
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

BEYOND REACTIVITY: MEASURING PROACTIVE
PROBLEM SOLVING IN LLM AGENTS

Anonymous authors
Paper under double-blind review

ABSTRACT

LLM-based agents are increasingly moving towards proactivity: rather than await-
ing instruction, they exercise agency to anticipate user needs and solve them
autonomously. However, evaluating proactivity is challenging; current bench-
marks are constrained to localized context, limiting their ability to test reason-
ing across sources and longer time horizons. To address this gap, we present
PROBE (Proactive Resolution of Bottlenecks). PROBE decomposes proactiv-
ity as a pipeline of three core capabilities: (1) searching for unspecified issues, (2)
identifying specific bottlenecks, and (3) executing appropriate resolutions. We ap-
ply PROBE to evaluate leading LLMs and popular agentic frameworks, showing
that even state-of-the-art models struggle to solve this benchmark. Computing our
consistent measurements across frontier LLMs and agents, we find that the best
end-to-end performance of 40% is achieved by both GPT-5 and Claude Opus-4.1.
Additionally, we demonstrate the relative capabilities of each model and analyze
mutual failure modes. Our results highlight the current limitations of autonomous
action in agentic systems, and show promising future directions.

1 INTRODUCTION

Agentic systems built on Large Language Models (LLMs) have made immense progress, delivering
practical value across several real-world applications including coding (Yang et al., 2024; Agashe
et al., 2025), computer use (Song et al., 2024), web navigation (Zheng et al., 2024; Zhang et al.,
2025), and healthcare (Kim et al., 2024; Sellergren et al., 2025). Despite significant progress, the
majority of the agentic systems today are reactive - they expect explicit instruction from a user
prior to attempting a task (Yao et al., 2023). To transcend their function as tools, agents need to
be proactive: anticipating user needs from continuous observation, suggesting candidate tasks to
address these needs, and executing these tasks reliably.

Prior studies on proactive agents have explored agent proactivity in interacting with physical en-
vironments (Zhang et al., 2023), asking follow-up questions (Zhang et al., 2024) and perceiving
immediate needs from a personalized environment Lu et al. (2024a); Yang et al. (2025a). However,
existing approaches compress evaluation into narrow, immediate temporal context, failing to capture
insights that emerge only through longer-term analysis. For instance, proactive agents that look only
at current context would not detect and take an appropriate action for a missed deadline from the past
(as shown in figure 1). To this end, we operationalize proactivity as a three part construct. Given a
set of priorities and a personalized user datastore, agents search across documents for user-relevant
issues, identify the most pertinent ones (which we term bottlenecks), and resolve said issues by
executing appropriate actions.

Constructing a real-world benchmark for proactivity is difficult since collecting long time hori-
zon, multi-document user data raises privacy concerns and creates significant annotation overhead.
Building on previous successes in the generation of synthetic datasets NadÇŐÅ§ et al. (2025); Long
et al. (2024); Butt et al. (2024), we construct a data generation agent to build our benchmark (we
describe this in section 2). The resulting PROBE benchmark comprises of 1,000 diverse sam-
ples that challenge AI systems to proactively identify and resolve critical bottlenecks hidden within
realistic workplace datastores (see figure1). Our evaluation reveals a striking capability gap: even
state-of-the-art LLMs and specialized agentic frameworks achieve no more than 40% success on this
end-to-end task, highlighting the substantial challenges that remain in developing truly proactive AI

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Work style: diligent and strategic leader 
Pain Points: client documentation/upkeep 
Available Actions: send_email_to_reportee

Send a reminder email to 
report about submitting 

document

Bottleneck

A direct report failed to 
submit a client document

Proactive Agent

Task ExecutionWorld Model + User Datastore

      Client handoff: Li

       Bi-weekly sync

       Team offsite prep

       October finances

Client follow-up is due in a 
week

Client currently classified as 
high risk of churn

Resolution

Execute action to resolve3Identify bottleneck2Search over datastore1

Figure 1: An end to end depiction of the PROBE task setup. The model (or agent) needs to use the
world model to (i) search over user datastore, (ii) identify the botteneck and finally (iii) identify the
action to be executed. The model is evaluated across all tasks in this pipeline.

systems. From a model perspective, PROBE establishes a joint evaluation protocol for LLMs and
agents, as shown in figure 1. In summary, our contribution in this paper is threefold:

• We introduce PROBE - 1000 test samples that systematically evaluates proactive capabil-
ities in AI systems through a unified framework, addressing a critical need for a realistic
proactive benchmark.

• We conduct comprehensive evaluations across frontier closed-source and open-source mod-
els alongside leading agentic frameworks, revealing a fundamental capability ceiling: even
the most advanced models achieve only 40% success on our end-to-end task.

• We present an in-depth analysis of common failure modes that uncovers the specific chal-
lenges associated with our benchmark and surfaces opportunities for future work.

2 METHODOLOGY

We create a data generation agent to orchestrate our end-to-end workflow (described in figure 2).
Starting from real user personas, we build comprehensive world models that capture each simulated
user’s environment, goals, and constraints. These world models drive the creation of a datastore
filled with synthetic documents that mirror a real workplace scenario. We then strategically in-
ject bottlenecks into select documentsâĂŤhidden obstacles that inhibit users from achieving world-
model-defined goals. For each bottleneck, our pipeline generates multiple candidate actions, with
exactly one resolving bottleneck. This setup forces successful agents to demonstrate true proactiv-
ity: they must discover the bottleneck through exploration and identify the right fix among several
plausible options. The following sections detail our problem formulation and pipeline components.

2.1 PROBLEM DEFINITION

Setup and notation: Consider a world-model W of a user, let D be a finite “universal” set of
documents that constitutes the user’s datastore, which is a collection of all of user’s accessible doc-
uments, and let b ∈ B denote a fixed bottleneck. We define a bottleneck as an issue that is critically
important to the individual, actionable, and identifiable through a finite set of documents. For a
given b, the rest of the documents that do not pertain to this bottleneck are considered distractors
with respect to the bottleneck.

We define the binary predicate

f(d) : ∀d ∈ D → {0, 1} evaluated under W, f(d) =

{
1 if d conveys the bottleneck b,

0 otherwise.

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

World Model

Bottleneck 

True Positives

Distractors

Task  
Execution

A direct report failed to 
submit a client document 

before deadline

       Team offsite Prep

       Alex/Li client doc

Send document 
reminder email

Work style: diligent and strategic leader 
Pain Points: client documentation/upkeep 
Available Actions: send_email_to_reportee

Figure 2: End-to-end proactive benchmark generation pipeline. A synthetic world model (W ) is
synthesized in reference to a linkedin user profile, followed by generating a bottleneck (b) to resolve.
True Positives (T ⊆ D) and distractors (other documents unrelated to the bottleneck, K = D \ T )
are then constructed to frame the bottleneck prediction task. Finally, task selection function calls
with parameters ( P = {Pa}a∈A for action a ∈ A ) for resolving the bottleneck are generated, of
which only a single execution actually resolves the bottleneck.

A document d ∈ D is marked as a true positive (w.r.t. b) iff f(d) = 1, and a distractor iff f(d) = 0.
For the current benchmark, we make the simplifying assumption that a true positive in a single
datapoint contains evidence of only a single bottleneck.

Sample generation: Each instance of the benchmark is a tuple S = (T,K,A,P, b) where

• T ⊆ D is the set of true positives for the sample with |T | = t,
• K = D \ T is the set of distractors with |K| = k,
• A is a finite set of available actions,
• P = {Pa}a∈A assigns to each action a ∈ A a parameter space Pa,
• b is the bottleneck associated with this sample.

We make the assumption that the true-positive set T is unique to this sample (i.e. different samples
may not reuse the same T for simplicity). The observed document set presented to the agent is
D := T ∪K.

2.2 PROACTIVE TASK SETUP

An agent (LLM or agentic framework) receives an input D and a set of (a, Pa) tuples and must
produce the tuple of outputs Ô = (T̂ , b̂, â, p̂), where

• T̂ ⊆ D is the agent’s predicted set of true positives,

• b̂ is the agent’s prediction for the bottleneck,
• â ∈ A is the selected action,
• p̂ ∈ Pâ are the selected parameters for â.

2.3 DATA GENERATION SETUP

We design a robust data generation pipeline that scales in both context size and difficulty. Our
pipeline starts from a sample of real-world professional profiles and constructs synthetic workplace
scenarios as world-model. Figure 2 illustrates the complete pipeline, which comprises four key
components1:

World Model Construction: We leverage the dataset constructed by Ayoobi et al. (2023) to ex-
tract basic persona from real-world LinkedIn profiles as the starting point. Each persona captures

1all prompts for individual data generation modules are shown in appendix B

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

high-level professional information including current workplace, role description, and a professional
summary.

From these personas, we synthetically construct comprehensive world model that encode:

• Professional relationships, organizational hierarchies, including colleagues and their roles
in relation to the user’s persona

• Work patterns and communication styles at the individual level
• Available action space A with corresponding parameter spaces P
• Potential pain points and operational constraints

For instance, given a senior account manager with 20 years of client-facing experience as shown in
figure 2, the world model might identify “client documentation upkeep" as a pain point, while also
modeling specific client relationships and their respective engagement contexts.

Bottleneck Generation: Using the contextualized world model, we generate bottleneck b: a
persona-relevant, actionable user-need that satisfies our formal definition (see Section 2). Each
bottleneck b is designed to be identifiable through evidence T in the document set D and resolvable
through exactly one action a ∈ A.

User Datastore: For each sample S, we construct the document set D = T ∪ K where True
positives T are documents where f(d) = 1, collectively provide sufficient evidence to identify
bottleneck b and Distractors K are documents where f(d) = 0, introducing realistic noise w.r.t
the bottleneck. In our current datastore setup, all the generated documents are restricted to emails,
calendar events and text documents, as exemplified in Figures 1 and 2.

To mirror real-world complexity, we implement two key design principles: (i) Evidence distribu-
tion: We often distribute evidence for b across multiple documents in T , requiring agents to synthe-
size information from |T | = t sources and (ii) Contextual noise: We generate |K| = k distractor
documents of comparable length and professional relevance, ensuring that bottleneck identification
requires careful analysis rather than superficial pattern matching.

Task Execution : Finally, we construct the action set A and parameter space for each action a,
defined as P = {Pa}a∈A such that:

• Exactly one action a∗ ∈ A effectively resolves bottleneck b

• Each action a has a set of parameters p ∈ Pa be specified to resolve the bottleneck.
• Alternative actions represent potentially plausible but suboptimal interventions

For example, given a bottleneck about missing documentation, the optimal action a∗ might be “send
reminder email to direct report" with parameters specifying the recipient, urgency level, and docu-
ment details. The action set A may include plausible alternatives such as “escalate to management"
or “rewrite document", forcing agents to reason about the most effective intervention. All actions
available for a bottleneck are populated as “available actions" in the user’s world model.

2.4 PROBE - BENCHMARK FOR PROACTIVITY EVALUATION

min max mean std

Tokens 96294 122098 107,640.5 4,676.5
Actions 24 27 25.27 0.51
Docs 70 81 79.3 3.7

Table 1: Dataset statistics. We show the statistics
across number of tokens, number of action and num-
ber of documents (true positives + distractors) for
each datapoint in the dataset.

We use the setup outlined above to generate
the final dataset using GPT-4.1 as our primary
model for generation. We generate a total
of 1000 datapoints generated from about 235
unique personas (described in 2.3). The full
dataset stats are shown in Table 12.

To ensure the quality of the dataset, we adapt
a modified appraoch from Jiang et al. (2025)
by performed multiple rounds of filtering via
an adversarial agent (GPT-5) on a small sam-
ple set (of 5 datapoints). After each round of

2token counts measured using tiktoken https://platform.openai.com/tokenizer

4

https://platform.openai.com/tokenizer


216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

sample generation, the adversarial agent was tasked to identify all potential artifacts (the agent was
explcitly asked to exploit any pattern it can find) in the sample data, and solve the samples of the
benchmark based on the artifacts first and use its own reasoning only when it couldn’t solve it using
the artifacts. The final set of datapoints were generated only once no sample from our pipeline was
solvable with these artifacts alone .

Human Evaluation: To establish human performance benchmarks and validate task difficulty,
we conducted a 4-hour annotation study with three annotators, all holding at least a master’s degree.
Each annotator received identical instructions to those given to LLM systems and completed as many
samples as possible within the specified time limit. Additionally, the annotators were instructed to
judge if samples were realistic and feasible. To assess this, we asked the following questions: (i)
Were the all documents you read realistic documents that you may see in a real workplace? and (ii)
Were the actions you read realistic actions that you could see being used to resolve bottlenecks in a
real workplace setting?

Annotator Search Bottleneck Ident Task Selection Entries Samples Realistic
ID F1 % -tification Score (%) Score (%) Annotated hour Artifacts
1 26.79 0.00 0.00 13 3.25 ✓
2 45.24 0.00 14.90 7 1.75 ✓
3 20.37 0.00 8.33 6 1.50 ✓

Avg 30.28 0.00 5.93 8.67 2.17 ✓

Table 2: Annotation numbers showing that humans could not accomplish our task successfully.
Annotators on average retrieved 30%, never identified the bottleneck, and selected the correct task
at ∼ 2%, just above random chance, labeling about 2 samples per hour.

