

# 000 BEYOND REACTIVITY: MEASURING PROACTIVE 001 PROBLEM SOLVING IN LLM AGENTS 002

003 **Anonymous authors**  
004

005 Paper under double-blind review  
006

## 007 008 ABSTRACT 009

010 LLM-based agents are increasingly moving towards proactivity: rather than awaiting  
011 instruction, they exercise agency to anticipate user needs and solve them  
012 autonomously. However, evaluating proactivity is challenging; current benchmarks  
013 are constrained to localized context, limiting their ability to test reasoning  
014 across sources and longer time horizons. To address this gap, we present  
015 **PROBE (P**roactive **R**esolution of **B**ottlenecks). PROBE decomposes proactivity  
016 as a pipeline of three core capabilities: (1) searching for unspecified issues, (2)  
017 identifying specific bottlenecks, and (3) executing appropriate resolutions. We apply  
018 PROBE to evaluate leading LLMs and popular agentic frameworks, showing  
019 that even state-of-the-art models struggle to solve this benchmark. Computing our  
020 consistent measurements across frontier LLMs and agents, we find that the best  
021 end-to-end performance of 40% is achieved by both GPT-5 and Claude Opus-4.1.  
022 Additionally, we demonstrate the relative capabilities of each model and analyze  
023 mutual failure modes. Our results highlight the current limitations of autonomous  
024 action in agentic systems, and expose promising future research directions.  
025

## 026 1 INTRODUCTION 027

028 Agentic systems built on Large Language Models (LLMs) have made immense progress, delivering  
029 practical value across several real-world applications including coding (Yang et al., 2024; Agashe  
030 et al., 2025), computer use (Song et al., 2024), web navigation (Zheng et al., 2024; Zhang et al.,  
031 2025), and healthcare (Kim et al., 2024; Sellergren et al., 2025). Despite significant progress, the  
032 majority of the agentic systems today are *reactive* - they expect explicit instruction from a user  
033 prior to attempting a task (Yao et al., 2023). To transcend their function as tools, agents need to  
034 be *proactive*: anticipating user needs from continuous observation, suggesting candidate tasks to  
035 address these needs, and executing these tasks reliably.  
036

037 Prior studies on proactive agents have explored agent proactivity in interacting with physical en-  
038 vironments (Zhang et al., 2023), asking follow-up questions (Zhang et al., 2024) and perceiving  
039 immediate needs from a personalized environment ?Yang et al. (2025a). However, existing ap-  
040 proaches compress evaluation into narrow, immediate temporal context, failing to capture insights  
041 that emerge only through longer-term analysis. For instance, proactive agents that look only at cur-  
042 rent context would not detect and take an appropriate action for a missed deadline from the past (as  
043 shown in Figure 1). To this end, we operationalize proactivity as a three-part construct. Given a  
044 set of priorities and a personalized user datastore, agents **search** across documents for user-relevant  
045 issues, **identify** the most pertinent ones (which we term *bottlenecks*), and **resolve** said issues by  
executing appropriate actions.  
046

047 Constructing a real-world benchmark for proactivity is difficult since collecting long time hori-  
048 zon, multi-document user data raises privacy concerns and creates significant annotation overhead.  
049 Building on previous successes in the generation of synthetic datasets Nadas et al. (2025); Long  
050 et al. (2024); Butt et al. (2024), we construct a data generation agent to build our benchmark (we de-  
051 scribe this in section 2). The resulting PROBE benchmark comprises of 1,000 diverse samples that  
052 challenge AI systems to proactively identify and resolve critical bottlenecks hidden within realistic  
053 workplace datastores (see Figure1). Our evaluation reveals a striking capability gap: even state-  
of-the-art LLMs and specialized agentic frameworks achieve no more than 40% success on this  
end-to-end task, highlighting the substantial challenges that remain in developing truly proactive AI



Figure 1: An end to end depiction of the PROBE task setup. The model (or agent) needs to use the world model to (i) search over a user datastore, (ii) identify the bottleneck and finally (iii) select the action to be executed. The model is evaluated across all tasks in this pipeline.

systems. From a model perspective, PROBE establishes a joint evaluation protocol for LLMs and agents, as shown in Figure 1. In summary, our contribution in this paper is threefold:

- We introduce PROBE - 1000 test samples that systematically evaluate proactive capabilities in AI systems through a unified framework, addressing a critical need for a realistic proactive benchmark.
- We conduct comprehensive evaluations across frontier closed-source and open-source models alongside leading agentic frameworks, revealing a fundamental capability ceiling: even the most advanced models achieve only 40% success on our end-to-end task.
- We present an in-depth analysis of common failure modes that uncovers the specific challenges associated with our benchmark and surfaces opportunities for future work.

## 2 METHODOLOGY

We develop a data generation pipeline to orchestrate our end-to-end workflow (described in Figure 2). Starting from real user personas, we build comprehensive world models that capture each simulated user’s environment, goals, and constraints. These world models drive the creation of a datastore filled with personalized synthetic documents. While generating these documents, we ensure that several contain a pre-specified hidden obstacle (*bottleneck*). For each bottleneck, our pipeline generates several candidate actions, only one of which resolves the issue. This setup requires agents to demonstrate genuine proactivity: they must discover the bottleneck through exploration and identify the right fix among several plausible options. The following sections detail our problem formulation and pipeline components.

### 2.1 PROBLEM DEFINITION

**Setup and notation:** Consider a world-model  $W$  of a user, let  $D$  be a finite “universal” set of documents that constitutes the user’s datastore, which is a collection of all of user’s accessible documents, and let  $b \in B$  denote a fixed *bottleneck*. We define a bottleneck as an issue that is critically important to the individual, actionable, and identifiable through a finite set of documents. For a given  $b$ , the rest of the documents that do not pertain to this bottleneck are considered *distractors* with respect to the bottleneck.

We define the binary predicate

$$f(d) : \forall d \in D \rightarrow \{0, 1\} \text{ evaluated under } W, \quad f(d) = \begin{cases} 1 & \text{if } d \text{ conveys the bottleneck } b, \\ 0 & \text{otherwise.} \end{cases}$$



Figure 2: End-to-end proactive benchmark generation pipeline. A synthetic world model ( $W$ ) is constructed in reference to a LinkedIn user profile, followed by generating a bottleneck ( $b$ ) to resolve. True Positives ( $T \subseteq D$ ) and distractors (other documents unrelated to the bottleneck,  $K = D \setminus T$ ) are then constructed to frame the bottleneck prediction task. Finally, a task to execute is selected with parameters ( $\mathcal{P} = \{P_a\}_{a \in A}$  for action  $a \in A$ ) to resolve the bottleneck. For any bottleneck, only one of the candidate tasks is a plausible resolution.

A document  $d \in D$  is marked as a *true positive* (w.r.t.  $b$ ) iff  $f(d) = 1$ , and a *distractor* iff  $f(d) = 0$ . For the current benchmark, we make the simplifying assumption that a true positive in a single data point contains evidence of only a single bottleneck.

**Sample generation:** Each instance of the benchmark is a tuple  $S = (T, K, A, \mathcal{P}, b)$  where

- $T \subseteq D$  is the set of true positives for the sample with  $|T| = t$ ,
- $K = D \setminus T$  is the set of distractors with  $|K| = k$ ,
- $A$  is a finite set of available actions,
- $\mathcal{P} = \{P_a\}_{a \in A}$  assigns to each action  $a \in A$  a parameter space  $P_a$ ,
- $b$  is the bottleneck associated with this sample.

We make the assumption that the true-positive set  $T$  is unique to this sample (i.e. different samples may not reuse the same  $T$ ). The observed document set presented to the agent is  $D := T \cup K$ .

## 2.2 PROACTIVE TASK SETUP

An agent (LLM or agentic framework) receives an input  $D$  and a set of  $(a, P_a)$  tuples and must produce the tuple of outputs  $\hat{O} = (\hat{T}, \hat{b}, \hat{a}, \hat{p})$ , where

- $\hat{T} \subseteq D$  is the agent’s predicted set of true positives,
- $\hat{b}$  is the agent’s prediction for the bottleneck,
- $\hat{a} \in A$  is the selected action,
- $\hat{p} \in P_{\hat{a}}$  are the selected parameters for  $\hat{a}$ .

## 2.3 DATA GENERATION SETUP

We design a data generation pipeline that scales robustly in both context size and difficulty. Starting from real-world professional profiles, it constructs comprehensive synthetic world-models that mirror realistic workplace scenarios. Figure 2 illustrates the complete pipeline, which comprises four key components<sup>1</sup>:

**World Model Construction:** We leverage the dataset constructed by Ayoobi et al. (2023) to extract basic personas from real-world LinkedIn profiles. Each persona captures high-level professional information including current workplace, role description, and a professional summary.

<sup>1</sup>all prompts for individual data generation modules are shown in appendix C

162 From these personas, we synthetically construct comprehensive world models that encode:  
 163

- 164 • Workplace hierarchy and relationship context
- 165 • Work patterns and communication styles
- 166 • Available action space  $A$  with corresponding parameter spaces  $\mathcal{P}$
- 167 • Pain points and operational constraints

169  
 170 For instance, given a senior account manager with 20 years of client-facing experience as shown in  
 171 Figure 2, the world model might identify “client documentation upkeep” as a pain point, while also  
 172 modeling specific client relationships and their respective engagement contexts.

173 **Bottleneck Generation:** Using the contextualized world model, we generate bottleneck  $b$ : a  
 174 persona-relevant, actionable user-need that satisfies our formal definition (see Section 2). Each  
 175 bottleneck  $b$  is designed to be identifiable through evidence  $T$  in the document set  $D$  and resolvable  
 176 through exactly one action  $a \in A$ .

177 **User Datastore:** For each sample  $S$ , we construct the document set  $D = T \cup K$ . The **True positives**  
 178  $T$  - documents where  $f(d) = 1$  - collectively provide sufficient evidence to identify bottleneck  $b$ .

179 **Distractors**  $K$  are documents where  $f(d) = 0$ , introducing realistic noise with respect to the bottle-  
 180 neck. In our current datastore setup, all the generated documents are either emails, calendar events,  
 181 or text documents, as exemplified in Figures 1 and 2. All generated documents are personalized,  
 182 as generations are contextualized by the LinkedIn persona and world model.

183 To mirror real-world complexity, we employ two key design principles: (i) **Evidence distribution**: We often distribute evidence for  $b$  across multiple documents in  $T$ , requiring agents to synthesize  
 184 information from  $t$  different sources. (ii) **Contextual noise**: We generate  $k$  distractor documents  
 185 of comparable length and professional relevance, ensuring bottleneck identification requires careful  
 186 analysis rather than superficial pattern matching.

187 **Task Execution :** Finally, we construct the action set  $A$  and parameter space for each action  $a$ ,  
 188 defined as  $\mathcal{P} = \{P_a\}_{a \in A}$  such that:

- 189 • Exactly one action  $a^* \in A$  effectively resolves bottleneck  $b$
- 190 • Each action  $a$  has a set of parameters  $p \in P_a$  specified to resolve the bottleneck.
- 191 • Alternative actions represent potentially plausible but suboptimal interventions

192 For example, given a bottleneck about missing documentation, the optimal action  $a^*$  might be “*send*  
 193 *reminder email to direct report*” with parameters specifying the recipient, urgency level, and docu-  
 194 ment details. The action set  $A$  may include plausible alternatives such as “escalate to management”  
 195 or “rewrite document”, forcing agents to reason about the most effective intervention. All actions  
 196 available for a bottleneck are populated as “available actions” in the user’s world model.

## 200 2.4 PROBE - BENCHMARK FOR PROACTIVITY EVALUATION

201 We use the setup outlined above to generate  
 202 the final dataset using GPT-4.1 as our primary  
 203 model for generation. We generate a total of  
 204 1000 data points generated from 235 unique  
 205 personas (described in 2.3). The full dataset  
 206 stats are shown in Table 1<sup>2</sup>. We also provide  
 207 a listing of bottleneck categories in Figure 3,  
 208 as well as a complete world model-bottleneck  
 209 combination in Appendix B.

210 To ensure the faithfulness of the dataset, we  
 211 adapt a modified approach from Jiang et al. (2025) by performing multiple rounds of filtering via  
 212 an adversarial agent (GPT-5) on a small sample set (of 5 data points). After each round of data  
 213 generation, we asked the adversarial agent to identify and exploit patterns in the data, preferring

|         | min   | max    | mean      | std     |
|---------|-------|--------|-----------|---------|
| Tokens  | 96294 | 122098 | 107,640.5 | 4,676.5 |
| Actions | 24    | 27     | 25.27     | 0.51    |
| Docs    | 70    | 81     | 79.3      | 3.7     |

214 Table 1: Dataset statistics. We show the statistics  
 215 across number of tokens, actions and documents  
 (true positives + distractors) for each instance.

<sup>2</sup>token counts measured using tiktoken <https://platform.openai.com/tokenizer>

216 artifact-based solutions over independent reasoning. The final set of data points was generated only  
 217 once no sample from our pipeline was solvable with these artifacts alone.  
 218



Figure 3: Distribution of bottleneck categories in the PROBE benchmark. The 1,000 synthetic test instances span six distinct workplace scenarios, ranging from pending deliverables and reviews to training gaps and communication breakdowns. These categories reflect realistic organizational challenges that proactive agents must identify and resolve through multi-document reasoning.

**Human Evaluation:** To establish human performance benchmarks and validate task difficulty, we conducted a 4-hour annotation study with three annotators, all holding at least a master’s degree. Each annotator received identical instructions to those given to LLM systems and completed as many samples as possible within the specified time limit. Additionally, the annotators were instructed to judge if samples were realistic and feasible. To assess this, we asked the following questions: (i) Were all the documents you read realistic documents that you may see in a real workplace? and (ii) Were the actions you read realistic actions that you could see being used to resolve bottlenecks in a real workplace setting?

| Annotator ID | Search F1 % | Bottleneck Identification Score (%) | Task Selection Score (%) | Entries Annotated | Samples hour | Realistic Artifacts |
|--------------|-------------|-------------------------------------|--------------------------|-------------------|--------------|---------------------|
| 1            | 26.79       | 0.00                                | 0.00                     | 13                | 3.25         | ✓                   |
| 2            | 45.24       | 0.00                                | 14.90                    | 7                 | 1.75         | ✓                   |
| 3            | 20.37       | 0.00                                | 8.33                     | 6                 | 1.50         | ✓                   |
| Avg          | 30.28       | 0.00                                | 5.93                     | 8.67              | 2.17         | ✓                   |

Table 2: Annotation numbers showing that humans could not accomplish our task successfully. Annotators on average retrieved 30%, never identified the bottleneck, and selected the correct task at just above random chance, labeling about 2 samples per hour.

Across 12 total annotator-hours, only 26 samples were successfully completed at an average throughput of 2.17 samples per hour per annotator. The annotation experiment showed the substantial cognitive load required for bottleneck identification across multiple documents, and the time-intensive nature of synthesizing evidence and selecting appropriate actions<sup>3</sup>. For the annotators who answered “yes” to the two questions on judging artifacts, we record a green check mark in the “Realistic Artifacts” column of our results table. The annotation results for all three annotators shown in table 2. All human annotations were evaluated using the same metrics setup as described in section 3.

<sup>3</sup>Annotators found no sample to be unrealistic, and gave feedback that the task was very challenging

270 2.5 TASK CLARITY AND DATA QUALITY  
271

272 To ensure task validity and data quality despite very poor human results, we conducted a controlled  
273 ablation study to disentangle task ambiguity from context-length difficulty. We hypothesized that  
274 the low human performance in the original study stemmed from the cognitive load of reasoning over  
275 massive context (107,640 tokens) rather than poor benchmark design. To test this, we created a  
276 "Short-Context" set by removing distractors and summarizing true positives, reducing the input to  
277  $\approx 1,000$  tokens.

| Annotator ID   | Identification Score | Task Execution Score | Samples Annotated |
|----------------|----------------------|----------------------|-------------------|
| 1              | 0.86                 | 0.88                 | 25                |
| 2              | 0.46                 | 0.56                 | 25                |
| 3              | 0.82                 | 0.56                 | 25                |
| <b>Average</b> | <b>0.71</b>          | <b>0.67</b>          | <b>Total: 75</b>  |

286 Table 3: Human evaluation results after removing distractors and summarizing true positives. The  
287 substantial improvement in annotator performance indicates that the main challenge of the task stems  
288 from context length.

289 As shown in Table 3, human performance improves drastically under these conditions. We also  
290 record substantial inter-annotator agreement (Fleiss'  $\kappa = 0.714$ ), providing evidence that the task is  
291 well defined: the difficulty for humans stems primarily from the challenge of long-context reasoning.  
292

293 3 EVALUATION  
294295 3.1 METRICS  
296

297 **Search:** This evaluation measures how well an agent retrieves the relevant documents that are re-  
298 quired for identifying the bottleneck precisely. We measure the agent's retrieved document  $\hat{T}$  against  
299 the gold bottlenecks  $T$  using standard precision, recall and F1 metrics.  
300

301 **Bottleneck Identification:** Since this task uses a natural language output, we use the LLM-as-  
302 a-judge (Zheng et al., 2023) framework to evaluate whether the LLM identified the bottleneck cor-  
303 rectly. We split this evaluation into two subtasks: (i) identifying essential details (who is the blocker,  
304 what is the task, root cause, etc.) and (ii) identifying non-essential details (system/tool names, pro-  
305 cesses to follow, scope of impact, etc.). The scoring rubric is as follows:

$$306 \text{Score} = \begin{cases} 1.0, & \text{if all essential and all non-essential details are accurate,} \\ 307 0.5, & \text{if all essential details are accurate but some non-essential details are incorrect,} \\ 308 0.0, & \text{if any essential detail is wrong or missing.} \end{cases}$$

310 **Task Execution:** Our scoring combines exact-match accuracy for the gold action label (assigning  
311 0 if incorrect) with LLM-as-a-judge evaluation of parameter quality when the action is correctly  
312 identified. The rubric follows:

$$313 \text{Score} = \begin{cases} 1.0, & \text{if action predicted is correct and all critical parameters are present,} \\ 314 0.5, & \text{if action predicted is correct and most critical parameters are present,} \\ 315 0.0, & \text{action wrong or if critical parameters are missing.} \end{cases}$$

316 We provide both LLM-as-a-judge prompts in Appendix C.6.  
317

318 3.2 LLM-AS-A-JUDGE  
319

320 To validate our use of LLM-as-a-judge, we conducted a measurement study with 100 uniformly  
321 sampled GPT-4.1 prediction-output pairs. Two human annotators independently evaluated bottle-  
322 neck identification and parameter judgments for each sample. We achieved 85% inter-annotator  
323 agreement and 81% human-LLM agreement across 100 total annotations, supporting our decision  
to use LLM-based scoring.

|                 | Search      |             |             | Bottleneck Identification | Task Execution |
|-----------------|-------------|-------------|-------------|---------------------------|----------------|
|                 | P           | R           | F1          | Score                     | Score          |
| GPT-5           | <b>0.73</b> | <b>0.59</b> | <b>0.65</b> | 0.42                      | <b>0.40</b>    |
| Claude Opus 4.1 | 0.68        | 0.41        | 0.51        | <b>0.43</b>               | <b>0.40</b>    |
| Claude Sonnet 4 | 0.66        | 0.37        | 0.47        | <b>0.43</b>               | 0.36           |
| GPT-4.1         | 0.60        | 0.38        | 0.46        | 0.42                      | 0.38           |
| GPT-4.1-mini    | 0.18        | 0.20        | 0.19        | 0.42                      | 0.20           |
| DeepSeek-R1     | 0.49        | 0.23        | 0.29        | 0.04                      | 0.19           |
| Kimi K-2        | 0.20        | 0.17        | 0.18        | 0.40                      | 0.18           |
| GPT-OSS-120b    | 0.27        | 0.10        | 0.13        | 0.35                      | 0.11           |
| GPT-OSS-20b     | 0.05        | 0.03        | 0.04        | 0.26                      | 0.05           |

Table 4: Comparative results across several frontier closed and open source models. GPT-5 and Claude Opus-4.1 show the best performance compared to the rest. We also show evaluation across search, bottleneck identification and task execution to show the relative strengths and weaknesses across models. Note: We found GPT-5-mini performance to be close to GPT-5 performance across the board, hence its results are removed for brevity.

