness assessment 316

over time. This distinction ensures both adaptabil- 317

ity to new evidence and robustness in reasoning 318

about long-term confidence. 319

3.3 Graph Retrieval Augmented Reasoning 320

During the agent’s turn, particularly when decid- 321

ing on an action involving player po, the reasoning 322

process is augmented by retrieving and leveraging 323

relevant evidence from the evidence graph Gt. This 324

graph-based retrieval augments the player’s trust- 325

worthiness assessment by incorporating historical 326

evidence into the reasoning process. The retrieval 327

process is divided into three key phases: evidence 328

merging, forward retrieval, backward update, and 329
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reasoning.330

3.3.1 Forward Retrieval331
Given that the agent holds a trustworthiness value332

T t(p1) towards player p1, if there exists a evidence333

chain Cn : po → po−1 → · · · → p1, the value334

VCn of this evidence chain and the cumulative trust-335

worthiness update utn(po) towards player po are336

computed as follows:337

VCn =
o−1∑
k=1

T t(pk+1) · T t(pk+1, pk), (5)338

utn(po) = T t(p1) ·
o−1∏
k=1

T t(pk+1, pk). (6)339

The uncertainty associated with the chain Cn is340

defined by:341

H(Cn) = −|utn(po)| log2 |utn(po)|. (7)342

For the player po with m related evidence chains343

C1, C2, . . . , Cm, the updated trustworthiness T t
i (po)344

is given by:345

T t+1(po) =

∑m
n=1(VCn −H(Cn)) · utn(po)∑m

n=1(VCn −H(Cn))
. (8)346

The trustworthiness update is a weighted sum of347

the relevant evidence chains, where each chain’s348

weight is determined by its value and associated349

uncertainty.350

3.3.2 Backward Update351

Once T t(po) is updated, the edge weights associ-352

ated with the relevant evidence chains need to be353

updated in reverse:354

T t+1(po, po−1) = γ · T t+1(po)
T t+1(po−1)