Across 12 total annotator-hours, only 26 samples were successfully completed at an average
throughput of 2.17 samples per hour per annotator. The annotation experiment showed the sub-
stantial cognitive load required for bottleneck identification across multiple documents, and the
time-intensive nature of synthesizing evidence and selecting appropriate actions3. For the annota-
tors who answered “yes" to the two questions on judging artifacts, we record a green check mark in
the “Realistic Artifacts" column of our results table. The annotation results for all three annotators
shown in table 2. All human annotations were evaluated using the same metrics setup as described
in section 3.

3 EVALUATION

3.1 METRICS

Search: This evaluation measures how well an agent retrieves the relevant documents that are re-
quired for identifying the bottleneck precisely. We measure the agent’s retrieved document T̂ against
the gold bottlenecks T using standard precision, recall and F1 metrics.

Bottleneck Identification: Since this task uses a natural language output, we use the LLM-as-
a-judge (Zheng et al., 2023) framework to evaluate whether the LLM identified the bottleneck cor-
rectly. We split this evaluation into two subtasks: (i) identifying essential details (who is the blocker,
what is the task, root cause,..) and (ii) identifying non-essential details (system/tool names, processes
to follow, scope of impact, ..). The scoring rubric is as follows:

Score =


1.0, if all essential and all non-essential details are accurate,
0.5, if all essential details are accurate but some non-essential details are incorrect,
0.0, if any essential detail is wrong or missing.

Task Execution: Our scoring combines exact-match accuracy for the gold action label (assigning
0 if incorrect) with LLM-as-a-judge evaluation of parameter quality when the action is correctly

3Annotators found no sample to be unrealistic, and gave feeback that the task was very challenging

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

identified. The rubric follows:

Score =


1.0, if action predicted is correct and all critical parameters are present,
0.5, if action predicted is correct and most critical parameters are present,
0.0, action wrong or if critical parameters are missing.

We provide the prompts for both the llm-as-a-judge prompts in appendix B.6.

3.2 LLM-AS-A-JUDGE

To validate our use of LLM-as-a-judge, we conducted a measurement study with 50 GPT 4.1
prediction-output pairs. Two human annotators independently evaluated bottleneck identification
and parameter judgments for each sample. We achieved 84% inter-annotator agreement and 80%
human-LLM agreement across 100 total annotations, supporting our decision to use LLM-based
scoring.

3.3 BASELINES

Models: We evaluate our benchmark against several frontier closed source models including
OpenAI GPT-5(OpenAI, 2025), GPT-5-mini(OpenAI, 2025c), GPT-4.1(OpenAI, 2025a), GPT-
4.1-mini(OpenAI, 2025b), Claude 4.1 Opus(Anthropic, 2025b), Claude 4 Sonnet(Anthropic,
2025a) and the best-performing open-source models including Kimi-K2(Team et al., 2025) and
DeepSeek- R1(DeepSeek-AI et al., 2025). Among other open-source models, we test OpenAI GPT
OSS(OpenAI, 2025) at both 120B and 20B scales4.

Agentic Frameworks: We evaluate three leading agentic frameworks: ReACT (Yao et al., 2023),
Reflexion-Agent (Shinn et al., 2023), and ReWOO (Xu et al., 2024). Since these frameworks target
different problem domains, we adapted each for bottleneck resolution. Our modifications include
workflow-specific prompts, structured outputs, and two retrieval toolsâĂŤembedding-based search
and SQL queries. Each framework takes a distinct approach. ReACT cycles between reasoning
and retrieval, progressively building context until it converges on an action. Reflexion learns from
its failures: it runs multiple trials of document retrieval, analysis, and action selection, using LLM-
based reflection to improve after each unsuccessful attempt. ReWOO, in contrast, precoordinates
the process. After constructing a structured plan, it dispatches specialized workers for search and
reasoning tasks, then synthesizes their findings to pinpoint bottlenecks and select interventions. We
did not include any pre-existing proactive agent frameworks (Lu et al., 2024b; Yang et al., 2025b)
as baselines, as current systems are designed for specialized domains (conversational agents, UI
navigation, embodied robotics). Resultantly, the distinct input modalities and task objectives of
these frameworks do not trivially transfer to our workflow. All agentic frameworks use GPT-5-mini
as the underlying base model. We provide more details in appendix A.

3.4 MODEL COMPARISONS

Frontier Models Pull Ahead: The gap between top models in our benchmark (GPT-5, GPT-4.1,
Claude Opus, Claude Sonnet) and the rest of the models is significant. GPT-4.1-mini reaches 0.42 on
Bottleneck Identification but only 0.20 on Task Execution, achieving just half the success rate of the
best performing models. The other models fare poorly in retrieval and cascade these errors down-
stream (e.g., GPT-OSS-120b: 0.13 F1 Search, 0.11 Task Execution), underscoring the difficulty of
end-to-end bottleneck resolution without strong evidence acquisition.

Frontier models are stronger across the pipeline, but not uniformly: GPT-5 achieves the best
search performance with an F1 of 0.65 and the highest task execution score of 0.40, indicating
stronger end-to-end capacity to find the right documents and translate diagnosis into an actionable
plan. Claude Opus 4.1 and Claude Sonnet 4 achieve the best bottleneck identification score of 0.43
while having a slightly lower search score. This suggests that Claude models have a slight advantage
in reasoning capabilities for this task, which can offset potential short-comings in search. From the
table of results 3, we also observe that different frontier models have different strengths (while GPT-
5 is better at search, it is behind Claude Opus and Sonnet in bottleneck identification), and to get an

4We could not test gemini-2.5 due to rate-limiting issues

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Search Bottleneck Identification Task Execution

P R F1 Score Score

GPT-5 0.73 0.59 0.65 0.42 0.40
Claude Opus 4.1 0.68 0.41 0.51 0.43 0.40
Claude Sonnet 4 0.66 0.37 0.47 0.43 0.36
GPT-4.1 0.60 0.38 0.46 0.42 0.38
GPT-4.1-mini 0.18 0.20 0.19 0.42 0.20
Deepseek-R1 0.49 0.23 0.29 0.04 0.19
Kimi K-2 0.20 0.17 0.18 0.40 0.18
GPT-OSS-120b 0.27 0.10 0.13 0.35 0.11
GPT-OSS-20b 0.05 0.03 0.04 0.26 0.05

Table 3: Comparative results across several frontier closed and open source models. GPT-5 and
Claude Opus-4.1 show the best performance compared to the rest. We also show evaluation across
search, bottleneck identification and task execution to show the relative strengths of weaknesses
across models. Note: We found GPT-5-mini performance to be close to GPT-4-mini performance
across the board, hence removed for brevity.

Search Bottleneck Identification Task Execution

P R F1 Score Score

ReACT(Yao et al., 2023) 0.08 0.37 0.12 0.02 0.06
Reflexion(Shinn et al., 2023) 0.18 0.11 0.13 0.02 0.05
ReWoo(Xu et al., 2024) 0.27 0.24 0.25 0.01 0.11

Table 4: We show comparison across multiple agent frameworks. In our initial experiments, they
significantly lag behind using LLMs out-of-the-box for this task.

overall better performance, models need to strengthen capabilities across all search, identification
and task execution. We found the results of Deepseek-R1 to be anomalous in terms of bottleneck
identification performance, while performing well in rest of the metrics. On deeper inspection, we
found that Deepseek-R1 consistently used generic descriptions of bottlenecks instead of specific
details, leading to reduced performance in bottleneck identification.

Retrieval remains challenging: Our analysis reveals a clear performance hierarchy among mod-
els. Frontier models (GPT and Claude series) significantly outperform others (Kimi K-2, Deepseek-
R1, GPT-OSS series), with all models showing higher precision than recallâĂŤfor example, GPT-5
achieves 0.73 precision but only 0.59 recall. This pattern suggests models retrieve conservatively,
struggling to some extent to retrieve all relevant pieces of information needed to identify the bot-
tleneck. This is especially pronounced in smaller Language Models, who seem to massively under-
retrieve relevant documents and resultantly struggle with any sort of task selection.

Shortcutting helps overcome search difficulties, but not much: Among the top-performing mod-
els (GPT-5, GPT-4.1, Claude Opus, Claude Sonnet), some compensate for weaker retrieval with
stronger free-form reasoning during Bottleneck Identification. This yields competitive identification
scores without a corresponding improvement in task execution. The gap highlights that being “right
for the wrong reasons" does not translate into executable solutions. As the search space grows, this
effect will degrade, reinforcing the need for faithful evidence use. We believe that the remaining
head-room in this task will be based on faithful evidence use to identify bottlenecks and then resolve
them correctly. The best bottleneck identification score reaches only 0.43, while the best task exe-
cution score is just 0.40. These low performance ceilings reveal significant gaps in current systems’
ability to translate diagnoses into actionable solutions with complete parameters, particularly when
retrieval is imperfect.

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

3.5 AGENT FRAMEWORKS COMPARISON

We evaluated agentic baselines using a constrained setup where agents were provided with a SQL
store and embedding-based semantic search for document retrieval. Our rubric enforces three met-
rics across the pipeline: retrieval, bottleneck identification, and task execution. Across all tested
agents, retrieval F1 scores ranged from 0.12 to 0.25, substantially below the frontier models in
Table 4. This weak retrieval performance cascaded through the pipeline, resulting in Bottleneck
Identification and Task Execution scores of ≤ 0.11.

Even when agents generated plausible reasoning steps, the limited evidence prevented accurate di-
agnosis and parameter-complete actions. These results partly reflect the mismatch between our
experimental constraints and typical agentic frameworks, which usually leverage web search, APIs,
and environment interaction. Our benchmark’s restriction to SQL and semantic search limits the
“act" channel that many agent architectures rely on for iterative knowledge acquisition.

4 ERROR ANALYSIS

For this analysis, we use all failure cases of each model across the dataset. To understand where
models struggle most, we analyze failure modes across three hierarchical categories: bottleneck
identification, task selection, and parameter specification for the task that was selected (explained in
metrics under section 3).

Failure Mode Claude Opus Claude Sonnet GPT-4.1 GPT-5 Kimi K-2
Identification Failures (% of identification errors)

Incorrect root cause5 64.6% 70.6% 76.8% 72.1% 84.8%
Person attribution error 46.9% 57.9% 61.3% 60.8% 78.0%
Missing/wrong deadline 53.4% 46.7% 43.5% 45.3% 35.0%

Function Selection Failures (% of action errors | identification success)

Wrong function selected 9.7% 9.5% 9.2% 10.6% 10.9%

Parameter Failures (% of action errors | function success)

Critical parameters missing 66.2% 75.4% 79.5% 65.2% 71.7%
Incorrectly filled parameters 45.4% 36.1% 35.3% 45.6% 44.3%

Table 5: Failure mode breakdown across frontier models. Root cause identification emerges as the
dominant failure mode, while function selection shows consistent competence across models.

Root Cause Identification remains the primary challenge: Incorrect root cause identification
dominates across all models, averaging 73.8% of identification failures. This represents the single
largest systematic weakness, with even the best-performing Claude Opus failing at root cause analy-
sis in nearly two-thirds of identification errors. This suggests potential avenues to improve reasoning
capabilities tailored to our proactivity task.

Interpersonal reasoning: Interpersonal Reasoning - ability of a model to reason about the people
who are involved in a bottleneck, remains challenging for models. All models struggle consistently
with interpersonal dynamics (46.9%-78.0% failure rates), regardless of their performance on root
cause identification. Even Claude Opus, the highest performing reasoning model in our benchmark,
fails at interpersonal identification in nearly half of cases where it fails, suggesting that understand-
ing workplace relationships might require additional capabilities.

Action Selection and Parameter Prediction for actions : Action selection and selection of pa-
rameters for the action remains independently challenging. GPT-5 and Claude Opus achieve better
parameter coverage but higher error rates (45.6% and 45.4% incorrect), while GPT-4.1 and Claude
Sonnet show the inverse pattern; more accurate specification (35.3% and 36.1% incorrect) but higher

5Incorrect root causes can signify either locating the possible cause and misidentifying the bottleneck or not
identifying the possible cause at all.

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

miss rates. Current models cannot simultaneously achieve higher coverage and precise parameter
specification within complex workplace scenarios as generated by this benchmark.

5 RELATED WORK

Reactive vs. Proactive Agents: Most LLM-based agent research has focused on reactive systems
that respond to explicit user instructions. Key advances include planning approaches like ReAct
(Yao et al., 2023), tool integration via Toolformer(Schick et al., 2023), and self-reflection mecha-
nisms such as Reflexion(Shinn et al., 2023). While these expand agentic capabilities, they remain
fundamentally reactive - dependent on explicit requests without capacity to anticipate user needs.

Emerging proactive agents face the challenge of anticipating latent user goals from partial obser-
vations and executing actions without explicit instruction. Recent work explores intent inference
from behavioral patterns(Zhao et al., 2025), continuous insight generation from data streams (Yang
et al., 2025b), and context-aware action generation(Shaikh et al., 2025). However, these systems
lack systematic evaluation frameworks that assess end-to-end proactive capabilities.

Agent Benchmarking: Existing benchmarks predominantly evaluate reactive systems: SWE-bench
(Jimenez et al., 2024) for software engineering; ToolBench (Qin et al., 2023) for API calling; and
GAIA (Mialon et al., 2023) for multi-hop reasoning. Recent proactivity benchmarks like Proactive-
VideoQA (Wang et al., 2025) and ProCIS (Samarinas & Zamani, 2024) begin addressing this gap
but remain limited to conversational actions. None of the above-mentioned works decompose proac-
tivity into constituent capabilities or test comprehensive task execution across extended contexts and
time horizons, motivating the systematic approach found in PROBE .