### 3.3 BASELINES

**Models:** We evaluate our benchmark against several frontier closed source models including OpenAI GPT-5 (OpenAI, 2025), GPT-5-mini (OpenAI, 2025c), GPT-4.1 (OpenAI, 2025a), GPT-4.1-mini (OpenAI, 2025b), Claude 4.1 Opus (Anthropic, 2025b), Claude 4 Sonnet (Anthropic, 2025a) and the best-performing open-source models including Kimi-K2 (Team et al., 2025) and DeepSeek-R1 (DeepSeek-AI et al., 2025). Among other open-source models, we test OpenAI GPT OSS (OpenAI, 2025) at both 120B and 20B scales<sup>4</sup>.

**Agentic Frameworks:** We evaluate three leading agentic frameworks: ReACT (Yao et al., 2023), Reflexion-Agent (Shinn et al., 2023), and ReWOO (Xu et al., 2024). Since these frameworks target different problem domains, we adapted each for bottleneck resolution. Our modifications include minor prompt changes, structured outputs, and two retrieval tools: embedding based search and SQL queries. Each framework takes a distinct approach. ReACT cycles between reasoning and retrieval, progressively building context until it converges on an action. Reflexion learns from its failures: it runs multiple trials of document retrieval, analysis, and action selection, using LLM-based reflection to improve after each unsuccessful attempt. ReWOO, in contrast, precoordinates the process. After constructing a structured plan, it dispatches specialized workers for search and reasoning tasks, then synthesizes their findings to pinpoint bottlenecks and select interventions. We did not include any pre-existing proactive agent frameworks (Lu et al., 2024; Yang et al., 2025b) as baselines, as current systems are designed for specialized domains (conversational agents, UI navigation, embodied robotics). Resultantly, the distinct input modalities and task objectives of these frameworks do not trivially transfer to our workflow. All agentic frameworks use GPT-5-mini as the underlying base model. We provide more details in appendix A.

### 3.4 MODEL COMPARISONS

**Frontier Models Pull Ahead:** The gap between top models in our benchmark (GPT-5, GPT-4.1, Claude Opus, Claude Sonnet) and the rest of the models is significant. GPT-4.1-mini reaches 0.42 on Bottleneck Identification but only 0.20 on Task Execution, achieving just half the success rate of the best performing models. The other models fare poorly in retrieval and cascade these errors downstream (e.g., GPT-OSS-120b: 0.13 F1 Search, 0.11 Task Execution), underscoring the difficulty of end-to-end bottleneck resolution without strong evidence acquisition.

**Frontier models are stronger across the pipeline, but not uniformly:** GPT-5 achieves the best search performance with an F1 of 0.65 and the highest task execution score of 0.40, indicating stronger end-to-end capacity to find the right documents and translate bottleneck identification into an actionable plan. Claude Opus 4.1 and Claude Sonnet 4 achieve the best bottleneck identification

<sup>4</sup>We could not test Gemini-2.5 due to rate-limiting issues

|                               | Search |      |      | Bottleneck Identification | Task Execution |
|-------------------------------|--------|------|------|---------------------------|----------------|
|                               | P      | R    | F1   | Score                     | Score          |
| ReACT(Yao et al., 2023)       | 0.08   | 0.37 | 0.12 | 0.02                      | 0.06           |
| Reflexion(Shinn et al., 2023) | 0.18   | 0.11 | 0.13 | 0.02                      | 0.05           |
| ReWOO(Xu et al., 2024)        | 0.27   | 0.24 | 0.25 | 0.01                      | 0.11           |

Table 5: We show comparison across multiple agent frameworks. In our initial experiments, they significantly lag behind using LLMs out-of-the-box for this task, likely as a result of using retrieval tools instead of loading data into context.

score of 0.43 while having a slightly lower search score. This may suggest that Claude models have a slight advantage in reasoning capabilities for this task, which can offset potential shortcomings in search. Table 4 reveals that frontier models exhibit a variety of strengths: GPT-5 dominates search while Claude models lead in identification. Since achieving strong end-to-end performance requires balanced capabilities across all three dimensions, neither of these models scores well on the end-to-end task. Notably, DeepSeek-R1 presents an interesting anomaly: it performs competitively on search and execution metrics but substantially underperforms on bottleneck identification. On deeper inspection, we found that DeepSeek-R1 consistently used generic descriptions of bottlenecks instead of specific details, leading to reduced performance in bottleneck identification.

**Retrieval remains challenging:** Our analysis reveals a clear performance hierarchy among models. Frontier models (GPT and Claude series) significantly outperform others (Kimi K-2, DeepSeek-R1, GPT-OSS series), with all models showing higher precision than recall - for example, GPT-5 achieves 0.73 precision but only 0.59 recall. This pattern suggests models retrieve conservatively, struggling to some extent to retrieve all relevant pieces of information needed to identify the bottleneck. This is especially pronounced in smaller Language Models, which seem to massively under-retrieve relevant documents and resultantly struggle with any sort of task selection.

**Shortcutting helps overcome search difficulties, but not much:** Among the top-performing models (GPT-5, GPT-4.1, Claude Opus, Claude Sonnet), some compensate for weaker retrieval with stronger free-form reasoning during Bottleneck Identification. This yields competitive identification scores without a corresponding improvement in task execution. The gap highlights that being “right for the wrong reasons” does not translate into executable solutions. As the search space grows, this effect will degrade, reinforcing the need for faithful evidence use. We believe that the remaining head-room in this task will be based on faithful evidence use to identify bottlenecks and then resolve them correctly. The best bottleneck identification score reaches only 0.43, while the best task execution score is just 0.40. These low performance ceilings reveal significant gaps in current systems’ ability to translate diagnoses into actionable solutions with complete parameters, particularly when retrieval is imperfect.

### 3.5 AGENT FRAMEWORKS COMPARISON

We evaluated agentic baselines using a constrained setup where agents were provided with a SQL store and embedding-based semantic search for document retrieval. Our rubric enforces three metrics across the pipeline: retrieval, bottleneck identification, and task execution. Across all tested agents, retrieval F1 scores ranged from 0.12 to 0.25, substantially below the frontier models in Table 5. This weak retrieval performance cascaded through the pipeline, resulting in Bottleneck Identification and Task Execution scores of  $\leq 0.11$ .

These results should be interpreted in context of the task structure. Standard agentic frameworks typically perform iterative, open-ended search over large external tools (e.g., web search, APIs). Our proactive task, however, requires agents to explore an unfamiliar datastore without a well-defined search target at the outset. This negates the benefit these frameworks attain from external tool use. Notably, all agentic frameworks are equitably evaluated: all access the data through SQL and Semantic Search.

432 

## 4 ERROR ANALYSIS

434 For this analysis, we use all failure cases of each model across the dataset. To understand where  
 435 models struggle most, we analyze failure modes across three hierarchical categories: bottleneck  
 436 identification, task selection, and parameter specification for the task that was selected (explained in  
 437 metrics under section 3).

| Failure Mode                                                                     | Claude Opus | Claude Sonnet | GPT-4.1 | GPT-5 | Kimi K-2 |
|----------------------------------------------------------------------------------|-------------|---------------|---------|-------|----------|
| <i>Identification Failures (% of identification errors)</i>                      |             |               |         |       |          |
| Incorrect root cause <sup>5</sup>                                                | 64.6%       | 70.6%         | 76.8%   | 72.1% | 84.8%    |
| Person attribution error                                                         | 46.9%       | 57.9%         | 61.3%   | 60.8% | 78.0%    |
| Missing/wrong deadline                                                           | 53.4%       | 46.7%         | 43.5%   | 45.3% | 35.0%    |
| <i>Function Selection Failures (% of action errors   identification success)</i> |             |               |         |       |          |
| Wrong function selected                                                          | 9.7%        | 9.5%          | 9.2%    | 10.6% | 10.9%    |
| <i>Parameter Failures (% of action errors   function success)</i>                |             |               |         |       |          |
| Critical parameters missing                                                      | 66.2%       | 75.4%         | 79.5%   | 65.2% | 71.7%    |
| Incorrectly filled parameters                                                    | 45.4%       | 36.1%         | 35.3%   | 45.6% | 44.3%    |

451 Table 6: Failure mode breakdown across frontier models. Root cause identification emerges as the  
 452 dominant failure mode, while function selection shows consistent competence across models.

453 **Root Cause Identification remains the primary challenge:** Incorrect root cause identification  
 454 dominates across all models, averaging 73.8% of identification failures. This represents the single  
 455 largest systematic weakness, with even the best-performing Claude Opus failing at root cause analy-  
 456 sis in nearly two-thirds of identification errors. This suggests potential avenues to improve reasoning  
 457 capabilities tailored to our proactivity task and may be a consequence of failures in the search stage.

458 **Interpersonal reasoning:** Interpersonal Reasoning - the ability of a model to identify and reason  
 459 about the people involved in a bottleneck - remains challenging for models. All models substan-  
 460 tially underperform in interpersonal dynamics (46.9%-78.0% failure rates), regardless of their per-  
 461 formance on root cause identification. Even Claude Opus, the highest performing reasoning model  
 462 in our benchmark, fails at interpersonal identification in nearly half of its errors, suggesting a diffi-  
 463 culty in applying long context relationship information from the world model and documents.

464 **Action Selection and Parameter Prediction for actions :** Action selection and selection of pa-  
 465 rameters for the action remains independently challenging. GPT-5 and Claude Opus achieve better  
 466 parameter coverage but higher error rates (45.6% and 45.4% incorrect), while GPT-4.1 and Claude  
 467 Sonnet show the inverse pattern; more accurate specification (35.3% and 36.1% incorrect) but higher  
 468 miss rates. Current models cannot simultaneously achieve higher coverage and precise parameter  
 469 specification within the complex workplace scenarios seen in this benchmark.

472 

## 5 RELATED WORK

473 **Reactive vs. Proactive Agents:** Most LLM-based agent research has focused on reactive systems  
 474 that respond to explicit user instructions. Key advances include planning approaches like ReAct  
 475 (Yao et al., 2023), tool integration via Toolformer (Schick et al., 2023), and self-reflection mech-  
 476 anisms such as Reflexion (Shinn et al., 2023). While these expand agentic capabilities, they remain  
 477 fundamentally reactive - dependent on explicit requests without capacity to anticipate user needs.

478 Emerging proactive agents face the challenge of anticipating latent user goals from partial obser-  
 479 vations and executing actions without explicit instruction. Recent work explores intent inference  
 480 from behavioral patterns (Zhao et al., 2025), continuous insight generation from data streams (Yang  
 481 et al., 2025b), and context-aware action generation (Shaikh et al., 2025). However, these systems  
 482 lack systematic evaluation frameworks that assess end-to-end proactive capabilities.

483 <sup>5</sup>Incorrect root causes can signify either locating the possible cause and misidentifying the bottleneck or not  
 484 identifying the possible cause at all.

486 **Agent Benchmarking:** Existing benchmarks predominantly evaluate reactive systems: SWE-bench  
 487 (Jimenez et al., 2024) for software engineering; ToolBench (Qin et al., 2023) for API calling; and  
 488 GAIA (Mialon et al., 2023) for multi-hop reasoning. Recent proactivity benchmarks like Proactive-  
 489 VideoQA (Wang et al., 2025) and ProCIS (Samarinas & Zamani, 2024) begin addressing this gap  
 490 but remain limited to conversational actions.

491 The Proactive Agent framework Lu et al. (2024) serves as our nearest counterpart, contributing a  
 492 benchmark for annotated proactive suggestions in coding, writing, and everyday tasks. We build  
 493 upon this work by benchmarking proactivity in long-horizon and multi-document datastores, incor-  
 494 porating search to uncover and address opportunities for assistance.

495 The above-mentioned works do not decompose proactivity into constituent capabilities or test com-  
 496 prehensive task execution across a multitude of sources and extended time horizons, motivating the  
 497 systematic approach found in PROBE .  
 498

## 500 6 CONCLUSION

501 In this work we propose PROBE : a benchmark designed to test proactivity by having agents search  
 502 over a personal datastore, identify bottlenecks without prompting, and resolve them. We evaluate  
 503 leading LLMs and modern agentic solutions on this benchmark, and discover that most solutions  
 504 struggle greatly at all three stages. We also conduct an analysis of failure modes, illustrating the  
 505 difficulty of our benchmark’s subcomponents.

506 While the work shows the difficulty of proactive assistance, it still only encompasses a part of the  
 507 challenge: the problems of building good world-models for individual users and figuring out when to  
 508 act remain unsolved. We leave these challenges to future work, with the hope that ongoing research  
 509 will work towards personalized, dynamic agents that can identify and resolve the type of bottlenecks  
 510 found in our benchmark.

## 513 7 LIMITATIONS AND FUTURE WORK

515 While our work advances proactive agent evaluation, several limitations present opportunities for  
 516 future research. First, we assume a fixed, non-evolving world model across the time dimension. In  
 517 real-world proactivity settings, personalization is a more fundamental component and represents a  
 518 complex challenge. User preferences and contexts evolve over time, requiring agents to adapt their  
 519 understanding dynamically. Second, we assume that for a given state of information, bottlenecks are  
 520 resolvable by a single action. Many real-world bottlenecks involve complex, multi-step workflows  
 521 that require dynamic task execution, where each action modifies the agent’s state. These multi-step  
 522 scenarios introduce additional complexity beyond the scope of this paper.

523 These limitations suggest natural directions for future work: developing benchmarks that incorporate  
 524 temporal dynamics and evolving user models, and extending evaluation frameworks to handle multi-  
 525 step bottleneck resolution with interdependent actions. Addressing these challenges will be essential  
 526 for advancing proactive agents going forward.

## 528 529 REFERENCES

531 Saaket Agashe, Jiuzhou Han, Shuyu Gan, Jiachen Yang, Ang Li, and Xin Eric Wang. Agent s:  
 532 An open agentic framework that uses computers like a human. In *The Thirteenth International  
 533 Conference on Learning Representations*, 2025. URL <https://openreview.net/forum?id=1IVRgt4nLv>.

535 Anthropic. Claude sonnet 4. <https://www.anthropic.com/claude/sonnet>, 2025a.  
 536 Accessed 2025-09-24.

538 Anthropic. Claude opus 4.1. <https://www.anthropic.com/news/claude-opus-4-1>,  
 539 August 2025b. Accessed: 2025-09-21.

540 Navid Ayoobi, Sadat Shahriar, and Arjun Mukherjee. The looming threat of fake and llm-generated  
 541 linkedin profiles: Challenges and opportunities for detection and prevention. In *Proceedings of*  
 542 *the 34th ACM Conference on Hypertext and Social Media*, pp. 1–10, 2023.

543

544 Natasha Butt, Varun Chandrasekaran, Neel Joshi, Besmira Nushi, and Vidhisha Balachandran.  
 545 Benchagents: Automated benchmark creation with agent interaction, 2024. URL <https://arxiv.org/abs/2410.22584>.

546

547 DeepSeek-AI, Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu,  
 548 Qihao Zhu, Shirong Ma, Peiyi Wang, Xiao Bi, Xiaokang Zhang, Xingkai Yu, Yu Wu, Z. F. Wu,  
 549 Zhibin Gou, Zhihong Shao, Zhuoshu Li, Ziyi Gao, Aixin Liu, Bing Xue, Bingxuan Wang, Bochao  
 550 Wu, Bei Feng, Chengda Lu, Chenggang Zhao, Chengqi Deng, Chenyu Zhang, Chong Ruan,  
 551 Damai Dai, Deli Chen, Dongjie Ji, Erhang Li, Fangyun Lin, Fucong Dai, Fuli Luo, Guangbo Hao,  
 552 Guanting Chen, Guowei Li, H. Zhang, Han Bao, Hanwei Xu, Haocheng Wang, Honghui Ding,  
 553 Huajian Xin, Huazuo Gao, Hui Qu, Hui Li, Jianzhong Guo, Jiashi Li, Jiawei Wang, Jingchang  
 554 Chen, Jingyang Yuan, Junjie Qiu, Junlong Li, J. L. Cai, Jiaqi Ni, Jian Liang, Jin Chen, Kai  
 555 Dong, Kai Hu, Kaige Gao, Kang Guan, Kexin Huang, Kuai Yu, Lean Wang, Lecong Zhang,  
 556 Liang Zhao, Litong Wang, Liyue Zhang, Lei Xu, Leyi Xia, Mingchuan Zhang, Minghua Zhang,  
 557 Minghui Tang, Meng Li, Miaojun Wang, Mingming Li, Ning Tian, Panpan Huang, Peng Zhang,  
 558 Qiancheng Wang, Qinyu Chen, Qushi Du, Ruiqi Ge, Ruisong Zhang, Ruizhe Pan, Runji Wang,  
 559 R. J. Chen, R. L. Jin, Ruyi Chen, Shanghao Lu, Shangyan Zhou, Shanhuang Chen, Shengfeng  
 560 Ye, Shiyu Wang, Shuiping Yu, Shunfeng Zhou, Shuting Pan, S. S. Li, Shuang Zhou, Shaoqing  
 561 Wu, Shengfeng Ye, Tao Yun, Tian Pei, Tianyu Sun, T. Wang, Wangding Zeng, Wanjia Zhao, Wen  
 562 Liu, Wenfeng Liang, Wenjun Gao, Wenqin Yu, Wentao Zhang, W. L. Xiao, Wei An, Xiaodong  
 563 Liu, Xiaohan Wang, Xiaokang Chen, Xiaotao Nie, Xin Cheng, Xin Liu, Xin Xie, Xingchao Liu,  
 564 Xinyu Yang, Xinyuan Li, Xuecheng Su, Xuheng Lin, X. Q. Li, Xiangyue Jin, Xiaoqin Shen, Xi-  
 565 aoshua Chen, Xiaowen Sun, Xiaoxiang Wang, Xinnan Song, Xinyi Zhou, Xianzu Wang, Xinxia  
 566 Shan, Y. K. Li, Y. Q. Wang, Y. X. Wei, Yang Zhang, Yanhong Xu, Yao Li, Yao Zhao, Yaofeng  
 567 Sun, Yaohui Wang, Yi Yu, Yichao Zhang, Yifan Shi, Yiliang Xiong, Ying He, Yishi Piao, Yisong  
 568 Wang, Yixuan Tan, Yiyang Ma, Yiyuan Liu, Yongqiang Guo, Yuan Ou, Yuduan Wang, Yue Gong,  
 569 Yuheng Zou, Yujia He, Yunfan Xiong, Yuxiang Luo, Yuxiang You, Yuxuan Liu, Yuyang Zhou,  
 570 Y. X. Zhu, Yanhong Xu, Yanping Huang, Yaohui Li, Yi Zheng, Yuchen Zhu, Yunxian Ma, Ying  
 571 Tang, Yukun Zha, Yuting Yan, Z. Z. Ren, Zehui Ren, Zhangli Sha, Zhe Fu, Zhean Xu, Zhenda  
 572 Xie, Zhengyan Zhang, Zhewen Hao, Zhicheng Ma, Zhigang Yan, Zhiyu Wu, Zihui Gu, Zijia Zhu,  
 573 Zijun Liu, Zilin Li, Ziwei Xie, Ziyang Song, Zizheng Pan, Zhen Huang, Zhipeng Xu, Zhongyu  
 574 Zhang, and Zhen Zhang. Deepseek-r1: Incentivizing reasoning capability in llms via reinforce-  
 575 ment learning, 2025. URL <https://arxiv.org/abs/2501.12948>.