+ T t(po, po−1). (9)355

Here, γ represents the learning rate for the back-356

ward update, and po−1 is the preceding player in357

the evidence chain Cn (n = 1, 2, . . .m).358

3.3.3 Reasoning359

After updating the trustworthiness of the agent to-360

wards po, a summary and reasoning are made based361

on the trustworthiness of player po and the relevant362

evidence chains retrieved. Specifically, the trust-363

worthiness of the agent towards po and the evidence364

chains are combined into a prompt sent to LLM,365

which ultimately returns the summary and reason-366

ing of the player po. The prompt used is shown in367

Appendix 1.2.368

4 Experiments369

In this section, we evaluate the enhancement of370

LLMs’ reasoning and intent analysis capabilities371

with GRATR, testing it on both the Werewolf game372

and the Twitter dataset from the 2024 U.S. election. 373

We use pure LLMs as the baseline, alongside state- 374

of-the-art algorithms, including NativeRAG (Lewis 375

et al., 2020), RerankRAG (Sun et al., 2023), and 376

LightRAG (Guo et al., 2024), for comparison. 377

4.1 Experiment on Werewolf Game 378

We implemented our GRATR method using the 379

classic multiplayer game Werewolf (Xu et al., 380

2024). The game consists of 8 players, including 381

three leaders (the witch, the guard, and the seer), 382

three werewolves, and two villagers. The history 383

message window size K is set to 15. We use the 384

GPT-3.5-turbo, GPT-4o, GPT-4o-mini, Qwen-Max, 385

and DeepSeek-V3 models as the backend LLMs, 386

with their temperatures set to 0.3 according to the 387

original paper’s setup. In each game, four players 388

are assigned to each algorithm, with three players 389

randomly assigned to the leader and werewolf roles, 390

and the remaining player assigned to the village 391

side. The algorithm corresponding to the winning 392

side is considered the winner of the game. Each 393

algorithm participated in 50 games with different 394

backend LLMs. 395

4.1.1 Win Rate Analysis 396

Table 1 presents the win rates of LLMs with 397

GRATR in pairwise comparisons against the base- 398

line and LLMs with NativeRAG, RerankRAG, and 399

LightRAG in the Werewolf game. The win rates 400

include total win rate (TWR), werewolf win rate 401

(WWR), and leader win rate (LWR). 402

From the mean TWR in Table 1, it is clear 403

that GRATR significantly outperforms both pure 404

LLMs and LLMs with advanced RAG methods. 405

Except for the match against NativeRAG, where 406

the win rate is 78.4%, GRATR achieves win rates 407

above 80% in all other pairwise competitions. 408

The experimental results support the claim that 409

GRATR effectively enhances LLM reasoning in 410

incomplete information games and improves win 411

rates. More specifically, the results show that 412

GRATR achieves the highest win rate when play- 413

ing against pure LLMs, followed by LightRAG, 414

RerankRAG, and NativeRAG. This suggests that 415

external retrieval-based techniques are beneficial 416

for enhancing LLM reasoning. Furthermore, while 417

LightRAG, as a graph-based retrieval-augmented 418

generation method, excels at summarization rather 419

than reasoning, and RerankRAG, though a com- 420

mendable variant, fails to capture the causal rela- 421

tionships of player actions in multi-hop retrieval, 422

which results in its lower performance compared 423

5



GRATR vs. Model TWR WWR LWR

Baseline

GPT-3.5-turbo 76.0% 72.0% 80.0%
GPT-4o 88.0% 84.0% 92.0%

GPT-4o-mini 84.0% 76.0% 92.0%
Qwen-max 94.0% 88.0% 100.0%

DeepSeek-v3 92.0% 88.0% 96.0%

Mean 86.8% 81.6% 92.0%

NativeRAG

GPT-3.5-turbo 66.0% 60.0% 72.0%
GPT-4o 80.0% 76.0% 84.0%

GPT-4o-mini 78.0% 72.0% 84.0%
Qwen-max 80.0% 76.0% 84.0%

SeepAeek-v3 88.0% 80.0% 96.0%

Mean 78.4% 72.8% 84.0%

RerankRAG

GPT-3.5-turbo 72.0% 76.0% 68.0%
GPT-4o 90.0% 84.0% 96.0%

GPT-4o-mini 80.0% 80.0% 80.0%
Qwen-max 92.0% 84.0% 100.0%

DeepSeek-v3 90.0% 84.0% 96.0%

Mean 84.8% 81.6% 88.0%

LightRAG

GPT-3.5-turbo 80.0% 76.0% 84.0%
GPT-4o 90.0% 96.0% 84.0%

GPT-4o-mini 84.0% 80.0% 88.0%
Qwen-max 88.0% 84.0% 90.0%

DeepSeek-v3 88.0% 96.0% 80.0%

Mean 86.0% 86.4% 85.2%

Table 1: The total, werewolf, and leader win rates
(TWR, WWR, LWR) of GRATR in pairwise compar-
isons against the baseline and LLMs with NativeRAG,
RerankRAG, and LightRAG in the Werewolf game.