6 CONCLUSION

In this work we propose PROBE : a benchmark designed to test proactivity by having agents search
over a personal datastore, identify bottlenecks without prompting, and resolve them. We evaluate
leading LLMs and modern agentic solutions on this benchmark, and discover that most solutions
struggle greatly at all three stages. We also conduct an analysis of failure modes, illustrating the
difficulty of our benchmark’s subcomponents.

While the work shows the difficulty of proactive assistance, it still only encompasses a part of the
challenge: the problems of building good world-models for individual users and figuring out when to
act remain unsolved. We leave these challenges to future work, with the hope that ongoing research
will work towards personalized, dynamic agents that can identify and resolve the type of bottlenecks
found in our benchmark.

7 LIMITATIONS AND FUTURE WORK

While our work advances proactive agent evaluation, several limitations present opportunities for
future research. First, we assume a fixed, non-evolving world model across the time dimension. In
real-world proactivity settings, personalization is a more fundamental component and represents a
complex challenge. User preferences and contexts evolve over time, requiring agents to adapt their
understanding dynamically. Second, we assume that for a given state of information, bottlenecks are
resolvable by a single action. Many real-world bottlenecks involve complex, multi-step workflows
that require dynamic task execution, where each action modifies the agent’s state. These multi-step
scenarios introduce additional complexity beyond the scope of this paper.

These limitations suggest natural directions for future work: developing benchmarks that incorporate
temporal dynamics and evolving user models, and extending evaluation frameworks to handle multi-
step bottleneck resolution with interdependent actions. Addressing these challenges will be essential
for advancing proactive agent going forward.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Saaket Agashe, Jiuzhou Han, Shuyu Gan, Jiachen Yang, Ang Li, and Xin Eric Wang. Agent s:
An open agentic framework that uses computers like a human. In The Thirteenth International
Conference on Learning Representations, 2025. URL https://openreview.net/forum?
id=lIVRgt4nLv.

Anthropic. Claude sonnet 4. https://www.anthropic.com/claude/sonnet, 2025a.
Accessed 2025-09-24.

Anthropic. Claude opus 4.1. https://www.anthropic.com/news/claude-opus-4-1,
August 2025b. Accessed: 2025-09-21.

Navid Ayoobi, Sadat Shahriar, and Arjun Mukherjee. The looming threat of fake and llm-generated
linkedin profiles: Challenges and opportunities for detection and prevention. In Proceedings of
the 34th ACM Conference on Hypertext and Social Media, pp. 1–10, 2023.

Natasha Butt, Varun Chandrasekaran, Neel Joshi, Besmira Nushi, and Vidhisha Balachandran.
Benchagents: Automated benchmark creation with agent interaction, 2024. URL https:
//arxiv.org/abs/2410.22584.

DeepSeek-AI, Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu,
Qihao Zhu, Shirong Ma, Peiyi Wang, Xiao Bi, Xiaokang Zhang, Xingkai Yu, Yu Wu, Z. F. Wu,
Zhibin Gou, Zhihong Shao, Zhuoshu Li, Ziyi Gao, Aixin Liu, Bing Xue, Bingxuan Wang, Bochao
Wu, Bei Feng, Chengda Lu, Chenggang Zhao, Chengqi Deng, Chenyu Zhang, Chong Ruan,
Damai Dai, Deli Chen, Dongjie Ji, Erhang Li, Fangyun Lin, Fucong Dai, Fuli Luo, Guangbo Hao,
Guanting Chen, Guowei Li, H. Zhang, Han Bao, Hanwei Xu, Haocheng Wang, Honghui Ding,
Huajian Xin, Huazuo Gao, Hui Qu, Hui Li, Jianzhong Guo, Jiashi Li, Jiawei Wang, Jingchang
Chen, Jingyang Yuan, Junjie Qiu, Junlong Li, J. L. Cai, Jiaqi Ni, Jian Liang, Jin Chen, Kai
Dong, Kai Hu, Kaige Gao, Kang Guan, Kexin Huang, Kuai Yu, Lean Wang, Lecong Zhang,
Liang Zhao, Litong Wang, Liyue Zhang, Lei Xu, Leyi Xia, Mingchuan Zhang, Minghua Zhang,
Minghui Tang, Meng Li, Miaojun Wang, Mingming Li, Ning Tian, Panpan Huang, Peng Zhang,
Qiancheng Wang, Qinyu Chen, Qiushi Du, Ruiqi Ge, Ruisong Zhang, Ruizhe Pan, Runji Wang,
R. J. Chen, R. L. Jin, Ruyi Chen, Shanghao Lu, Shangyan Zhou, Shanhuang Chen, Shengfeng
Ye, Shiyu Wang, Shuiping Yu, Shunfeng Zhou, Shuting Pan, S. S. Li, Shuang Zhou, Shaoqing
Wu, Shengfeng Ye, Tao Yun, Tian Pei, Tianyu Sun, T. Wang, Wangding Zeng, Wanjia Zhao, Wen
Liu, Wenfeng Liang, Wenjun Gao, Wenqin Yu, Wentao Zhang, W. L. Xiao, Wei An, Xiaodong
Liu, Xiaohan Wang, Xiaokang Chen, Xiaotao Nie, Xin Cheng, Xin Liu, Xin Xie, Xingchao Liu,
Xinyu Yang, Xinyuan Li, Xuecheng Su, Xuheng Lin, X. Q. Li, Xiangyue Jin, Xiaojin Shen, Xi-
aosha Chen, Xiaowen Sun, Xiaoxiang Wang, Xinnan Song, Xinyi Zhou, Xianzu Wang, Xinxia
Shan, Y. K. Li, Y. Q. Wang, Y. X. Wei, Yang Zhang, Yanhong Xu, Yao Li, Yao Zhao, Yaofeng
Sun, Yaohui Wang, Yi Yu, Yichao Zhang, Yifan Shi, Yiliang Xiong, Ying He, Yishi Piao, Yisong
Wang, Yixuan Tan, Yiyang Ma, Yiyuan Liu, Yongqiang Guo, Yuan Ou, Yuduan Wang, Yue Gong,
Yuheng Zou, Yujia He, Yunfan Xiong, Yuxiang Luo, Yuxiang You, Yuxuan Liu, Yuyang Zhou,
Y. X. Zhu, Yanhong Xu, Yanping Huang, Yaohui Li, Yi Zheng, Yuchen Zhu, Yunxian Ma, Ying
Tang, Yukun Zha, Yuting Yan, Z. Z. Ren, Zehui Ren, Zhangli Sha, Zhe Fu, Zhean Xu, Zhenda
Xie, Zhengyan Zhang, Zhewen Hao, Zhicheng Ma, Zhigang Yan, Zhiyu Wu, Zihui Gu, Zijia Zhu,
Zijun Liu, Zilin Li, Ziwei Xie, Ziyang Song, Zizheng Pan, Zhen Huang, Zhipeng Xu, Zhongyu
Zhang, and Zhen Zhang. Deepseek-r1: Incentivizing reasoning capability in llms via reinforce-
ment learning, 2025. URL https://arxiv.org/abs/2501.12948.

Yuru Jiang, Wenxuan Ding, Shangbin Feng, Greg Durrett, and Yulia Tsvetkov. Sparta alignment:
Collectively aligning multiple language models through combat, 2025. URL https://arxiv.
org/abs/2506.04721.

Carlos E. Jimenez, John Yang, Alexander Wettig, Shunyu Yao, Kexin Pei, Ofir Press, and Karthik
Narasimhan. Swe-bench: Can language models resolve real-world github issues?, 2024. URL
https://arxiv.org/abs/2310.06770.

Yubin Kim, Chanwoo Park, Hyewon Jeong, Yik Siu Chan, Xuhai Xu, Daniel McDuff, Hyeonhoon
Lee, Marzyeh Ghassemi, Cynthia Breazeal, and Hae Won Park. MDAgents: An adaptive col-
laboration of LLMs for medical decision-making. In The Thirty-eighth Annual Conference on

10

https://openreview.net/forum?id=lIVRgt4nLv
https://openreview.net/forum?id=lIVRgt4nLv
https://www.anthropic.com/claude/sonnet
https://www.anthropic.com/news/claude-opus-4-1
https://arxiv.org/abs/2410.22584
https://arxiv.org/abs/2410.22584
https://arxiv.org/abs/2501.12948
https://arxiv.org/abs/2506.04721
https://arxiv.org/abs/2506.04721
https://arxiv.org/abs/2310.06770


540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Neural Information Processing Systems, 2024. URL https://openreview.net/forum?
id=EKdk4vxKO4.

Lin Long, Rui Wang, Ruixuan Xiao, Junbo Zhao, Xiao Ding, Gang Chen, and Haobo Wang. On
llms-driven synthetic data generation, curation, and evaluation: A survey, 2024. URL https:
//arxiv.org/abs/2406.15126.

Ya-Ting Lu, Shenzhi Yang, Cheng Qian, Gui-Fang Chen, Qinyu Luo, Yesai Wu, Huadong Wang,
Xin Cong, Zhong Zhang, Yankai Lin, Weiwen Liu, Yasheng Wang, Zhiyuan Liu, Fangming Liu,
and Maosong Sun. Proactive agent: Shifting llm agents from reactive responses to active as-
sistance. ArXiv, abs/2410.12361, 2024a. URL https://api.semanticscholar.org/
CorpusID:273375463.

Yaxi Lu, Shenzhi Yang, Cheng Qian, Guirong Chen, Qinyu Luo, Yesai Wu, Huadong Wang, Xin
Cong, Zhong Zhang, Yankai Lin, Weiwen Liu, Yasheng Wang, Zhiyuan Liu, Fangming Liu, and
Maosong Sun. Proactive agent: Shifting llm agents from reactive responses to active assistance,
2024b. URL https://arxiv.org/abs/2410.12361.

GrÃl’goire Mialon, ClÃl’mentine Fourrier, Craig Swift, Thomas Wolf, Yann LeCun, and Thomas
Scialom. Gaia: a benchmark for general ai assistants, 2023. URL https://arxiv.org/
abs/2311.12983.

Mihai NadÇŐÅ§, Laura DioÅ§an, and Andreea Tomescu. Synthetic data generation using large
language models: Advances in text and code. IEEE Access, 13:134615âĂŞ134633, 2025. ISSN
2169-3536. doi: 10.1109/access.2025.3589503. URL http://dx.doi.org/10.1109/
ACCESS.2025.3589503.

OpenAI. Introducing gpt-4.1 in the api. https://openai.com/index/gpt-4-1/, 4 2025a.
Accessed 2025-09-24.

OpenAI. Gpt-4.1 mini âĂŤ model documentation. https://platform.openai.com/
docs/models/gpt-4.1-mini, 2025b. Accessed 2025-09-24.

OpenAI. Introducing gpt-5 for developers. https://openai.com/index/
introducing-gpt-5-for-developers/, 8 2025c. Describes availability of gpt-5,
gpt-5-mini, and gpt-5-nano; Accessed 2025-09-24.

OpenAI. gpt-oss-120b & gpt-oss-20b model card, 2025. URL https://arxiv.org/abs/
2508.10925.

OpenAI. Gpt-5 is here. https://openai.com/gpt-5/, 2025. Accessed: 2025-09-21.

Yujia Qin, Shihao Liang, Yining Ye, Kunlun Zhu, Lan Yan, Yaxi Lu, Yankai Lin, Xin Cong, Xiangru
Tang, Bill Qian, Sihan Zhao, Lauren Hong, Runchu Tian, Ruobing Xie, Jie Zhou, Mark Gerstein,
Dahai Li, Zhiyuan Liu, and Maosong Sun. Toolllm: Facilitating large language models to master
16000+ real-world apis, 2023. URL https://arxiv.org/abs/2307.16789.

Chris Samarinas and Hamed Zamani. Procis: A benchmark for proactive retrieval in conversations.
In Proceedings of the 47th International ACM SIGIR Conference on Research and Development
in Information Retrieval, SIGIR 2024, pp. 830âĂŞ840. ACM, July 2024. doi: 10.1145/3626772.
3657869. URL http://dx.doi.org/10.1145/3626772.3657869.

Timo Schick, Jane Dwivedi-Yu, Roberto Dessì, Roberta Raileanu, Maria Lomeli, et al. Toolformer:
Language models can teach themselves to use tools. arXiv preprint arXiv:2302.04761, 2023.

