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ABSTRACT

Large Language Models (LLMs) rely on the Key-Value (KV) Cache to store
token history, enabling efficient decoding of tokens. As the KV-Cache grows,
it becomes a major memory and computation bottleneck, however, there is an
opportunity to alleviate this bottleneck, especially because prior research has
shown that only a small subset of tokens contribute meaningfully to each decoding
step. A key challenge in finding these critical tokens is that they are dynamic, and
heavily input query-dependent. Existing methods either risk quality by evicting
tokens permanently, or retain the full KV-Cache but rely on retrieving chunks
(pages) of tokens at generation, failing at dense, context-rich tasks. Additionally,
many existing KV-Cache sparsity methods rely on inaccurate proxies for token
importance. To address these limitations, we introduce TokenButler, a high-
granularity, query-aware predictor that learns to identify these critical tokens.
By training a light-weight predictor with less than 1.2% parameter overhead,
TokenButler prioritizes tokens based on their contextual, predicted importance.
This improves perplexity & downstream accuracy by upto 8% relative to SoTA
methods for estimating token importance. We evaluate TokenButler on a novel
synthetic small-context co-referential retrieval task, demonstrating near-oracle
accuracy. Furthermore, we show that TokenButler minimizes the gap to the oracle
throughput and outperforms prior methods by up to 3×. Code, models, dataset and
benchmarks are available.

1 INTRODUCTION

As Large Language Models (LLMs) become more widely used (Thoppilan et al., 2022; Yuan et al.,
2022; Wei et al., 2022; Zhang et al., 2023a), recent advances have extended their context lengths
to 128k–1M tokens. However, recent research on long-context evaluation (Vodrahalli et al., 2024)
reveal that model quality degrades noticeably as early as 8k tokens, even without token compression.
Furthermore, as input sequences grow, the memory footprint of the Key-Value (KV) cache, which
stores intermediate key-value pairs to skip recomputation, scales linearly. This increases memory
requirements and stresses the memory-bandwidth, and raises important questions on how effectively
existing token-pruning techniques address KV-cache size, especially in context-dense downstream
tasks that go beyond retrieval or summarization. There have been several efforts at improving
model quality while addressing KV-cache memory issues. Certain transformer variants aim at
implicitly compressing the KV-cache via sparsity, quantization, efficient-attention, or low-rank
compression (Child et al., 2019; Choromanski et al., 2020; Katharopoulos et al., 2020; Shazeer, 2019;
Pope et al., 2022; Sun et al., 2024; Akhauri et al., 2024b; Chen et al., 2025).

The current literature on token pruning addresses this growing memory footprint in three ways.
(1) Purely static strategies limiting KV-Cache to a fixed budget with fixed rules on removing
tokens, naturally reducing bandwidth and storage (StreamingLLM (Xiao et al.), and Sliding Window
Attention (Luong, 2015)), (2) Adaptive strategies that permanently sacrifice less important past-tokens
effectively fixing the memory and bandwidth footprint (H2O, SnapKV (Zhang et al., 2023b; Li et al.,
2024)), and (3) Adaptive dynamic strategies that preserve the entire KV-Cache but access only a
subset of the Key-Value entries (the more important past-tokens), incurring higher memory (storage)
cost, but reducing memory bandwidth (accesses to memory) during the decode stage (generation)
(Quest, FastGen, (Tang et al., 2024; Ge et al.))

Each of these strategies to limit storage and bandwidth costs have implications. Specifically, token
preference has been shown to be highly dependent on the query (Tang et al., 2024), and vary
significantly at generation. Purely static strategies do not have any query-awareness, and will fail
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High Token Importance Granularity

All Tokens Preserved

Full Attention Static Token Importance
(StreamingLLM)

Adaptive Token Importance
(H2O, SnapKV)

Adaptive Paged-Token Importance
(Quest)
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Store and Access All Tokens
Expensive KV-Cache

Figure 1: Full-Attention preserves all tokens, enabling access to the critical token (dark green) during
the last decode step. Static strategies like StreamingLLM will not be able to access this token. Methods
like H2O may have evicted the token at an earlier decode step, if deemed unimportant. Paged-Token
importance may cause a page-miss of a critical token in context dense tasks. TokenButler can
effectively predict critical tokens, and can be leveraged by existing methods to offer both high-
granularity and cheap importance estimation.

at retrieving contextually relevant tokens. Additionally, Adaptive strategies that have permanently
discarded tokens deemed less important at a prior decode step will not be able to fetch relevant tokens
if the course of discussion is co-referential (Vodrahalli et al., 2024). A conversation is co-referential
if text introduced earlier is referenced again later, requiring accurate retrieval and reasoning over the
earlier reference. For co-referential conversations adaptive dynamic strategies is the most reasonable
solution. Current methods rely on token grouping to make the dynamic calculation of token relevance
efficient (Tang et al., 2024).

There are several metrics to quantify token importance including recency, aggregate attention scores,
and others listed in Table 1. Token Sparsity methods use these metrics to guide token eviction or
retrieval decisions. There is an important interplay between methods and metrics. Some methods
permanently evict tokens based on strong metrics like the attention score. However, evicted tokens
may become relevant later during generation. Other methods preserve tokens but selectively retrieve a
subset during generation. These methods cannot rely on strong metrics such as attention scores. This
is because only a subset of the KV-cache is fetched during generation based on a token importance
metric and that metric cannot be the result of the computation itself (attention score). To address
this, we propose a novel learned metric of token importance, called TokenButler, which provides
fine-granularity estimates of token importance. Our contributions are summarized as:

• We train a light-weight predictor (< 1.2% parameter overhead) for estimating token-
importance, achieving up to 75% accuracy in identifying the top 50% tokens.

• We introduce a synthetic, co-referential decode benchmark that demonstrates where current
KV-cache sparsity techniques break by either evicting or overlooking context-critical tokens.
On this benchmark, TokenButler preserves critical tokens with near-oracle accuracy while
still achieving aggressive KV-cache sparsity.

• TokenButler improves the wikitext perplexity and downstream accuracy over existing token
sparsity metrics by over 8%, identifying critical tokens with near-oracle accuracy.

• We show that TokenButler achieves up to 3× better throughput than recent token importance
estimation methods like TokenSelect (Wu et al., 2024).

2 RELATED WORK

Prior work has shown that transformers exhibit very strong contextual behavior, where head and
neuron importance heavily depends on the query. (Liu et al., 2023; Akhauri et al., 2024a) leverage
this behavior to contextually prune entire neurons and heads on a per-query basis. These methods
train small neural networks to predict the relative importance–quantified using parameter magnitudes
or gradients of neurons across the transformer. This magnitude can be considered as the metric of
contextual importance. Furthermore, these works explore techniques of using these metrics to then
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Figure 2: TokenButler is a light-weight predictor, with a down projection Dproj for cheaper attention,
attention layer, and Key-Query projection neural networks. These {Qimp,Kimp} effectively map
the output of the attention mechanism to N ×H Key-Query projection tensors (N: Num. Layers,
H: Num. Heads) on a small interaction-dimension d ≪ E. The full-(pre-softmax) attention logits
can then be computed for every head across all layers by taking Product(QKT ). At train-time, we
minimize the MSE Error between true and prediction attention logits to learn the LLM behavior.

prune heads globally, or on a per-layer basis. This idea of pruning on a global or per-layer basis can
be considered as the method, which leverages the metric to make decisions.

Method Metric

StreamLLM Recency-based sliding window
H2O Attention Score for Token Eviction
SnapKV Pooled Attention Score over a Fixed

Window for Token Eviction
Quest Query product with Per-Page

Min–Max Token Magnitudes for
Page Loading

TokenButler Predicted Importance for Fine-
Grained Token Loading

Table 1: Metrics for token importance

This contextual behavior applies to token im-
portance by design, as the attention mechanism
explicitly captures tokens relevant to a query.
However, while methods to prune heads are sim-
pler, as there is a fixed number of heads, methods
to prune tokens are more expensive to realize.
Specifically, for a transformer with N layers and
H heads per-layer and L past-tokens, every head
has to decide which subset S of L tokens are the
most important at every decode step. This im-
plies that any given metric has to be calculated
for N ×H × L tokens, at every decode step.