to NativeRAG.424

Further analysis of the win rates when the agent425

plays as a werewolf or leader reveals that the agent426

performs significantly better as a leader. Notably,427

when using Qwen-Max, the win rate reaches 100%428

against both Baseline and RerankRAG. This can429

be attributed to the game dynamics of Werewolf,430

where the werewolf must deceive other players431

to conceal their identity, whereas the leader only432

needs to reason out who the werewolf is. The high433

win rates for the leader role provide evidence that434

GRATR enhances the reasoning ability of LLMs,435

enabling them to identify the concealed werewolf.436

Although GRATR also performs well when the437

agent plays as a werewolf, the deception required438

for this role presents a greater challenge for LLMs.439

The experiment shows that different LLMs have440

a significant impact on the results. As shown in441

Table 1, GRATR achieves better performance with442

GPT-4o, Qwen-Max, and DeepSeek-V3, with win443

rate improvements of 4%, 2%, 10%, and 4%, re-444

spectively. Publicly available evidence (Chiang445

et al., 2024; Contributors, 2023) indicates that GPT-446

4o, Qwen-Max, and DeepSeek-V3 exhibit stronger447

reasoning capabilities compared to GPT-3.5-turbo448

and GPT-4o-mini. Therefore, we conclude that 449

stronger LLMs further amplify the performance 450

advantages of GRATR. 451

4.1.2 Action Scores 452
In the Werewolf game, win rate alone evaluates 453

the overall performance of the team, but it does 454

not fully reflect the individual agent’s actual per- 455

formance. Therefore, this section further analyzes 456

the agent’s action scores in each game to highlight 457

its superiority in reasoning, social interaction, role 458

identification, and other aspects. Table 2 presents 459

the detailed scoring breakdown for agents under 460

different identities, including scores for correct and 461

incorrect votes. Additionally, each winning player 462

is pre-allocated a base score of 5 points. 463

Werewolf Witch Guard Seer Villager

Correct 0.5 1.5 1.5 1.5 1.0
Incorrect -0.5 -1.5 -1.5 -1.5 -1.0

Table 2: Correct and incorrect action scores for different
identities in Werewolf game.

Fig. 3 presents the action scores of GRATR 464

vs. baseline LLM, LLM with NativeRAG, 465

RerankRAG, and LightRAG in the Werewolf game. 466

Overall, when the agent plays as a villager, the 467

score differences are minimal, generally under 2 468

points, and even less than 1 point when compared 469

to baseline LLM and LLMs with NativeRAG or 470

RerankRAG. This indicates that, on average, the 471

agent makes fewer than one error per game round. 472

It is important to note that in the Werewolf game, 473

villagers have no prior information other than their 474

own identity, so all reasoning is based on the in- 475

consistencies and consistencies in players’ actions 476

rather than validating with prior knowledge. There- 477

fore, the superior behavior scores of GRATR when 478

the agent plays as a villager demonstrate the algo- 479

rithm’s multi-hop retrieval capability and its advan- 480

tage in causal reasoning. 481

For identities other than the villager, such as the 482

werewolf and leader, the action score differences 483

are significantly larger. A major portion of this 484

difference stems from the win rate, as the winning 485

side is awarded a base score of 5 points. The re- 486

maining differences are due to the correctness of 487

the agent’s actions. For example, when the agent 488

plays as a werewolf, the score difference is greater 489

than 5 points, indicating that the agent made incor- 490

rect actions. However, in the Werewolf game, the 491

werewolf has prior knowledge of all teammates and 492

opponents, so any errors in actions are primarily 493
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Figure 3: Action scores of GRATR vs. baseline LLM, LLM with NativeRAG, RerankRAG, and LightRAG in
Werewolf game

attributed to LLM hallucination. While there may494

be potential deception and disguise involved, this495

section does not delve further into this aspect, as496

no additional supporting information is available.497

4.1.3 Hallucination Detection498

This section detects LLM hallucination by analyz-499

ing the agent’s thinking and actions. If the agent’s500

reasoning aligns with their true stance, the process501

is correct. If the agent’s actions conflict with their502

reasoning, it indicates strategic deception. If the503

agent’s thinking deviates from their real stance, it504

signals cognitive bias or hallucination. We manu-505

ally labeled the consistency of the agent’s thinking506

and actions, with the results shown in Table 3.507

Method Identity Correct Reasoning Deception Hallucination

Baseline Werewolf 61.9% 1.5% 36.6%
Leader 69.7% 0.5% 29.8%

GRATR Werewolf 85.1% 11.4% 3.5%
Leader 97.0% 1.3% 1.7%

NativeRAG Werewolf 79.1% 3.1% 17.8%
Leader 84.4% 1.7% 13.9%

RerankRAG Werewolf 74.6% 9.4% 16.0%
Leader 83.9% 6.0% 10.1%

LightRAG Werewolf 76.2% 10.1% 13.7%
Leader 86.2% 4.5% 9.3%

Table 3: Correct Reasoning, deceive, and hallucination
rates of different methods in different identities.