Andrew Sellergren, Sahar Kazemzadeh, Tiam Jaroensri, Atilla Kiraly, Madeleine Traverse, Timo
Kohlberger, Shawn Xu, Fayaz Jamil, CÃ an Hughes, Charles Lau, Justin Chen, Fereshteh Mah-
var, Liron Yatziv, Tiffany Chen, Bram Sterling, Stefanie Anna Baby, Susanna Maria Baby, Jeremy
Lai, Samuel Schmidgall, Lu Yang, Kejia Chen, Per Bjornsson, Shashir Reddy, Ryan Brush, Ken-
neth Philbrick, Mercy Asiedu, Ines Mezerreg, Howard Hu, Howard Yang, Richa Tiwari, Sunny
Jansen, Preeti Singh, Yun Liu, Shekoofeh Azizi, Aishwarya Kamath, Johan Ferret, Shreya Pathak,
Nino Vieillard, Ramona Merhej, Sarah Perrin, Tatiana Matejovicova, Alexandre RamÃl’, Mor-
gane Riviere, Louis Rouillard, Thomas Mesnard, Geoffrey Cideron, Jean bastien Grill, Sabela

11

https://openreview.net/forum?id=EKdk4vxKO4
https://openreview.net/forum?id=EKdk4vxKO4
https://arxiv.org/abs/2406.15126
https://arxiv.org/abs/2406.15126
https://api.semanticscholar.org/CorpusID:273375463
https://api.semanticscholar.org/CorpusID:273375463
https://arxiv.org/abs/2410.12361
https://arxiv.org/abs/2311.12983
https://arxiv.org/abs/2311.12983
http://dx.doi.org/10.1109/ACCESS.2025.3589503
http://dx.doi.org/10.1109/ACCESS.2025.3589503
https://openai.com/index/gpt-4-1/
https://platform.openai.com/docs/models/gpt-4.1-mini
https://platform.openai.com/docs/models/gpt-4.1-mini
https://openai.com/index/introducing-gpt-5-for-developers/
https://openai.com/index/introducing-gpt-5-for-developers/
https://arxiv.org/abs/2508.10925
https://arxiv.org/abs/2508.10925
https://openai.com/gpt-5/
https://arxiv.org/abs/2307.16789
http://dx.doi.org/10.1145/3626772.3657869


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Ramos, Edouard Yvinec, Michelle Casbon, Elena Buchatskaya, Jean-Baptiste Alayrac, Dmitry
Lepikhin, Vlad Feinberg, Sebastian Borgeaud, Alek Andreev, Cassidy Hardin, Robert Dadashi,
LÃl’onard Hussenot, Armand Joulin, Olivier Bachem, Yossi Matias, Katherine Chou, Avinatan
Hassidim, Kavi Goel, Clement Farabet, Joelle Barral, Tris Warkentin, Jonathon Shlens, David
Fleet, Victor Cotruta, Omar Sanseviero, Gus Martins, Phoebe Kirk, Anand Rao, Shravya Shetty,
David F. Steiner, Can Kirmizibayrak, Rory Pilgrim, Daniel Golden, and Lin Yang. Medgemma
technical report, 2025. URL https://arxiv.org/abs/2507.05201.

Omar Shaikh, Shardul Sapkota, Shan Rizvi, Eric Horvitz, Joon Sung Park, Diyi Yang, and
Michael S. Bernstein. Creating general user models from computer use, 2025. URL https:
//arxiv.org/abs/2505.10831.

Noah Shinn, Federico Cassano, Ashwin Gopinath, Karthik R Narasimhan, and Shunyu Yao. Re-
flexion: language agents with verbal reinforcement learning. In Thirty-seventh Conference on
Neural Information Processing Systems, 2023. URL https://openreview.net/forum?
id=vAElhFcKW6.

Yunpeng Song, Yiheng Bian, Yongtao Tang, Guiyu Ma, and Zhongmin Cai. Visiontasker: Mobile
task automation using vision based ui understanding and llm task planning. In Proceedings of the
37th Annual ACM Symposium on User Interface Software and Technology, UIST ’24, New York,
NY, USA, 2024. Association for Computing Machinery. ISBN 9798400706288. doi: 10.1145/
3654777.3676386. URL https://doi.org/10.1145/3654777.3676386.

Kimi Team, Yifan Bai, Yiping Bao, Guanduo Chen, Jiahao Chen, Ningxin Chen, Ruijue Chen,
Yanru Chen, Yuankun Chen, Yutian Chen, Zhuofu Chen, Jialei Cui, Hao Ding, Mengnan Dong,
Angang Du, Chenzhuang Du, Dikang Du, Yulun Du, Yu Fan, Yichen Feng, Kelin Fu, Bofei Gao,
Hongcheng Gao, Peizhong Gao, Tong Gao, Xinran Gu, Longyu Guan, Haiqing Guo, Jianhang
Guo, Hao Hu, Xiaoru Hao, Tianhong He, Weiran He, Wenyang He, Chao Hong, Yangyang Hu,
Zhenxing Hu, Weixiao Huang, Zhiqi Huang, Zihao Huang, Tao Jiang, Zhejun Jiang, Xinyi Jin,
Yongsheng Kang, Guokun Lai, Cheng Li, Fang Li, Haoyang Li, Ming Li, Wentao Li, Yanhao
Li, Yiwei Li, Zhaowei Li, Zheming Li, Hongzhan Lin, Xiaohan Lin, Zongyu Lin, Chengyin
Liu, Chenyu Liu, Hongzhang Liu, Jingyuan Liu, Junqi Liu, Liang Liu, Shaowei Liu, T. Y. Liu,
Tianwei Liu, Weizhou Liu, Yangyang Liu, Yibo Liu, Yiping Liu, Yue Liu, Zhengying Liu, Enzhe
Lu, Lijun Lu, Shengling Ma, Xinyu Ma, Yingwei Ma, Shaoguang Mao, Jie Mei, Xin Men, Yibo
Miao, Siyuan Pan, Yebo Peng, Ruoyu Qin, Bowen Qu, Zeyu Shang, Lidong Shi, Shengyuan Shi,
Feifan Song, Jianlin Su, Zhengyuan Su, Xinjie Sun, Flood Sung, Heyi Tang, Jiawen Tao, Qifeng
Teng, Chensi Wang, Dinglu Wang, Feng Wang, Haiming Wang, Jianzhou Wang, Jiaxing Wang,
Jinhong Wang, Shengjie Wang, Shuyi Wang, Yao Wang, Yejie Wang, Yiqin Wang, Yuxin Wang,
Yuzhi Wang, Zhaoji Wang, Zhengtao Wang, Zhexu Wang, Chu Wei, Qianqian Wei, Wenhao Wu,
Xingzhe Wu, Yuxin Wu, Chenjun Xiao, Xiaotong Xie, Weimin Xiong, Boyu Xu, Jing Xu, Jinjing
Xu, L. H. Xu, Lin Xu, Suting Xu, Weixin Xu, Xinran Xu, Yangchuan Xu, Ziyao Xu, Junjie
Yan, Yuzi Yan, Xiaofei Yang, Ying Yang, Zhen Yang, Zhilin Yang, Zonghan Yang, Haotian Yao,
Xingcheng Yao, Wenjie Ye, Zhuorui Ye, Bohong Yin, Longhui Yu, Enming Yuan, Hongbang
Yuan, Mengjie Yuan, Haobing Zhan, Dehao Zhang, Hao Zhang, Wanlu Zhang, Xiaobin Zhang,
Yangkun Zhang, Yizhi Zhang, Yongting Zhang, Yu Zhang, Yutao Zhang, Yutong Zhang, Zheng
Zhang, Haotian Zhao, Yikai Zhao, Huabin Zheng, Shaojie Zheng, Jianren Zhou, Xinyu Zhou,
Zaida Zhou, Zhen Zhu, Weiyu Zhuang, and Xinxing Zu. Kimi k2: Open agentic intelligence,
2025. URL https://arxiv.org/abs/2507.20534.

Yueqian Wang, Xiaojun Meng, Yifan Wang, Huishuai Zhang, and Dongyan Zhao. Proactivevideoqa:
A comprehensive benchmark evaluating proactive interactions in video large language models,
2025. URL https://arxiv.org/abs/2507.09313.

Binfeng Xu, Zhiyuan PENG, Bowen Lei, Subhabrata Mukherjee, and Dongkuan Xu. DE-
COUPLING REASONING FROM OBSERVATIONS FOR EFFICIENT AUGMENTED LAN-
GUAGE MODELS, 2024. URL https://openreview.net/forum?id=CpgoO6j6W1.

Bufang Yang, Lilin Xu, Liekang Zeng, Kaiwei Liu, Siyang Jiang, Wenrui Lu, Hongkai Chen,
Xiaofan Jiang, Guoliang Xing, and Zhenyu Yan. Contextagent: Context-aware proactive llm
agents with open-world sensory perceptions. ArXiv, abs/2505.14668, 2025a. URL https:
//api.semanticscholar.org/CorpusID:278769319.

12

https://arxiv.org/abs/2507.05201
https://arxiv.org/abs/2505.10831
https://arxiv.org/abs/2505.10831
https://openreview.net/forum?id=vAElhFcKW6
https://openreview.net/forum?id=vAElhFcKW6
https://doi.org/10.1145/3654777.3676386
https://arxiv.org/abs/2507.20534
https://arxiv.org/abs/2507.09313
https://openreview.net/forum?id=CpgoO6j6W1
https://api.semanticscholar.org/CorpusID:278769319
https://api.semanticscholar.org/CorpusID:278769319


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Bufang Yang, Lilin Xu, Liekang Zeng, Kaiwei Liu, Siyang Jiang, Wenrui Lu, Hongkai Chen, Xi-
aofan Jiang, Guoliang Xing, and Zhenyu Yan. Contextagent: Context-aware proactive llm agents
with open-world sensory perceptions, 2025b. URL https://arxiv.org/abs/2505.
14668.

John Yang, Carlos E Jimenez, Alexander Wettig, Kilian Lieret, Shunyu Yao, Karthik R Narasimhan,
and Ofir Press. SWE-agent: Agent-computer interfaces enable automated software engineering.
In The Thirty-eighth Annual Conference on Neural Information Processing Systems, 2024. URL
https://openreview.net/forum?id=mXpq6ut8J3.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan, and Yuan Cao.
ReAct: Synergizing reasoning and acting in language models. In International Conference on
Learning Representations (ICLR), 2023.

Ceyao Zhang, Kaijie Yang, Siyi Hu, Zihao Wang, Guanghe Li, Yi Eve Sun, Chen Zhang, Zhaowei
Zhang, Anji Liu, Song-Chun Zhu, Xiaojun Chang, Junge Zhang, F. Yin, Yitao Liang, and
Yaodong Yang. Proagent: Building proactive cooperative agents with large language models. In
AAAI Conference on Artificial Intelligence, 2023. URL https://api.semanticscholar.
org/CorpusID:261064959.

Xuan Zhang, Yang Deng, Zifeng Ren, See-Kiong Ng, and Tat-Seng Chua. Ask-before-plan: Proac-
tive language agents for real-world planning. ArXiv, abs/2406.12639, 2024. URL https:
//api.semanticscholar.org/CorpusID:270561990.

Yao Zhang, Zijian Ma, Yunpu Ma, Zhen Han, Yu Wu, and Volker Tresp. Webpilot: a versatile and
autonomous multi-agent system for web task execution with strategic exploration. In Proceedings
of the Thirty-Ninth AAAI Conference on Artificial Intelligence and Thirty-Seventh Conference on
Innovative Applications of Artificial Intelligence and Fifteenth Symposium on Educational Ad-
vances in Artificial Intelligence, AAAI’25/IAAI’25/EAAI’25. AAAI Press, 2025. ISBN 978-1-
57735-897-8. doi: 10.1609/aaai.v39i22.34505. URL https://doi.org/10.1609/aaai.
v39i22.34505.

Yuheng Zhao, Xueli Shu, Liwen Fan, Lin Gao, Yu Zhang, and Siming Chen. Proactiveva: Proactive
visual analytics with llm-based ui agent, 2025. URL https://arxiv.org/abs/2507.
18165.

Boyuan Zheng, Boyu Gou, Jihyung Kil, Huan Sun, and Yu Su. Gpt-4v(ision) is a generalist
web agent, if grounded. In ICML, 2024. URL https://openreview.net/forum?id=
piecKJ2DlB.

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan Zhuang, Zhanghao Wu, Yonghao Zhuang,
Zi Lin, Zhuohan Li, Dacheng Li, Eric Xing, Hao Zhang, Joseph E. Gonzalez, and Ion Stoica.
Judging LLM-as-a-judge with MT-bench and chatbot arena. In Thirty-seventh Conference on
Neural Information Processing Systems Datasets and Benchmarks Track, 2023. URL https:
//openreview.net/forum?id=uccHPGDlao.

A APPENDIX A: BASELINE IMPLEMENTATIONS

We provide implementation details for the agentic framework baselines. Full source code is available
at https://github.com/anonymized.

All baseline agents share a common set of document retrieval tools and error han-
dling mechanisms. The semantic_search tool performs vector-based retrieval us-
ing text-embedding-3-small embeddings with configurable result limits, while the
sql_reader tool executes structured SQLite queries over document metadata with schema val-
idation. All agents incorporate robust JSON parsing with fallback mechanisms and graceful error
recovery for malformed outputs. These shared components ensure consistent document accessibility
and reliable structured output generation across baselines.

13

https://arxiv.org/abs/2505.14668
https://arxiv.org/abs/2505.14668
https://openreview.net/forum?id=mXpq6ut8J3
https://api.semanticscholar.org/CorpusID:261064959
https://api.semanticscholar.org/CorpusID:261064959
https://api.semanticscholar.org/CorpusID:270561990
https://api.semanticscholar.org/CorpusID:270561990
https://doi.org/10.1609/aaai.v39i22.34505
https://doi.org/10.1609/aaai.v39i22.34505
https://arxiv.org/abs/2507.18165
https://arxiv.org/abs/2507.18165
https://openreview.net/forum?id=piecKJ2DlB
https://openreview.net/forum?id=piecKJ2DlB
https://openreview.net/forum?id=uccHPGDlao
https://openreview.net/forum?id=uccHPGDlao
https://github.com/anonymized


702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

A.1 REACT

The ReACT agent follows the canonical Thought-Action-Observation pattern to iteratively reason
about potential bottlenecks and search documents before selecting an appropriate response. The
agent operates in a turn-based loop where each iteration generates a thought about the current con-
text, selecting an action to take, and processing the resulting observations. The agent leverages both
data exploration tools to retrieve relevant documents and action execution tools dynamically loaded
from the world model. Once the agent identifies a bottleneck through its exploration and reason-
ing process, it selects an appropriate action from the available options and terminates, returning the
retrieved documents, bottleneck description, and chosen action. To ensure robustness, the imple-
mentation includes safeguards such as token usage management for long contexts, maximum turn
limits to prevent infinite loops, and fallback strategies for cases where the agent fails to converge on
a definitive solution.