As presented in Table 1, there have been significant efforts towards co-designing metrics with methods
of token sparsity. The simplest methods are purely static strategies, StreamingLLM (Xiao et al.)
relies on recency as a metric of token importance, with a sliding-window plus initial anchor tokens
attention to fix a KV-Cache budget. More recently, methods like H2O (Zhang et al., 2023b) and
SnapKV (Li et al., 2024) avoid naïve sparsification of tokens, and instead rely on attention scores
to permanently evict low-importance tokens. This can be a major limitation when tasks require
synthesizing or reasoning over information distributed across the context (Vodrahalli et al., 2024), as
a token that becomes important later in the decoding stage may be evicted due to its low importance
at the current step and low KV-Budget. To alleviate this issue, Adaptive Dynamic Strategies such
as Quest (Tang et al., 2024) preserve all tokens, and dynamically decide which subset of tokens to
fetch for a given query. Instead of calculating full attention scores to ensure the most important
tokens are fetched (which can be prohibitively expensive), Quest relies on paging, preserving all
tokens in paged memory, and selectively fetches important pages. To determine page importance,
the dot product of query with min-max token values within a page is used as a proxy. This reduces
memory bandwidth but does not optimize memory footprint. Furthermore, its sparsity is limited to
the granularity of pages limiting its effectiveness in more challenging co-referential tasks as we will
show. TokenSelect (Wu et al., 2024) also preserves all tokens and selects the important ones based on
the dot product between queries and keys but it intelligently avoids doing that with every query based
on the cosine similarity between different queries. However, this method incurs a high overhead due
to the need of performing dot products with a high dimension.

While metrics that rely on attention scores are an effective way to estimate token importance, its
usefulness is limited as it is tied to the method, necessitating token-eviction, or paged-token fetching,
or a high overhead. By contrast, we propose to learn a lightweight token-importance predictor,
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TokenButler, which cheaply approximates token-level attention logits using QK projections from
the first layer of an LLM. This preserves fine-grained control over tokens (like full attention) while
staying efficient: approximately 1% the size of the main LLM.

3 METHODOLOGY

We use a predictor to identify the most important tokens at each decode step. The predictor is
designed to (1) use only the output of the first LLM layer to predict sparsity across all LLM layers
thereby running efficiently and ahead-of-time, (2) be trained directly on minimizing error between
its predicted attention maps and the LLM’s actual attention maps. In this section, we describe the
TokenButler predictor architecture and training methodology.

3.1 PREDICTOR DESIGN

TokenButler is a lightweight transformer (≈ 1% of the LLM size), depicted in Figure 2. For each
layer and head, TokenButler estimates token-importance. The predictor takes in the hidden-states
from the attention mechanism of the first layer, down-projects it, adds an attention layer to process
the sequence, and passes it to a query and key (QK) projection neural network (QK-NN). These
QK-NNs capture the behavior of all heads from later layers in the LLM.

Given hidden states I ∈ RB×L×E (batch B, length L, embedding E), the predictor applies an atten-
tion sub-network: a dimensionality-reduction projection (Linear) for efficient self-attention; one
self-attention block over the reduced states to capture token context; and a feed-forward block
that up-projects back to E to produce I′ ∈ RB×L×E , which is added to I (residual). Next,
TokenButler uses two projection networks {Qimp,Kimp} (each two linear layers with SiLU) to
produce per-layer/per-head importance queries and keys from I′, i.e., Qimp = Qimp(I

′) and
Kimp = Kimp(I

′). Their outputs are reshaped to RB×N×H×L×d (LLM layers N , heads H , head
dimension D, interaction predictor-head dimension d ≪ E), then N and H are flattened to yield
Qimp,Kimp ∈ R(BNH)×L×d. Approximate attention logits for each (layer, head, token) triplet use
the scaled dot-product Apred = QimpK

T
imp/

√
d ∈ R(BNH)×L×L; these unnormalized logits mimic

the LLM’s pre-softmax attention maps and, per layer and head, predict how strongly each token
attends to every other token according to TokenButler’s learned notion of token importance. We
attach TokenButler at layer 0 so that all subsequent layers can be sparsified; attaching it deeper yields
slightly higher recall but forces earlier layers to remain dense (Appendix §D).

3.2 PREDICTOR TRAINING

The LLM is frozen and we train only the TokenButler predictor. We run a forward pass of
the LLM on the C4-realnewslike training corpus and extract its (pre-softmax) attention logits
Atrue ∈ R(BN H)×L×L before causal masking and softmax. Meanwhile, TokenButler produces its
approximate logits Apred. We then minimize a mean-squared-error (MSE) loss between the two as
LMSE = ||Apred −Atrue||22. In practice, for each training batch:

1. Forward pass Compute Atrue for each layer n = 1, . . . , N and head h = 1, . . . , H , pass
the first-layer output of the LLM to the predictor to obtain Apred.

2. Loss computation. Accumulate MSE across all layers (except the first layer) and heads.
3. Backward update (predictor only). Update TokenButler’s parameters; the LLM remains

frozen.

The predictor learns to approximate attention patterns of the full model with minimal overhead. In
downstream usage, it can thus rapidly identify which tokens are most critical at per-token granularity,
without performing expensive attention computations. Training overhead is modest: on a single
A6000 GPU with a frozen base model, predictor training scales lightly from 7h17m (12.4M params)
to 8h42m (287M), since the base forward pass dominates (Appendix §E).

4 ACCURACY EVALUATION

We train and evaluate the accuracy of our predictors on Llama-3.2-3B, Llama-3.1-8B (Grattafiori
et al., 2024), Llama-2-7b-hf (Touvron et al., 2023), Mistral-7B-v0.1 (Jiang et al., 2023), Phi-3.5-
mini-instruct, and Phi-3-mini-4k-instruct (Abdin et al., 2024). The predictors are trained on the same
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LLM, the accuracy in identifying the top 50%
most important tokens is between 70–75%.

text-corpus, resulting in 80-100M tokens (due to tokenizer differences) using C4-realnewslike (Raffel
et al., 2019).

4.1 PREDICTOR ACCURACY & TOP-K RECALL

We evaluate TokenButler with two complementary metrics. Token Classification Accuracy treats
importance prediction as a binary classification problem: given the LLM’s attention map as ground
truth, how often does the predictor correctly flag tokens in the top 50% importance set? Across
models, TokenButler achieves 70–75% accuracy with only 1–1.2% parameter overhead (Figure 4).

Top-K Recall measures how well the predictor surfaces the most critical tokens under tight budgets:
keeping only the predictor’s top K% tokens, what fraction of the LLM-identified high-importance
tokens are recovered? On WikiText2, averaged over Llama-1B/3B/8B and a Llama-3.2-3B-Instruct
variant, TokenButler reaches ∼51% Recall@1% and improves steadily with larger K (Fig. 3). This
high top-K indicates the predictor reliably preserves the most informative token, which is required
for more aggressive sparsity.

4.2 EVALUATION ON A SYNTHETIC TASK FOR TOKEN RETRIEVAL

We evaluate TokenButler on a difficult synthetic task inspired by Multi-Round Co-reference Reso-
lution (Vodrahalli et al., 2024), using concise sequences (< 512 tokens). The model must recall a
fictional location mentioned in a contextual lead, then referenced again after several distracting state-
ments. By the time the location needs to be mentioned again after the location prelude, several tokens
may have intervened, making it likely that the location tokens may have been evicted. Coarse-grained
retrieval schemes risk not finding the entire location as it may be split across pages. This setup mimics
conversation-like scenarios. It is especially challenging for token sparsity methods, since prematurely
discarding or overlooking the location tokens can irreversibly break the final reference, leading to
incorrect or incomplete retrieval of the location name.