The data in the table shows that the GRATR508

method outperforms others in both correct reason-509

ing and hallucination mitigation. It improves cor-510

rect reasoning by at least 6% and 12.6% for the511

Werewolf and Leader identities, respectively. It512

also exhibits an 11.4% deception rate for the Were-513

wolf identity. However, the deception rate is lower514

for the Leader identity, as the Leader typically515

needs to reveal their identity to guide the villagers516

to victory, with deception used only for strategic517

purposes. Most importantly, GRATR significantly518

mitigates LLM hallucination, reducing them by a519

factor of 10 for the Werewolf identity and 17 for the520

Leader identity compared to the baseline. These521

results strongly support GRATR’s effectiveness in522

enhancing LLM reasoning capabilities and reduc- 523

ing hallucination. 524

4.2 Experiment on Intent Analysis 525

In this section, we utilize a public dataset of Twitter 526

tweets at the time of the U.S. election (Balasubra- 527

manian et al., 2024) to evaluate GRATR for their 528

intent analysis capability. This dataset comprehen- 529

sively captures large-scale social media discourse 530

related to the 2024 U.S. presidential election. The 531

dataset includes approximately 27 million publicly 532

available political tweets collected between May 1 533

and November 1, 2024. Each tweet is accompanied 534

by detailed metadata, including precise timestamps 535

and multi-dimensional user engagement metrics 536

(such as reply count, retweet count, like count, and 537

view count). 538

4.2.1 Experimential Results 539

We define five possible tweet intents: Anti- 540

Democrat, Anti-Republican, Pro-Democrat, Pro- 541

Republican, and Neutral (Ibrahim et al., 2024). To 542

evaluate the accuracy of the algorithm, we manu- 543

ally annotated the intents of 26,523 valid tweets 544

(i.e., tweets that are not garbled and are meaning- 545

ful). For this, we generalized each tweet to the 546

individual who sent it (since a person may have 547

sent multiple tweets) and followed the timeline to 548

simulate a real Twitter discussion environment. In 549

this setup, we applied LLMs with GRATR, base- 550

line LLMs, LLMs with NativeRAG, RerankRAG, 551

and LightRAG to analyze the stance of each indi- 552

vidual and further analyze the intent of their tweets. 553

Table 5 presents the accuracy and macro F1-score 554

of all comparison algorithms for intent analysis of 555

the tweets. 556

Baseline GRATR NativeRAG RerankRAG LightRAG

Accuracy 0.818 0.922 0.868 0.879 0.891
Macro F1 0.809 0.914 0.869 0.878 0.893

Table 4: Accuracy and Macro F1-score of baseline
LLMs, LLMs with GRATR, NativeRAG, RerankRAG,
and LightRAG on intent analysis of the tweets.

Among all the methods, LLMs enhanced with 557
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GRATR achieve the highest accuracy of 0.922 and558