576

577 Yuru Jiang, Wenxuan Ding, Shangbin Feng, Greg Durrett, and Yulia Tsvetkov. Sparta alignment:  
 578 Collectively aligning multiple language models through combat, 2025. URL <https://arxiv.org/abs/2506.04721>.

579

580 Carlos E. Jimenez, John Yang, Alexander Wettig, Shunyu Yao, Kexin Pei, Ofir Press, and Karthik  
 581 Narasimhan. Swe-bench: Can language models resolve real-world github issues?, 2024. URL  
 582 <https://arxiv.org/abs/2310.06770>.

583

584 Yubin Kim, Chanwoo Park, Hyewon Jeong, Yik Siu Chan, Xuhai Xu, Daniel McDuff, Hyeonhoon  
 585 Lee, Marzyeh Ghassemi, Cynthia Breazeal, and Hae Won Park. MDAgents: An adaptive col-  
 586 laboration of LLMs for medical decision-making. In *The Thirty-eighth Annual Conference on*  
 587 *Neural Information Processing Systems*, 2024. URL <https://openreview.net/forum?id=EKdk4vxKO4>.

588

589 Lin Long, Rui Wang, Ruixuan Xiao, Junbo Zhao, Xiao Ding, Gang Chen, and Haobo Wang. On  
 590 llms-driven synthetic data generation, curation, and evaluation: A survey, 2024. URL <https://arxiv.org/abs/2406.15126>.

591

592 Yaxi Lu, Shenzhi Yang, Cheng Qian, Guirong Chen, Qinyu Luo, Yesai Wu, Huadong Wang, Xin  
 593 Cong, Zhong Zhang, Yankai Lin, Weiwen Liu, Yasheng Wang, Zhiyuan Liu, Fangming Liu, and  
 594 Maosong Sun. Proactive agent: Shifting llm agents from reactive responses to active assistance,  
 595 2024. URL <https://arxiv.org/abs/2410.12361>.

594 Gregoire Mialon, Clementine Fourrier, Craig Swift, Thomas Wolf, Yann LeCun, and Thomas  
 595 Scialom. Gaia: a benchmark for general ai assistants, 2023. URL <https://arxiv.org/abs/2311.12983>.  
 596

597 Mihai Nadas, Laura Diosan, and Andreea Tomescu. Synthetic data generation using large lan-  
 598 guage models: Advances in text and code. *IEEE Access*, 13:134615–134633, 2025. ISSN  
 599 2169-3536. doi: 10.1109/access.2025.3589503. URL <http://dx.doi.org/10.1109/ACCESS.2025.3589503>.  
 600

601

602 OpenAI. Introducing gpt-4.1 in the api. <https://openai.com/index/gpt-4-1/>, 4 2025a.  
 603 Accessed 2025-09-24.  
 604

605 OpenAI. Gpt-4.1 mini - model documentation. <https://platform.openai.com/docs/models/gpt-4.1-mini>, 2025b. Accessed 2025-09-24.  
 606

607 OpenAI. Introducing gpt-5 for developers. <https://openai.com/index/introducing-gpt-5-for-developers/>, 8 2025c. Describes availability of gpt-5,  
 608 gpt-5-mini, and gpt-5-nano; Accessed 2025-09-24.  
 609

610

611 OpenAI. gpt-oss-120b & gpt-oss-20b model card, 2025. URL <https://arxiv.org/abs/2508.10925>.  
 612

613 OpenAI. Gpt-5 is here. <https://openai.com/gpt-5/>, 2025. Accessed: 2025-09-21.  
 614

615 Yujia Qin, Shihao Liang, Yining Ye, Kunlun Zhu, Lan Yan, Yaxi Lu, Yankai Lin, Xin Cong, Xiangru  
 616 Tang, Bill Qian, Sihan Zhao, Lauren Hong, Runchu Tian, Ruobing Xie, Jie Zhou, Mark Gerstein,  
 617 Dahai Li, Zhiyuan Liu, and Maosong Sun. Toolllm: Facilitating large language models to master  
 618 16000+ real-world apis, 2023. URL <https://arxiv.org/abs/2307.16789>.  
 619

620 Chris Samarin and Hamed Zamani. Procis: A benchmark for proactive retrieval in conversations.  
 621 In *Proceedings of the 47th International ACM SIGIR Conference on Research and Development  
 622 in Information Retrieval*, SIGIR 2024, pp. 830 – 840. ACM, July 2024. doi: 10.1145/3626772.  
 623 3657869. URL <http://dx.doi.org/10.1145/3626772.3657869>.  
 624

625 Timo Schick, Jane Dwivedi-Yu, Roberto Dessì, Roberta Raileanu, Maria Lomeli, et al. Toolformer:  
 626 Language models can teach themselves to use tools. *arXiv preprint arXiv:2302.04761*, 2023.  
 627

628 Andrew Sellergren, Sahar Kazemzadeh, Tiam Jaroensri, Atilla Kiraly, Madeleine Traverse, Timo  
 629 Kohlberger, Shawn Xu, Fayaz Jamil, Cian Hughes, Charles Lau, Justin Chen, Fereshteh Mahvar,  
 630 Liron Yatziv, Tiffany Chen, Bram Sterling, Stefanie Anna Baby, Susanna Maria Baby, Jeremy  
 631 Lai, Samuel Schmidgall, Lu Yang, Kejia Chen, Per Bjornsson, Shashir Reddy, Ryan Brush, Ken-  
 632 neth Philbrick, Mercy Asiedu, Ines Mezerreg, Howard Hu, Howard Yang, Richa Tiwari, Sunny  
 633 Jansen, Preeti Singh, Yun Liu, Shekoofeh Azizi, Aishwarya Kamath, Johan Ferret, Shreya Pathak,  
 634 Nino Vieillard, Ramona Merhej, Sarah Perrin, Tatiana Matejovicova, Alexandre Ramal, Morgane  
 635 Riviere, Louis Rouillard, Thomas Mesnard, Geoffrey Cideron, Jean bastien Grill, Sabela  
 636 Ramos, Edouard Yvinec, Michelle Casbon, Elena Buchatskaya, Jean-Baptiste Alayrac, Dmitry  
 637 Lepikhin, Vlad Feinberg, Sebastian Borgeaud, Alek Andreev, Cassidy Hardin, Robert Dadashi,  
 638 LAl'onard Hussenot, Armand Joulin, Olivier Bachem, Yossi Matias, Katherine Chou, Avinatan  
 639 Hassidim, Kavi Goel, Clement Farabet, Joelle Barral, Tris Warkentin, Jonathon Shlens, David  
 640 Fleet, Victor Cotruta, Omar Sanseviero, Gus Martins, Phoebe Kirk, Anand Rao, Shravya Shetty,  
 David F. Steiner, Can Kirmizibayrak, Rory Pilgrim, Daniel Golden, and Lin Yang. Medgemma  
 641 technical report, 2025. URL <https://arxiv.org/abs/2507.05201>.  
 642

643 Omar Shaikh, Shardul Sapkota, Shan Rizvi, Eric Horvitz, Joon Sung Park, Diyi Yang, and  
 644 Michael S. Bernstein. Creating general user models from computer use, 2025. URL <https://arxiv.org/abs/2505.10831>.  
 645

646 Noah Shinn, Federico Cassano, Ashwin Gopinath, Karthik R Narasimhan, and Shunyu Yao. Re-  
 647 flexion: language agents with verbal reinforcement learning. In *Thirty-seventh Conference on  
 648 Neural Information Processing Systems*, 2023. URL <https://openreview.net/forum?id=vAE1hFcKW6>.  
 649

648 Yunpeng Song, Yiheng Bian, Yongtao Tang, Guiyu Ma, and Zhongmin Cai. Visiontasker: Mobile  
 649 task automation using vision based ui understanding and llm task planning. In *Proceedings of the*  
 650 *37th Annual ACM Symposium on User Interface Software and Technology*, UIST '24, New York,  
 651 NY, USA, 2024. Association for Computing Machinery. ISBN 9798400706288. doi: 10.1145/  
 652 3654777.3676386. URL <https://doi.org/10.1145/3654777.3676386>.

653 Kimi Team, Yifan Bai, Yiping Bao, Guanduo Chen, Jiahao Chen, Ningxin Chen, Ruijue Chen,  
 654 Yanru Chen, Yuankun Chen, Yutian Chen, Zhuofu Chen, Jialei Cui, Hao Ding, Mengnan Dong,  
 655 Angang Du, Chenzhuang Du, Dikang Du, Yulun Du, Yu Fan, Yichen Feng, Kelin Fu, Bofei Gao,  
 656 Hongcheng Gao, Peizhong Gao, Tong Gao, Xinran Gu, Longyu Guan, Haiqing Guo, Jianhang  
 657 Guo, Hao Hu, Xiaoru Hao, Tianhong He, Weiran He, Wenyang He, Chao Hong, Yangyang Hu,  
 658 Zhenxing Hu, Weixiao Huang, Zhiqi Huang, Zihao Huang, Tao Jiang, Zhejun Jiang, Xinyi Jin,  
 659 Yongsheng Kang, Guokun Lai, Cheng Li, Fang Li, Haoyang Li, Ming Li, Wentao Li, Yanhao  
 660 Li, Yiwei Li, Zhaowei Li, Zheming Li, Hongzhan Lin, Xiaohan Lin, Zongyu Lin, Chengyin  
 661 Liu, Chenyu Liu, Hongzhang Liu, Jingyuan Liu, Junqi Liu, Liang Liu, Shaowei Liu, T. Y. Liu,  
 662 Tianwei Liu, Weizhou Liu, Yangyang Liu, Yibo Liu, Yiping Liu, Yue Liu, Zhengying Liu, Enzhe  
 663 Lu, Lijun Lu, Shengling Ma, Xinyu Ma, Yingwei Ma, Shaoguang Mao, Jie Mei, Xin Men, Yibo  
 664 Miao, Siyuan Pan, Yebo Peng, Ruoyu Qin, Bowen Qu, Zeyu Shang, Lidong Shi, Shengyuan Shi,  
 665 Feifan Song, Jianlin Su, Zhengyuan Su, Xinjie Sun, Flood Sung, Heyi Tang, Jiawen Tao, Qifeng  
 666 Teng, Chensi Wang, Dinglu Wang, Feng Wang, Haiming Wang, Jianzhou Wang, Jiaxing Wang,  
 667 Jinhong Wang, Shengjie Wang, Shuyi Wang, Yao Wang, Yejie Wang, Yiqin Wang, Yuxin Wang,  
 668 Yuzhi Wang, Zhaoji Wang, Zhengtao Wang, Zhexu Wang, Chu Wei, Qianqian Wei, Wenhao Wu,  
 669 Xingzhe Wu, Yuxin Wu, Chenjun Xiao, Xiaotong Xie, Weimin Xiong, Boyu Xu, Jing Xu, Jinjing  
 670 Xu, L. H. Xu, Lin Xu, Suting Xu, Weixin Xu, Xinran Xu, Yangchuan Xu, Ziyao Xu, Junjie  
 671 Yan, Yuzi Yan, Xiaofei Yang, Ying Yang, Zhen Yang, Zhilin Yang, Zonghan Yang, Haotian Yao,  
 672 Xingcheng Yao, Wenjie Ye, Zhuorui Ye, Bohong Yin, Longhui Yu, Enming Yuan, Hongbang  
 673 Yuan, Mengjie Yuan, Haobing Zhan, Dehao Zhang, Hao Zhang, Wanlu Zhang, Xiaobin Zhang,  
 674 Yangkun Zhang, Yizhi Zhang, Yongting Zhang, Yu Zhang, Yutao Zhang, Yutong Zhang, Zheng  
 675 Zhang, Haotian Zhao, Yikai Zhao, Huabin Zheng, Shaojie Zheng, Jianren Zhou, Xinyu Zhou,  
 676 Zaida Zhou, Zhen Zhu, Weiyu Zhuang, and Xinxing Zu. Kimi k2: Open agentic intelligence,  
 2025. URL <https://arxiv.org/abs/2507.20534>.

677 Yueqian Wang, Xiaojun Meng, Yifan Wang, Huishuai Zhang, and Dongyan Zhao. Proactivevideoqa:  
 678 A comprehensive benchmark evaluating proactive interactions in video large language models,  
 679 2025. URL <https://arxiv.org/abs/2507.09313>.

680 Binfeng Xu, Zhiyuan PENG, Bowen Lei, Subhabrata Mukherjee, and Dongkuan Xu. DE-  
 681 COUPLING REASONING FROM OBSERVATIONS FOR EFFICIENT AUGMENTED LAN-  
 682 GUAGE MODELS, 2024. URL <https://openreview.net/forum?id=Cpgo06j6W1>.

683 Bufang Yang, Lilin Xu, Liekang Zeng, Kaiwei Liu, Siyang Jiang, Wenrui Lu, Hongkai Chen,  
 684 Xiaofan Jiang, Guoliang Xing, and Zhenyu Yan. Contextagent: Context-aware proactive llm  
 685 agents with open-world sensory perceptions. *ArXiv*, abs/2505.14668, 2025a. URL <https://api.semanticscholar.org/CorpusID:278769319>.

686 Bufang Yang, Lilin Xu, Liekang Zeng, Kaiwei Liu, Siyang Jiang, Wenrui Lu, Hongkai Chen, Xi-  
 687 aofan Jiang, Guoliang Xing, and Zhenyu Yan. Contextagent: Context-aware proactive llm agents  
 688 with open-world sensory perceptions, 2025b. URL <https://arxiv.org/abs/2505.14668>.

689 John Yang, Carlos E Jimenez, Alexander Wettig, Kilian Lieret, Shunyu Yao, Karthik R Narasimhan,  
 690 and Ofir Press. SWE-agent: Agent-computer interfaces enable automated software engineering.  
 691 In *The Thirty-eighth Annual Conference on Neural Information Processing Systems*, 2024. URL  
 692 <https://openreview.net/forum?id=mXpq6ut8J3>.

693 Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan, and Yuan Cao.  
 694 ReAct: Synergizing reasoning and acting in language models. In *International Conference on*  
 695 *Learning Representations (ICLR)*, 2023.

696 Ceyao Zhang, Kaijie Yang, Siyi Hu, Zihao Wang, Guanghe Li, Yi Eve Sun, Chen Zhang, Zhaowei  
 697 Zhang, Anji Liu, Song-Chun Zhu, Xiaojun Chang, Junge Zhang, F. Yin, Yitao Liang, and

702 Yaodong Yang. Proagent: Building proactive cooperative agents with large language models. In  
 703 *AAAI Conference on Artificial Intelligence*, 2023. URL <https://api.semanticscholar.org/CorpusID:261064959>.  
 704

705 Xuan Zhang, Yang Deng, Zifeng Ren, See-Kiong Ng, and Tat-Seng Chua. Ask-before-plan: Proactive  
 706 language agents for real-world planning. *ArXiv*, abs/2406.12639, 2024. URL <https://api.semanticscholar.org/CorpusID:270561990>.  
 707

708 Yao Zhang, Zijian Ma, Yunpu Ma, Zhen Han, Yu Wu, and Volker Tresp. Webpilot: a versatile and  
 709 autonomous multi-agent system for web task execution with strategic exploration. In *Proceedings of the Thirty-Ninth AAAI Conference on Artificial Intelligence and Thirty-Seventh Conference on Innovative Applications of Artificial Intelligence and Fifteenth Symposium on Educational Advances in Artificial Intelligence*, AAAI'25/IAAI'25/EAAI'25. AAAI Press, 2025. ISBN 978-1-57735-897-8. doi: 10.1609/aaai.v39i22.34505. URL <https://doi.org/10.1609/aaai.v39i22.34505>.  
 710

711

712 Yuheng Zhao, Xueli Shu, Liwen Fan, Lin Gao, Yu Zhang, and Siming Chen. Proactiveva: Proactive  
 713 visual analytics with llm-based ui agent, 2025. URL <https://arxiv.org/abs/2507.18165>.  
 714

715 Boyuan Zheng, Boyu Gou, Jihyung Kil, Huan Sun, and Yu Su. Gpt-4v(ision) is a generalist  
 716 web agent, if grounded. In *ICML*, 2024. URL <https://openreview.net/forum?id=piEcKJ2D1B>.  
 717

718 Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan Zhuang, Zhanghao Wu, Yonghao Zhuang,  
 719 Zi Lin, Zhuohan Li, Dacheng Li, Eric Xing, Hao Zhang, Joseph E. Gonzalez, and Ion Stoica.  
 720 Judging LLM-as-a-judge with MT-bench and chatbot arena. In *Thirty-seventh Conference on Neural Information Processing Systems Datasets and Benchmarks Track*, 2023. URL <https://openreview.net/forum?id=uccHPGDlao>.  
 721

722

723

724

725

726

727

728

729

730

731

732 A APPENDIX A: BASELINE IMPLEMENTATIONS

733

734 We provide implementation details for the agentic framework baselines. Full source code is available  
 735 at <https://github.com/anonymized>.  
 736

737 All baseline agents share a common set of document retrieval tools and error han-  
 738 dling mechanisms. The semantic\_search tool performs vector-based retrieval us-  
 739 ing text-embedding-3-small embeddings with configurable result limits, while the  
 740 sql\_reader tool executes structured SQLite queries over document metadata with schema val-  
 741 idation. All agents incorporate robust JSON parsing with fallback mechanisms and graceful error  
 742 recovery for malformed outputs. These shared components ensure consistent document accessibility  
 743 and reliable structured output generation across baselines.  
 744

745 A.1 REACT

746 The ReACT agent follows the canonical Thought-Action-Observation pattern to iteratively reason  
 747 about potential bottlenecks and search documents before selecting an appropriate response. The  
 748 agent operates in a turn-based loop where each iteration generates a thought about the current con-  
 749 text, selecting an action to take, and processing the resulting observations. The agent leverages both  
 750 data exploration tools to retrieve relevant documents and action execution tools dynamically loaded  
 751 from the world model. Once the agent identifies a bottleneck through its exploration and reason-  
 752 ing process, it selects an appropriate action from the available options and terminates, returning the  
 753 retrieved documents, bottleneck description, and chosen action. To ensure robustness, the imple-  
 754 mentation includes safeguards such as token usage management for long contexts, maximum turn  
 755 limits to prevent infinite loops, and fallback strategies for cases where the agent fails to converge on  
 a definitive solution.