We first use GPT-4o-mini to generate 100 fictional location names. We then generate 100 short con-
textual leads plus matching preludes; then we generate 100 random math, culinary, and philosophical
statements. During evaluation, we form 100 sequences adhering to the template. Note that every
contextual lead is paired with a matching location prelude. Then, each test sequence is generated as a
random sample as follows:

Synthetic Benchmark Template and Sample

<contextual lead> <location> <philosophical statement> <culinary statement> <math
problem> <location prelude> <location>

Shrouded in luminescent fog, ... color. The place is: wraithspire In the spirit of ...
wisdom waiting to sprout. Savor the delicate ... home-cooked love. If we compute 18 ...
7 gives us 16. Which location is bathed ... lights up the shore? wraithspire

5
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Figure 5: Sample behavior of different KV-Sparsity methods on our synthetic co-reference resolution
task. TokenButler outperforms prefill eviction and page-based methods that have clear failure modes
due to permanently dropping tokens, or fetching tokens with page-size granularity respectively.

Model Oracle Token Eviction Page-Based TokenButler
Acc. Cov. Acc. Cov. Acc. Cov. Acc. Cov.

Llama-3.2-1B 49.00 84.32 1.00 32.50 0 19.78 49.00 82.70
Llama-3.2-3B 81.00 95.38 10.00 51.97 6.00 57.82 78.00 93.50
Llama-2-7b-hf 77.00 93.32 18.00 57.93 1.00 34.35 78.00 94.00
Llama-3.1-8B 77.00 93.47 3.00 37.50 0 46.98 73.00 91.90

Table 2: Accuracy and coverage (%) of different KV-sparsity methods on our synthetic dataset.
TokenButler outperforms eviction and page-based methods, and approaches Oracle performance.

Since every head may evict tokens based on their importance, we present the attention map for the
first head of the 3rd layer (a random choice) in Figure 5. We observe there as well as in Table 2 that
(i) prefill eviction methods, e.g. H2O, have low accuracy because they permanently evict older tokens
(the location name) once new context is being decoded. (ii) page-based methods, e.g. Quest, very
often lose part of the location name if it straddles a page boundary in this context-dense example.
Coverage gives a more detailed view on accuracy. Accuracy is binary, and locations are multiple
tokens long, therefore, coverage counts the number of correctly-predicted tokens. For example, if
the provided location is 4 tokens long, and a method gets 3 of those tokens correct, it is scored 0.75
in coverage and 0 in accuracy. We see that token eviction and page-based methods are still able to
correctly predict around 30− 50% of the tokens, but not all of them, leading to low accuracy. Table 2
summarizes the results on our synthetic benchmark set on different Llama models.

4.3 ACCURACY EVALUATION ON STANDARD BENCHMARKS

We compare with several key works, such as H2O, SnapKV, StreamingLLM and Quest under a
uniform token sparsity setup (applied to all layers except the first). We impose a token budget
proportional to the input length (e.g. 50% sparsity retains half the tokens). In real-world generative
use-cases, new tokens stream in while older tokens remain potentially important, whereas token-
eviction based methods like H2O and SnapKV must decide at each step which tokens to discard.
Meanwhile, TokenButler and Quest estimate token importance inexpensively for the full input without
needing eviction, so they stay efficient even when preserving all tokens.

To compare these approaches fairly, we simulate token-by-token decoding on the entire input to
simulate generative tasks for standard benchmarks. This implies not having a prefill phase, and
requiring H2O and SnapKV to apply their token eviction method at each step, rather than having
access to the entire prefill attention map before generating a few tokens for the answer. This provides
a more difficult task for token sparsity (for all methods equally) and more closely matches generative
use-cases. It also tests whether TokenButler and Quest truly identify and retain the right tokens over
the full sequence. Furthermore, we evaluate on perplexity and downstream tasks, revealing how token
eviction can drop crucial context if done prematurely, and evaluating learned token importance metric
in TokenButler.
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Figure 6: We evaluate TokenButler and other baselines in a uniform token pruning setting. We treat
the entire input sequence as a decode task, and fix KV-Cache budget as a percentage of the decoded
sequence length. Net Token Sparsity indicates the average observed token sparsity across all heads,
with 4 anchor tokens and no sliding window attention. TokenButler outperforms other metrics at
identifying critical tokens. H2O and SnapKV evict crucial tokens during the decode simulation, and
Quest incurs a high rate of page-misses.

Method (Token Budget) Qasper GovReport QMSum MultiNews TREC

Dense (4096) 40.23 33.09 24.3 25.21 72.5
Oracle (1923) 36.5 31.0 23.5 25.5 72.5

TokenButler (1852) 32.5 30.0 23.0 24.5 72.5
H2O (2048) 19.96 0.78 1.55 15.97 41.0
TOVA (2048) 30.14 26.15 19.7 25.04 56.5
SnapKV (2048) 31.37 27.03 19.93 24.97 59.0

Table 3: Long-context evaluation on Llama-3.2-3B-Instruct with calibrated sparsity (Section 4.5).
Qasper/TREC: Acc. (%); GovReport/QMSum/MultiNews: ROUGE-L.

StreamingLLM relies on recency as a guiding metric, maintaining attention only on the last W
tokens within a fixed sliding window while discarding all older tokens, SnapKV on the other hand,
determines token importance based on a rolling attention score magnitude, calculated over a small
observation window of size 16/32 tokens. In our setup, this observation window is used solely for
computing token importance but is not actively maintained unless the tokens it contains are deemed
important by the metric itself. Similarly, H2O also employs QK-based importance but operates under
a different mechanism. Whenever a newly decoded token exhibits high attention magnitude, it evicts
the least important token from its cache, provided the cache is full. Lastly, we include an Oracle
baseline, which represents the best possible token sparsity achievable given full access to the LLM’s
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attention logits. While this provides an upper bound on accuracy performance, it does not reduce
computational costs, as it requires a full attention pass to measure token importance before discarding
unimportant tokens.

Our evaluation is done on perplexity and average of four downstream tasks (HellaSwag, ARC-
Easy, PIQA and WinoGrande) in zero-shot settings. Although these tasks are relatively simple,
their critical tokens are often scattered across the entire context. Figure 6 shows the results. The
Oracle baseline discards tokens after calculating their importance, and is thus nearly lossless even at
60% sparsity, revealing substantial redundancy. H2O also achieves decent results, but permanently
discards tokens deemed unimportant early on, restricting later access when those tokens become
relevant. Meanwhile, Quest’s page-level metric underperforms on input lengths up to 1024, because
a page size of 16 cannot flexibly capture tokens spread throughout the sequence on context dense
tasks. By contrast, TokenButler accurately identifies important tokens in a fine-grained, query-
dependent manner, consistently outperforming both eviction and page-based baselines in perplexity
and downstream accuracy. From Figure 6, we can see that TokenButler in a fine-grained token
access setting without prefill token eviction can offer up-to an 8% improvement in perplexity and
downstream accuracy. On long-context tasks (Qasper, GovReport, QMSum, MultiNews, TREC),
TokenButler exceeds TOVA Oren et al. (2024) by +4.0 points on average while using fewer tokens.
Details are summarized in Table 3.

4.4 TOKENBUTLER ON REASONING MODELS

Reasoning models have been shown to have extremely long chain-of-thoughts. The generated CoT can
significantly slow down decode, as well as cause significant increase in the KV-Cache size, stressing
the decode-time memory bandwidth. To reduce the memory-bandwidth overhead of excessive token-
loading, we train TokenButler on the DeepSeek-R1-Distill-Llama-8B (DeepSeek-AI et al.,
2025) model at 1% of the original model size, for 77M tokens using C4-realnewslike. We then
evaluate TokenButler’s perplexity, as well as two tasks from the OpenLLM Leaderboard (Fourrier
et al., 2024) (BBH Causal Judgement (Kazemi et al., 2025) and MMLU Pro (Wang et al., 2024)) where
the base reasoning model (DeepSeek-R1-Distill-Llama-8B) exhibits good performance.
From Figure 7, we can see that even at a very aggressive sparsity of 70%, TokenButler is able
to preserve accuracy within 1%, and with a 2% increase in perplexity at 50% sparsity, indicating
that TokenButler can be used to reduce the memory and compute overhead of per-token decode on
reasoning models well.