a macro F1-score of 0.914, demonstrating supe-559

rior performance. The accuracy metric reflects the560

proportion of correctly classified tweets out of the561

total. However, accuracy alone may not fully cap-562

ture performance when dealing with imbalanced563

data, such as political tweets, where certain intents564

(e.g., Pro-Democrat or Anti-Republican) are more565

prevalent than others. In these cases, the macro F1-566

score provides a more balanced evaluation by con-567

sidering both precision and recall for each intent568

category individually, ensuring equal weight for569

less frequent categories. The significantly higher570

macro F1-score of LLMs with GRATR (0.914),571

compared to the baseline models (0.809), indicates572

that GRATR enhances the model’s ability to accu-573

rately predict all intents, especially the subtle or574

less frequent ones, in politically charged discourse.575

This result highlights GRATR’s capacity to inte-576

grate contextual and temporal information, which577

is critical for understanding the nuanced intents of578

tweets, particularly in dynamic environments like579

social media during a presidential election. Addi-580

tionally, LLMs with RAG, including NativeRAG,581

RerankRAG, and LightRAG, all outperform the582

baseline LLMs, underscoring the effectiveness of583

RAG in improving intent analysis.584

5 Related Work585

Reasoning Task. In incomplete information586

games, players enhance decision-making by reason-587

ing through observed data and analyzing behaviors588

in real time, despite misleading information (Wu589

et al., 2024; Zhang et al., 2024; Cheng et al., 2024;590

Qin et al., 2024; Costarelli et al., 2024). Traditional591

methods like Bayesian approaches (Zamir, 2020),592

evolutionary game theory (Deng et al., 2015), and593

machine learning techniques such as Monte Carlo594

tree search (Cowling et al., 2012) and reinforce-595

ment learning (RL) (Heinrich and Silver, 2016)596

have been used, with RL gaining prominence for its597

inference capabilities. However, RL’s reliance on598

domain-specific data limits generalizability. Large599

language models (LLMs) offer an alternative with600

extensive knowledge and language capabilities, as601

shown by Xu et al. (Xu et al., 2023), who combined602

LLMs and RL for strategic language agents. Yet,603

LLMs face challenges like high training costs, in-604

ability to update data in real time, and hallucination,605

hindering real-time reasoning in multiplayer games.606

RAG addresses these limitations, enhancing LLMs’607

reasoning in dynamic game environments.608

Retrieval Augmented Generation. RAG en- 609

hances LLMs by integrating external knowledge 610

retrieval. NativeRAG (Lewis et al., 2020) involves 611

document chunking/encoding, vector-based seman- 612

tic retrieval, and prompt construction. While ef- 613

ficient, it often retrieves low-relevance chunks. 614

RerankRAG improves accuracy by adding a rerank- 615

ing step (e.g., transformer-based cross-encoders) 616

to prioritize relevant chunks (Sun et al., 2023). 617

GraphRAG uses knowledge graphs, modeling enti- 618

ties as nodes and relationships as edges, supporting 619

multi-hop reasoning, and capturing complex depen- 620

dencies for deeper queries (Edge et al., 2024). Both 621

Rerank and GraphRAG increase computational 622

complexity. LightRAG (Guo et al., 2024) mitigates 623

this with lightweight strategies like heuristic filter- 624

ing, balancing efficiency and relevance. Retrieval- 625

Augmented Reasoning (RAR) (Tran et al., 2024) 626

integrates dynamic knowledge retrieval with rea- 627

soning modules, improving temporal relevance but 628

facing challenges in multi-step inference and trust- 629

worthiness verification. 630

6 Conclusion 631

This paper introduces GRATR, a novel framework 632

that enhances agent reasoning in multiplayer games 633

with incomplete information through trustworthi- 634

ness reasoning. Unlike the existing RAG works, 635

GRATR addresses the limitations in handling tem- 636

poral and causal evidence in long-term games by 637

implementing a dynamic trustworthiness graph that 638

updates in real-time with new evidence. The frame- 639

work consists of two main phases. During the 640

agent observation phase, evidence is collected to 641

update the nodes and edges of the graph. During 642

the agent’s turn, relevant evidence chains are re- 643

trieved to assess the trustworthiness of the player’s 644

actions, thereby improving reasoning and decision- 645

making. Experiments conducted in the multiplayer 646

game Werewolf demonstrate that GRATR outper- 647

forms existing methods in terms of game winning 648

rate, overall performance, and reasoning ability, 649

while mitigating LLM hallucination. Additionally, 650

GRATR enables the traceability and visualization 651

of the reasoning process through time-based evi- 652

dence and evidence chains. Furthermore, GRATR’s 653

application to the U.S. election Twitter dataset high- 654

lights its effectiveness in intent analysis, showcas- 655

ing its potential for real-world applications. 656
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Limitations657