756  
757

## A.2 REFLEXION

758  
759  
760  
761  
762  
763  
764  
765  
766  
767  
768  
769

The Reflexion agent leverages a verbal reinforcement learning approach that operates through iterative trial-and-error with self-reflection. The agent follows a structured three-step workflow: first searching for relevant documents, then analyzing retrieved documents to identify workflow bottlenecks, and finally selecting appropriate actions to address the identified issues. What distinguishes this architecture is its reflection mechanism: when an attempt fails to meet a quality threshold (evaluated by an LLM-based scoring system), the agent generates verbal reflections on what went wrong and incorporates these learnings into subsequent trials. This creates a feedback loop where the agent progressively improves its document retrieval strategies, bottleneck identification accuracy, and action selection through accumulated reflections from previous failures. The system runs multiple trials until either achieving a successful result (score  $\geq 0.8$ ) or exhausting the maximum number of attempts, making it particularly effective for complex productivity tasks that require iterative refinement and learning from mistakes.

770  
771

## A.3 REWOO

772  
773  
774  
775  
776  
777  
778  
779  
780

The ReWOO consists of a three-stage modular workflow for bottleneck identification and resolution. The architecture follows a Plan-Work-Solve paradigm where the system first generates a structured plan to gather evidence, executes that plan using specialized workers, and then synthesizes the evidence to identify bottlenecks and propose actions. The Planner component analyzes the user's world model to create a step-by-step evidence gathering strategy, storing intermediate results in variables (#E1, #E2, etc.). The Worker stage then executes this plan using three specialized tools: semantic\_search and sql\_reader for finding relevant documents and LLM reasoning for analysis. Finally, the Solver component reviews all gathered evidence to identify the most critical bottleneck pattern and select the appropriate action from the available options.

781

## B APPENDIX B: EXAMPLE WORLD MODEL AND BOTTLENECK

782  
783  
784  
785  
786

This appendix provides a complete example of a world model and a bottleneck used in our benchmark. The example demonstrates the persona context, relationships, and available actions that the agent must reason over.

787  
788

## B.1 WORLD MODEL

789

## World Model Example

790  
791  
792  
793  
794  
795

The following JSON structure represents a complete world model instance from our benchmark dataset, illustrating the personalized level of detail and complexity agents must navigate in PROBE.

796  
797  
798  
799  
800  
801  
802  
803  
804  
805  
806  
807  
808  
809

```
{
  "world_model": {
    "persona_id": "connor_smith",
    "persona_full_name": "Connor Smith",
    "persona_occupation": "Financial Services Lead Advisory, PwC UK",
    "persona_about": "A Business graduate with a strong interest in Finance currently working for PwC within the Corporate Finance practice. ACA exam qualified with ICAEW, all first time passes. A Manager in the Financial Services Lead Advisory team within PwC UK. The FSLA team combines deep industry knowledge and transaction experience to advise on all aspects of corporate finance M&A and , through the Portfolio Advisory Group, credit related transactions. The team leverages more than 6,000 PwC people in the U.K. and 60,000 PwC people globally who work day in day out with financial services clients.",
    "relationships": [
      {
        "name": "Emily Patel",
        "type": "manager",
        "department": "Financial Services Lead Advisory",
        "relationship_context": "Direct line manager overseeing Connor's progression from Senior Associate to Manager, providing strategic direction on major M&A deals and regular feedback on client engagement style."
      },
      {
        "name": "James Thornton",
        "type": "colleague",
        "department": "Portfolio Advisory Group",
      }
    ]
  }
}
```

```

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
  "relationship_context": "Collaborate intensively on distressed credit portfolio transactions, often negotiating differing approaches to valuation methodologies but ultimately delivering cohesive client recommendations."
},
{
  "name": "Priya Malhotra",
  "type": "direct_report",
  "department": "Financial Services Lead Advisory",
  "relationship_context": "Recently promoted Senior Associate who Connor is mentoring through her first lead on a mid-market bank acquisition, balancing support with constructive critique."
},
{
  "name": "Olivia Green",
  "type": "client",
  "department": null,
  "relationship_context": "Senior Corporate Development Manager at a challenger bank, relies on Connor's team for buy-side advisory; the relationship is trusted but currently tense due to a delayed regulatory approval."
},
{
  "name": "Michael Zhang",
  "type": "stakeholder",
  "department": "Risk Assurance",
  "relationship_context": "Internal stakeholder who reviews risk elements of Connor's transactions; their differing perspectives on risk appetite have led to constructive debates and enhanced deal structuring."
},
{
  "name": "Sophie Laurent",
  "type": "vendor",
  "department": null,
  "relationship_context": "Relationship manager at a third-party data analytics firm providing due diligence support, with whom Connor negotiates service level agreements and escalates data quality issues."
},
{
  "name": "Rebecca Yates",
  "type": "stakeholder",
  "department": "Compliance",
  "relationship_context": "Works closely with Connor to ensure all deal processes meet FCA regulations, occasionally challenging his team's interpretation of compliance requirements."
},
{
  "name": "Tomás Ortega",
  "type": "client",
  "department": null,
  "relationship_context": "Head of M&A at a European insurance group, Connor manages international communications and project delivery, navigating cultural nuances and tight deadlines."
},
{
  "name": "Grace Lin",
  "type": "mentee",
  "department": "Financial Services Lead Advisory",
  "relationship_context": "Graduate Analyst whom Connor is coaching on financial modeling; their regular sessions have fostered Grace's rapid development, though she sometimes struggles with client-facing confidence."
},
{
  "name": "Andrew Williams",
  "type": "cross_functional_partner",
  "department": "Technology Consulting",
  "relationship_context": "Collaborate on digital transformation due diligence for fintech targets, balancing differing priorities between operational efficiency and deal speed."
},
{
  "name": "Marta Kowalska",
  "type": "vendor",
  "department": null,
  "relationship_context": "Director at a legal advisory firm providing transaction legal due diligence; Connor manages the engagement and ensures alignment on documentation timetables."
},
{
  "name": "Ben Carter",
  "type": "direct_report",
  "department": "Financial Services Lead Advisory",
  "relationship_context": "Associate who handles initial deal screening and supports Connor on market research, recently needing extra guidance due to a challenging workload."
},
{
  "name": "Hannah Robinson",
  "type": "colleague",
  "department": "Valuations",
  "relationship_context": "Works with Connor on valuations for complex asset portfolios; their differing technical approaches often lead to productive, data-driven debates."
},
{
  "name": "Samir Ahmed",
  "type": "stakeholder",
  "department": "Human Capital",
  "relationship_context": "Partners with Connor's team for talent allocation on high-value deals; occasionally tensions arise during peak periods over resource prioritization."
},

```

```

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
{
  "name": "Julia Becker",
  "type": "client",
  "department": null,
  "relationship_context": "Private equity partner who values Connor's candid market assessments, but has recently challenged his team's fee structure on a major divestment mandate."
},
{
  "name": "Freddie White",
  "type": "mentee",
  "department": "Financial Services Lead Advisory",
  "relationship_context": "Early-career team member Connor supports through the ICAEW qualification process, providing both technical guidance and emotional support during exam periods."
},
{
  "name": "Isabelle Dubois",
  "type": "cross_functional_partner",
  "department": "Sustainability & ESG Advisory",
  "relationship_context": "Works with Connor to integrate ESG considerations into financial advisory pitches, sometimes pushing Connor to adapt more progressive frameworks for skeptical clients."
},
"personal_context": {
  "work_style": "Connor operates in a high-pressure, fast-paced environment, balancing multiple M&A transaction pipelines with ongoing client advisory work. He prioritizes structured project management, but frequently adapts to shifting client demands and tight regulatory timelines. He leverages both collaborative teamwork and independent analysis, often working across time zones and balancing strategic oversight with detailed financial diligence.",
  "communication_preferences": [
    "Email for formal updates and transaction documentation",
    "Video calls for deal negotiation and client relationship management",
    "Instant messaging (e.g., Microsoft Teams) for quick internal queries and urgent project coordination",
    "Phone calls for time-sensitive decisions or when clarity is critical",
    "Face-to-face meetings for complex client presentations and team alignment sessions"
  ],
  "current_priorities": [
    "Managing multiple concurrent M&A transactions with overlapping deadlines",
    "Coordinating due diligence efforts across PwC teams and external stakeholders",
    "Ensuring regulatory compliance and risk mitigation within all live deals",
    "Developing junior team members while maintaining project delivery standards",
    "Enhancing client relationships and identifying cross-sell opportunities",
    "Integrating Portfolio Advisory Group insights into standard deal processes",
    "Meeting internal performance and billing targets while navigating resource constraints"
  ],
  "pain_points": [
    "Juggling conflicting deadlines across several high-stakes projects",
    "Difficulty in accessing timely inputs from cross-functional or global teams",
    "Managing client expectations amid rapidly changing financial markets",
    "Keeping up with evolving regulatory requirements and ensuring compliance",
    "Limited time for proactive client development due to reactive workload",
    "Onboarding and mentoring new staff without compromising on project quality"
  ]
},
"available_actions": [
  {
    "id": "conduct_peer_review_of_draft_report",
    "type": "conduct_review",
    "description": "Carry out a peer review of a draft report to ensure quality and compliance standards",
    "constraints": [
      "peer_reviewer_assigned",
      "review_criteria_defined"
    ],
    "params_schema": {
      "required": [
        "document_id",
        "reviewer",
        "review_feedback"
      ]
    }
  },
  {
    "id": "create_briefing_note_on_sector_updates",
    "type": "create_document",
    "description": "Develop a briefing note summarizing key sector updates for internal awareness",
    "constraints": [
      "sector_data_compiled",
      "briefing_template_used"
    ],
    "params_schema": {
      "required": [
        "briefing_date",
        "sector",
        "summary_points"
      ]
    }
  },
  {
    "id": "review_and_approve_time_entries",
    "type": "review_and_approve_time_entries"
  }
]
}

```

```

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

```

```

    "type": "update_task_status",
    "description": "Update the approval status of submitted time entries for the previous month.",
    "constraints": [
        "time_entries_submitted",
        "review_period_open"
    ],
    "params_schema": {
        "required": [
            "timesheet_id",
            "approval_status",
            "review_comments"
        ]
    },
    {
        "id": "finalize_presentation_for_external_workshop",
        "type": "update_document",
        "description": "Make final adjustments to the presentation slides for an upcoming external workshop.",
        "constraints": [
            "slide_content_approved",
            "branding_guidelines_followed"
        ],
        "params_schema": {
            "required": [
                "document_id",
                "sections_to_edit",
                "visual_elements"
            ]
        }
    },
    {
        "id": "initiate_internal_knowledge_share",
        "type": "schedule_meeting",
        "description": "Arrange a knowledge-sharing session for the team to exchange best practices on due diligence processes.",
        "constraints": [
            "subject_matter_experts_available",
            "content_outline_prepared"
        ],
        "params_schema": {
            "required": [
                "attendees",
                "date",
                "time",
                "session_topic"
            ]
        }
    },
    {
        "id": "send_reminder_for_time_allocation_reconciliation",
        "type": "send_email",
        "description": "Send a reminder to the operations team to expedite reconciliation of time allocation data in the finance system.",
        "constraints": [
            "prior_request_sent",
            "pending_reconciliation"
        ],
        "params_schema": {
            "required": [
                "recipients",
                "subject",
                "reminder_message"
            ]
        }
    },
    {
        "id": "initiate_annual_training_enrollment",
        "type": "create_task",
        "description": "Create a task to enroll the team in mandatory annual training sessions.",
        "constraints": [
            "training_schedule_available",
            "team_member_list_current"
        ],
        "params_schema": {
            "required": [
                "training_type",
                "enrollment_deadline",
                "participant_list"
            ]
        }
    },
    {
        "id": "organize_quarterly_team_checkin",
        "type": "schedule_meeting",
        "description": "Schedule a quarterly meeting for the team to discuss ongoing initiatives and operational improvements.",
        "constraints": [
            "team_calendar_availability",
            "meeting_room_availability"
        ],
        "params_schema": {

```

```

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
  "required": [
    "attendees",
    "date",
    "time",
    "agenda"
  ]
},
{
  "id": "submit_request_for_client_feedback",
  "type": "request_approval",
  "description": "Submit a formal request for client feedback on recently delivered project outputs.",
  "constraints": [
    "project_deliverables_completed",
    "client_point_of_contact_confirmed"
  ],
  "params_schema": {
    "required": [
      "client_id",
      "project_id",
      "feedback_request_message"
    ]
  }
},
{
  "id": "initiate_information_request_to_central_finance_team",
  "type": "send_email",
  "description": "Send a follow-up email to the central finance group to request updated reference data required for current project models.",
  "constraints": [
    "previous_request_no_response",
    "project_deadlines_approaching"
  ],
  "params_schema": {
    "required": [
      "recipients",
      "subject",
      "message_body"
    ]
  }
},
{
  "id": "reply_to_team_query_on_policy_update",
  "type": "reply_email",
  "description": "Reply to a team member's email regarding recent policy updates and clarify outstanding questions.",
  "constraints": [
    "policy_documentation_on_hand",
    "clarification_needed"
  ],
  "params_schema": {
    "required": [
      "thread_id",
      "response_content"
    ]
  }
},
{
  "id": "cancel_redundant_calendar_event",
  "type": "cancel_meeting",
  "description": "Cancel an outdated or redundant calendar event to reduce scheduling conflicts.",
  "constraints": [
    "event_no_longer_needed",
    "invitees_notified"
  ],
  "params_schema": {
    "required": [
      "meeting_id",
      "cancellation_reason"
    ]
  }
},
{
  "id": "reschedule_internal_alignment_meeting",
  "type": "reschedule_meeting",
  "description": "Move the internal alignment meeting to accommodate conflicting priorities.",
  "constraints": [
    "attendee_availability_checked",
    "calendar_invite_updated"
  ],
  "params_schema": {
    "required": [
      "meeting_id",
      "new_date",
      "new_time"
    ]
  }
},
{
  "id": "prepare_meeting_agenda_for_upcoming_review",
  "type": "create_meeting_agenda",

```

```

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
  "description": "Draft an agenda for an upcoming review meeting with stakeholders.",
  "constraints": [
    "meeting_objectives_defined",
    "stakeholder_input_collected"
  ],
  "params_schema": {
    "required": [
      "meeting_date",
      "agenda_items",
      "expected_outcomes"
    ]
  }
},
{
  "id": "assign_documentation_task_to_team_member",
  "type": "delegate_task",
  "description": "Delegate the task of documenting process flows to a designated team member.",
  "constraints": [
    "team_member_availability",
    "skill_relevance"
  ],
  "params_schema": {
    "required": [
      "assignee",
      "task_description",
      "due_date"
    ]
  }
},
{
  "id": "request_additional_resources_for_project",
  "type": "create_task",
  "description": "Open a task to formally request extra resources for a high-priority project due to increased workload.",
  "constraints": [
    "resource_justification_prepared",
    "project_timeline_affected"
  ],
  "params_schema": {
    "required": [
      "project_id",
      "resource_type",
      "rationale"
    ]
  }
},
{
  "id": "compile_weekly_market_summary_report",
  "type": "create_document",
  "description": "Prepare a weekly summary document highlighting recent market trends for internal distribution.",
  "constraints": [
    "market_data_access",
    "standard_formatting"
  ],
  "params_schema": {
    "required": [
      "report_date",
      "market_segments",
      "key_findings"
    ]
  }
},
{
  "id": "follow_up_on_pending_client_information",
  "type": "send_slack_message",
  "description": "Send a message to the client liaison to check on the status of outstanding information requests.",
  "constraints": [
    "previous_request_sent",
    "response_delay"
  ],
  "params_schema": {
    "required": [
      "recipient",
      "message_content"
    ]
  }
},
{
  "id": "send_status_update_on_deliverables",
  "type": "send_email",
  "description": "Send an email to project stakeholders with a status update on key deliverables and next steps.",
  "constraints": [
    "stakeholder_list_current",
    "deliverable_status_confirmed"
  ],
  "params_schema": {
    "required": [
      "recipients",
      "subject",
      "body"
    ]
  }
}

```

```

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
    "update_content"
  ]
},
{
  "id": "make_call_to_confirm_external_deadlines",
  "type": "make_phone_call",
  "description": "Place a call to confirm upcoming external deadlines for a strategic initiative",
  "constraints": [
    "contact_information_verified",
    "relevant_documents_prepared"
  ],
  "params_schema": {
    "required": [
      "contact_number",
      "call_objective",
      "call_notes"
    ]
  }
},
{
  "id": "escalate_technical_support_ticket",
  "type": "escalate_to_manager",
  "description": "Escalate an unresolved technical support ticket to the appropriate escalation channel for prioritized handling.",
  "constraints": [
    "ticket_open_exceeds_threshold",
    "business_impact_documented"
  ],
  "params_schema": {
    "required": [
      "ticket_id",
      "escalation_reason",
      "desired_resolution_timeframe"
    ]
  }
},
{
  "id": "update_internal_guidance_document",
  "type": "update_document",
  "description": "Revise internal guidance materials to reflect recent procedural changes.",
  "constraints": [
    "approval_for_edits",
    "current_policy_reviewed"
  ],
  "params_schema": {
    "required": [
      "document_id",
      "sections_to_update",
      "revision_notes"
    ]
  }
},
{
  "id": "share_internal_best_practices_document",
  "type": "share_document",
  "description": "Distribute a document outlining internal best practices to the wider department",
  "constraints": [
    "document_reviewed",
    "distribution_list_confirmed"
  ],
  "params_schema": {
    "required": [
      "document_id",
      "recipients",
      "share_message"
    ]
  }
},
{
  "id": "update_project_milestone_tracker",
  "type": "update_project_plan",
  "description": "Revise the project milestone tracker to reflect recent changes in timelines.",
  "constraints": [
    "latest_project_updates_collected",
    "tracker_accessible"
  ],
  "params_schema": {
    "required": [
      "project_id",
      "milestone_updates",
      "responsible_owners"
    ]
  }
},
{
  "id": "request_access_to_new_analytics_tools",
  "type": "request_access",
  "description": "Submit an access request for recently deployed analytics platforms to support project work."
}