A.2 REFLEXION

The Reflexion agent leverages a verbal reinforcement learning approach that operates through iter-
ative trial-and-error with self-reflection. The agent follows a structured three-step workflow: first
searching for relevant documents, then analyzing retrieved documents to identify workflow bottle-
necks, and finally selecting appropriate actions to address the identified issues. What distinguishes
this architecture is its reflection mechanism: when an attempt fails to meet a quality threshold (eval-
uated by an LLM-based scoring system), the agent generates verbal reflections on what went wrong
and incorporates these learnings into subsequent trials. This creates a feedback loop where the agent
progressively improves its document retrieval strategies, bottleneck identification accuracy, and ac-
tion selection through accumulated reflections from previous failures. The system runs multiple
trials until either achieving a successful result (score ≥ 0.8) or exhausting the maximum number
of attempts, making it particularly effective for complex productivity tasks that require iterative
refinement and learning from mistakes.

A.3 REWOO

The ReWOO consists of a three-stage modular workflow for bottleneck identification and reso-
lution. The architecture follows a Plan-Work-Solve paradigm where the system first generates a
structured plan to gather evidence, executes that plan using specialized workers, and then synthe-
sizes the evidence to identify bottlenecks and propose actions. The Planner component analyzes the
user’s world model to create a step-by-step evidence gathering strategy, storing intermediate results
in variables (#E1, #E2, etc.). The Worker stage then executes this plan using three specialized
tools: semantic_search and sql_reader for finding relevant documents and LLM reason-
ing for analysis. Finally, the Solver component reviews all gathered evidence to identify the most
critical bottleneck pattern and select the appropriate action from the available options.

B APPENDIX B: DATA GENERATION PROMPTS

This appendix contains all prompt templates used in the PROBE evaluation pipeline for generating
synthetic evaluation data. The pipeline consists of five main stages, each with its own set of prompts:

1. World Model Generation: Creates comprehensive context from LinkedIn personas

2. Bottleneck Injection: Generates realistic productivity bottlenecks

3. Checklist Generation: Creates three-step evaluation checklists

4. True Positive Generation: Generates corpus items containing evidence

5. Distractor Generation: Creates plausible but irrelevant corpus items

Each prompt is designed as a Jinja2 template, allowing dynamic content insertion based on the
evaluation context.

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

B.1 WORLD MODEL GENERATION PROMPTS

The World Model Generator creates comprehensive professional contexts from LinkedIn personas,
including relationships, personal context, available actions, and organizational structure.

B.1.1 GENERATE ACTIONS FOR BOTTLENECK

Usage Context

This prompt is used to generate proactive actions that a persona can take to address specific
bottlenecks. It runs after bottlenecks have been identified and creates action items that are
contextually appropriate for the persona’s role and organization.� �
You are tasked with generating proactive actions for a professional based on specific bottlenecks they

face.

PERSONA INFORMATION:
- Name: {{ persona.name }}
- Occupation: {{ persona.occupation }}
- Location: {{ persona.location }}
- About: {{ persona.about }}

ORGANIZATION CONTEXT:
- Company: {{ org_structure.company_name }}
- Department: {{ org_structure.department }}
- Team Size: {{ org_structure.team_size }}
- Reports To: {{ org_structure.reporting_to }}

BOTTLENECKS TO ADDRESS:
{% for bottleneck in bottlenecks %}
{{ loop.index }}. {{ bottleneck.description }}
{% endfor %}

DIFFICULTY LEVEL: {{ difficulty }}

## CRITICAL REQUIREMENTS:
1. Generate exactly {{ num_actions }} proactive actions total
2. **EXACTLY ONE ACTION** should solve each bottleneck - no more, no less
3. The remaining actions should be realistic and detailed workplace actions that DON’T solve any of the

bottlenecks
4. Make it clear which action solves which bottleneck through the action’s description and parameters
5. **NO NAMED ENTITIES**: Actions must NOT contain specific person names, company names, or proper nouns

from the bottlenecks

## ACTION CATEGORIES:
- send_email: Send new emails to individuals or groups
- reply_email: Reply to existing email threads
- schedule_meeting: Create new meetings or events
- reschedule_meeting: Move or modify existing meetings
- cancel_meeting: Cancel scheduled meetings
- create_task: Create new tasks or tickets
- delegate_task: Assign tasks to team members
- update_task_status: Update progress on existing tasks
- create_document: Create new documents, reports, or presentations
- update_document: Edit or revise existing documents
- share_document: Share documents with stakeholders
- send_slack_message: Send instant messages via Slack
- make_phone_call: Initiate phone calls
- request_access: Request access to systems or resources
- provide_feedback: Give feedback on work or proposals
- request_approval: Ask for sign-offs or approvals
- escalate_to_manager: Escalate issues up the chain
- create_meeting_agenda: Prepare agenda for meetings
- conduct_review: Perform code or document reviews
- update_project_plan: Modify project timelines or scope

OUTPUT FORMAT:
Return a JSON object with an "actions" array. Each action should follow this structure:

{
"actions": [

{
"id": "unique_action_identifier",
"type": "action_category",
"description": "Clear description of what this action does",
"constraints": ["Array of preconditions or policies this action must respect"],
"params_schema": {

"required": ["Array of required parameter names"]
},
"solves_bottleneck": null or bottleneck_index (1-based index if this action solves a bottleneck)

}
]

}

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

{% if difficulty == "easy" %}
For EASY difficulty:
- Actions that solve bottlenecks should be straightforward and obvious
- Include simple parameters like "recipient", "subject", "content"
- Non-bottleneck actions should be basic routine tasks
{% elif difficulty == "medium" %}
For MEDIUM difficulty:
- Actions that solve bottlenecks should require some thought, ids should avoid using bottleneck keywords

.
- Include parameters like "priority", "stakeholders", "deadline", "approach"
- Non-bottleneck actions should be moderately complex coordination tasks
- All action descriptions should be a bit general, and not mention the bottleneck or its details in any

way
{% elif difficulty == "hard" %}
For HARD difficulty:
- Actions that solve bottlenecks should be subtle and ids should avoid using bottleneck keywords.
- Non-bottleneck actions should be strategic and cross-functional
- All action descriptions should be somewhat general and vague, and not mention the bottleneck or its

details in any way
{% endif %}

EXAMPLE for a bottleneck about "Email to David Kim about security audit findings remains unanswered, and
he does not have the authority to approve the security audit findings":

{
"actions": [

{
"id": "schedule_team_meeting",
"type": "schedule_meeting",
"description": "Schedule a regular team meeting to discuss project updates and coordination.",
"constraints": ["team_availability", "meeting_room_available"],
"params_schema": {

"required": ["attendees", "date", "time", "agenda", "location"]
},
"solves_bottleneck": null

},
{
"id": "update_project_status",
"type": "update_document",
"description": "Update project status documentation with current progress and milestones.",
"constraints": ["document_access", "accurate_information"],
"params_schema": {

"required": ["document_id", "status_update", "completion_percentage", "next_steps"]
},
"solves_bottleneck": null

},
{
"id": "send_weekly_report",
"type": "send_email",
"description": "Send weekly progress report to stakeholders and team members.",
"constraints": ["report_data_available", "stakeholder_list_current"],
"params_schema": {

"required": ["recipients", "subject", "report_content", "attachments"]
},
"solves_bottleneck": null

},
{
"id": "conduct_code_review",
"type": "conduct_review",
"description": "Review code changes submitted by team members for quality and standards compliance
.",
"constraints": ["technical_expertise", "time_available"],
"params_schema": {

"required": ["pull_request_id", "review_criteria", "feedback_type", "approval_status"]
},
"solves_bottleneck": null
},
{
"id": "escalate_issue",
"type": "escalate_to_manager",
"description": "Escalate an important issue to management for resolution.",
"constraints": ["multiple_attempts_made", "deadline_approaching", "requires_higher_authority"],
"params_schema": {

"required": ["original_recipient", "escalation_recipient", "urgency_level", "business_impact", "
attempted_contacts"]
},
"solves_bottleneck": 1

},
{
"id": "delegate_routine_task",
"type": "delegate_task",
"description": "Delegate routine tasks to appropriate team members to optimize workload
distribution.",
"constraints": ["team_capacity", "skill_match"],
"params_schema": {

"required": ["assignee", "task_description", "deadline", "priority_level"]
},
"solves_bottleneck": null

}
]

}

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Ensure that:
1. Each bottleneck has EXACTLY ONE action that can solve it, all other actions should certainly not

solve the bottleneck
2. The action description of the correct action should address the bottleneck, but without mentioning

the bottleneck, keywords, or its details in any way.
3. Other actions are detailed and realistic but explicitly DON’T solve any of the listed bottlenecks
4. Total number of actions equals {{ num_actions }}
5. **CRITICAL**: The actions should not include any mention of the people or situations involved in the

bottleneck� �
Listing 1: generate_actions_for_bottleneck.j2

B.1.2 GENERATE ORGANIZATION STRUCTURE

Usage Context

This prompt generates the organizational context around a persona, including company struc-
ture, team composition, reporting lines, and key processes. It’s one of the first prompts exe-
cuted to establish the professional environment.� �
Generate a realistic organizational structure for the following professional:

Name: {{ persona.name }}
Occupation: {{ persona.occupation }}
Location: {{ persona.location }}
About: {{ persona.about }}

Create a detailed organizational context that includes:
1. Company name and type
2. Department structure
3. Team composition
4. Reporting relationships
5. Key processes and workflows

The organization should be realistic for someone in their role and location.

Provide your response as a JSON object with this structure:
{

"company_name": "Name of the company",
"company_type": "Type of company (startup, enterprise, etc.)",
"department": "Their department name",
"team_size": 5,
"direct_reports": 2,
"reporting_to": "Title of their manager",
"key_processes": ["Process 1", "Process 2"],
"typical_meetings": ["Meeting type 1", "Meeting type 2"]

}� �
Listing 2: generate_org_structure.j2

B.1.3 GENERATE PERSONAL CONTEXT

Usage Context

This prompt creates personal work context for the persona, including their work style, prefer-
ences, current goals, constraints, and tools they use. This adds depth to the persona beyond
their LinkedIn profile.� �
Generate personal work context for the following professional:

PERSONA:
- Name: {{ persona.name }}
- Occupation: {{ persona.occupation }}
- About: {{ persona.about }}

DIFFICULTY: {{ difficulty }}

Create realistic personal context including:
1. Work style and preferences
2. Current goals and priorities
3. Time constraints and challenges
4. Communication preferences
5. Tools and systems they use

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

{% if difficulty == "easy" %}
Keep the context simple with straightforward preferences and minimal constraints.
{% elif difficulty == "medium" %}
Include moderate complexity with some competing priorities and constraints.
{% elif difficulty == "hard" %}
Create complex context with multiple competing priorities, significant constraints, and nuanced

preferences.
{% endif %}

Provide your response as a JSON object with this structure:
{

"work_style": "Description of how they prefer to work",
"current_goals": ["Goal 1", "Goal 2", "Goal 3"],
"constraints": ["Time constraint", "Resource constraint"],
"communication_preferences": "How they prefer to communicate",
"tools_used": ["Tool 1", "Tool 2"],
"peak_productivity_time": "When they work best",
"biggest_challenges": ["Challenge 1", "Challenge 2"]

}� �
Listing 3: generate_personal_context.j2

B.1.4 GENERATE RELATIONSHIPS

Usage Context

This prompt generates professional relationships for the persona, including colleagues, clients,
stakeholders, and collaborators. The number and complexity of relationships varies based on
the difficulty level.

� �
Generate professional relationships for the following person:

Name: {{ persona.name }}
Occupation: {{ persona.occupation }}
Location: {{ persona.location }}
About: {{ persona.about }}

DIFFICULTY LEVEL: {{ difficulty }}

{% if difficulty == "easy" %}
Generate 3-5 key relationships that are straightforward and clearly defined.
{% elif difficulty == "medium" %}
Generate 5-8 relationships with moderate complexity and some overlapping responsibilities.
{% elif difficulty == "hard" %}
Generate 8-12 relationships with complex interdependencies and nuanced dynamics.
{% endif %}

For each relationship, provide:
1. The person’s full name
2. Their role/title
3. Type of relationship (colleague, client, manager, stakeholder, collaborator)
4. How they interact with {{ persona.name }}
5. Current status of the relationship

Provide your response as a JSON object with this structure:
{

"relationships": [
{
"name": "Full name",
"role": "Their job title",
"type": "colleague|client|manager|stakeholder|collaborator",
"interaction": "Description of how they work together",
"status": "Current state of the relationship",
"frequency": "How often they interact"

}
]

}� �
Listing 4: generate_relationships.j2

B.2 BOTTLENECK INJECTION PROMPTS

The Bottleneck Injector creates realistic productivity bottlenecks that can be addressed by the per-
sona’s available actions.