While the GRATR framework demonstrates658

promising performance in our experiments, there659

are several limitations. First, the computational660

complexity of the framework increases with the661

number of players and game progression, particu-662

larly during multi-hop retrieval, which may affect663

real-time performance. Second, the framework’s664

performance relies on the reasoning capabilities665

of LLMs, with significant variations across differ-666

ent models. Finally, in real-world scenarios, the667

framework may encounter more uncertainties and668

noise. In future work we will further optimize the669

graph structure of the framework and improve the670

robustness.671

Ethics Statement672

This research involves several ethical considera-673

tions that we have carefully addressed:674

• Data Privacy and Security: In our experi-675

ments with the Twitter dataset, we only used676

publicly available tweets and ensured that all677

data collection and processing complied with678

Twitter’s terms of service. We did not col-679

lect or store any personal information beyond680

what was publicly accessible.681

• AI Safety and Fairness: Our framework is682

designed to enhance reasoning capabilities683

while maintaining transparency and account-684

ability. The trustworthiness graph structure al-685

lows for clear traceability of decision-making686

processes, helping to prevent potential biases687

or unfair outcomes.688

• Social Impact: While our framework demon-689

strates potential applications in social me-690

dia analysis, we acknowledge the importance691

of responsible deployment. The technology692

should not be used to manipulate public opin-693

ion or interfere with democratic processes.694

• Transparency: We have made our methodol-695

ogy and experimental results fully transparent,696

including limitations and potential risks. This697

transparency helps ensure that the technology698

can be properly evaluated and used responsi-699

bly.700

• Research Ethics: All experiments were con-701

ducted with appropriate safeguards and ethical702

guidelines in place. We ensured that our re- 703

search did not cause harm to any individuals 704

or groups. 705

We believe that these ethical considerations are 706

crucial for the responsible development and de- 707

ployment of AI technologies in social and political 708

contexts. 709
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A Pseudocode of GRATR879

The pseudocode of GRATR’s process are shown in880

Alg. 1, 2.

Algorithm 1 Graph Update Process

1: Input: Graph Gt, observations ot.
2: Query the LLM to extract
{Rt(pi, pj), d

t(pi, pj), c
t(pi, pj)} from

the observation ot;
3: for each intention dt(pi, pj) do
4: Update the evidence list Dt+1(pi, pj) using

Eq. (1);
5: end for
6: for each player pj connected by an edge

et(pi, pj) do
7: Update the trustworthiness T t+1(pj) using

Eqs. (2), (3);
8: end for

881

B Complexity Analysis and Practical882

Deployment883

The time complexity is O(1) for real-time up-884

dates and O(n log n) for retrieval and reasoning,885

where n is the number of nodes, ensuring ac-886

ceptable computational performance even with887

large datasets. Through testing, the compari-888

son algorithms average 0.21s for updates, 0.61s889

for retrieval/reasoning, and 6.94 MB for storage.890

GRATR (8 nodes) averages 0.35s for updates, 1.33s891

for retrieval/reasoning, and 2.27 MB for storage,892

reflecting a 0.67x increase in update time, a 1.18x893

increase in reasoning time, and a 1/3 reduction in894

space. For larger n, time is mainly spent on LLM895

reasoning, while space is used for evidence storage.896

In future work, we will optimize graph structures897

and retrieval methods to reduce costs.898

C Ablation Studies899

We conduct ablation studies to demonstrate the900

effectiveness of different components in our algo-901

rithm. As shown in Table 1, we evaluate three vari-902

ants of GRATR: GRATR-1 (without evidence merg-903

ing), GRATR-2 (without multi-hop retrieval), and904

GRATR-3 (without backward update). The results905

reveal that all components contribute positively to906

the model’s performance. The full GRATR model907

achieves the best performance with 92.2% accuracy908

and 91.4% macro F1-score. Removing multi-hop909

retrieval (GRATR-2) leads to the most significant910

performance drop (12-13 percentage points), indi- 911

cating its crucial role in the model. The evidence 912

merging mechanism (GRATR-1) also shows sub- 913

stantial impact, with an 8-9 percentage point de- 914

crease in performance when removed. While the 915

backward update mechanism (GRATR-3) has a rel- 916

atively smaller contribution, its removal still results 917

in a 2-3 percentage point performance drop. These 918

results validate the necessity of each component in 919

our proposed architecture, with multi-hop retrieval 920

being the most essential feature for the model’s 921

effectiveness.

GRATR GRATR-1 GRATR-2 GRATR-3

Accuracy 0.922 0.834 0.793 0.901
Macro F1 0.914 0.837 0.792 0.905

Table 5: Accuracy and Macro F1-score of GRATR,
GRATR-1 (without evidence merging), GRATR-2 (with-
out multi-hop retrieval), and GRATR-3 (without back-
ward update).