```

```

1134
1135     "constraints": [
1136         "manager_approval_obtained",
1137         "tool_list_reviewed"
1138     ],
1139     "params_schema": {
1140         "required": [
1141             "tool_name",
1142             "user_id",
1143             "business_justification"
1144         ]
1145     },
1146     {
1147         "id": "draft_feedback_on_proposed_project_approach",
1148         "type": "provide_feedback",
1149         "description": "Provide written feedback on the proposed approach for a key project based on available guidance.",
1150         "constraints": [
1151             "guidance_document_accessible",
1152             "recent_project_overview_reviewed"
1153         ],
1154         "params_schema": {
1155             "required": [
1156                 "feedback_recipient",
1157                 "project_id",
1158                 "feedback_content"
1159             ]
1160         }
1161     },
1162     "organizational_structure": {
1163         "company_name": "PwC UK",
1164         "department": "Financial Services Lead Advisory (FSLA)",
1165         "team_size": 16,
1166         "reporting_to": "Director, Financial Services Lead Advisory",
1167         "key_meetings": [
1168             "Weekly FSLA team standup",
1169             "Monday cross-sector M&A pipeline review",
1170             "Bi-weekly Portfolio Advisory Group sync",
1171             "Monthly Financial Services Risk Committee",
1172             "Quarterly Executive Steering Committee",
1173             "Client transaction strategy sessions",
1174             "Regulatory and Compliance update",
1175             "Global FSLA practice call",
1176             "Cross-regional deal origination forum",
1177             "Ad hoc project war room"
1178         ]
1179     },
1180     "context_difficulty": "hard"
1181 }

```

Listing 1: Complete world model example for Connor Smith

### Bottleneck Examples

The following JSON structure represents a complete bottleneck from our benchmark dataset. Bottlenecks are often multifaceted and require information stemming from multiple sources.

```

1173
1174     "bottleneck": {
1175         "description": "A critical data extract from Sophie Laurent's team at DataInsight Analytics, required by the risk-adjusted NPL valuation report (needed during Monday's IC review), was delivered in an incompatible file format (SAS instead of Excel), and your IT support ticket (#PWCUK-90812) to convert the file has been open 3 days without response.",
1176         "evidence_required": [
1177             "document_fb96fa16",
1178             "document_46b3383d",
1179             "document_236c752a",
1180             "document_6ea213cf",
1181             "document_982d62dc"
1182         ],
1183     }

```

Listing 2: Complete bottleneck example for Connor Smith

## C APPENDIX C: DATA GENERATION PROMPTS

This appendix contains all prompt templates used in the PROBE evaluation pipeline for generating synthetic evaluation data. The pipeline consists of five main stages, each with its own set of prompts:

1188 1. **World Model Generation:** Creates comprehensive context from LinkedIn personas  
 1189 2. **Bottleneck Injection:** Generates realistic productivity bottlenecks  
 1190 3. **Checklist Generation:** Creates three-step evaluation checklists  
 1191 4. **True Positive Generation:** Generates corpus items containing evidence  
 1192 5. **Distractor Generation:** Creates plausible but irrelevant corpus items  
 1193

1194  
 1195 Each prompt is designed as a Jinja2 template, allowing dynamic content insertion based on the  
 1196 evaluation context.  
 1197

1198 **C.1 WORLD MODEL GENERATION PROMPTS**  
 1199

1200 The World Model Generator creates comprehensive professional contexts from LinkedIn personas,  
 1201 including relationships, personal context, available actions, and organizational structure.  
 1202

1203 **C.1.1 GENERATE ACTIONS FOR BOTTLENECK**  
 1204

1205 **Usage Context**  
 1206

1207 This prompt is used to generate proactive actions that a persona can take to address specific  
 1208 bottlenecks. It runs after bottlenecks have been identified and creates action items that are  
 1209 contextually appropriate for the persona's role and organization.  
 1210

1211 You are tasked with generating proactive actions `for` a professional based on specific bottlenecks they  
 1212 face.  
 1213  
 1214 PERSONA INFORMATION:  
 1215 - Name: {{ persona.name }}  
 1216 - Occupation: {{ persona.occupation }}  
 1217 - Location: {{ persona.location }}  
 1218 - About: {{ persona.about }}  
 1219  
 1220 ORGANIZATION CONTEXT:  
 1221 - Company: {{ org\_structure.company\_name }}  
 1222 - Department: {{ org\_structure.department }}  
 1223 - Team Size: {{ org\_structure.team\_size }}  
 1224 - Reports To: {{ org\_structure.reporting\_to }}  
 1225  
 1226 BOTTLENECKS TO ADDRESS:  
 1227 `{% for bottleneck in bottlenecks %}`  
 1228 `{% loop.index %}. {{ bottleneck.description %}}`  
 1229 `{% endfor %}`  
 1230  
 1231 DIFFICULTY LEVEL: {{ difficulty }}  
 1232  
 1233 ## CRITICAL REQUIREMENTS:  
 1. Generate exactly {{ num\_actions }} proactive actions total  
 2. \*\*EXACTLY ONE ACTION\*\* should solve each bottleneck - no more, no less  
 3. The remaining actions should be realistic and detailed workplace actions that DON'T solve any of the  
 1234 bottlenecks  
 4. Make it clear which action solves which bottleneck through the action's description and parameters  
 5. \*\*NO NAMED ENTITIES\*\*: Actions must NOT contain specific person names, company names, or proper nouns  
 1235 from the bottlenecks  
 1236  
 1237 ## ACTION CATEGORIES:  
 1238 - `send_email`: Send new emails to individuals or groups  
 1239 - `reply_email`: Reply to existing email threads  
 1240 - `schedule_meeting`: Create new meetings or events  
 1241 - `reschedule_meeting`: Move or modify existing meetings  
 - `cancel_meeting`: Cancel scheduled meetings  
 - `create_task`: Create new tasks or tickets  
 - `delegate_task`: Assign tasks to team members  
 - `update_task_status`: Update progress on existing tasks  
 - `create_document`: Create new documents, reports, or presentations  
 - `update_document`: Edit or revise existing documents  
 - `share_document`: Share documents with stakeholders  
 - `send_slack_message`: Send instant messages via Slack  
 - `make_phone_call`: Initiate phone calls  
 - `request_access`: Request access to systems or resources  
 - `provide_feedback`: Give feedback on work or proposals  
 - `request_approval`: Ask `for` sign-offs or approvals  
 - `escalate_to_manager`: Escalate issues up the chain  
 - `create_meeting_agenda`: Prepare agenda `for` meetings  
 - `conduct_review`: Perform code or document reviews  
 - `update_project_plan`: Modify project timelines or scope

```

1242
1243     OUTPUT FORMAT:
1244     Return a JSON object with an "actions" array. Each action should follow this structure:
1245
1246     {
1247         "actions": [
1248             {
1249                 "id": "unique_action_identifier",
1250                 "type": "action_category",
1251                 "description": "Clear description of what this action does",
1252                 "constraints": ["Array of preconditions or policies this action must respect"],
1253                 "params_schema": {
1254                     "required": ["Array of required parameter names"]
1255                 },
1256                 "solves_bottleneck": null or bottleneck_index (1-based index if this action solves a bottleneck)
1257             }
1258         ]
1259     }
1260
1261     (% if difficulty == "easy" %)
1262     For EASY difficulty:
1263     - Actions that solve bottlenecks should be straightforward and obvious
1264     - Include simple parameters like "recipient", "subject", "content"
1265     - Non-bottleneck actions should be basic routine tasks
1266     (% elif difficulty == "medium" %)
1267     For MEDIUM difficulty:
1268     - Actions that solve bottlenecks should require some thought, ids should avoid using bottleneck keywords
1269     .
1270     - Include parameters like "priority", "stakeholders", "deadline", "approach"
1271     - Non-bottleneck actions should be moderately complex coordination tasks
1272     - All action descriptions should be a bit general, and not mention the bottleneck or its
1273         details in any way
1274     (% elif difficulty == "hard" %)
1275     For HARD difficulty:
1276     - Actions that solve bottlenecks should be subtle and ids should avoid using bottleneck keywords.
1277     - Non-bottleneck actions should be strategic and cross-functional
1278     - All action descriptions should be somewhat general and vague, and not mention the bottleneck or its
1279         details in any way
1280     (% endif %)
1281
1282     EXAMPLE for a bottleneck about "Email to David Kim about security audit findings remains unanswered, and
1283         he does not have the authority to approve the security audit findings":
1284
1285     {
1286         "actions": [
1287             {
1288                 "id": "schedule_team_meeting",
1289                 "type": "schedule_meeting",
1290                 "description": "Schedule a regular team meeting to discuss project updates and coordination.",
1291                 "constraints": ["team_availability", "meeting_room_available"],
1292                 "params_schema": {
1293                     "required": ["attendees", "date", "time", "agenda", "location"]
1294                 },
1295                 "solves_bottleneck": null
1296             },
1297             {
1298                 "id": "update_project_status",
1299                 "type": "update_document",
1300                 "description": "Update project status documentation with current progress and milestones.",
1301                 "constraints": ["document_access", "accurate_information"],
1302                 "params_schema": {
1303                     "required": ["document_id", "status_update", "completion_percentage", "next_steps"]
1304                 },
1305                 "solves_bottleneck": null
1306             },
1307             {
1308                 "id": "send_weekly_report",
1309                 "type": "send_email",
1310                 "description": "Send weekly progress report to stakeholders and team members.",
1311                 "constraints": ["report_data_available", "stakeholder_list_current"],
1312                 "params_schema": {
1313                     "required": ["recipients", "subject", "report_content", "attachments"]
1314                 },
1315                 "solves_bottleneck": null
1316             },
1317             {
1318                 "id": "conduct_code_review",
1319                 "type": "conduct_review",
1320                 "description": "Review code changes submitted by team members for quality and standards compliance
1321                 .",
1322                 "constraints": ["technical_expertise", "time_available"],
1323                 "params_schema": {
1324                     "required": ["pull_request_id", "review_criteria", "feedback_type", "approval_status"]
1325                 },
1326                 "solves_bottleneck": null
1327             },
1328             {
1329                 "id": "escalate_issue",
1330                 "type": "escalate_to_manager",
1331                 "description": "Escalate an important issue to management for resolution.",
1332                 "constraints": ["multiple_attempts_made", "deadline_approaching", "requires_higher_authority"],
1333                 "params_schema": {
1334                     "required": ["original_recipient", "escalation_recipient", "urgency_level", "business_impact", "attempted_contacts"]
1335                 }
1336             }
1337         ]
1338     }

```

```

1296
1297     },
1298     "solves_bottleneck": 1
1299 },
1300 {
1301     "id": "delegate_routine_task",
1302     "type": "delegate_task",
1303     "description": "Delegate routine tasks to appropriate team members to optimize workload distribution.",
1304     "constraints": ["team_capacity", "skill_match"],
1305     "params_schema": {
1306         "required": ["assignee", "task_description", "deadline", "priority_level"]
1307     },
1308     "solves_bottleneck": null
1309 }
1310 ]
1311
1312 Ensure that:
1313 1. Each bottleneck has EXACTLY ONE action that can solve it, all other actions should certainly not
1314     solve the bottleneck
1315 2. The action description of the correct action should address the bottleneck, but without mentioning
1316     the bottleneck, keywords, or its details in any way.
1317 3. Other actions are detailed and realistic but explicitly DON'T solve any of the listed bottlenecks
1318 4. Total number of actions equals {{ num_actions }}
1319 5. **CRITICAL**: The actions should not include any mention of the people or situations involved in the
1320     bottleneck

```

Listing 3: generate\_actions\_for\_bottleneck.j2

### C.1.2 GENERATE ORGANIZATION STRUCTURE

#### Usage Context

This prompt generates the organizational context around a persona, including company structure, team composition, reporting lines, and key processes. It's one of the first prompts executed to establish the professional environment.

```

1323
1324 Generate a realistic organizational structure for the following professional:
1325
1326 Name: {{ persona.name }}
1327 Occupation: {{ persona.occupation }}
1328 Location: {{ persona.location }}
1329 About: {{ persona.about }}
1330
1331 Create a detailed organizational context that includes:
1332 1. Company name and type
1333 2. Department structure
1334 3. Team composition
1335 4. Reporting relationships
1336 5. Key processes and workflows
1337
1338 The organization should be realistic for someone in their role and location.
1339
1340 Provide your response as a JSON object with this structure:
1341 {
1342     "company_name": "Name of the company",
1343     "company_type": "Type of company (startup, enterprise, etc.)",
1344     "department": "Their department name",
1345     "team_size": 5,
1346     "direct_reports": 2,
1347     "reporting_to": "Title of their manager",
1348     "key_processes": ["Process 1", "Process 2"],
1349     "typical_meetings": ["Meeting type 1", "Meeting type 2"]
1350 }