4.5 LEVERAGING TOP-K RECALL

To assess the impact of token-sparsity in a fair setting, we use global naive uniform pruning for
evaluation. However, in Table 3 and Figure 8, we utilize a lightweight calibration step that redistributes
the token budget across heads using per-head, per-layer Top-K recall (referred to as calibrated
sparsity). We rank (head, layer) pairs by recall on a small calibration-set of data, and map this
ordering to per-head keep ratios (low-recall pairs get lower sparsity, high-recall pairs are sparsified
more aggressively), clamp to [ keepmin, 1 ], and renormalize so the average sparsity matches the
target. At inference, the predictor still produces per-token scores; we convert these to masks using
the calibrated per-head budget rather than a single uniform threshold. This simple procedure aligns

20 40 60

16.0

16.5

17.0
Perplexity

20 40 60
Sparsity (%)

0.52

0.54

0.56

BBH Causal Judgement

20 40 60

0.265

0.270

0.275
MMLU-Pro

Dense Oracle TokenButler

Figure 7: We train TokenButler on the deepseek-ai/DeepSeek-R1-Distill-Llama-8B
model and evaluate its performance, comparing with a dense baseline and Oracle token pruning.
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Llama models on an Nvidia A6000 GPU.

sparsity with the predictor’s own error, and improves model quality as shown in Figure 8. Across four
Llama variants, the predictor achieves Recall@1% ≈ 51%, rising smoothly with K (Appendix §E).

5 PERFORMANCE EVALUATION
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Figure 10: Performance of TokenButler vs.
Dense Attention and TokenSelect at 1024 to-
ken budget on an H100 GPU. 1 : Sparse At-
tention Overhead. 2 : TokenButler Overhead.
3 : TokenSelect Overhead.

Despite running alongside the LLM at each decoding
step, TokenButler imposes minimal runtime overhead.
Figure 9 shows that TokenButler adds roughly 1-2%
additional latency. However, this result only quanti-
fies the predictor’s own running time in isolation. To
evaluate end-to-end performance we integrate Token-
Butler with a Llama-3.2 1B model and measure the
end-to-end decode throughput under different context
lengths in Figure 10. The evaluation utilizes TokenS-
elect (Wu et al., 2024) code base where we replace
their method by a version of TokenButler that pre-
dicts the importance per token per layer removing
the head dimension from the predictions to match
the token retrieval method of the system. Full atten-
tion throughput drops as the context length increases,
eventually giving an error. Token sparsity methods
are needed to counter that. TokenButler throughput
is close to the oracle performance and TokenButler
is more efficient than TokenSelect as our predictor
is very lightweight and does not need to do the dot
product with the full original embedding dimension
E between Q and K as explained in Section 3.1.

6 CONCLUSION

We present a light-weight predictor that accurately estimates token importance at fine granularity,
enabling better token preservation than prior approaches. Our findings suggest that, to handle truly
conversational or multi-round tasks, where new text keeps arriving and old tokens can become
relevant again, LLMs benefit greatly from retaining rather than discarding. When memory limits
necessitate a form of compression, it is important to do so in a query-aware, fine-grained manner.
Our co-reference experiments show that all-or-nothing eviction or large-page retrieval strategies risk
losing important information. TokenButler introduces a light predictor that tracks each head’s token
preference, preserving the tokens that actually matter. This results in up-to 8% gains in perplexity
and downstream accuracy. In terms of throughput. We show that TokenButler is very close to the
oracle baseline with 10% throughput gap at large context length while outperforming recent methods
by up to 3×. Overall, TokenButler paves the way for more precise token management techniques for
large language models with minimal performance overhead.
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A APPENDIX

B LIMITATIONS

Although TokenButler closes much of the oracle-sparsity accuracy / perplexity gap, our investigation
is focused on smaller context-lengths, where we stress-test synthetic natural language multi-round
co-referential conversations of ≤ 1K tokens. Our primary focus is on demonstrating simple cases
where token-eviction methods and page-based token-selection methods can fail. Furthermore, the
predictor introduces a modest latency penalty, but at pre-fill still needs to materialize the full L×L
attention matrix, as well as retain the complete KV-Cache – costs that can dominate at large token
lengths, where token-eviction methods may be useful. Finally, since our focus is on pin-pointing
failure modes of low-granularity page-based and eviction-based sparsity methods, our evaluation is
limited to downstream evaluation on perplexity and four mid-length benchmarks (PIQA, Winogrande,
HellaSwag, ARC-Easy) and synthetic tasks where existing token-sparsity methods already fail.

C DISCUSSION

Our experiments demonstrate that fine-grained, per-head token importance estimation can improve
LLM performance on tasks that require retrieving previously referenced information. A key highlight
is the stark difference between TokenButler’s high-granularity, query-aware approach and existing
token-eviction or page-level compression strategies. Methods like H2O and SnapKV tend to discard
tokens prematurely under a size budget, limiting retrieval of critical context later. Page-based
approaches (e.g. Quest) are better at retaining old tokens but cannot easily single out individually
important tokens, particularly when references straddle page boundaries. Our synthetic co-reference
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Figure 11: The plot depicts the mean correlation
of attention logits between heads across the LLM.
Different heads prefer different tokens, justifying
the need for per-head TokenButler predictor de-
sign rather than a simpler per-layer approach.
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however, TokenButler and Oracle are still signifi-
cantly better on Llama-2-7b-hf.

benchmark highlights these issues: a single location name might be re-invoked well after it appears,
yet it can get evicted or split across pages in favor of model performance.

An important observation from Figure 11 is that different heads can have drastically different token
preferences. We test cross-head consensus, which is calculated by taking the attention logits from the
last next-word prediction problem per sequence. We compute the correlation between attention logits
across all heads in the LLMs. This gives us a [NH,NH] correlation matrix, and we take the mean of
the upper triangular matrix, giving us mean cross-head agreement (Cross-Head Consensus) in token
preferences. The low correlation observed implies that preserving only a shared subset of tokens
selected at the layer level (or from other heuristics) will lead to omission of tokens needed by other
heads. TokenButler fixes this by dedicating a Q-K neural network to emulate all heads, ensuring that
the tokens each head relies on for context remain accessible. While this slightly increases parameter
count (by around 1%), we see a major improvement in perplexity and downstream performance at
across token-sparsity levels.

In Figure 12, we first compare Oracle and Oracle With Prefill Eviction, which permanently evicts
"unimportant" tokens after each next-word prediction. As previously seen, this degrades perplexity,
but we also examine whether simpler signals, like reusing attention scores from the first layer or
the previous layer, can guide subsequent layers’ token choices without sacrificing tokens. Although
such methods do beat a purely random token-dropping baseline, they still do not perform as well as
even token eviction strategies. This is because of high cross-head disagreement, which means critical
token choices vary widely. Further motivating our design of a decode-focused, fine-grained, per-head
token importance prediction system.

D EFFECT OF PREDICTOR ATTACHMENT DEPTH

We ablate the layer at which TOKENBUTLER consumes hidden states by training five predictors
(each ≈54.6M parameters) on Llama-3.2-3B, attached at layers {0, 4, 8, 16, 24}. For target layers
25–27, we evaluate recall across a budget sweep (Recall@k%); the resulting curves are shown in
Fig. 13. Plotted markers correspond to the measured Recall@k% values (e.g., 10/30/50), and lines
provide a simple linear interpolation. We find that la ter attachment increases recall across budgets
(predictor @24 is best), but layers < k must then become dense, reducing the achievable sparsity
budget. In practice, there is a tradeoff such that we (i) attach at a moderate depth to balance recall
and sparsity, or (ii) when memory allows, use multiple lightweight predictors (e.g., every 4 layers) to
approach the accuracy of attaching at later layers, to retain more sparsity.

E PREDICTOR SCALING STUDY

We study how TokenButler’s parameter count affects token-importance recovery. All predictors are
trained with the same protocol on Llama-3.2-3B and evaluated on WikiText2. Table 4 reports
Recall@50%, i.e., the fraction of ground-truth high-importance tokens recovered when keeping the
predictor’s top-50% predictions (averaged over heads and sparse layers).
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Each curve corresponds to a predictor attached at layers {0, 4, 8, 16, 24}. Markers denote the
measured Recall@k% points (e.g., 10/30/50). Later attachment (e.g., predictor @24) consistently
yields higher recall across budgets, but leaves fewer layers for sparse execution.