922

D LLM Prompts 923

D.1 Extract Evidence 924

Your task is to analyze a given player’s statement 925

and determine its type based on the context of a 926

role-playing deduction game. Based on the state- 927

ment provided, determine which of the following 928

types it belongs to: 929

- Attack: The player attempts to question or 930

accuse another character, suggesting they might 931

be suspicious, or provide evidence against another 932

character. 933

- Defend: The player tries to defend a charac- 934

ter, suggesting they are not suspicious. Note that 935

character A and character B must be members of 936

[Player 1, Player 2, ...], and might be the same, 937

meaning the statement might be self-defense. 938

- Deceive: The player attempts to mislead other 939

players with false information. 940

Additionally, provide a score indicating the 941

strength or certainty of the statement’s intent on a 942

scale of 0 to 10, where 0 is very weak/uncertain 943

and 10 is very strong/certain. 944

You must also determine the relationship be- 945

tween the players involved in the statement, cat- 946

egorizing it as one of the following: 947

- Ally: The player is supporting or aligning with 948

another player. 949

- Adversary: The player is opposing or accusing 950

another player. 951
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Algorithm 2 Graph Retrieval Augmented Reasoning

1: Input: Number of the selected top trustworthiness nodes w, the target player po;
2: Initialization: Players p1, . . . , pn; Nodes N in Gt

i; Evidence chains list C ← [C1, C2, . . . , Cw] for
player po (initially empty); Priority Queue Q← ∅;

3: N ← Sort(N,T t(n));
4: {n1, n2, . . . , nw} ← Top-w(N);
5: Q← {n1, n2, . . . , nw};
6: for j = 1, 2, . . . , w do
7: Cj ← {n1};
8: end for
9: while Q ̸= ∅ do

10: nc, Cc ← argmaxn∈Q T t(n);
11: Q← Q \ {nc};
12: for each nk ∈ Neighbors(nc) do
13: Merge evidence et(pk, pc) to update T t+1(pk, pc) based on the Eq. (4); // pk, pc are the players

corresponding to the nodes nk, nc.
14: end for
15: nk∗ ← argmaxnk∈Neighbors(nc)T

t(pk);
16: Cc ← Cc ∪ {nk∗};
17: Q← Q ∪ {nk∗};
18: end while
19: Use C to update T t+1(po) based on the Eqs. (5), (6), (7), (8);
20: Update T t+1(po, po−1) based on the Eq. (9);
21: Summarize and reason based on T t(po) and the evidence chains retrieved C;

- Indifferent: The player’s statement does not952

clearly indicate support or opposition toward an-953

other player.954

Carefully read the following statement and de-955

termine its type based on its content and tone:956

[Player’s statement]957

Please choose the appropriate type, relation-958

ship, and briefly explain your reasoning in the959

following format: [Role 1][Type][Role 2][Rea-960

son][Score][Relationship].961

Please note that the statement might address mul-962

tiple players simultaneously. In such cases, list963

each relevant result separately instead of in one964

line.965

Here are some examples:966

1. Statement: [(Player 1): I think Player 2’s967

behavior was very strange. He kept avoiding968

important discussions. I believe Player 4 is969

innocent because he has been helping us.]970

Answer: [Player 1][Attack][Player971

2][The Player 1 is questioning Player972

2’s behavior, implying they might be973

suspicious.][6][Adversary][Player 1][De-974

fend][Player 4][The Player 1 is defending975

Player 4, suggesting they are not suspi-976

cious.][7][Ally] 977

2. Statement: [(Player 4): I observed that Player 978

3 was identified as suspicious by the modera- 979

tor. I believe we should carefully consider the 980

roles of the remaining players and gather more 981

information before making any decisions.] 982

Answer: [Player 4][Attack][Player 3][The 983

current player indirectly accuses Player 3 of 984

being suspicious by mentioning the modera- 985

tor’s identification, influencing others’ percep- 986

tions.][9][Adversary] 987

3. Statement: [(Player 7): I believe Player 4 is 988

innocent. He has been helping us analyze the 989

situation.] 990

Answer: [Player 7][Defend][Player 4][The 991

Player 7 is defending Player 4, suggesting 992

they are not suspicious.][7][Ally] 993

4. Statement: [(Player 1): I choose to eliminate 994

Player 3.] 995

Answer: [Player 1][Attack][Player 3][The 996

Player 1 is strongly attacking Player 997

3.][10][Adversary] 998
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5. Statement: [(Player 2): I choose to protect999