```

Listing 4: generate\_org\_structure.j2

### C.1.3 GENERATE PERSONAL CONTEXT

#### Usage Context

This prompt creates personal work context for the persona, including their work style, preferences, current goals, constraints, and tools they use. This adds depth to the persona beyond their LinkedIn profile.

```

1350
1351 Generate personal work context for the following professional:
1352
1353 PERSONA:
1354 - Name: {{ persona.name }}
1355 - Occupation: {{ persona.occupation }}
1356 - About: {{ persona.about }}
1357
1358 DIFFICULTY: {{ difficulty }}
1359
1360 Create realistic personal context including:
1361 1. Work style and preferences
1362 2. Current goals and priorities
1363 3. Time constraints and challenges
1364 4. Communication preferences
1365 5. Tools and systems they use
1366
1367 {%
1368   if difficulty == "easy" %
1369   Keep the context simple with straightforward preferences and minimal constraints.
1370   {%
1371     elif difficulty == "medium" %
1372     Include moderate complexity with some competing priorities and constraints.
1373     {%
1374       elif difficulty == "hard" %
1375       Create complex context with multiple competing priorities, significant constraints, and nuanced
1376       preferences.
1377     {%
1378       endif %
1379     {%
1380       Provide your response as a JSON object with this structure:
1381       {
1382         "work_style": "Description of how they prefer to work",
1383         "current_goals": ["Goal 1", "Goal 2", "Goal 3"],
1384         "constraints": ["Time constraint", "Resource constraint"],
1385         "communication_preferences": "How they prefer to communicate",
1386         "tools_used": ["Tool 1", "Tool 2"],
1387         "peak_productivity_time": "When they work best",
1388         "biggest_challenges": ["Challenge 1", "Challenge 2"]
1389       }
1390     {%
1391   {%
1392     endif %
1393   {%
1394     For each relationship, provide:
1395     1. The person's full name
1396     2. Their role/title
1397     3. Type of relationship (colleague, client, manager, stakeholder, collaborator)
1398     4. How they interact with {{ persona.name }}
1399     5. Current status of the relationship
1400
1401     Provide your response as a JSON object with this structure:
1402     {
1403       "relationships": [
1404         {
1405           "name": "Full name",
1406           "role": "Their job title",
1407           "type": "colleague|client|manager|stakeholder|collaborator",
1408           "interaction": "Description of how they work together",
1409           "status": "Current state of the relationship",
1410           "frequency": "How often they interact"
1411         }
1412       ]
1413     }
1414   {%
1415   {%
1416     endif %
1417   {%
1418     {%
1419       endif %
1420     {%
1421       {%
1422         endif %
1423       {%
1424         {%
1425           endif %
1426         {%
1427           {%
1428             endif %
1429           {%
1430             {%
1431               endif %
1432             {%
1433               {%
1434                 endif %
1435               {%
1436                 {%
1437                   endif %
1438                 {%
1439                   {%
1440                     endif %
1441                   {%
1442                     {%
1443                       endif %
1444                     {%
1445                       {%
1446                         endif %
1447                       {%
1448                         {%
1449                           endif %
1450                         {%
1451                           {%
1452                             endif %
1453                           {%
1454                           {%
1455                             endif %
1456                           {%
1457                           {%
1458                             endif %
1459                           {%
1460                           {%
1461                             endif %
1462                           {%
1463                           {%
1464                             endif %
1465                           {%
1466                           {%
1467                             endif %
1468                           {%
1469                           {%
1470                             endif %
1471                           {%
1472                           {%
1473                             endif %
1474                           {%
1475                           {%
1476                             endif %
1477                           {%
1478                           {%
1479                             endif %
1480                           {%
1481                           {%
1482                             endif %
1483                           {%
1484                           {%
1485                             endif %
1486                           {%
1487                           {%
1488                             endif %
1489                           {%
1490                           {%
1491                             endif %
1492                           {%
1493                           {%
1494                             endif %
1495                           {%
1496                           {%
1497                             endif %
1498                           {%
1499                           {%
1500                             endif %
1501                           {%
1502                           {%
1503                             endif %
1504                           {%
1505                           {%
1506                             endif %
1507                           {%
1508                           {%
1509                             endif %
1510                           {%
1511                           {%
1512                             endif %
1513                           {%
1514                           {%
1515                             endif %
1516                           {%
1517                           {%
1518                             endif %
1519                           {%
1520                           {%
1521                             endif %
1522                           {%
1523                           {%
1524                             endif %
1525                           {%
1526                           {%
1527                             endif %
1528                           {%
1529                           {%
1530                             endif %
1531                           {%
1532                           {%
1533                             endif %
1534                           {%
1535                           {%
1536                             endif %
1537                           {%
1538                           {%
1539                             endif %
1540                           {%
1541                           {%
1542                             endif %
1543                           {%
1544                           {%
1545                             endif %
1546                           {%
1547                           {%
1548                             endif %
1549                           {%
1550                           {%
1551                             endif %
1552                           {%
1553                           {%
1554                             endif %
1555                           {%
1556                           {%
1557                             endif %
1558                           {%
1559                           {%
1560                             endif %
1561                           {%
1562                           {%
1563                             endif %
1564                           {%
1565                           {%
1566                             endif %
1567                           {%
1568                           {%
1569                             endif %
1570                           {%
1571                           {%
1572                             endif %
1573                           {%
1574                           {%
1575                             endif %
1576                           {%
1577                           {%
1578                             endif %
1579                           {%
1580                           {%
1581                             endif %
1582                           {%
1583                           {%
1584                             endif %
1585                           {%
1586                           {%
1587                             endif %
1588                           {%
1589                           {%
1590                             endif %
1591                           {%
1592                           {%
1593                             endif %
1594                           {%
1595                           {%
1596                             endif %
1597                           {%
1598                           {%
1599                             endif %
1600                           {%
1601                           {%
1602                             endif %
1603                           {%
1604                           {%
1605                             endif %
1606                           {%
1607                           {%
1608                             endif %
1609                           {%
1610                           {%
1611                             endif %
1612                           {%
1613                           {%
1614                             endif %
1615                           {%
1616                           {%
1617                             endif %
1618                           {%
1619                           {%
1620                             endif %
1621                           {%
1622                           {%
1623                             endif %
1624                           {%
1625                           {%
1626                             endif %
1627                           {%
1628                           {%
1629                             endif %
1630                           {%
1631                           {%
1632                             endif %
1633                           {%
1634                           {%
1635                             endif %
1636                           {%
1637                           {%
1638                             endif %
1639                           {%
1640                           {%
1641                             endif %
1642                           {%
1643                           {%
1644                             endif %
1645                           {%
1646                           {%
1647                             endif %
1648                           {%
1649                           {%
1650                             endif %
1651                           {%
1652                           {%
1653                             endif %
1654                           {%
1655                           {%
1656                             endif %
1657                           {%
1658                           {%
1659                             endif %
1660                           {%
1661                           {%
1662                             endif %
1663                           {%
1664                           {%
1665                             endif %
1666                           {%
1667                           {%
1668                             endif %
1669                           {%
1670                           {%
1671                             endif %
1672                           {%
1673                           {%
1674                             endif %
1675                           {%
1676                           {%
1677                             endif %
1678                           {%
1679                           {%
1680                             endif %
1681                           {%
1682                           {%
1683                             endif %
1684                           {%
1685                           {%
1686                             endif %
1687                           {%
1688                           {%
1689                             endif %
1690                           {%
1691                           {%
1692                             endif %
1693                           {%
1694                           {%
1695                             endif %
1696                           {%
1697                           {%
1698                             endif %
1699                           {%
1700                           {%
1701                             endif %
1702                           {%
1703                           {%
1704                             endif %
1705                           {%
1706                           {%
1707                             endif %
1708                           {%
1709                           {%
1710                             endif %
1711                           {%
1712                           {%
1713                             endif %
1714                           {%
1715                           {%
1716                             endif %
1717                           {%
1718                           {%
1719                             endif %
1720                           {%
1721                           {%
1722                             endif %
1723                           {%
1724                           {%
1725                             endif %
1726                           {%
1727                           {%
1728                             endif %
1729                           {%
1730                           {%
1731                             endif %
1732                           {%
1733                           {%
1734                             endif %
1735                           {%
1736                           {%
1737                             endif %
1738                           {%
1739                           {%
1740                             endif %
1741                           {%
1742                           {%
1743                             endif %
1744                           {%
1745                           {%
1746                             endif %
1747                           {%
1748                           {%
1749                             endif %
1750                           {%
1751                           {%
1752                             endif %
1753                           {%
1754                           {%
1755                             endif %
1756                           {%
1757                           {%
1758                             endif %
1759                           {%
1760                           {%
1761                             endif %
1762                           {%
1763                           {%
1764                             endif %
1765                           {%
1766                           {%
1767                             endif %
1768                           {%
1769                           {%
1770                             endif %
1771                           {%
1772                           {%
1773                             endif %
1774                           {%
1775                           {%
1776                             endif %
1777                           {%
1778                           {%
1779                             endif %
1780                           {%
1781                           {%
1782                             endif %
1783                           {%
1784                           {%
1785                             endif %
1786                           {%
1787                           {%
1788                             endif %
1789                           {%
1790                           {%
1791                             endif %
1792                           {%
1793                           {%
1794                             endif %
1795                           {%
1796                           {%
1797                             endif %
1798                           {%
1799                           {%
1800                             endif %
1801                           {%
1802                           {%
1803                             endif %
1804                           {%
1805                           {%
1806                             endif %
1807                           {%
1808                           {%
1809                             endif %
1810                           {%
1811                           {%
1812                             endif %
1813                           {%
1814                           {%
1815                             endif %
1816                           {%
1817                           {%
1818                             endif %
1819                           {%
1820                           {%
1821                             endif %
1822                           {%
1823                           {%
1824                             endif %
1825                           {%
1826                           {%
1827                             endif %
1828                           {%
1829                           {%
1830                             endif %
1831                           {%
1832                           {%
1833                             endif %
1834                           {%
1835                           {%
1836                             endif %
1837                           {%
1838                           {%
1839                             endif %
1840                           {%
1841                           {%
1842                             endif %
1843                           {%
1844                           {%
1845                             endif %
1846                           {%
1847                           {%
1848                             endif %
1849                           {%
1850                           {%
1851                             endif %
1852                           {%
1853                           {%
1854                             endif %
1855                           {%
1856                           {%
1857                             endif %
1858                           {%
1859                           {%
1860                             endif %
1861                           {%
1862                           {%
1863                             endif %
1864                           {%
1865                           {%
1866                             endif %
1867                           {%
1868                           {%
1869                             endif %
1870                           {%
1871                           {%
1872                             endif %
1873                           {%
1874                           {%
1875                             endif %
1876                           {%
1877                           {%
1878                             endif %
1879                           {%
1880                           {%
1881                             endif %
1882                           {%
1883                           {%
1884                             endif %
1885                           {%
1886                           {%
1887                             endif %
1888                           {%
1889                           {%
1890                             endif %
1891                           {%
1892                           {%
1893                             endif %
1894                           {%
1895                           {%
1896                             endif %
1897                           {%
1898                           {%
1899                             endif %
1900                           {%
1901                           {%
1902                             endif %
1903                           {%
1904                           {%
1905                             endif %
1906                           {%
1907                           {%
1908                             endif %
1909                           {%
1910                           {%
1911                             endif %
1912                           {%
1913                           {%
1914                             endif %
1915                           {%
1916                           {%
1917                             endif %
1918                           {%
1919                           {%
1920                             endif %
1921                           {%
1922                           {%
1923                             endif %
1924                           {%
1925                           {%
1926                             endif %
1927                           {%
1928                           {%
1929                             endif %
1930                           {%
1931                           {%
1932                             endif %
1933                           {%
1934                           {%
1935                             endif %
1936                           {%
1937                           {%
1938                             endif %
1939                           {%
1940                           {%
1941                             endif %
1942                           {%
1943                           {%
1944                             endif %
1945                           {%
1946                           {%
1947                             endif %
1948                           {%
1949                           {%
1950                             endif %
1951                           {%
1952                           {%
1953                             endif %
1954                           {%
1955                           {%
1956                             endif %
1957                           {%
1958                           {%
1959                             endif %
1960                           {%
1961                           {%
1962                             endif %
1963                           {%
1964                           {%
1965                             endif %
1966                           {%
1967                           {%
1968                             endif %
1969                           {%
1970                           {%
1971                             endif %
1972                           {%
1973                           {%
1974                             endif %
1975                           {%
1976                           {%
1977                             endif %
1978                           {%
1979                           {%
1980                             endif %
1981                           {%
1982                           {%
1983                             endif %
1984                           {%
1985                           {%
1986                             endif %
1987                           {%
1988                           {%
1989                             endif %
1990                           {%
1991                           {%
1992                             endif %
1993                           {%
1994                           {%
1995                             endif %
1996                           {%
1997                           {%
1998                             endif %
1999                           {%
2000                           {%
2001                             endif %
2002                           {%
2003                           {%
2004                             endif %
2005                           {%
2006                           {%
2007                             endif %
2008                           {%
2009                           {%
2010                             endif %
2011                           {%
2012                           {%
2013                             endif %
2014                           {%
2015                           {%
2016                             endif %
2017                           {%
2018                           {%
2019                             endif %
2020                           {%
2021                           {%
2022                             endif %
2023                           {%
2024                           {%
2025                             endif %
2026                           {%
2027                           {%
2028                             endif %
2029                           {%
2030                           {%
2031                             endif %
2032                           {%
2033                           {%
2034                             endif %
2035                           {%
2036                           {%
2037                             endif %
2038                           {%
2039                           {%
2040                             endif %
2041                           {%
2042                           {%
2043                             endif %
2044                           {%
2045                           {%
2046                             endif %
2047                           {%
2048                           {%
2049                             endif %
2050                           {%
2051                           {%
2052                             endif %
2053                           {%
2054                           {%
2055                             endif %
2056                           {%
2057                           {%
2058                             endif %
2059                           {%
2060                           {%
2061                             endif %
2062                           {%
2063                           {%
2064                             endif %
2065                           {%
2066                           {%
2067                             endif %
2068                           {%
2069                           {%
2070                             endif %
2071                           {%
2072                           {%
2073                             endif %
2074                           {%
2075                           {%
2076                             endif %
2077                           {%
2078                           {%
2079                             endif %
2080                           {%
2081                           {%
2082                             endif %
2083                           {%
2084                           {%
2085                             endif %
2086                           {%
2087                           {%
2088                             endif %
2089                           {%
2090                           {%
2091                             endif %
2092                           {%
2093                           {%
2094                             endif %
2095                           {%
2096                           {%
2097                             endif %
2098                           {%
2099                           {%
2100                             endif %
2101                           {%
2102                           {%
2103                             endif %
2104                           {%
2105                           {%
2106                             endif %
2107                           {%
2108                           {%
2109                             endif %
2110                           {%
2111                           {%
2112                             endif %
2113                           {%
2114                           {%
2115                             endif %
2116                           {%
2117                           {%
2118                             endif %
2119                           {%
2120                           {%
2121                             endif %
2122                           {%
2123                           {%
2124                             endif %
2125                           {%
2126                           {%
2127                             endif %
2128                           {%
2129                           {%
2130                             endif %
2131                           {%
2132                           {%
2133                             endif %
2134                           {%
2135                           {%
2136                             endif %
2137                           {%
2138                           {%
2139                             endif %
2140                           {%
2141                           {%
2142                             endif %
2143                           {%
2144                           {%
2145                             endif %
2146                           {%
2147                           {%
2148                             endif %
2149                           {%
2150                           {%
2151                             endif %
2152                           {%
2153                           {%
2154                             endif %
2155                           {%
2156                           {%
2157                             endif %
2158                           {%
2159                           {%
2160                             endif %
2161                           {%
2162                           {%
2163                             endif %
2164                           {%
2165                           {%
2166                             endif %
2167                           {%
2168                           {%
2169                             endif %
2170                           {%
2171                           {%
2172                             endif %
2173                           {%
2174                           {%
2175                             endif %
2176                           {%
2177                           {%
2178                             endif %
2179                           {%
2180                           {%
2181                             endif %
2182                           {%
2183                           {%
2184                             endif %
2185                           {%
2186                           {%
2187                             endif %
2188                           {%
2189                           {%
2190                             endif %
2191                           {%
2192                           {%
2193                             endif %
2194                           {%
2195                           {%
2196                             endif %
2197                           {%
2198                           {%
2199                             endif %
2200                           {%
2201                           {%
2202                             endif %
2203                           {%
2204                           {%
2205                             endif %
2206                           {%
2207                           {%
2208                             endif %
2209                           {%
2210                           {%
2211                             endif %
2212                           {%
2213                           {%
2214                             endif %
2215                           {%
2216                           {%
2217                             endif %
2218                           {%
2219                           {%
2220                             endif %
2221                           {%
2222                           {%
2223                             endif %
2224                           {%
2225                           {%
2226                             endif %
2227                           {%
2228                           {%
2229                             endif %
2230                           {%
2231                           {%
2232                             endif %
2233                           {%
2234                           {%
2235                             endif %
2236                           {%
2237                           {%
2238                             endif %
2239                           {%
2240                           {%
2241                             endif %
2242                           {%
2243                           {%
2244                             endif %
2245                           {%
2246                           {%
2247                             endif %
2248                           {%
2249                           {%
2250                             endif %
2251                           {%
2252                           {%
2253                             endif %
2254                           {%
2255                           {%
2256                             endif %
2257                           {%
2258                           {%
2259                             endif %
2260                           {%
2261                           {%
2262                             endif %
2263                           {%
2264                           {%
2265                             endif %
2266                           {%
2267                           {%
2268                             endif %
2269                           {%
2270                           {%
2271                             endif %
2272                           {%
2273                           {%
2274                             endif %
2275                           {%
2276                           {%
2277                             endif %
2278                           {%
2279                           {%
2280                             endif %
2281                           {%
2282                           {%
2283                             endif %
2284                           {%
2285                           {%
2286                             endif %
2287                           {%
2288                           {%
2289                             endif %
2290                           {%
2291                           {%
2292                             endif %
2293                           {%
2294                           {%
2295                             endif %
2296                           {%
2297                           {%
2298                             endif %
2299                           {%
2300                           {%
2301                             endif %
2302                           {%
2303                           {%
2304                             endif %
2305                           {%
2306                           {%
2307                             endif %
2308                           {%
2309                           {%
2310                             endif %
2311                           {%
2312                           {%
2313                             endif %
2314                           {%
2315                           {%
2316                             endif %
2317                           {%
2318                           {%
2319                             endif %
2320                           {%
2321                           {%
2322                             endif %
2323                           {%
2324                           {%
2325                             endif %
2326                           {%
2327                           {%
2328                             endif %
2329                           {%
2330                           {%
2331                             endif %
2332                           {%
2333                           {%
2334                             endif %
2335                           {%
2336                           {%
2337                             endif %
2338                           {%
2339                           {%
2340                             endif %
2341                           {%
2342                           {%
2343                             endif %
2344                           {%
2345                           {%
2346                             endif %
2347                           {%
2348                           {%
2349                             endif %
2350                           {%
2351                           {%
2352                             endif %
2353                           {%
2354                           {%
2355                             endif %
2356                           {%
2357                           {%
2358                             endif %
2359                           {%
2360                           {%
2361                             endif %
2362                           {%
2363                           {%
2364                             endif %
2365                           {%
2366                           {%
2367                             endif %
2368                           {%
2369                           {%
2370                             endif %
2371                           {%
2372                           {%
2373                             endif %
2374                           {%
2375                           {%
2376                             endif %
2377                           {%
2378                           {%
2379                             endif %
2380                           {%
2381                           {%
2382                             endif %
2383                           {%
2384                           {%
2385                             endif %
2386                           {%
2387                           {%
2388                             endif %
2389                           {%
2390                           {%
2391                             endif %
2392                           {%
2393                           {%
2394                             endif %
2395                           {%
2396                           {%
2397                             endif %
2398                           {%
2399                           {%
2400                             endif %
2401                           {%
2402                           {%
2403                             endif %
2404                           {%
2405                           {%
2406                             endif %
2407                           {%
2408                           {%
2409                             endif %
2410                           {%
2411                           {%
2412                             endif %
2413                           {%
2414                           {%
2415                             endif %
2416                           {%
2417                           {%
2418                             endif %
2419                           {%
2420                           {%
2421                             endif %
2422                           {%
2423                           {%
2424                             endif %
2425                           {%
2426                           {%
2427                             endif %
2428                           {%
2429                           {%
2430                             endif %
2431                           {%
2432                           {%
2433                             endif %
2434                           {%
2435                           {%
2436                             endif %
2437                           {%
2438                           {%
2439                             endif %
2440                           {%
2441                           {%
2442                             endif %
2443                           {%
2444                           {%
2445                             endif %
2446                           {%
2447                           {%
2448                             endif %
2449                           {%
2450                           {%
2451                             endif %
2452                           {%
2453                           {%
2454                             endif %
2455                           {%
2456                           {%
2457                             endif %
2458                           {%
2459                           {%
2460                             endif %
2461                           {%
2462                           {%
2463                             endif %
2464                           {%
2465                           {%
2466                             endif %
2467                           {%
2468                           {%
2469                             endif %
2470                           {%
2471                           {%
2472                             endif %
2473                           {%
2474                           {%
2475                             endif %
2476                           {%
2477                           {%
2478                             endif %
2479                           {%
2480                           {%
2481                             endif %
2482                           {%
2483                           {%
2484                             endif %
2485                           {%
2486                           {%
2487                             endif %
2488                           {%
2489                           {%
2490                             endif %
2491                           {%
2492                           {%
2493                             endif %
2494                           {%
2495                           {%
2496                             endif %
2497                           {%
2498                           {%
2499                             endif %
2500                           {%
2501                           {%
2502                             endif %
2503                           {%
2504                           {%
2505                             endif %
2506                           {%
2507                           {%
2508                             endif %
2509                           {%
2510                           {%
2511                             endif %
2512                           {%
2513                           {%
2514                             endif %
2515                           {%
2516                           {%
2517                             endif %
2518                           {%
2519                           {%
2520                             endif %
2521                           {%
2522                           {%
2523                             endif %
2524                           {%
2525                           {%
2526                             endif %
2527                           {%
2528                           {%
2529                             endif %
2530                           {%
2531                           {%
2532                             endif %
2533                           {%
2534                           {%
2535                             endif %
2536                           {%
2537                           {%
2538                             endif %
2539                           {%
2540                           {%
2541                             endif %
2542                           {%
2543                           {%
2544                             endif %
2545                           {%
2546                           {%
2547                             endif %
2548                           {%
2549                           {%
2550                             endif %
2551                           {%
2552                           {%
2553                             endif %
2554                           {%
2555                           {%
2556                             endif %
2557                           {%
2558                           {%
2559                             endif %
2560                           {%
2561                           {%
2562                             endif %
2563                           {%
2564                           {%
2565                             endif %
2566                           {%
2567                           {%
2568                             endif %
2569                           {%
2570                           {%
2571                             endif %
2572                           {%
2573                           {%
2574                             endif %
2575                           {%
2576                           {%
2577                             endif %
2578                           {%
2579                           {%
2580                             endif %
2581                           {%
2582                           {%
2583                             endif %
2584                           {%
2585                           {%
2586                             endif %
2
```

1404

1405

1406

1407

1408

1409

1410

## C.2 BOTTLENECK INJECTION PROMPTS

1411

1412

1413

The Bottleneck Injector creates realistic productivity bottlenecks that can be addressed by the persona's available actions.

1414

1415

1416

## C.2.1 GENERATE INDIVIDUAL BOTTLENECK

1417

1418

## Usage Context

1419

1420

1421

1422

1423

This prompt generates a single, highly specific bottleneck for a persona. It's called multiple times to create a set of bottlenecks, each focusing on a different aspect of the persona's work challenges.

1424

1425

1426

1427

```
You are creating a SINGLE, highly specific productivity bottleneck for {{ persona_name }}.
```

## CONTEXT:

- Occupation: {{ persona\_occupation }}
- About: {{ persona\_about }}
- Difficulty: {{ difficulty }}

## ORGANIZATION:

- Company: {{ org\_structure.company\_name }}
- Department: {{ org\_structure.department }}
- Team Size: {{ org\_structure.team\_size }}
- Reports To: {{ org\_structure.reporting\_to }}

## KEY RELATIONSHIPS:

```
{% for rel in relationships[:5] %}
- {{ rel.name }} ({{ rel.role }}): {{ rel.interaction }}
{%- endfor %}
```

## PERSONAL CONTEXT:

- Work Style: {{ personal\_context.work\_style }}
- Current Goals: {{ personal\_context.current\_goals[:3] | join(', ') }}
- Constraints: {{ personal\_context.constraints | join(', ') }}

```
BOTTLENECK #{{ bottleneck_index }}
```

## Create ONE specific bottleneck that:

1. References REAL NAMES from the relationships
2. Mentions SPECIFIC documents, meetings, or deadlines
3. Has a clear timeline or urgency
4. Can be discovered through search/investigation
5. Is solvable through proactive action

```
{% if difficulty == "easy" %}
```

Make it straightforward with clear cause and solution.

```
{% elif difficulty == "medium" %}
```

Include some complexity and multiple stakeholders.

```
{% elif difficulty == "hard" %}
```

Make it complex with competing priorities and hidden dependencies.

```
{%- endif %}
```

The bottleneck should be 2-3 sentences maximum and extremely specific.