Predictor size (M params) 3.48 5.06 12.40 39.66 144.52 287.00

Recall@50% (%) 67.38 70.18 71.90 73.90 79.70 81.02

Table 4: Predictor size scaling (Llama-3.2-3B). Larger predictors yield higher Recall@50%.

We observe a smooth scaling trend: increasing the predictor size from 3.48M to 287M improves
Recall@50% by +13.6 points (67.38% → 81.02%), providing a convenient accuracy/overhead
trade-off for different deployment budgets.

E.1 TRAINING AND INFERENCE COST.

Training TokenButler does not fine-tune the base LLM. On a single A6000 GPU for Llama-3.2-3B,
the end-to-end predictor training time scales lightly with predictor size: At inference, the predictor

Predictor params (M) 12.4 39.7 144.5 287.1
Time (hh:mm) 07:17 08:01 08:32 08:42

Table 5: Predictor training time on a single A6000 GPU (Llama-3.2-3B).

call adds ∼1–2% wall-clock time in isolation, and end-to-end overhead is ∼12–14% at short contexts,
decreasing as context length grows (Table 5).

E.2 SYNTHETIC CO-REFERENCE BENCHMARK

To rigorously evaluate token sparsity methods under retrieval-intensive scenarios, we developed
a synthetic co-reference benchmark utilizing OpenAI’s gpt-4o-mini model. The benchmark
consists of 100 unique fictional location names, 100 paired location introductions and tieback
questions, 100 philosophical reflections, 100 culinary descriptions, and 100 short math problems.
Each data sample is constructed by randomly selecting one location introduction along with its
corresponding tieback question, one location name, one philosophical statement, one culinary
description, and one math problem. The resulting sequence is structured such that the location
is introduced early in the context, followed by distractor content, and concludes with a prelude
statement that prompts the retrieval of the original location name.

This modular generation approach allows for the creation of up to 1004 = 108 unique sequences by
combining different components, ensuring extensive diversity. When a specific number of samples
are requested, they are dynamically generated by randomly drawing from the respective pools of
location introductions, location names, philosophical statements, culinary descriptions, and math
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problems. This on-the-fly sampling methodology ensures that each test instance presents a distinct
retrieval challenge, effectively simulating real-world conversational dynamics where important tokens
may reappear unpredictably after various interleaved topics. By designing the benchmark in this
manner, we specifically target the capability of token sparsity methods to accurately retain and retrieve
critical tokens between substantial contextual noise, thereby providing a robust assessment of their
effectiveness in maintaining model performance on co-referential tasks.

We provide some example texts, and how they perform for different methods (Oracle, Prefill Eviction,
Page Based and TokenButler) in the next few pages of the appendix. Each token is separated by a
space for clarity. The tokens in red are the incorrectly predicted tokens at the last decode stage. The
underlined tokens are the ones that the token-sparsity method decided to preserve when trying to
decode the first token of the location word. The first occurence of the location tokens is in green,
and their final appearance is bolded in green. Where the method failed to predict the tokens, their
’predicted’ token is provided with a strike-through in red, and the real correct token is underlined in
yellow in brackets.
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Prefill Eviction Method

<|begin_of_text|>L oom ing above a shimmer ing
sea of mist , a labyrinth of bi olum ines cent
cavern s spark les like a hidden treasure chest
beneath the surface . With each step , the
walls pulse with vibrant colors , illumin ating
the enchant ing mur als crafted by an unknown
artisan from ages past . The place is : myst
haven . In the manner of S ø ren K ier ke
gaard , one might ponder that existence is not
a mere state of being , but a relentless
pursuit of authenticity amidst the anxiety
of choice -- each decision carving out the
essence of the self , like a sculpt or
unveiling a figure from un yield ing marble .
Thus , we are et ern ally engaged in a dialogue
with our own potential , whisper ing truth
into the depths of uncertainty .. Pl ump ,
sa ff ron -inf used Spanish pa ella gre ets the
senses with its golden hue , as vibrant bell
peppers , sweet peas , and tender m ors els
of chor izo inter m ingle among a melody of br
iny seafood -- sh rimp , m ussels , and cock
les gracefully nestled into a bed of al d ente
rice . With each bite , the complex layers of
smoked pap rika and lemon offer a taste of sun
-d renched coast lines , echoing the spirited
gatherings of festive Val enc ian fe asts ,
where laughter dances through the air like the
enticing aroma rising from the pan .. If we
calculate 26 + 15 - 9 , is the result 32 ?
Indeed , it is 32 because 26 plus 15 equals
41 , and subtract ing 9 from 41 gives us 32 ..
What mysterious location features a labyrinth
of bi olum ines cent cavern s that pulse with
vibrant colors and bear enchant ing mur als from
an unknown artisan ?: Myst ( myst) ic (haven)

Oracle

<|begin_of_text|>L oom ing above a shimmer ing
sea of mist , a labyrinth of bi olum ines
cent cavern s spark les like a hidden treasure
chest beneath the surface . With each step ,
the walls pulse with vibrant colors , illumin
ating the enchant ing mur als crafted by an
unknown artisan from ages past . The place
is : myst haven . In the manner of S ø ren K
ier ke gaard , one might ponder that existence
is not a mere state of being , but a
relentless pursuit of authenticity amidst the
anxiety of choice -- each decision carving out
the essence of the self , like a sculpt or
unveiling a figure from un yield ing marble .
Thus , we are et ern ally engaged in a dialogue
with our own potential , whisper ing truth
into the depths of uncertainty .. Pl ump
, sa ff ron -inf used Spanish pa ella gre ets
the senses with its golden hue , as vibrant
bell peppers , sweet peas , and tender m ors
els of chor izo inter m ingle among a melody
of br iny seafood -- sh rimp , m ussels , and
cock les gracefully nestled into a bed of al
d ente rice . With each bite , the complex
layers of smoked pap rika and lemon offer a
taste of sun -d renched coast lines , echoing
the spirited gatherings of festive Val enc
ian fe asts , where laughter dances through
the air like the enticing aroma rising from
the pan .. If we calculate 26 + 15 - 9 , is
the result 32 ? Indeed , it is 32 because 26
plus 15 equals 41 , and subtract ing 9
from 41 gives us 32 .. What mysterious
location features a labyrinth of bi olum ines
cent cavern s that pulse with vibrant colors and
bear enchant ing mur als from an unknown artisan
?: myst haven

Page Based Method

<|begin_of_text|>L oom ing above a shimmer ing
sea of mist , a labyrinth of bi olum ines cent
cavern s spark les like a hidden treasure
chest beneath the surface . With each step ,
the walls pulse with vibrant colors , illumin
ating the enchant ing mur als crafted by an
unknown artisan from ages past . The place is
: myst haven . In the manner of S ø ren K ier
ke gaard , one might ponder that existence is
not a mere state of being , but a relentless
pursuit of authenticity amidst the anxiety of
choice -- each decision carving out the essence
of the self , like a sculpt or unveiling a
figure from un yield ing marble . Thus , we
are et ern ally engaged in a dialogue with
our own potential , whisper ing truth into the
depths of uncertainty .. Pl ump , sa ff ron
-inf used Spanish pa ella gre ets the senses
with its golden hue , as vibrant bell peppers ,
sweet peas , and tender m ors els of chor izo
inter m ingle among a melody of br iny seafood
-- sh rimp , m ussels , and cock les gracefully
nestled into a bed of al d ente rice . With
each bite , the complex layers of smoked pap
rika and lemon offer a taste of sun -d renched
coast lines , echoing the spirited gatherings
of festive Val enc ian fe asts , where laughter
dances through the air like the enticing
aroma rising from the pan .. If we calculate
26 + 15 - 9 , is the result 32 ? Indeed
, it is 32 because 26 plus 15 equals 41
, and subtract ing 9 from 41 gives us 32 ..
What mysterious location features a labyrinth
of bi olum ines cent cavern s that pulse with
vibrant colors and bear enchant ing mur als
from an unknown artisan ?: The ( myst) haven