Player 3.]1000

Answer: [Player 2][Defend][Player 3][The1001

Player 2 is strongly protecting Player1002

3.][10][Ally]1003

(End of Example)1004

Now, given the statement: Statement: [state-1005

ment]1006

D.2 Summary1007

Task: Summarize and reason about the trustwor-1008

thiness of player (po) based on the updated trust-1009

worthiness score and the relevant evidence chains1010

retrieved. The summary should include an analy-1011

sis of the player’s inferred identity, trustworthiness1012

score, and the evidence supporting the inference.1013

Input:1014

- Trustworthiness Score: [Insert trustworthi-1015

ness score of the player]1016

- Evidence chains: [Insert supporting evidence]1017

Output Format:1018

1. Summary: Provide a concise summary of the1019

inferred identity of the player, the trustworthi-1020

ness score, and the evidence supporting the1021

inference.1022

2. Reasoning: Explain the reasoning behind the1023

inferred identity and trustworthiness score, in-1024

corporating the retrieved evidence chains.1025

Example Output: [Player 1] is inferred to be a1026

[identity], my [judge]. My level of trust in him is1027

[confidence] [evidence].1028

E Werewolf Game1029

E.1 Introduction1030

The Werewolf game is a classic social deduction1031

game typically played by 8 to 18 players. The1032

game is divided into two main factions: the Good1033

Faction and the Werewolf Faction. The goal of1034

the Good Faction is to identify and eliminate all1035

Werewolves, while the Werewolf Faction aims to1036

hide their identities and eliminate all members of1037

the Good Faction. Below is a detailed introduction1038

to the game.1039

E.2 Game Roles1040

The game features various roles, each with unique1041

abilities and objectives. Common roles include:1042

• Villager (Ordinary Villager): No special 1043

abilities; they rely on deduction and voting 1044

to identify Werewolves. 1045

• Werewolf: Can kill one player each night and 1046

disguises as a Villager during the day. 1047

• Seer: Can check the identity of one player 1048

each night to determine if they are a Werewolf 1049

or Villager. 1050

• Witch: Possesses a healing potion and a poi- 1051

son potion. The healing potion can revive a 1052

player killed by Werewolves, while the poison 1053

potion can kill a player. 1054

• Hunter: When killed by Werewolves or voted 1055

out, the Hunter can shoot and eliminate an- 1056

other player. 1057

• Guard: Can protect one player each night, 1058

preventing them from being killed by Were- 1059

wolves. 1060

E.3 Game Flow 1061

The game alternates between Night and Day 1062

phases. 1063

Night Phase 1064

• Werewolf Action: The Werewolf team dis- 1065

cusses and selects a player to kill. 1066

• Seer Action: The Seer chooses a player to 1067

check their identity. 1068

• Witch Action: The Witch can choose to use 1069

the healing potion to save a player killed by 1070

Werewolves or use the poison potion to kill a 1071

player. 1072

• Guard Action: The Guard selects a player to 1073

protect from Werewolf attacks. 1074

• Hunter Action: If the Hunter is killed by Were- 1075

wolves or voted out, they can shoot and elimi- 1076

nate another player. 1077

Day Phase 1078

• Discussion: All players discuss the events of 1079

the previous night and deduce who the Were- 1080

wolves are. 1081

• Voting: Players vote to eliminate one player. 1082

The player with the most votes is eliminated. 1083

• Reveal: The eliminated player reveals their 1084

role, and the game proceeds to the next night. 1085
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E.4 Victory Conditions1086

• Good Faction Victory: All Werewolves are1087

eliminated.1088

• Werewolf Faction Victory: The number of1089

Werewolves equals or exceeds the number of1090

members in the Good Faction.1091

E.5 Game Strategies1092

• Deduction and Deception: Members of the1093

Good Faction must use logic to identify1094

Werewolves, while Werewolves must disguise1095

themselves and mislead other players.1096

• Role Coordination: Roles like the Seer, Witch,1097

and Guard must use their abilities strategically1098

to help the Good Faction gain an advantage.1099

• Psychological Play: Players must use lan-1100

guage and behavior to influence others’ judg-1101

ments, create confusion, or guide votes.1102
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