## Example format:

```
"The Q3 product roadmap review with Sarah Chen is scheduled for next Tuesday, but the feature prioritization matrix she requested hasn't been updated since July because the engineering estimates from Michael Park's team are still pending in JIRA tickets ENG-4521 through ENG-4525."
```

Generate a single bottleneck description:

1455

1456

1457

## Listing 7: generate\_bottleneck.j2

1458 C.2.2 GENERATE BOTTLENECKS BATCH

1459

1460

1461

**Usage Context**

1462

1463

1464

1465

1466

1467

1468

1469

1470

1471

1472

1473

1474

1475

1476

1477

1478

1479

1480

1481

1482

1483

1484

1485

1486

1487

1488

1489

1490

1491

1492

1493

1494

1495

1496

1497

1498

1499

1500

1501

1502

1503

1504

1505

1506

1507

1508

1509

1510

1511

```
You are creating {{ num_bottlenecks }} highly specific productivity bottlenecks for {{ persona_name }}.
```

**CONTEXT:**

- Occupation: {{ persona\_occupation }}
- About: {{ persona\_about }}
- Difficulty: {{ difficulty }}

**ORGANIZATION:**

- Company: {{ org\_structure.company\_name }}
- Department: {{ org\_structure.department }}
- Team Size: {{ org\_structure.team\_size }}

**KEY RELATIONSHIPS:**

```
{% for rel in relationships %}
- {{ rel.name }} ({{ rel.role }}): {{ rel.interaction }}
{% endfor %}
```

**PERSONAL CONTEXT:**

- Work Style: {{ personal\_context.work\_style }}
- Current Goals: {{ personal\_context.current\_goals | join(', ' ) }}
- Constraints: {{ personal\_context.constraints | join(', ' ) }}

Generate {{ num\_bottlenecks }} DIFFERENT bottlenecks that:

1. Each references REAL NAMES from the relationships
2. Mentions SPECIFIC artifacts (documents, meetings, systems)
3. Has clear urgency or timeline
4. Can be discovered through search
5. Is solvable through action

**ENSURE VARIETY:**

- Different types of problems (delays, missing info, conflicts, etc.)
- Different people involved
- Different urgency levels
- Different solutions needed

```
{% if difficulty == "easy" %}
```

Make them straightforward with clear causes.

```
{% elif difficulty == "medium" %}
```

Include moderate complexity.

```
{% elif difficulty == "hard" %}
```

Make them complex with hidden dependencies.

```
{% endif %}
```

Provide your response as a JSON object:

```
{
  "bottlenecks": [
    {
      "description": "Specific 2-3 sentence bottleneck",
      "primary_person": "Main person involved",
      "urgency": "high|medium|low",
      "type": "delay|missing_info|conflict|approval|resource|coordination"
    }
  ]
}
```

Listing 8: generate\_bottlenecks\_batch.j2

**C.3 CHECKLIST GENERATION PROMPTS**

The Checklist Generator creates three-step evaluation checklists that test an agent's ability to complete the proactive workflow.

1512 C.3.1 THREE-STEP CHECKLIST  
15131514 Usage Context  
15151516 This prompt generates the core three-step checklist (Search àžš Identification àžš Task Selection)  
1517 for evaluating agent performance on a specific bottleneck. We note that these steps need  
1518 not happen concurrently: we only perform evaluation on the final output.  
15191520  
1521 Generate a three-step checklist **for** addressing the following bottleneck:  
1522  
1523 BOTTLENECK:  
1524 {{ bottleneck.description }}  
1525  
1526 WORLD MODEL CONTEXT:  
1527 - Persona: {{ world\_model.persona\_full\_name }} ({{ world\_model.persona\_occupation }})  
1528 - Company: {{ world\_model.organizational\_structure.company\_name }}  
1529 - Difficulty: {{ difficulty }}  
1530  
1531 KEY RELATIONSHIPS:  
1532 {  
1533 % for rel in world\_model.relationships[:5] %}  
1534 - {{ rel.name }} ({{ rel.role }}): {{ rel.interaction }}  
1535 {  
1536 % endfor %}  
1537  
1538 AVAILABLE ACTIONS:  
1539 {  
1540 % for action in available\_actions[:8] %}  
1541 - {{ action.action\_type }}: {{ action.name }}  
1542 {  
1543 % endfor %}  
1544  
1545 Create a three-step checklist with:  
1546  
1547 STEP 1 - SEARCH: What specific information should be searched **for**?  
1548 - Include 3-5 specific search queries or data sources  
1549 - Reference actual names, documents, or systems from the bottleneck  
1550 - Mix of different search types (emails, documents, calendar, etc.)  
1551  
1552 STEP 2 - IDENTIFICATION: What key insights should be identified?  
1553 - 2-3 specific findings that reveal the root cause  
1554 - Reference actual evidence that would be found  
1555 - Clear connection to the bottleneck  
1556  
1557 STEP 3 - TASK SELECTION: What action should be taken?  
1558 - Select from available actions  
1559 - Include specific parameters (who, what, when)  
1560 - Clear resolution to the bottleneck  
1561  
1562 Provide your response as a JSON object:  
1563 {  
1564 "search\_step": {  
1565 "description": "What to search **for** and why",  
1566 "specific\_queries": [  
1567 "Query 1 with actual names/docs",  
1568 "Query 2 with specific terms",  
1569 "Query 3 with system references"  
1570 ],  
1571 "expected\_sources": ["email", "calendar", "documents"]  
1572 },  
1573 "identification\_step": {  
1574 "description": "What insights to identify",  
1575 "key\_findings": [  
1576 "Specific finding 1",  
1577 "Specific finding 2"  
1578 ],  
1579 "root\_cause": "The underlying issue"  
1580 },  
1581 "task\_selection\_step": {  
1582 "action\_type": "One of the available action types",  
1583 "description": "Specific action to take",  
1584 "parameters": {  
1585 "participants": ["Names"],  
1586 "timeline": "When",  
1587 "deliverables": "What"  
1588 }  
1589 }  
1590 }1560 Listing 9: three\_step\_checklist.j2  
1561  
15621563 C.4 TRUE POSITIVE GENERATION PROMPTS  
15641565 These prompts generate corpus items that contain evidence of bottlenecks, serving as the "ground  
1566 truth" that agents should find.

1566  
1567

## C.4.1 PLAN EVIDENCE DISTRIBUTION

1568  
1569

## Usage Context

1570  
1571  
1572  
1573

This prompt plans how evidence for a bottleneck will be distributed across multiple corpus items. It ensures comprehensive coverage while avoiding contamination from other bottlenecks.

1574  
1575

You are planning how to distribute evidence `for` a bottleneck across multiple documents.

1576  
1577

BOTTLENECK TO ADDRESS:  
`{}{{bottleneck.description}}`

1578  
1579

WORLD MODEL CONTEXT:

- Persona: `{}{{world_model.persona_full_name}}` `{}{{world_model.persona_occupation}}`
- Company: `{}{{world_model.organizational_structure.company_name}}`

1580  
1581  
1582

KEY RELATIONSHIPS:

```
{% for rel in world_model.relationships[:5] %}
- {{rel.name}} ({{rel.role}})
{% endfor %}
```

1583  
1584  
1585

AVAILABLE DOCUMENT TYPES:

- Email (conversations, requests, updates)
- Calendar (meetings, deadlines, events)
- Document (reports, plans, specifications)

1586  
1587  
1588

OTHER BOTTLENECKS TO AVOID:

```
{% for other in other_bottlenecks %}
- {{other}}
{% endfor %}
```

1589  
1590  
1591

Plan how to distribute evidence across `{}{{num_documents}}` documents:

1. Each document should contain a different aspect/angle of the bottleneck
2. Together they should tell the complete story
3. Avoid ANY mention of other bottlenecks
4. Make evidence discoverable but not too obvious

1592  
1593  
1594  
1595  
1596  
1597  
1598  
1599

Provide your response as a JSON object:

```
{
  "evidence_distribution": [
    {
      "document_type": "email|calendar|document",
      "evidence_role": "What aspect this covers",
      "key_information": "Specific info to include",
      "sender_or_creator": "Who creates this",
      "discoverability": "How someone would find this"
    }
  ]
}
```

Listing 10: plan\_evidence\_distribution.j2

1600  
1601  
1602

## C.4.2 GENERATE EMAIL EVIDENCE

1603  
1604  
1605

Usage Context

This prompt generates email corpus items that contain evidence of the bottleneck. Emails often contain requests, updates, and clarifications that reveal bottleneck details.

1606  
1607  
1608

Generate a realistic email that contains evidence of the following bottleneck:

1609  
1610  
1611

BOTTLENECK:  
`{}{{bottleneck.description}}`

1612  
1613  
1614

EVIDENCE ROLE:  
This email should specifically show: `{}{{evidence_role}}`

1615  
1616  
1617

WORLD MODEL:  

- Persona: `{}{{world_model.persona_full_name}}` `{}{{world_model.persona_occupation}}`
- Email: `{}{{world_model.persona_full_name.lower().replace(' ', ',')}@{{world_model.organizational_structure.company_name.lower().replace(' ', ',').replace(',', '')}}.com}`

1618  
1619

KEY RELATIONSHIPS:  
`{% for rel in world_model.relationships[:7] %}
- {{rel.name}} ({{rel.role}})
{% endfor %}`

```

1620 THINGS TO AVOID:
1621 Do NOT mention or reference these other bottlenecks:
1622 {%
1623   for other in other_bottlenecks %}
1624   {{ other }}
1625   {% endfor %}
1626
1627   Generate a complete, realistic email that:
1628   1. Contains clear evidence of the bottleneck
1629   2. Fits the evidence role specified
1630   3. Includes realistic email metadata
1631   4. Uses actual names from relationships
1632   5. Avoids any mention of other bottlenecks
1633   6. Sounds natural and professional
1634
1635   The email should be substantial (200-400 words) and include:
1636   - Proper email headers (From, To, CC, Subject, Date)
1637   - Natural greeting and sign-off
1638   - Specific details that reveal bottleneck information
1639   - Realistic workplace communication style
1640
1641   Format as:
1642   From: sender@company.com
1643   To: recipient@company.com
1644   CC: others@company.com
1645   Subject: Specific subject line
1646   Date: Recent date
1647
1648   Email body...

```

Listing 11: generate\_email\_evidence.j2

#### C.4.3 GENERATE CALENDAR EVIDENCE

##### Usage Context

This prompt generates calendar events that reveal scheduling conflicts, deadlines, or meeting-related bottleneck evidence.

```

1649 Generate a realistic calendar event that contains evidence of the following bottleneck:
1650
1651 BOTTLENECK:
1652 {{ bottleneck.description }}
1653
1654 EVIDENCE ROLE:
1655 This calendar event should show: {{ evidence_role }}
1656
1657 WORLD MODEL:
1658 - Persona: {{ world_model.persona_full_name }}
1659 - Company: {{ world_model.organizational_structure.company_name }}
1660
1661 KEY PEOPLE:
1662 {%
1663   for rel in world_model.relationships[:5] %
1664   - {{ rel.name }} ({{ rel.role }})
1665   {% endfor %}
1666
1667 AVOID MENTIONING:
1668 {%
1669   for other in other_bottlenecks %
1670   - {{ other }}
1671   {% endfor %}
1672
1673 Create a detailed calendar event that:
1674 1. Reveals important timing/scheduling aspects of the bottleneck
1675 2. Includes realistic attendees from relationships
1676 3. Has detailed agenda or description
1677 4. Shows urgency or conflicts if relevant
1678 5. Completely avoids other bottlenecks
1679
1680 Include:
1681 - Title: Specific and professional
1682 - Date/Time: Realistic and relevant to bottleneck
1683 - Duration: Appropriate for the meeting type
1684 - Location: Physical or virtual
1685 - Attendees: Mix of required and optional
1686 - Agenda/Description: Detailed and revealing bottleneck evidence
1687 - Any attached documents or pre-reads
1688
1689 Format your response as a complete calendar event.

```

Listing 12: generate\_calendar\_evidence.j2

1674 C.4.4 GENERATE DOCUMENT EVIDENCE  
16751676 Usage Context  
16771678  
1679 This prompt generates longer documents (reports, plans, memos) that contain comprehensive  
1680 evidence about the bottleneck, often providing context and history.1681  
1682 Generate a professional document that contains evidence of the following bottleneck:  
1683  
1684 BOTTLENECK:  
1685 {{ bottleneck.description }}  
1686  
1687 EVIDENCE ROLE:  
1688 This document should provide: {{ evidence\_role }}  
1689  
1690 CONTEXT:  
1691 - Author: {{ world\_model.persona\_full\_name }}  
1692 - Organization: {{ world\_model.organizational\_structure.company\_name }}  
1693 - Department: {{ world\_model.organizational\_structure.department }}  
1694  
1695 DOCUMENT REQUIREMENTS:  
1696 - Length: {{ min\_words }}-{{ max\_words }} words  
1697 - Type: Report, memo, plan, or specification  
1698 - Should reveal key bottleneck information  
1699 - Must seem like a natural workplace document  
1700  
1701 KEY PEOPLE TO REFERENCE:  
1702 {% for rel in world\_model.relationships[:6] %}  
1703 - {{ rel.name }} ({{ rel.role }})  
1704 {% endfor %}  
1705  
1706 STRICTLY AVOID:  
1707 {% for other in other\_bottlenecks %}  
1708 - {{ other }}  
1709 {% endfor %}  
1710  
1711 Generate a complete professional document that:  
1712 1. Has proper header (title, date, author, recipients)  
1713 2. Contains multiple sections with clear headings  
1714 3. Embeds bottleneck evidence naturally throughout  
1715 4. References real people and specific details  
1716 5. Maintains professional tone and formatting  
1717 6. Includes actionable information  
1718 7. Never mentions other bottlenecks  
1719  
1720 The document should read like an authentic workplace artifact that someone would search for when  
1721 investigating the bottleneck.

1722 Listing 13: generate\_document\_evidence.j2

1723 C.4.5 GENERATE DYNAMIC SOURCES  
1724

## 1725 Usage Context

1726  
1727 This prompt identifies additional data sources or systems where evidence might be found,  
1728 expanding beyond the standard email/calendar/document trinity.1729  
1730 Identify specific data sources where evidence for this bottleneck would be found:  
1731  
1732 BOTTLENECK:  
1733 {{ bottleneck.description }}  
1734  
1735 ORGANIZATION:  
1736 - Company: {{ world\_model.organizational\_structure.company\_name }}  
1737 - Industry: {{ world\_model.organizational\_structure.company\_type }}  
1738 - Department: {{ world\_model.organizational\_structure.department }}  
1739  
1740 Suggest 3-5 specific systems, databases, or specialized sources where evidence would exist.  
1741  
1742 For each source:  
1743 1. Name the specific system/platform  
1744 2. What evidence would be found there  
1745 3. How to search/access it  
1746 4. Why it's relevant to this bottleneck  
1747  
1748 Examples: JIRA tickets, Confluence pages, Slack channels, CRM records, Github PRs, etc.  
1749  
1750 Provide specific names and identifiers, not generic categories.

1728

1729

1730

1731

1732

## C.4.6 REVIEW EVIDENCE

1733

1734

1735

1736

1737

1738

## Usage Context

This prompt is used to review generated evidence for quality, ensuring it properly supports the bottleneck discovery without contamination from other bottlenecks.

1739

1740

1741

1742

1743

1744

1745

1746

1747

1748

1749

1750

1751

1752

1753

1754

1755

1756

1757

1758

1759

1760

```

Review the following evidence for quality and effectiveness:

BOTTLENECK BEING EVIDENCED:
{{ bottleneck.description }}

GENERATED EVIDENCE:
{{ evidence_content }}

OTHER BOTTLENECKS TO AVOID:
{% for other in other_bottlenecks %}
- {{ other }}
{% endfor %}

Evaluate:
1. Does the evidence clearly support discovering this bottleneck?
2. Is it discoverable through realistic search queries?
3. Does it avoid ALL mentions of other bottlenecks?
4. Is it natural and realistic for the workplace context?
5. Are all names, dates, and details consistent?

Provide:
1. Quality score (1-10)
2. Strengths of the evidence
3. Any issues or contamination found
4. Suggested improvements
5. Search queries that would find this evidence

Format as JSON:
{
  "quality_score": 8,
  "strengths": ["Clear timeline", "Specific names"],
  "issues": ["Might be too obvious"],
  "improvements": ["Add more context about..."],
  "search_queries": ["Michael Park ENG-4521", "Q3 roadmap review"]
}

```

1761

1762

1763

1764

## C.5 DISTRACTOR GENERATION PROMPTS

1765

1766

1767

1768

1769

## C.5.1 GENERATE EMAIL DISTRACTORS

1770

1771

1772

1773

1774

1775

1776

1777

1778

1779

1780

1781

## Usage Context

This prompt generates realistic workplace emails that are plausible distractors - they should seem relevant to the persona's work but not contain evidence of any bottlenecks.

```

Generate {{ count }} realistic workplace emails for {{ world_model.persona_full_name }}'s context.

CONTEXT:
- Role: {{ world_model.persona_occulation }}
- Company: {{ world_model.organizational_structure.company_name }}
- Department: {{ world_model.organizational_structure.department }}

RELATIONSHIPS TO USE:
{% for rel in world_model.relationships %}
- {{ rel.name }} ({{ rel.role }}): {{ rel.interaction }}
{% endfor %}

```

```

1782
1783 CRITICAL - AVOID ALL BOTTLENECKS:
1784 {%
1785   for bottleneck in bottlenecks %}
1786   {%
1787     bottleneck.description %}
1788   {%
1789     REQUIREMENTS:
1790     1. Emails must be completely unrelated to any bottleneck
1791     2. Should be realistic workplace communications
1792     3. Vary the types: updates, requests, FYIs, discussions
1793     4. Use different senders and recipients
1794     5. Include realistic dates and subjects
1795     6. Length: 150-300 words each
1796
1797     Generate diverse emails about:
1798     - Routine status updates
1799     - General team communications
1800     - Company announcements
1801     - Non-critical planning
1802     - Social/cultural events
1803     - Training or development
1804     - General process discussions
1805
1806     Ensure NONE of the emails could be interpreted as evidence for any bottleneck.
1807
1808     Format each email with proper headers (From, To, Subject, Date) followed by the body.
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

```

Listing 16: generate\_email\_distractors.j2

### C.5.2 GENERATE CALENDAR DISTRACTORS

#### Usage Context

This prompt creates calendar events that represent normal workplace meetings and events, serving as noise that agents must filter through.

```

1806
1807
1808
1809
1810
1811
1812
1813 Generate {{ count }} realistic calendar events for {{ world_model.persona_full_name }}.
1814 CONTEXT:
1815 - Role: {{ world_model.persona_occupation }}
1816 - Company: {{ world_model.organizational_structure.company_name }}
1817 - Typical Meetings: {{ world_model.organizational_structure.typical_meetings | join(', ') }}
1818 PEOPLE TO INCLUDE:
1819 {%
1820   for rel in world_model.relationships[:8] %}
1821   {{ rel.name }} ({{ rel.role }})
1822   {%
1823     MUST AVOID - NO BOTTLENECK EVIDENCE:
1824     {%
1825       for bottleneck in bottlenecks %}
1826       {{ bottleneck.description }}
1827     {%
1828       Create diverse calendar events:
1829       1. Regular recurring meetings (1-on-1s, team standups)
1830       2. Training or development sessions
1831       3. Company-wide events
1832       4. Social activities
1833       5. Planning sessions (unrelated to bottlenecks)
1834       6. Reviews or retrospectives
1835
1836       Each event needs:
1837       - Title: Professional and specific
1838       - Date/Time: Spread across different days/times
1839       - Duration: Realistic for the meeting type
1840       - Attendees: Appropriate mix of people
1841       - Location/Link: Physical or virtual
1842       - Description: Detailed agenda that contains NO bottleneck evidence
1843
1844       Make them indistinguishable from real important meetings but completely unrelated to bottlenecks.
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885

```

Listing 17: generate\_calendar\_distractors.j2

1836  
1837

## C.5.3 GENERATE DOCUMENT DISTRACTORS

1838  
1839

## Usage Context

1840  
1841  
1842

This prompt generates longer-form documents that serve as distractors, representing typical workplace documentation that doesn't relate to any bottlenecks.