TokenButler

<|begin_of_text|>L oom ing above a shimmer ing
sea of mist , a labyrinth of bi olum ines
cent cavern s spark les like a hidden treasure
chest beneath the surface . With each step ,
the walls pulse with vibrant colors , illumin
ating the enchant ing mur als crafted by an
unknown artisan from ages past . The place
is : myst haven . In the manner of S ø ren K
ier ke gaard , one might ponder that existence
is not a mere state of being , but a
relentless pursuit of authenticity amidst the
anxiety of choice -- each decision carving out
the essence of the self , like a sculpt or
unveiling a figure from un yield ing marble .
Thus , we are et ern ally engaged in a dialogue
with our own potential , whisper ing truth
into the depths of uncertainty .. Pl ump , sa
ff ron -inf used Spanish pa ella gre ets the
senses with its golden hue , as vibrant bell
peppers , sweet peas , and tender m ors els
of chor izo inter m ingle among a melody of br
iny seafood -- sh rimp , m ussels , and cock
les gracefully nestled into a bed of al d ente
rice . With each bite , the complex layers
of smoked pap rika and lemon offer a taste
of sun -d renched coast lines , echoing the
spirited gatherings of festive Val enc ian fe
asts , where laughter dances through the air
like the enticing aroma rising from the pan ..
If we calculate 26 + 15 - 9 , is the result 32
? Indeed , it is 32 because 26 plus 15 equals
41 , and subtract ing 9 from 41 gives us 32 ..
What mysterious location features a labyrinth
of bi olum ines cent cavern s that pulse with
vibrant colors and bear enchant ing mur als from
an unknown artisan ?: myst haven
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Prefill Eviction Method

<|begin_of_text|>B ene ath the lumin ous glow
of a thousand glitter ing stars , a crystall
ine lake sh immers with an eth ereal light
that dances like fire flies on its surface .
Sur rounded by mountains carved from colorful
gem stones , whispers of long -lo st legends
echo through the air , ming ling with the
sweet fragrance of blo oming night flowers .
The place is : frost g len . In the manner
of K ier ke gaard , one might reflect : " True
existence begins not in the relentless pursuit
of outward cert ainties but in the brave
plunge into the depth of one ’s own despair
-- where faith conce ives its true st essence
.". Pl ump , sa ff ron -inf used Spanish pa
ella gre ets the senses with its golden hue ,
as vibrant bell peppers , sweet peas , and
tender m ors els of chor izo inter m ingle
among a melody of br iny seafood -- sh rimp , m
ussels , and cock les gracefully nestled into a
bed of al d ente rice . With each bite , the
complex layers of smoked pap rika and lemon
offer a taste of sun -d renched coast lines ,
echoing the spirited gatherings of festive Val
enc ian fe asts , where laughter dances through
the air like the enticing aroma rising from
the pan .. If we compute 8 + 15 - 5 , is the
result 18 ? Indeed , it is 18 because 8 plus
15 equals 23 , and subtract ing 5 gives us 18

.. Which location boasts a crystall ine lake
whose surface spark les like fire flies beneath
a canopy of stars ?: The ( frost) y (g) len

Oracle

<|begin_of_text|>B ene ath the lumin ous glow
of a thousand glitter ing stars , a crystall
ine lake sh immers with an eth ereal light that
dances like fire flies on its surface . Sur
rounded by mountains carved from colorful gem
stones , whispers of long -lo st legends echo
through the air , ming ling with the sweet
fragrance of blo oming night flowers . The
place is : frost g len . In the manner of
K ier ke gaard , one might reflect : " True
existence begins not in the relentless pursuit
of outward cert ainties but in the brave
plunge into the depth of one ’s own despair
-- where faith conce ives its true st essence .".
Pl ump , sa ff ron -inf used Spanish pa ella gre
ets the senses with its golden hue , as vibrant
bell peppers , sweet peas , and tender m ors
els of chor izo inter m ingle among a melody
of br iny seafood -- sh rimp , m ussels , and
cock les gracefully nestled into a bed of al
d ente rice . With each bite , the complex
layers of smoked pap rika and lemon offer a
taste of sun -d renched coast lines , echoing
the spirited gatherings of festive Val enc ian
fe asts , where laughter dances through the
air like the enticing aroma rising from
the pan .. If we compute 8 + 15 - 5 , is the
result 18 ? Indeed , it is 18 because 8 plus
15 equals 23 , and subtract ing 5 gives us
18 .. Which location boasts a crystall ine lake
whose surface spark les like fire flies beneath
a canopy of stars ?: frost g len

Page Based Method

<|begin_of_text|>B ene ath the lumin ous glow
of a thousand glitter ing stars , a crystall
ine lake sh immers with an eth ereal light that
dances like fire flies on its surface . Sur
rounded by mountains carved from colorful gem
stones , whispers of long -lo st legends echo
through the air , ming ling with the sweet
fragrance of blo oming night flowers . The
place is : frost g len . In the manner of
K ier ke gaard , one might reflect : " True
existence begins not in the relentless pursuit
of outward cert ainties but in the brave plunge
into the depth of one ’s own despair -- where
faith conce ives its true st essence .". Pl
ump , sa ff ron -inf used Spanish pa ella
gre ets the senses with its golden hue , as
vibrant bell peppers , sweet peas , and tender
m ors els of chor izo inter m ingle among a
melody of br iny seafood -- sh rimp , m ussels
, and cock les gracefully nestled into a bed of
al d ente rice . With each bite , the complex
layers of smoked pap rika and lemon offer a
taste of sun -d renched coast lines , echoing
the spirited gatherings of festive Val enc ian
fe asts , where laughter dances through the air
like the enticing aroma rising from the pan ..
If we compute 8 + 15 - 5 , is the result
18 ? Indeed , it is 18 because 8 plus 15
equals 23 , and subtract ing 5 gives us 18
.. Which location boasts a crystall ine lake
whose surface spark les like fire flies beneath
a canopy of stars ?: The ( frost) g len

TokenButler

<|begin_of_text|>B ene ath the lumin ous glow
of a thousand glitter ing stars , a crystall
ine lake sh immers with an eth ereal light
that dances like fire flies on its surface .
Sur rounded by mountains carved from colorful
gem stones , whispers of long -lo st legends
echo through the air , ming ling with the
sweet fragrance of blo oming night flowers .
The place is : frost g len . In the manner
of K ier ke gaard , one might reflect : " True
existence begins not in the relentless pursuit
of outward cert ainties but in the brave
plunge into the depth of one ’s own despair
-- where faith conce ives its true st essence .".
Pl ump , sa ff ron -inf used Spanish pa ella gre
ets the senses with its golden hue , as vibrant
bell peppers , sweet peas , and tender m ors
els of chor izo inter m ingle among a melody
of br iny seafood -- sh rimp , m ussels , and
cock les gracefully nestled into a bed of al
d ente rice . With each bite , the complex
layers of smoked pap rika and lemon offer a
taste of sun -d renched coast lines , echoing
the spirited gatherings of festive Val enc
ian fe asts , where laughter dances through
the air like the enticing aroma rising from
the pan .. If we compute 8 + 15 - 5 , is the
result 18 ? Indeed , it is 18 because 8 plus
15 equals 23 , and subtract ing 5 gives us 18
.. Which location boasts a crystall ine lake
whose surface spark les like fire flies beneath
a canopy of stars ?: frost g len
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Prefill Eviction Method

<|begin_of_text|>B ene ath a sky painted in
eternal twilight , hills of lum ines cent moss
und ulate like waves , whisper ing secrets
to the playful shadows of dancing fire flies
. Cr yst all ine springs bubble up , their
water shimmer ing with hues that transcend
the spectrum , inviting weary travelers to
drink from their enchanted depths . The place
is : aer anth ium . In the spirit of Conf
uc ius , let us ponder : " A journey towards
truth begins not with certainty , but with
the humility to embrace our ignorance ; for
in every question lies the seed of wisdom
waiting to spr out .". Golden sa ff ron -inf
used bir y ani emerges from the pot , its frag
rant steam ming ling with the warm spices
of card am om and cloves , each pl ump bas
mat i grain g listening with the essence of
mar inated chicken and tang y pick led lime ;
a dish deeply rooted in South Asian heritage
, it offers a harmon ious dance of sm oky ,
savory , and z esty notes that transports din
ers across bustling b aza ars and op ulent fe
asts of ancient kings .. If we calculate 8
+ 15 - 6 , is the result 17 ? Indeed , it is
17 because when we add 8 and 15 , we get
23 , and subtract ing 6 gives us 17 .. Which
location features hills of lum ines cent moss
that whisper secrets beneath an eternal twilight
sky ?: The ( aer) ia (anth) os (ium)