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

B.2.1 GENERATE INDIVIDUAL BOTTLENECK

Usage Context

This prompt generates a single, highly specific bottleneck for a persona. It’s called multiple
times to create a set of bottlenecks, each focusing on a different aspect of the persona’s work
challenges.� �
You are creating a SINGLE, highly specific productivity bottleneck for {{ persona_name }}.

CONTEXT:
- Occupation: {{ persona_occupation }}
- About: {{ persona_about }}
- Difficulty: {{ difficulty }}

ORGANIZATION:
- Company: {{ org_structure.company_name }}
- Department: {{ org_structure.department }}
- Team Size: {{ org_structure.team_size }}
- Reports To: {{ org_structure.reporting_to }}

KEY RELATIONSHIPS:
{% for rel in relationships[:5] %}
- {{ rel.name }} ({{ rel.role }}): {{ rel.interaction }}
{% endfor %}

PERSONAL CONTEXT:
- Work Style: {{ personal_context.work_style }}
- Current Goals: {{ personal_context.current_goals[:3] | join(’, ’) }}
- Constraints: {{ personal_context.constraints | join(’, ’) }}

BOTTLENECK #{{ bottleneck_index }}

Create ONE specific bottleneck that:
1. References REAL NAMES from the relationships
2. Mentions SPECIFIC documents, meetings, or deadlines
3. Has a clear timeline or urgency
4. Can be discovered through search/investigation
5. Is solvable through proactive action

{% if difficulty == "easy" %}
Make it straightforward with clear cause and solution.
{% elif difficulty == "medium" %}
Include some complexity and multiple stakeholders.
{% elif difficulty == "hard" %}
Make it complex with competing priorities and hidden dependencies.
{% endif %}

The bottleneck should be 2-3 sentences maximum and extremely specific.

Example format:
"The Q3 product roadmap review with Sarah Chen is scheduled for next Tuesday, but the feature

prioritization matrix she requested hasn’t been updated since July because the engineering
estimates from Michael Park’s team are still pending in JIRA tickets ENG-4521 through ENG-4525."

Generate a single bottleneck description:� �
Listing 5: generate_bottleneck.j2

B.2.2 GENERATE BOTTLENECKS BATCH

Usage Context

This prompt generates multiple bottlenecks in a single LLM call for efficiency. It ensures
variety across different work aspects while maintaining consistency with the persona’s context.� �
You are creating {{ num_bottlenecks }} highly specific productivity bottlenecks for {{ persona_name }}.

CONTEXT:
- Occupation: {{ persona_occupation }}
- About: {{ persona_about }}
- Difficulty: {{ difficulty }}

ORGANIZATION:
- Company: {{ org_structure.company_name }}
- Department: {{ org_structure.department }}
- Team Size: {{ org_structure.team_size }}

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

KEY RELATIONSHIPS:
{% for rel in relationships %}
- {{ rel.name }} ({{ rel.role }}): {{ rel.interaction }}
{% endfor %}

PERSONAL CONTEXT:
- Work Style: {{ personal_context.work_style }}
- Current Goals: {{ personal_context.current_goals | join(’, ’) }}
- Constraints: {{ personal_context.constraints | join(’, ’) }}

Generate {{ num_bottlenecks }} DIFFERENT bottlenecks that:
1. Each references REAL NAMES from the relationships
2. Mentions SPECIFIC artifacts (documents, meetings, systems)
3. Has clear urgency or timeline
4. Can be discovered through search
5. Is solvable through action

ENSURE VARIETY:
- Different types of problems (delays, missing info, conflicts, etc.)
- Different people involved
- Different urgency levels
- Different solutions needed

{% if difficulty == "easy" %}
Make them straightforward with clear causes.
{% elif difficulty == "medium" %}
Include moderate complexity.
{% elif difficulty == "hard" %}
Make them complex with hidden dependencies.
{% endif %}

Provide your response as a JSON object:
{

"bottlenecks": [
{
"description": "Specific 2-3 sentence bottleneck",
"primary_person": "Main person involved",
"urgency": "high|medium|low",
"type": "delay|missing_info|conflict|approval|resource|coordination"

}
]

}� �
Listing 6: generate_bottlenecks_batch.j2

B.3 CHECKLIST GENERATION PROMPTS

The Checklist Generator creates three-step evaluation checklists that test an agent’s ability to com-
plete the proactive workflow.

B.3.1 THREE-STEP CHECKLIST

Usage Context

This prompt generates the core three-step checklist (Search âĘŠ Identification âĘŠ Task Se-
lection) for evaluating agent performance on a specific bottleneck. It’s the primary evaluation
structure.� �
Generate a three-step checklist for addressing the following bottleneck:

BOTTLENECK:
{{ bottleneck.description }}

WORLD MODEL CONTEXT:
- Persona: {{ world_model.persona_full_name }} ({{ world_model.persona_occupation }})
- Company: {{ world_model.organizational_structure.company_name }}
- Difficulty: {{ difficulty }}

KEY RELATIONSHIPS:
{% for rel in world_model.relationships[:5] %}
- {{ rel.name }} ({{ rel.role }}): {{ rel.interaction }}
{% endfor %}

AVAILABLE ACTIONS:
{% for action in available_actions[:8] %}
- {{ action.action_type }}: {{ action.name }}
{% endfor %}

Create a three-step checklist with:

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

STEP 1 - SEARCH: What specific information should be searched for?
- Include 3-5 specific search queries or data sources
- Reference actual names, documents, or systems from the bottleneck
- Mix of different search types (emails, documents, calendar, etc.)

STEP 2 - IDENTIFICATION: What key insights should be identified?
- 2-3 specific findings that reveal the root cause
- Reference actual evidence that would be found
- Clear connection to the bottleneck

STEP 3 - TASK SELECTION: What action should be taken?
- Select from available actions
- Include specific parameters (who, what, when)
- Clear resolution to the bottleneck

Provide your response as a JSON object:
{

"search_step": {
"description": "What to search for and why",
"specific_queries": [
"Query 1 with actual names/docs",
"Query 2 with specific terms",
"Query 3 with system references"

],
"expected_sources": ["email", "calendar", "documents"]

},
"identification_step": {

"description": "What insights to identify",
"key_findings": [
"Specific finding 1",
"Specific finding 2"

],
"root_cause": "The underlying issue"

},
"task_selection_step": {

"action_type": "One of the available action types",
"description": "Specific action to take",
"parameters": {
"participants": ["Names"],
"timeline": "When",
"deliverables": "What"

}
}

}� �
Listing 7: three_step_checklist.j2

B.4 TRUE POSITIVE GENERATION PROMPTS

These prompts generate corpus items that contain evidence of bottlenecks, serving as the "ground
truth" that agents should find.

B.4.1 PLAN EVIDENCE DISTRIBUTION

Usage Context

This prompt plans how evidence for a bottleneck will be distributed across multiple corpus
items. It ensures comprehensive coverage while avoiding contamination from other bottle-
necks.� �
You are planning how to distribute evidence for a bottleneck across multiple documents.

BOTTLENECK TO ADDRESS:
{{ bottleneck.description }}

WORLD MODEL CONTEXT:
- Persona: {{ world_model.persona_full_name }} ({{ world_model.persona_occupation }})
- Company: {{ world_model.organizational_structure.company_name }}

KEY RELATIONSHIPS:
{% for rel in world_model.relationships[:5] %}
- {{ rel.name }} ({{ rel.role }})
{% endfor %}

AVAILABLE DOCUMENT TYPES:
- Email (conversations, requests, updates)
- Calendar (meetings, deadlines, events)
- Document (reports, plans, specifications)

OTHER BOTTLENECKS TO AVOID:

21



1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

{% for other in other_bottlenecks %}
- {{ other }}
{% endfor %}

Plan how to distribute evidence across {{ num_documents }} documents:
1. Each document should contain a different aspect/angle of the bottleneck
2. Together they should tell the complete story
3. Avoid ANY mention of other bottlenecks
4. Make evidence discoverable but not too obvious

Provide your response as a JSON object:
{

"evidence_distribution": [
{
"document_type": "email|calendar|document",
"evidence_role": "What aspect this covers",
"key_information": "Specific info to include",
"sender_or_creator": "Who creates this",
"discoverability": "How someone would find this"

}
]

}� �
Listing 8: plan_evidence_distribution.j2

B.4.2 GENERATE EMAIL EVIDENCE

Usage Context

This prompt generates email corpus items that contain evidence of the bottleneck. Emails often
contain requests, updates, and clarifications that reveal bottleneck details.

� �
Generate a realistic email that contains evidence of the following bottleneck:

BOTTLENECK:
{{ bottleneck.description }}

EVIDENCE ROLE:
This email should specifically show: {{ evidence_role }}

WORLD MODEL:
- Persona: {{ world_model.persona_full_name }} ({{ world_model.persona_occupation }})
- Email: {{ world_model.persona_full_name.lower().replace(’ ’, ’.’) }}@{{ world_model.

organizational_structure.company_name.lower().replace(’ ’, ’’).replace(’,’, ’’) }}.com

KEY RELATIONSHIPS:
{% for rel in world_model.relationships[:7] %}
- {{ rel.name }} ({{ rel.role }})
{% endfor %}

THINGS TO AVOID:
Do NOT mention or reference these other bottlenecks:
{% for other in other_bottlenecks %}
{{ other }}
{% endfor %}

Generate a complete, realistic email that:
1. Contains clear evidence of the bottleneck
2. Fits the evidence role specified
3. Includes realistic email metadata
4. Uses actual names from relationships
5. Avoids any mention of other bottlenecks
6. Sounds natural and professional

The email should be substantial (200-400 words) and include:
- Proper email headers (From, To, CC, Subject, Date)
- Natural greeting and sign-off
- Specific details that reveal bottleneck information
- Realistic workplace communication style

Format as:
From: sender@company.com
To: recipient@company.com
CC: others@company.com
Subject: Specific subject line
Date: Recent date

Email body...� �
Listing 9: generate_email_evidence.j2

22



1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

B.4.3 GENERATE CALENDAR EVIDENCE

Usage Context

This prompt generates calendar events that reveal scheduling conflicts, deadlines, or meeting-
related bottleneck evidence.� �
Generate a realistic calendar event that contains evidence of the following bottleneck:

BOTTLENECK:
{{ bottleneck.description }}

EVIDENCE ROLE:
This calendar event should show: {{ evidence_role }}

WORLD MODEL:
- Persona: {{ world_model.persona_full_name }}
- Company: {{ world_model.organizational_structure.company_name }}

KEY PEOPLE:
{% for rel in world_model.relationships[:5] %}
- {{ rel.name }} ({{ rel.role }})
{% endfor %}

AVOID MENTIONING:
{% for other in other_bottlenecks %}
- {{ other }}
{% endfor %}

Create a detailed calendar event that:
1. Reveals important timing/scheduling aspects of the bottleneck
2. Includes realistic attendees from relationships
3. Has detailed agenda or description
4. Shows urgency or conflicts if relevant
5. Completely avoids other bottlenecks

Include:
- Title: Specific and professional
- Date/Time: Realistic and relevant to bottleneck
- Duration: Appropriate for the meeting type
- Location: Physical or virtual
- Attendees: Mix of required and optional
- Agenda/Description: Detailed and revealing bottleneck evidence
- Any attached documents or pre-reads

Format your response as a complete calendar event.� �
Listing 10: generate_calendar_evidence.j2

B.4.4 GENERATE DOCUMENT EVIDENCE

Usage Context

This prompt generates longer documents (reports, plans, memos) that contain comprehensive
evidence about the bottleneck, often providing context and history.� �
Generate a professional document that contains evidence of the following bottleneck:

BOTTLENECK:
{{ bottleneck.description }}

EVIDENCE ROLE:
This document should provide: {{ evidence_role }}

CONTEXT:
- Author: {{ world_model.persona_full_name }}
- Organization: {{ world_model.organizational_structure.company_name }}
- Department: {{ world_model.organizational_structure.department }}

DOCUMENT REQUIREMENTS:
- Length: {{ min_words }}-{{ max_words }} words
- Type: Report, memo, plan, or specification
- Should reveal key bottleneck information
- Must seem like a natural workplace document

KEY PEOPLE TO REFERENCE:
{% for rel in world_model.relationships[:6] %}
- {{ rel.name }} ({{ rel.role }})

23



1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

{% endfor %}

STRICTLY AVOID:
{% for other in other_bottlenecks %}
- {{ other }}
{% endfor %}

Generate a complete professional document that:
1. Has proper header (title, date, author, recipients)
2. Contains multiple sections with clear headings
3. Embeds bottleneck evidence naturally throughout
4. References real people and specific details
5. Maintains professional tone and formatting
6. Includes actionable information
7. Never mentions other bottlenecks

The document should read like an authentic workplace artifact that someone would search for when
investigating the bottleneck.� �

Listing 11: generate_document_evidence.j2

B.4.5 GENERATE DYNAMIC SOURCES

Usage Context

This prompt identifies additional data sources or systems where evidence might be found,
expanding beyond the standard email/calendar/document trinity.� �
Identify specific data sources where evidence for this bottleneck would be found:

BOTTLENECK:
{{ bottleneck.description }}

ORGANIZATION:
- Company: {{ world_model.organizational_structure.company_name }}
- Industry: {{ world_model.organizational_structure.company_type }}
- Department: {{ world_model.organizational_structure.department }}

Suggest 3-5 specific systems, databases, or specialized sources where evidence would exist.