1843

```
1844 Generate {{ count }} professional documents for {{ world_model.persona_full_name }}'s work context.
1845 CONTEXT:
1846 - Role: {{ world_model.persona_occupation }}
1847 - Department: {{ world_model.organizational_structure.department }}
1848 - Company: {{ world_model.organizational_structure.company_name }}

1849 DOCUMENT TYPES TO CREATE:
1850 1. Process documentation
1851 2. Team updates or newsletters
1852 3. Project proposals (unrelated to bottlenecks)
1853 4. Meeting notes
1854 5. Training materials
1855 6. Policy documents

1856 CRITICAL - AVOID ALL BOTTLENECKS:
1857 {% for bottleneck in bottlenecks %}
1858 DO NOT REFERENCE: {{ bottleneck.description }}
1859 {% endfor %}

1860 Each document should:
1861 - Be 400-800 words
1862 - Have professional formatting and structure
1863 - Reference real people from relationships
1864 - Contain valuable but irrelevant information
1865 - Be discoverable by plausible search terms
1866 - Seem important enough to not ignore

1867 Include proper headers:
1868 - Title
1869 - Author
1870 - Date
1871 - Document type
1872 - Recipients/Audience

1873 The documents should be high-quality distractors that would naturally appear in search results but
1874 provide no evidence for any bottleneck.
```

Listing 18: generate\_document\_distractors.j2

1868  
1869  
1870

## C.5.4 GENERATE NATURAL DISTRACTOR

1871  
1872

Usage Context

This is a general-purpose prompt for generating natural distractors of any type, with emphasis on making them realistic and contextually appropriate.

1873  
1874  
1875

```
1876 Generate a natural {{ kind }} distractor for the following context:
1877 PERSONA: {{ world_model.persona_full_name }} ({{ world_model.persona_occupation }})
1878 COMPANY: {{ world_model.organizational_structure.company_name }}

1879 AVAILABLE RELATIONSHIPS:
1880 {% for rel in world_model.relationships[:6] %}
1881 - {{ rel.name }} ({{ rel.role }})
1882 {% endfor %}

1883 WORK CONTEXT:
1884 - Department: {{ world_model.organizational_structure.department }}
1885 - Current Goals: {{ world_model.personal_context.current_goals[:3] | join(', ' ) }}
1886 - Tools Used: {{ world_model.personal_context.tools_used | join(', ' ) }}

1887 MUST AVOID (NO EVIDENCE OF):
1888 {% for bottleneck in bottlenecks %}
1889 - {{ bottleneck.description }}
1890 {% endfor %}

1891 Create a {{ kind }} that:
1892 1. Is completely unrelated to any bottleneck
1893 2. Fits naturally in the persona's work life
1894 3. Could plausibly be important
```

```

1890
1891     4. Uses real names and realistic details
1892     5. Matches typical {{ kind }} format and style
1893
1894     Focus on routine work activities that would generate {{ kind }}s but don't relate to the specific
1895     problems being evaluated.
1896
1897     Listing 19: generate_natural_distractor.j2
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

```

### C.5.5 ENHANCE DISTRACTOR

#### Usage Context

This prompt enhances basic distractors to make them more realistic and harder to distinguish from true positives, adding details and context.

```

Enhance the following distractor to make it more realistic and detailed:
ORIGINAL DISTRACTOR:
{{ original_content }}

CONTEXT:
- Type: {{ distractor_type }}
- Persona: {{ world_model.persona_full_name }}
- Company: {{ world_model.organizational_structure.company_name }}

ENHANCEMENT GOALS:
1. Add more specific details (names, dates, numbers)
2. Include realistic workplace jargon
3. Add urgency or importance markers
4. Reference real systems or processes
5. Make it harder to distinguish from true positives

MAINTAIN:
- Core message/purpose
- Avoidance of all bottlenecks
- Professional tone
- Realistic length

The enhanced version should be a high-quality distractor that requires careful analysis to determine it's not relevant to the bottlenecks.

```

Listing 20: enhance\_distractor.j2

### C.6 LLM-AS-JUDGE EVALUATION PROMPTS

#### Usage Context

This prompt is used to for evaluating bottleneck identification as described in section 3

```

You are evaluating whether an AI agent correctly identified a bottleneck using precision-based scoring.

## Context
The agent was given various documents and data sources to analyze, and needed to identify the bottleneck
affecting productivity.

## Workplace Context
Persona: {{ world_model.persona_full_name }}
Company: {{ world_model.organizational_structure.company_name }}
Department: {{ world_model.organizational_structure.department }}
Team Size: {{ world_model.organizational_structure.team_size }}

## What the Agent Identified
"{{ identified_bottleneck }}"

## The Actual Bottleneck
"{{ actual_bottleneck }}"

## Two-Tier Precision Scoring System

### ESSENTIAL DETAILS (Must be 100% correct for any points)
These are execution-critical details required for immediate action:

1. **WHO_BLOCKED**: The exact person/entity being blocked (specific names, not roles)
2. **WHO_BLOCKER**: The exact person/entity causing the blockage (specific names, not roles)
3. **WHAT_TASK**: The specific deliverable/work item that's blocked (exact names, not generic
descriptions)

```

```

1944
1945 4. **WHY_ROOT_CAUSE**: The true underlying reason for the blockage (not symptoms)
1946
1946    ### NON-ESSENTIAL DETAILS (Can have minor errors/omissions)
1946    These provide context but aren't critical for immediate resolution:
1947
1948 5. **WHEN_DEADLINE**: Specific dates and timelines
1948 6. **WHERE_SYSTEM**: Exact system/tool names and locations
1949 7. **HOW_MECHANISM**: Detailed process or workflow information
1949 8. **IMPACT_SCOPE**: Downstream effects and dependencies
1950
1950    ## Scoring Rules
1951
1951    **CORRECT (1.0)**: All essential details are accurate AND all non-essential details are accurate
1952    **PARTIALLY_CORRECT (0.5)**: All essential details are accurate BUT has errors/omissions in non-
1952      essential details
1953    **INCORRECT (0.0)**: Any essential detail is wrong, missing, or too vague
1954
1954    ## Essential Detail Requirements
1955    - **Names must be specific**: "Timothy" not "someone from finance"
1955    - **Systems must be exact**: "econo.com" not "financial system"
1956    - **Tasks must be precise**: "Q3 financials initiative" not "quarterly report"
1957    - **Root causes must be accurate**: "Martha stripped access" not "system issues"
1958
1958    ## Examples
1959
1959    ### Example 1: CORRECT (1.0)
1960    **Actual**: Timothy isn't meeting the March 23rd deadline for his Q3 financials initiative because
1960      Martha revoked his econo.com access to company financials.
1961
1961    **Agent**: Timothy cannot complete his Q3 financials initiative by the March 23rd deadline because
1962      Martha removed his access to company financials through econo.com.
1963
1963    **Analysis**:
1964    - WHO_BLOCKED: Timothy (correct)
1964    - WHO_BLOCKER: Martha (correct)
1965    - WHAT_TASK: Q3 financials initiative (correct)
1965    - WHY_ROOT_CAUSE: Martha revoked access (correct)
1966    - All non-essential details accurate
1967
1967    ### Example 2: PARTIALLY_CORRECT (0.5)
1968    **Actual**: Timothy isn't meeting the March 23rd deadline for his Q3 financials initiative because
1968      Martha revoked his econo.com access to company financials.
1969
1969    **Agent**: Timothy cannot complete his Q3 financials initiative because Martha removed his access to
1970      company financial systems.
1971
1971    **Analysis**:
1972    - WHO_BLOCKED: Timothy (correct)
1972    - WHO_BLOCKER: Martha (correct)
1973    - WHAT_TASK: Q3 financials initiative (correct)
1973    - WHY_ROOT_CAUSE: Martha revoked access (correct)
1974    - WHEN_DEADLINE: Missing March 23rd
1974    - WHERE_SYSTEM: "financial systems" instead of "econo.com"
1975
1975    ### Example 3: INCORRECT (0.0)
1976    **Actual**: Timothy isn't meeting the March 23rd deadline for his Q3 financials initiative because
1976      Martha revoked his econo.com access to company financials.
1977
1977    **Agent**: Someone from finance is having trouble with their quarterly report due to system access
1978      issues.
1979
1979    **Analysis**:
1980    - WHO_BLOCKED: "someone from finance" instead of Timothy
1980    - WHO_BLOCKER: Missing Martha entirely
1981    - WHAT_TASK: "quarterly report" instead of Q3 financials initiative
1981    - WHY_ROOT_CAUSE: "system issues" instead of Martha's action
1982
1982    ## Output Format
1983    Return a JSON object with:
1983    {
1984      "judgment": "<CORRECT|PARTIALLY_CORRECT|INCORRECT>",
1984      "essential_details_analysis": {
1985        "who_blocked": "<correct|incorrect|missing>",
1985        "who_blocker": "<correct|incorrect|missing>",
1986        "what_task": "<correct|incorrect|missing>",
1986        "why_root_cause": "<correct|incorrect|missing>"
1987      },
1987      "non_essential_details_analysis": {
1988        "when_deadline": "<correct|incorrect|missing|n/a>",
1988        "where_system": "<correct|incorrect|missing|n/a>",
1989        "how_mechanism": "<correct|incorrect|missing|n/a>",
1989        "impact_scope": "<correct|incorrect|missing|n/a>"
1990      },
1990      "reasoning": "<explanation of your scoring decision focusing on essential vs non-essential accuracy>"
1991    }
1992
1993
1994
1995
1996
1997

```

Listing 21: judge\_bottleneck\_identification.j2



```

2052
2053     ### PARTIALLY_CORRECT (Score: 0.5)
2054     The parameters show understanding but have gaps:
2055     - ↳ Most critical parameters present (70-90%)
2056     - ↳ Would partially resolve the bottleneck
2057     - ↳ Missing some important details (timing, specific people, etc.)
2058     - ↳ Some parameter values are suboptimal but not wrong
2059     - ↳ May include unnecessary parameters that don't harm
2060
2061     ### INCORRECT (Score: 0.0)
2062     Major failures in parameter selection:
2063     - ↳ Missing most critical parameters
2064     - ↳ Wrong people, systems, or resources specified
2065     - ↳ Parameters would not resolve the bottleneck
2066     - ↳ Fundamental misunderstanding of what's needed
2067     - ↳ Parameters might make the situation worse
2068
2069     ## Calibration Examples
2070
2071     ### Example 1: CORRECT - Semantic Equivalence
2072     **Bottleneck**: "Rachel needs budget approval from CFO Tom Bradley for Q4 marketing campaign by October 1st"
2073
2074     **Expected Parameters**:
2075     ````json
2076     {
2077         "to": ["tom.bradley@company.com"],
2078         "subject": "Q4 Marketing Budget Approval Request",
2079         "body": "Request for $50K marketing budget approval",
2080         "priority": "high"
2081     }
2082
2083     **Agent Selected**:
2084     ````json
2085     {
2086         "to": ["tom.bradley@company.com"],
2087         "subject": "Urgent: Q4 Marketing Budget - Approval Needed by Oct 1",
2088         "body": "Hi Tom, I need approval for the Q4 marketing budget ($50K) to proceed with the campaign. Deadline is October 1st.",
2089         "priority": "high"
2090     }
2091
2092     **Analysis**:
2093     - All critical elements present (recipient, urgency, amount, deadline)
2094     - More detailed subject line improves clarity
2095     - Body includes deadline context
2096     - Would successfully resolve the bottleneck
2097
2098     **Judgment**: CORRECT
2099
2100     ### Example 2: PARTIALLY_CORRECT - Missing Key Details
2101     **Bottleneck**: "Project Alpha delayed because Lisa Chen hasn't reviewed technical specifications in JIRA ticket ALPHA-234"
2102
2103     **Expected Parameters**:
2104     ````json
2105     {
2106         "assignee": "lisa.chen",
2107         "ticket_id": "ALPHA-234",
2108         "comment": "Hi Lisa, please review the technical specs. This is blocking Project Alpha.",
2109         "due_date": "2024-03-20",
2110         "priority": "critical"
2111     }
2112
2113     **Agent Selected**:
2114     ````json
2115     {
2116         "assignee": "lisa.chen",
2117         "comment": "Please review the technical specifications as soon as possible.",
2118         "priority": "high"
2119     }
2120
2121     **Analysis**:
2122     - Correct person assigned
2123     - Missing critical ticket_id (ALPHA-234)
2124     - No due date specified
2125     - Priority close but not "critical"
2126     - Generic message lacks context
2127
2128     **Judgment**: PARTIALLY_CORRECT - Would reach right person but lacks specificity
2129
2130     ### Example 3: INCORRECT - Wrong Approach
2131     **Bottleneck**: "Sales team can't access new CRM because IT hasn't completed Active Directory group setup"
2132
2133     **Expected Parameters**:
2134     ````json
2135

```

```

2106
2107     "ticket_type": "access_request",
2108     "group_name": "CRM_Sales_Users",
2109     "members": ["sales-team@company.com"],
2110     "system": "Salesforce",
2111     "urgency": "immediate"
2112   },
2113
2114   **Agent Selected**:
2115   ````json
2116   {
2117     "to": ["sales-team@company.com"],
2118     "subject": "CRM Access Information",
2119     "body": "The new CRM system will be available soon. Please wait for IT to complete setup."
2120   },
2121
2122   **Analysis**:
2123   - Completely wrong action type (email vs access request)
2124   - Doesn't actually request the AD group setup
2125   - Informs sales team instead of resolving with IT
2126   - Would not resolve the bottleneck
2127
2128   **Judgment**: INCORRECT - Misunderstands the required action
2129
2130   ## Parameter Evaluation Guidelines
2131
2132   ### Consider Valid Variations
2133   - **Email addresses**: "john@company.com" vs "John Smith <john@company.com>"  

2134   - **Dates**: "March 23, 2024" vs "2024-03-23" vs "next Friday"
2135   - **Priority**: "high" vs "urgent" vs "critical" (if contextually similar)
2136   - **Lists**: Order rarely matters unless sequence is critical
2137
2138   ### Critical vs Optional Parameters
2139   Identify which parameters are:
2140   - **Essential**: Must be present for action to work
2141   - **Important**: Significantly impact effectiveness
2142   - **Optional**: Nice to have but not required
2143   - **Contextual**: Depend on specific situation
2144
2145   ### Common Pitfalls to Avoid
2146   1. **Over-penalizing format differences**: JSON structure vs semantic meaning
2147   2. **Ignoring context**: Parameters should fit the specific bottleneck
2148   3. **Requiring exact matches**: "ASAP" vs "urgent" may be equivalent
2149   4. **Missing parameter relationships**: Some parameters depend on others
2150
2151   ## Output Instructions
2152
2153   Analyze systematically, then provide your judgment in this JSON format:
2154
2155   ````json
2156   {
2157     "judgment": "<CORRECT|PARTIALLY_CORRECT|INCORRECT>",
2158     "reasoning": "<2-3 sentences explaining how the parameters would or wouldn't resolve the bottleneck>",
2159     "parameter_analysis": {
2160       "critical_parameters_met": <true|false>,
2161       "would_resolve_bottleneck": "<yes|partially|no>",
2162       "missing_parameters": [<list any critical missing params>],
2163       "incorrect_parameters": [<list any wrong params>],
2164       "semantic_matches": [<list params that match semantically>]
2165     },
2166     "confidence": <0.0-1.0>
2167   },
2168
2169   Remember: Focus on whether the parameters would effectively resolve the specific bottleneck in this
2170   context.

```

Listing 22: judge\_action\_parameter\_scoring.j2

## D ABLATION STUDIES

We conduct two ablation studies to validate key design decisions in our benchmark construction and assess the robustness of our evaluation framework.

### D.1 IMPACT OF CONTEXT WINDOW SIZE

Our benchmark uses 75 distractor documents per sample, selected as the maximum feasible quantity within our computational budget. To investigate whether increased context length fundamentally increases task difficulty, we generated 100 samples for each distractor quantity  $k \in \{50, 75, 100\}$  and evaluated model performance across these configurations.

Figure 4 demonstrates a clear performance degradation as context size increases. At the baseline of 50 distractors, GPT-5, Claude Opus 4.1, and Claude Sonnet 4 achieve comparable performance. However, this gap widens significantly as the number of distractors grows to 100, where GPT-5 maintains 0.377 F1 while Claude models drop to 0.293 (Opus) and 0.256 (Sonnet) respectively.



Figure 4: Performance degradation with increasing context window size. All models show declining performance as distractor count increases from 50 (baseline) to 100 (+50), with Claude models exhibiting steeper decay than GPT-5. This demonstrates the fundamental challenge of maintaining search and reasoning accuracy in long context, high-distractor environments.

This differential degradation reveals distinct capabilities in long-context reasoning among frontier models. While all models suffer from increased distractor count, Claude models exhibit significantly steeper performance decay. These results also suggest that bottleneck identification and resolution become increasingly difficult as agents must reason over and eliminate larger volumes of contextually plausible but ultimately irrelevant information.

## D.2 DATA GENERATION MODEL DIVERSITY

To mitigate the risk of model-specific artifacts that could artificially inflate performance for models from the same family, our full benchmark employs three distinct LLMs in the data generation pipeline. To quantify the impact of this design choice, we conducted a controlled study where we generated 53 samples (with 75 distractors each) using three different data generation models independently: GPT-5-mini, GPT-4.1, and Claude Sonnet 4. We then evaluated GPT-5’s performance on each dataset variant. Note that this represents a simplified setting compared to our pipeline, which combines multiple models within each sample to create more complex artifacts.

Figure 5 reveals substantial cross-family performance disparities. GPT-5 achieves strong results on data generated by models within its own family (0.951 retrieval F1 on GPT-5-mini data, 0.882 on GPT-4.1 data), but performance drops steeply on Claude Sonnet 4-generated data (0.564 retrieval F1). This pattern persists across all evaluation dimensions: end-to-end success rates reach 30.2% and 51.9% for GPT-family generated data but fall to just 26.4% for Claude-generated samples.

These results motivate our multi-model data generation strategy. The 25.5-point difference in end-to-end performance between GPT-4.1 and Claude Sonnet 4 data indicates that single-model generation can imprint family-specific artifacts, enabling pattern-based shortcuts rather than genuine reasoning. By mixing data from diverse model families, our benchmark better tests general reasoning ability instead of overfitting to a single model’s heuristics.



Figure 5: GPT-5 performance on data generated by different models. GPT-5 exhibits much higher search performance on samples generated by its own model family (GPT-5-mini: 0.951 F1, GPT-4.1: 0.882 F1) compared to cross-family generation (Claude Sonnet 4: 0.564 F1), validating our multi-model data generation approach.

## E NOTE ON THE USE OF LANGUAGE MODELS

We utilized Claude (Anthropic) as an AI writing assistant throughout the preparation of this manuscript. Claude was employed primarily for refining sentence clarity, improving paragraph flow, and ensuring consistency in academic writing style. All scientific content, experimental design, analysis, and intellectual contributions remain solely those of the authors.