Oracle

<|begin_of_text|>B ene ath a sky painted in
eternal twilight , hills of lum ines cent moss
und ulate like waves , whisper ing secrets
to the playful shadows of dancing fire flies
. Cr yst all ine springs bubble up , their
water shimmer ing with hues that transcend
the spectrum , inviting weary travelers to
drink from their enchanted depths . The place
is : aer anth ium . In the spirit of Conf
uc ius , let us ponder : " A journey towards
truth begins not with certainty , but with
the humility to embrace our ignorance ; for
in every question lies the seed of wisdom
waiting to spr out .". Golden sa ff ron -inf
used bir y ani emerges from the pot , its
frag rant steam ming ling with the warm
spices of card am om and cloves , each pl ump
bas mat i grain g listening with the essence
of mar inated chicken and tang y pick led lime
; a dish deeply rooted in South Asian heritage
, it offers a harmon ious dance of sm oky ,
savory , and z esty notes that transports din
ers across bustling b aza ars and op ulent fe
asts of ancient kings .. If we calculate 8 +
15 - 6 , is the result 17 ? Indeed , it is 17
because when we add 8 and 15 , we get 23
, and subtract ing 6 gives us 17 .. Which
location features hills of lum ines cent moss
that whisper secrets beneath an eternal twilight
sky ?: aer anth ium

Page Based Method

<|begin_of_text|>B ene ath a sky painted in
eternal twilight , hills of lum ines cent moss
und ulate like waves , whisper ing secrets to
the playful shadows of dancing fire flies
. Cr yst all ine springs bubble up , their
water shimmer ing with hues that transcend
the spectrum , inviting weary travelers to
drink from their enchanted depths . The place
is : aer anth ium . In the spirit of Conf
uc ius , let us ponder : " A journey towards
truth begins not with certainty , but with
the humility to embrace our ignorance ; for
in every question lies the seed of wisdom
waiting to spr out .". Golden sa ff ron -inf
used bir y ani emerges from the pot , its frag
rant steam ming ling with the warm spices
of card am om and cloves , each pl ump bas
mat i grain g listening with the essence of
mar inated chicken and tang y pick led lime ;
a dish deeply rooted in South Asian heritage
, it offers a harmon ious dance of sm oky ,
savory , and z esty notes that transports din
ers across bustling b aza ars and op ulent fe
asts of ancient kings .. If we calculate 8 +

15 - 6 , is the result 17 ? Indeed , it
is 17 because when we add 8 and 15 ,
we get 23 , and subtract ing 6 gives us
17 .. Which location features hills of lum

ines cent moss that whisper secrets beneath an
eternal twilight sky ?: The ( aer) anth ium

TokenButler

<|begin_of_text|>B ene ath a sky painted in
eternal twilight , hills of lum ines cent moss
und ulate like waves , whisper ing secrets
to the playful shadows of dancing fire flies
. Cr yst all ine springs bubble up , their
water shimmer ing with hues that transcend
the spectrum , inviting weary travelers to
drink from their enchanted depths . The place
is : aer anth ium . In the spirit of Conf
uc ius , let us ponder : " A journey towards
truth begins not with certainty , but with
the humility to embrace our ignorance ; for
in every question lies the seed of wisdom
waiting to spr out .". Golden sa ff ron -inf
used bir y ani emerges from the pot , its
frag rant steam ming ling with the warm spices
of card am om and cloves , each pl ump bas
mat i grain g listening with the essence of
mar inated chicken and tang y pick led lime ;
a dish deeply rooted in South Asian heritage
, it offers a harmon ious dance of sm oky ,
savory , and z esty notes that transports
din ers across bustling b aza ars and op ulent
fe asts of ancient kings .. If we calculate
8 + 15 - 6 , is the result 17 ? Indeed , it
is 17 because when we add 8 and 15 , we get
23 , and subtract ing 6 gives us 17 .. Which
location features hills of lum ines cent moss
that whisper secrets beneath an eternal twilight
sky ?: aer anth ium
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Prefill Eviction Method

<|begin_of_text|>Ve iled in an everlasting
twilight , this realm is painted with lum ines
cent flowers that bloom under the soft glow
of a silver sky . Rivers of shimmer ing st
ard ust me ander through em erald fields ,
whisper ing secrets to those who dare to
listen . The place is : frost wyn . In
the manner of S ø ren K ier ke gaard , one
might ponder that existence is not a mere
state of being , but a relentless pursuit
of authenticity amidst the anxiety of choice

-- each decision carving out the essence of
the self , like a sculpt or unveiling a
figure from un yield ing marble . Thus , we
are et ern ally engaged in a dialogue with
our own potential , whisper ing truth into
the depths of uncertainty .. Golden sa ff
ron -inf used bir y ani emerges from the pot
, its frag rant steam ming ling with the warm
spices of card am om and cloves , each pl ump
bas mat i grain g listening with the essence
of mar inated chicken and tang y pick led lime
; a dish deeply rooted in South Asian heritage
, it offers a harmon ious dance of sm oky ,
savory , and z esty notes that transports din
ers across bustling b aza ars and op ulent fe
asts of ancient kings .. If we calculate 27 +
15 - 8 , is the result 34 ? Indeed , it is 34
because 27 plus 15 equals 42 , and subtract
ing 8 gives us 34 .. Which realm is adorned
with lum ines cent flowers and rivers of shimmer
ing st ard ust that whisper secrets to those who
listen ?: Frost ( frost) wyn

Oracle

<|begin_of_text|>Ve iled in an everlasting
twilight , this realm is painted with lum ines
cent flowers that bloom under the soft glow
of a silver sky . Rivers of shimmer ing st
ard ust me ander through em erald fields ,
whisper ing secrets to those who dare to
listen . The place is : frost wyn . In the
manner of S ø ren K ier ke gaard , one might
ponder that existence is not a mere state
of being , but a relentless pursuit of
authenticity amidst the anxiety of choice --
each decision carving out the essence of the
self , like a sculpt or unveiling a figure
from un yield ing marble . Thus , we are et
ern ally engaged in a dialogue with our own
potential , whisper ing truth into the depths
of uncertainty .. Golden sa ff ron -inf used
bir y ani emerges from the pot , its frag
rant steam ming ling with the warm spices of
card am om and cloves , each pl ump bas mat i
grain g listening with the essence of mar
inated chicken and tang y pick led lime ; a
dish deeply rooted in South Asian heritage , it
offers a harmon ious dance of sm oky , savory
, and z esty notes that transports din ers
across bustling b aza ars and op ulent fe asts
of ancient kings .. If we calculate 27 + 15
- 8 , is the result 34 ? Indeed , it is 34
because 27 plus 15 equals 42 , and subtract
ing 8 gives us 34 .. Which realm is adorned
with lum ines cent flowers and rivers of shimmer
ing st ard ust that whisper secrets to those who
listen ?: frost wyn

Page Based Method

<|begin_of_text|>Ve iled in an everlasting
twilight , this realm is painted with lum ines
cent flowers that bloom under the soft glow
of a silver sky . Rivers of shimmer ing
st ard ust me ander through em erald fields ,
whisper ing secrets to those who dare to listen
. The place is : frost wyn . In the manner
of S ø ren K ier ke gaard , one might ponder
that existence is not a mere state of being
, but a relentless pursuit of authenticity
amidst the anxiety of choice -- each decision
carving out the essence of the self , like a
sculpt or unveiling a figure from un yield ing
marble . Thus , we are et ern ally engaged in a
dialogue with our own potential , whisper ing
truth into the depths of uncertainty .. Golden
sa ff ron -inf used bir y ani emerges from the
pot , its frag rant steam ming ling with the
warm spices of card am om and cloves , each
pl ump bas mat i grain g listening with the
essence of mar inated chicken and tang y pick
led lime ; a dish deeply rooted in South Asian
heritage , it offers a harmon ious dance of sm
oky , savory , and z esty notes that transports
din ers across bustling b aza ars and op ulent
fe asts of ancient kings .. If we calculate
27 + 15 - 8 , is the result 34 ? Indeed
, it is 34 because 27 plus 15 equals 42
, and subtract ing 8 gives us 34 .. Which
realm is adorned with lum ines cent flowers
and rivers of shimmer ing st ard ust that
whisper secrets to those who listen ?: the
( frost) wyn