For each source:
1. Name the specific system/platform
2. What evidence would be found there
3. How to search/access it
4. Why it’s relevant to this bottleneck

Examples: JIRA tickets, Confluence pages, Slack channels, CRM records, Github PRs, etc.

Provide specific names and identifiers, not generic categories.� �
Listing 12: generate_dynamic_sources.j2

B.4.6 REVIEW EVIDENCE

Usage Context

This prompt is used to review generated evidence for quality, ensuring it properly supports the
bottleneck discovery without contamination from other bottlenecks.� �
Review the following evidence for quality and effectiveness:

BOTTLENECK BEING EVIDENCED:
{{ bottleneck.description }}

GENERATED EVIDENCE:
{{ evidence_content }}

OTHER BOTTLENECKS TO AVOID:
{% for other in other_bottlenecks %}
- {{ other }}
{% endfor %}

Evaluate:
1. Does the evidence clearly support discovering this bottleneck?
2. Is it discoverable through realistic search queries?

24



1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

3. Does it avoid ALL mentions of other bottlenecks?
4. Is it natural and realistic for the workplace context?
5. Are all names, dates, and details consistent?

Provide:
1. Quality score (1-10)
2. Strengths of the evidence
3. Any issues or contamination found
4. Suggested improvements
5. Search queries that would find this evidence

Format as JSON:
{

"quality_score": 8,
"strengths": ["Clear timeline", "Specific names"],
"issues": ["Might be too obvious"],
"improvements": ["Add more context about..."],
"search_queries": ["Michael Park ENG-4521", "Q3 roadmap review"]

}� �
Listing 13: review_evidence.j2

B.5 DISTRACTOR GENERATION PROMPTS

These prompts generate plausible but irrelevant corpus items that test the agent’s ability to filter out
noise.

B.5.1 GENERATE EMAIL DISTRACTORS

Usage Context

This prompt generates realistic workplace emails that are plausible distractors - they should
seem relevant to the persona’s work but not contain evidence of any bottlenecks.

� �
Generate {{ count }} realistic workplace emails for {{ world_model.persona_full_name }}’s context.

CONTEXT:
- Role: {{ world_model.persona_occupation }}
- Company: {{ world_model.organizational_structure.company_name }}
- Department: {{ world_model.organizational_structure.department }}

RELATIONSHIPS TO USE:
{% for rel in world_model.relationships %}
- {{ rel.name }} ({{ rel.role }}): {{ rel.interaction }}
{% endfor %}

CRITICAL - AVOID ALL BOTTLENECKS:
{% for bottleneck in bottlenecks %}
{{ bottleneck.description }}
{% endfor %}

REQUIREMENTS:
1. Emails must be completely unrelated to any bottleneck
2. Should be realistic workplace communications
3. Vary the types: updates, requests, FYIs, discussions
4. Use different senders and recipients
5. Include realistic dates and subjects
6. Length: 150-300 words each

Generate diverse emails about:
- Routine status updates
- General team communications
- Company announcements
- Non-critical planning
- Social/cultural events
- Training or development
- General process discussions

Ensure NONE of the emails could be interpreted as evidence for any bottleneck.

Format each email with proper headers (From, To, Subject, Date) followed by the body.� �
Listing 14: generate_email_distractors.j2

25



1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

B.5.2 GENERATE CALENDAR DISTRACTORS

Usage Context

This prompt creates calendar events that represent normal workplace meetings and events,
serving as noise that agents must filter through.� �
Generate {{ count }} realistic calendar events for {{ world_model.persona_full_name }}.

CONTEXT:
- Role: {{ world_model.persona_occupation }}
- Company: {{ world_model.organizational_structure.company_name }}
- Typical Meetings: {{ world_model.organizational_structure.typical_meetings | join(’, ’) }}

PEOPLE TO INCLUDE:
{% for rel in world_model.relationships[:8] %}
- {{ rel.name }} ({{ rel.role }})
{% endfor %}

MUST AVOID - NO BOTTLENECK EVIDENCE:
{% for bottleneck in bottlenecks %}
{{ bottleneck.description }}
{% endfor %}

Create diverse calendar events:
1. Regular recurring meetings (1-on-1s, team standups)
2. Training or development sessions
3. Company-wide events
4. Social activities
5. Planning sessions (unrelated to bottlenecks)
6. Reviews or retrospectives

Each event needs:
- Title: Professional and specific
- Date/Time: Spread across different days/times
- Duration: Realistic for the meeting type
- Attendees: Appropriate mix of people
- Location/Link: Physical or virtual
- Description: Detailed agenda that contains NO bottleneck evidence

Make them indistinguishable from real important meetings but completely unrelated to bottlenecks.� �
Listing 15: generate_calendar_distractors.j2

B.5.3 GENERATE DOCUMENT DISTRACTORS

Usage Context

This prompt generates longer-form documents that serve as distractors, representing typical
workplace documentation that doesn’t relate to any bottlenecks.� �
Generate {{ count }} professional documents for {{ world_model.persona_full_name }}’s work context.

CONTEXT:
- Role: {{ world_model.persona_occupation }}
- Department: {{ world_model.organizational_structure.department }}
- Company: {{ world_model.organizational_structure.company_name }}

DOCUMENT TYPES TO CREATE:
1. Process documentation
2. Team updates or newsletters
3. Project proposals (unrelated to bottlenecks)
4. Meeting notes
5. Training materials
6. Policy documents

CRITICAL - AVOID ALL BOTTLENECKS:
{% for bottleneck in bottlenecks %}
DO NOT REFERENCE: {{ bottleneck.description }}
{% endfor %}

Each document should:
- Be 400-800 words
- Have professional formatting and structure
- Reference real people from relationships
- Contain valuable but irrelevant information
- Be discoverable by plausible search terms
- Seem important enough to not ignore

26



1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

Include proper headers:
- Title
- Author
- Date
- Document type
- Recipients/Audience

The documents should be high-quality distractors that would naturally appear in search results but
provide no evidence for any bottleneck.� �

Listing 16: generate_document_distractors.j2

B.5.4 GENERATE NATURAL DISTRACTOR

Usage Context

This is a general-purpose prompt for generating natural distractors of any type, with emphasis
on making them realistic and contextually appropriate.� �
Generate a natural {{ kind }} distractor for the following context:

PERSONA: {{ world_model.persona_full_name }} ({{ world_model.persona_occupation }})
COMPANY: {{ world_model.organizational_structure.company_name }}

AVAILABLE RELATIONSHIPS:
{% for rel in world_model.relationships[:6] %}
- {{ rel.name }} ({{ rel.role }})
{% endfor %}

WORK CONTEXT:
- Department: {{ world_model.organizational_structure.department }}
- Current Goals: {{ world_model.personal_context.current_goals[:3] | join(’, ’) }}
- Tools Used: {{ world_model.personal_context.tools_used | join(’, ’) }}

MUST AVOID (NO EVIDENCE OF):
{% for bottleneck in bottlenecks %}
- {{ bottleneck.description }}
{% endfor %}

Create a {{ kind }} that:
1. Is completely unrelated to any bottleneck
2. Fits naturally in the persona’s work life
3. Could plausibly be important
4. Uses real names and realistic details
5. Matches typical {{ kind }} format and style

Focus on routine work activities that would generate {{ kind }}s but don’t relate to the specific
problems being evaluated.� �

Listing 17: generate_natural_distractor.j2

B.5.5 ENHANCE DISTRACTOR

Usage Context

This prompt enhances basic distractors to make them more realistic and harder to distinguish
from true positives, adding details and context.� �
Enhance the following distractor to make it more realistic and detailed:

ORIGINAL DISTRACTOR:
{{ original_content }}

CONTEXT:
- Type: {{ distractor_type }}
- Persona: {{ world_model.persona_full_name }}
- Company: {{ world_model.organizational_structure.company_name }}

ENHANCEMENT GOALS:
1. Add more specific details (names, dates, numbers)
2. Include realistic workplace jargon
3. Add urgency or importance markers
4. Reference real systems or processes
5. Make it harder to distinguish from true positives

27



1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

MAINTAIN:
- Core message/purpose
- Avoidance of all bottlenecks
- Professional tone
- Realistic length

The enhanced version should be a high-quality distractor that requires careful analysis to determine it’
s not relevant to the bottlenecks.� �

Listing 18: enhance_distractor.j2

B.5.6 COUNTERFACTUAL EMAIL TEMPLATE

Usage Context

This prompt generates counterfactual scenarios - communications about what could have hap-
pened but didn’t, useful for testing agent reasoning about hypotheticals.� �
Create an email discussing a hypothetical or counterfactual scenario.

CONTEXT:
- Sender: {{ sender_name }}
- Recipient: {{ recipient_name }}
- Topic: What might have happened if a different decision was made

The email should:
1. Discuss alternative scenarios or outcomes
2. Be clearly hypothetical/counterfactual
3. Not provide evidence for actual bottlenecks
4. Maintain professional tone

Example: "If we had chosen vendor B instead of vendor A..."� �
Listing 19: counterfactual_min_email.j2

B.5.7 ENTITY SWAP TEMPLATE

Usage Context

This prompt creates distractors by swapping entities (people, projects, systems) to create plau-
sible but incorrect variations of real situations.� �
Create a distractor by swapping key entities in a work scenario.

ORIGINAL ENTITIES:
- Person: {{ original_person }}
- Project: {{ original_project }}
- System: {{ original_system }}

SWAP TO:
- Person: {{ swap_person }}
- Project: {{ swap_project }}
- System: {{ swap_system }}

Generate a {{ content_type }} that uses the swapped entities in a realistic but unrelated context.� �
Listing 20: entity_swap.j2

B.5.8 TIME SCOPE TEMPLATE

Usage Context

This prompt generates distractors that reference different time periods, useful for testing
whether agents can distinguish current issues from past or future ones.

28



1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

� �
Generate a {{ content_type }} that references a different time period.

ACTUAL TIMEFRAME: {{ actual_timeframe }}
DISTRACTOR TIMEFRAME: {{ distractor_timeframe }}

Create content that:
1. Clearly references the distractor timeframe
2. Discusses similar topics but in a different temporal context
3. Could be confused with current issues if not reading carefully
4. Maintains realism for that time period� �

Listing 21: time_scope.j2

B.5.9 TEMPLATE CLONE DOCUMENT

Usage Context

This prompt creates documents that follow the same template or format as important docu-
ments but contain different, unrelated content.� �
Create a document that follows the same template as important documents but with unrelated content.

TEMPLATE TYPE: {{ template_type }}
TYPICAL SECTIONS: {{ sections | join(’, ’) }}

Generate a document that:
1. Follows the exact same structure
2. Contains completely different, unrelated content
3. Maintains professional appearance
4. Could be mistaken for an important document if not read carefully� �

Listing 22: template_clone_doc.j2

B.5.10 GENERIC COUNTERFACTUAL

Usage Context

This prompt generates generic counterfactual content that discusses alternatives, hypotheticals,
or what-if scenarios unrelated to actual bottlenecks.� �
Generate {{ kind }} content discussing counterfactual scenarios for {{ world_model.persona_full_name }}.

CONTEXT:
- Role: {{ world_model.persona_occupation }}
- Department: {{ world_model.organizational_structure.department }}

Create content about:
- Alternative approaches that weren’t taken
- Hypothetical scenarios
- Lessons learned from paths not chosen
- What-if analyses

Ensure the counterfactual discussion:
1. Is clearly marked as hypothetical
2. Doesn’t relate to actual bottlenecks
3. Provides interesting but irrelevant information
4. Maintains professional tone� �

Listing 23: generic_counterfactual.j2

B.6 LLM-AS-JUDGE EVALUATION PROMPTS

Usage Context

This prompt is used to for evaluating bottleneck identification as described in section 3

29



1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

� �
You are evaluating whether an AI agent correctly identified a bottleneck using precision-based scoring.

## Context
The agent was given various documents and data sources to analyze, and needed to identify the bottleneck

affecting productivity.

## Workplace Context
Persona: {{ world_model.persona_full_name }}
Company: {{ world_model.organizational_structure.company_name }}
Department: {{ world_model.organizational_structure.department }}
Team Size: {{ world_model.organizational_structure.team_size }}

## What the Agent Identified
"{{ identified_bottleneck }}"

## The Actual Bottleneck
"{{ actual_bottleneck }}"

## Two-Tier Precision Scoring System

### ESSENTIAL DETAILS (Must be 100% correct for any points)
These are execution-critical details required for immediate action:

1. **WHO_BLOCKED**: The exact person/entity being blocked (specific names, not roles)
2. **WHO_BLOCKER**: The exact person/entity causing the blockage (specific names, not roles)
3. **WHAT_TASK**: The specific deliverable/work item that’s blocked (exact names, not generic

descriptions)
4. **WHY_ROOT_CAUSE**: The true underlying reason for the blockage (not symptoms)

### NON-ESSENTIAL DETAILS (Can have minor errors/omissions)
These provide context but aren’t critical for immediate resolution:

5. **WHEN_DEADLINE**: Specific dates and timelines
6. **WHERE_SYSTEM**: Exact system/tool names and locations
7. **HOW_MECHANISM**: Detailed process or workflow information
8. **IMPACT_SCOPE**: Downstream effects and dependencies

## Scoring Rules

**CORRECT (1.0)**: All essential details are accurate AND all non-essential details are accurate

**PARTIALLY_CORRECT (0.5)**: All essential details are accurate BUT has errors/omissions in non-
essential details

**INCORRECT (0.0)**: Any essential detail is wrong, missing, or too vague

## Essential Detail Requirements
- **Names must be specific**: "Timothy" not "someone from finance"
- **Systems must be exact**: "econo.com" not "financial system"
- **Tasks must be precise**: "Q3 financials initiative" not "quarterly report"
- **Root causes must be accurate**: "Martha stripped access" not "system issues"

## Examples

### Example 1: CORRECT (1.0)

**Actual**: Timothy isn’t meeting the March 23rd deadline for his Q3 financials initiative because
Martha revoked his econo.com access to company financials.

**Agent**: Timothy cannot complete his Q3 financials initiative by the March 23rd deadline because
Martha removed his access to company financials through econo.com.

**Analysis**:
- âIJ̌E WHO_BLOCKED: Timothy (correct)
- âIJ̌E WHO_BLOCKER: Martha (correct)
- âIJ̌E WHAT_TASK: Q3 financials initiative (correct)
- âIJ̌E WHY_ROOT_CAUSE: Martha revoked access (correct)
- âIJ̌E All non-essential details accurate

### Example 2: PARTIALLY_CORRECT (0.5)

**Actual**: Timothy isn’t meeting the March 23rd deadline for his Q3 financials initiative because
Martha revoked his econo.com access to company financials.

**Agent**: Timothy cannot complete his Q3 financials initiative because Martha removed his access to
company financial systems.

**Analysis**:
- âIJ̌E WHO_BLOCKED: Timothy (correct)
- âIJ̌E WHO_BLOCKER: Martha (correct)
- âIJ̌E WHAT_TASK: Q3 financials initiative (correct)
- âIJ̌E WHY_ROOT_CAUSE: Martha revoked access (correct)
- âİŇ WHEN_DEADLINE: Missing March 23rd
- âİŇ WHERE_SYSTEM: "financial systems" instead of "econo.com"

### Example 3: INCORRECT (0.0)

**Actual**: Timothy isn’t meeting the March 23rd deadline for his Q3 financials initiative because
Martha revoked his econo.com access to company financials.

**Agent**: Someone from finance is having trouble with their quarterly report due to system access
issues.

**Analysis**:
- âİŇ WHO_BLOCKED: "someone from finance" instead of Timothy
- âİŇ WHO_BLOCKER: Missing Martha entirely

30



1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

- âİŇ WHAT_TASK: "quarterly report" instead of Q3 financials initiative
- âİŇ WHY_ROOT_CAUSE: "system issues" instead of Martha’s action

## Output Format
Return a JSON object with:
{

"judgment": "<CORRECT|PARTIALLY_CORRECT|INCORRECT>",
"essential_details_analysis": {

"who_blocked": "<correct|incorrect|missing>",
"who_blocker": "<correct|incorrect|missing>",
"what_task": "<correct|incorrect|missing>",
"why_root_cause": "<correct|incorrect|missing>"

},
"non_essential_details_analysis": {

"when_deadline": "<correct|incorrect|missing|n/a>",
"where_system": "<correct|incorrect|missing|n/a>",
"how_mechanism": "<correct|incorrect|missing|n/a>",
"impact_scope": "<correct|incorrect|missing|n/a>"

},
"reasoning": "<explanation of your scoring decision focusing on essential vs non-essential accuracy>"

}� �
Listing 24: judge_bottleneck_identification.j2

Usage Context

This prompt is used to for evaluating parameter scoring as part of the task execution evaluation
metric as described in section 3� �
You are an expert evaluator specializing in assessing AI agent action parameter selection in workplace

automation scenarios. Your task is to evaluate whether an AI agent selected appropriate parameters
for a correctly identified action.

## Your Role and Expertise
You have deep expertise in:
- Workplace automation and task execution
- API parameter design and semantic equivalence
- Business process optimization
- Contextual reasoning in parameter selection

## Evaluation Context

### The Bottleneck Being Resolved
‘‘‘
{{ bottleneck.description }}
‘‘‘

### Workplace Environment
- **Company**: {{ world_model.organizational_structure.company_name }}
- **Department**: {{ world_model.organizational_structure.department }}
- **Persona**: {{ world_model.persona_full_name }}

### Key Relationships Available
{% for rel in world_model.relationships[:5] %}
- **{{ rel.name }}** ({{ rel.type.value }}): {{ rel.department if rel.department else "External" }}{% if

rel.email %} - {{ rel.email }}{% endif %}
{% endfor %}

### Evidence That Led to Bottleneck Discovery
{% if true_positives %}
{% for tp in true_positives[:3] %}
- **{{ tp.get(’type’, ’Unknown’) }}**: {{ tp.get(’title’, tp.get(’subject’, ’N/A’)) }}

- Key info: {{ tp.get(’summary’, tp.get(’content’, ’Details not shown’))[:100] }}...
{% endfor %}
{% else %}
- No specific evidence items provided for context
{% endif %}

## What to Evaluate

### Selected Action
- **Action Type**: {{ selected_action.action_id }}
- **Purpose**: To resolve the identified bottleneck

### Agent’s Selected Parameters
‘‘‘json
{{ selected_parameters | tojson(indent=2) }}
‘‘‘

### Expected Parameters (Ground Truth)
‘‘‘json
{{ expected_parameters | tojson(indent=2) }}
‘‘‘

## Evaluation Framework

31



1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2026

### Step 1: Understand Parameter Intent
For each parameter in the expected set, identify:
1. **Purpose**: What this parameter accomplishes
2. **Criticality**: Is it essential for resolving the bottleneck?
3. **Flexibility**: Can alternatives achieve the same goal?

### Step 2: Map Parameters Semantically
Compare agent’s parameters to expected parameters:
1. **Direct matches**: Same parameter name and equivalent value
2. **Semantic matches**: Different representation, same effect
3. **Missing parameters**: Expected but not provided
4. **Extra parameters**: Provided but not expected
5. **Wrong parameters**: Provided but incorrect for the goal

### Step 3: Evaluate Effectiveness
Ask: "Would the agent’s parameters successfully resolve the bottleneck?"

## Scoring Rubric

### CORRECT (Score: 1.0)
All of the following must be true:
- âIJ̧S All critical parameters are present (directly or semantically)
- âIJ̧S Parameter values would achieve the bottleneck resolution
- âIJ̧S Any deviations are reasonable improvements or valid alternatives
- âIJ̧S No critical information is wrong or missing
- âIJ̧S Extra parameters (if any) don’t interfere with the goal

### PARTIALLY_CORRECT (Score: 0.5)
The parameters show understanding but have gaps:
- âŽň Most critical parameters present (70-90%)
- âŽň Would partially resolve the bottleneck
- âŽň Missing some important details (timing, specific people, etc.)
- âŽň Some parameter values are suboptimal but not wrong
- âŽň May include unnecessary parameters that don’t harm

### INCORRECT (Score: 0.0)
Major failures in parameter selection:
- âIJ̊U Missing most critical parameters
- âIJ̊U Wrong people, systems, or resources specified
- âIJ̊U Parameters would not resolve the bottleneck
- âIJ̊U Fundamental misunderstanding of what’s needed
- âIJ̊U Parameters might make the situation worse

## Calibration Examples

### Example 1: CORRECT - Semantic Equivalence

**Bottleneck**: "Rachel needs budget approval from CFO Tom Bradley for Q4 marketing campaign by October
1st"

**Expected Parameters**:
‘‘‘json
{

"to": ["tom.bradley@company.com"],
"subject": "Q4 Marketing Budget Approval Request",
"body": "Request for $50K marketing budget approval",
"priority": "high"

}
‘‘‘

**Agent Selected**:
‘‘‘json
{

"to": ["tom.bradley@company.com"],
"subject": "Urgent: Q4 Marketing Budget - Approval Needed by Oct 1",
"body": "Hi Tom, I need approval for the Q4 marketing budget ($50K) to proceed with the campaign.

Deadline is October 1st.",
"priority": "high"

}
‘‘‘

**Analysis**:
- All critical elements present (recipient, urgency, amount, deadline)
- More detailed subject line improves clarity
- Body includes deadline context
- Would successfully resolve the bottleneck

**Judgment**: CORRECT

### Example 2: PARTIALLY_CORRECT - Missing Key Details

**Bottleneck**: "Project Alpha delayed because Lisa Chen hasn’t reviewed technical specifications in
JIRA ticket ALPHA-234"

**Expected Parameters**:
‘‘‘json
{

"assignee": "lisa.chen",
"ticket_id": "ALPHA-234",
"comment": "Hi Lisa, please review the technical specs. This is blocking Project Alpha.",
"due_date": "2024-03-20",
"priority": "critical"

}
‘‘‘

32



1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2026

**Agent Selected**:
‘‘‘json
{

"assignee": "lisa.chen",
"comment": "Please review the technical specifications as soon as possible.",
"priority": "high"

}
‘‘‘

**Analysis**:
- Correct person assigned
- Missing critical ticket_id (ALPHA-234)
- No due date specified
- Priority close but not "critical"
- Generic message lacks context

**Judgment**: PARTIALLY_CORRECT - Would reach right person but lacks specificity

### Example 3: INCORRECT - Wrong Approach

**Bottleneck**: "Sales team can’t access new CRM because IT hasn’t completed Active Directory group
setup"

**Expected Parameters**:
‘‘‘json
{

"ticket_type": "access_request",
"group_name": "CRM_Sales_Users",
"members": ["sales-team@company.com"],
"system": "Salesforce",
"urgency": "immediate"

}
‘‘‘

**Agent Selected**:
‘‘‘json
{

"to": ["sales-team@company.com"],
"subject": "CRM Access Information",
"body": "The new CRM system will be available soon. Please wait for IT to complete setup."

}
‘‘‘

**Analysis**:
- Completely wrong action type (email vs access request)
- Doesn’t actually request the AD group setup
- Informs sales team instead of resolving with IT
- Would not resolve the bottleneck

**Judgment**: INCORRECT - Misunderstands the required action

## Parameter Evaluation Guidelines

### Consider Valid Variations
- **Email addresses**: "john@company.com" vs "John Smith <john@company.com>"
- **Dates**: "March 23, 2024" vs "2024-03-23" vs "next Friday"
- **Priority**: "high" vs "urgent" vs "critical" (if contextually similar)
- **Lists**: Order rarely matters unless sequence is critical

### Critical vs Optional Parameters
Identify which parameters are:
- **Essential**: Must be present for action to work
- **Important**: Significantly impact effectiveness
- **Optional**: Nice to have but not required
- **Contextual**: Depend on specific situation

### Common Pitfalls to Avoid
1. **Over-penalizing format differences**: JSON structure vs semantic meaning
2. **Ignoring context**: Parameters should fit the specific bottleneck
3. **Requiring exact matches**: "ASAP" vs "urgent" may be equivalent
4. **Missing parameter relationships**: Some parameters depend on others

## Output Instructions

Analyze systematically, then provide your judgment in this JSON format:

‘‘‘json
{

"judgment": "<CORRECT|PARTIALLY_CORRECT|INCORRECT>",
"reasoning": "<2-3 sentences explaining how the parameters would or wouldn’t resolve the bottleneck>",
"parameter_analysis": {

"critical_parameters_met": <true|false>,
"would_resolve_bottleneck": "<yes|partially|no>",
"missing_parameters": ["<list any critical missing params>"],
"incorrect_parameters": ["<list any wrong params>"],
"semantic_matches": ["<list params that match semantically>"]

},
"confidence": <0.0-1.0>

}
‘‘‘

33



1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2026

Remember: Focus on whether the parameters would effectively resolve the specific bottleneck in this
context.� �

Listing 25: judge_action_parameter_scoring.j2

C NOTE ON THE USE OF LANGUAGE MODELS

We utilized Claude (Anthropic) as an AI writing assistant throughout the preparation of this
manuscript. Claude was employed primarily for refining sentence clarity, improving paragraph flow,
and ensuring consistency in academic writing style. All scientific content, experimental design, anal-
ysis, and intellectual contributions remain solely those of the authors.

34


	Introduction
	Methodology
	Problem Definition
	Proactive Task Setup
	Data Generation Setup
	PROBE - benchmark for proactivity evaluation

	Evaluation
	Metrics
	LLM-as-a-judge
	Baselines
	Model Comparisons
	Agent Frameworks Comparison

	Error Analysis
	Related Work
	Conclusion
	Limitations and Future Work
	Appendix A: Baseline Implementations
	ReAct
	Reflexion
	ReWOO

	Appendix B: Data Generation Prompts
	World Model Generation Prompts
	Generate Actions for Bottleneck
	Generate Organization Structure
	Generate Personal Context
	Generate Relationships

	Bottleneck Injection Prompts
	Generate Individual Bottleneck
	Generate Bottlenecks Batch

	Checklist Generation Prompts
	Three-Step Checklist

	True Positive Generation Prompts
	Plan Evidence Distribution
	Generate Email Evidence
	Generate Calendar Evidence
	Generate Document Evidence
	Generate Dynamic Sources
	Review Evidence

	Distractor Generation Prompts
	Generate Email Distractors
	Generate Calendar Distractors
	Generate Document Distractors
	Generate Natural Distractor
	Enhance Distractor
	Counterfactual Email Template
	Entity Swap Template
	Time Scope Template
	Template Clone Document
	Generic Counterfactual

	LLM-as-Judge Evaluation Prompts

	Note on the use of Language Models