TokenButler

<|begin_of_text|>Ve iled in an everlasting
twilight , this realm is painted with lum ines
cent flowers that bloom under the soft glow
of a silver sky . Rivers of shimmer ing st
ard ust me ander through em erald fields ,
whisper ing secrets to those who dare to
listen . The place is : frost wyn . In the
manner of S ø ren K ier ke gaard , one might
ponder that existence is not a mere state
of being , but a relentless pursuit of
authenticity amidst the anxiety of choice --
each decision carving out the essence of the
self , like a sculpt or unveiling a figure
from un yield ing marble . Thus , we are et
ern ally engaged in a dialogue with our own
potential , whisper ing truth into the depths
of uncertainty .. Golden sa ff ron -inf used
bir y ani emerges from the pot , its frag
rant steam ming ling with the warm spices of
card am om and cloves , each pl ump bas mat i
grain g listening with the essence of mar
inated chicken and tang y pick led lime ; a
dish deeply rooted in South Asian heritage
, it offers a harmon ious dance of sm oky ,
savory , and z esty notes that transports din
ers across bustling b aza ars and op ulent fe
asts of ancient kings .. If we calculate 27 +
15 - 8 , is the result 34 ? Indeed , it is 34
because 27 plus 15 equals 42 , and subtract ing
8 gives us 34 .. Which realm is adorned with
lum ines cent flowers and rivers of shimmer ing
st ard ust that whisper secrets to those who
listen ?: frost wyn
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Prefill Eviction Method

<|begin_of_text|>C rad led between swirling s
apphire t ides , this breathtaking haven sh
immers under a kale idos cope sky where the
sun paints the horizon in vibrant hues of
gold and rose . Myst ical creatures roam
among phosph ores cent flora that emit a soft
glow at twilight , illumin ating secret paths
leading to hidden water falls that whisper
secrets of the anc ients . The place is :
myst ar idge . In the manner of S ø ren K
ier ke gaard , one might say : “ To exist
is to confront deeply personal truths that
demand decision ; yet , in every choice made , a
horizon not yet explored van ishes , revealing
the paradox that our freedom shapes us even
as we define ourselves through constraint .”
. A ste aming plate of P anna C otta g list
ens with a jewel -ton ed raspberry cou lis that
casc ades over its vel v ety cream , ev oking
the sun -d renched landscapes of Italy ; each
spoon ful dances on the tongue with rich
notes of vanilla and a whisper of citrus ,
a perfect end to a rustic meal , paying homage
to centuries of culinary art istry .. If we
calculate 18 + 22 - 7 , is the result 33 ?
Indeed , it is 33 because 18 plus 22 equals 40
, and when we subtract 7 from 40 , we get 33 ..
Which breathtaking haven is cr ad led between
swirling s apphire t ides and features secret
paths illuminated by phosph ores cent flora ?:
Myst ( myst) ar . (idge)

Oracle

<|begin_of_text|>C rad led between swirling s
apphire t ides , this breathtaking haven sh
immers under a kale idos cope sky where the
sun paints the horizon in vibrant hues of
gold and rose . Myst ical creatures roam
among phosph ores cent flora that emit a soft
glow at twilight , illumin ating secret paths
leading to hidden water falls that whisper
secrets of the anc ients . The place is
: myst ar idge . In the manner of S ø ren
K ier ke gaard , one might say : “ To exist
is to confront deeply personal truths that
demand decision ; yet , in every choice made , a
horizon not yet explored van ishes , revealing
the paradox that our freedom shapes us even as
we define ourselves through constraint .” . A
ste aming plate of P anna C otta g list ens with
a jewel -ton ed raspberry cou lis that casc
ades over its vel v ety cream , ev oking the
sun -d renched landscapes of Italy ; each spoon
ful dances on the tongue with rich notes
of vanilla and a whisper of citrus , a
perfect end to a rustic meal , paying homage
to centuries of culinary art istry .. If we
calculate 18 + 22 - 7 , is the result 33 ?
Indeed , it is 33 because 18 plus 22 equals

40 , and when we subtract 7 from 40 ,
we get 33 .. Which breathtaking haven is cr
ad led between swirling s apphire t ides and
features secret paths illuminated by phosph ores
cent flora ?: myst ar idge

Page Based Method

<|begin_of_text|>C rad led between swirling s
apphire t ides , this breathtaking haven sh
immers under a kale idos cope sky where the
sun paints the horizon in vibrant hues of
gold and rose . Myst ical creatures roam among
phosph ores cent flora that emit a soft glow at
twilight , illumin ating secret paths leading
to hidden water falls that whisper secrets of
the anc ients . The place is : myst ar idge
. In the manner of S ø ren K ier ke gaard ,
one might say : “ To exist is to confront
deeply personal truths that demand decision
; yet , in every choice made , a horizon not
yet explored van ishes , revealing the paradox
that our freedom shapes us even as we define
ourselves through constraint .” . A ste aming
plate of P anna C otta g list ens with a
jewel -ton ed raspberry cou lis that casc ades
over its vel v ety cream , ev oking the sun
-d renched landscapes of Italy ; each spoon
ful dances on the tongue with rich notes of
vanilla and a whisper of citrus , a perfect end
to a rustic meal , paying homage to centuries
of culinary art istry .. If we calculate 18 +

22 - 7 , is the result 33 ? Indeed , it
is 33 because 18 plus 22 equals 40 , and
when we subtract 7 from 40 , we get 33 ..
Which breathtaking haven is cr ad led between
swirling s apphire t ides and features secret
paths illuminated by phosph ores cent flora ?:
The ( myst) ar idge

TokenButler

<|begin_of_text|>C rad led between swirling s
apphire t ides , this breathtaking haven sh
immers under a kale idos cope sky where the
sun paints the horizon in vibrant hues of
gold and rose . Myst ical creatures roam
among phosph ores cent flora that emit a soft
glow at twilight , illumin ating secret paths
leading to hidden water falls that whisper
secrets of the anc ients . The place is
: myst ar idge . In the manner of S ø ren
K ier ke gaard , one might say : “ To exist
is to confront deeply personal truths that
demand decision ; yet , in every choice made , a
horizon not yet explored van ishes , revealing
the paradox that our freedom shapes us even
as we define ourselves through constraint .”
. A ste aming plate of P anna C otta g list
ens with a jewel -ton ed raspberry cou lis that
casc ades over its vel v ety cream , ev oking
the sun -d renched landscapes of Italy ; each
spoon ful dances on the tongue with rich notes
of vanilla and a whisper of citrus , a
perfect end to a rustic meal , paying homage
to centuries of culinary art istry .. If we
calculate 18 + 22 - 7 , is the result 33 ?
Indeed , it is 33 because 18 plus 22 equals 40
, and when we subtract 7 from 40 , we get 33 ..
Which breathtaking haven is cr ad led between
swirling s apphire t ides and features secret
paths illuminated by phosph ores cent flora ?:
mystar idge
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E.3 THROUGHPUT ON OTHER GPUS
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Figure 14: Throughput of TokenButler
against full attention and against TokenSelect.
The number of tokens selected for sparse at-
tention is 1024 for all. Oracle picks random
tokens for performance simulation. Experi-
ment is performed on A6000 GPU.

In Section 5, throughput numbers are shown for H100
GPU. Figure 14 shows the throughput for the A6000
GPU which is less powerful. While the intersection
points between different methods differs from the
H100 GPU, the same trends can be observed where
TokenButler outperforms TokenSelect and Full Atten-
tion. It is worth noting that TokenButler outperforms
Full Attention at a shorter context length for the less
powerful GPU.
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